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Abstract
We consider a single-server queueing system with server vacations as the important compo-
nent of the polling queueing model of a real-world system. Period of continuous operation of
the server (the maximum server attendance time) is restricted, but the service of a customer
cannot be interrupted when this period expires. Such features are inherent for many real-
world systems with resource sharing. We assume that the customers arrival is described by
the Markovian Arrival Process and service, vacation and maximum server attendance times
have a phase-type distribution. We derive the stationary distributions of the system states
and waiting time. Taking in mind the necessity of further application of the results to mod-
eling the polling queueing systems, the distribution of the server visiting time is derived.
Extensive numerical results are presented. They highlight that an account of the coefficient
of variation of vacation and maximum attendance time is very important for exact evaluation
of the key performance measures of the system, while only the results for the coefficient of
variation equal to zero or one are known in the literature. Impact of the possible customers
impatience, which is intuitively important because the time-limited service is considered, is
confirmed by the results of the numerical experiments. Optimization problem of matching
the durations of vacation and maximum attendance time is considered.
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1 Introduction

1.1 Practical Motivation

This research was started during the analysis of a large inter-banking processing center
aiming to optimize operation of this center. The basic function of this center is to handle
operations (transactions) between the cooperating entities (banks). The principle of opera-
tion of the center is a priori chosen as time division. Time is divided to the slots and during
a slot transactions of only one entity can be processed. Entities are different with respect to
the average number of the required transactions per unit of time and their importance for
the system. This information has to be taken for decision support about the duration and
frequency of slots provided to the entities. Mathematical modeling of the center is impor-
tant both from the point of view of better performance of the center (e.g. in terms of the
weighted average time for transaction implementation) and from the point of view of fair
access of various entities to the center. The results of the modeling are useful to avoid under-
utilization of the center capacity during the slots assigned to some important entities and
congestion during the other slots.

Previous attempts to optimize the work of this center based on the results of computer
simulation or application of the simplest models of queueing networks did not lead to suc-
cessful results. Due to existence of many choices of parameters of the center, simulation is
extremely time consuming. The relevant queueing networks do not allow solution close to
product form. Therefore, it was suggested to build and analyse queueing model more or less
adequate to reality of the center operation.

From the point of view of queueing theory, it is evident that the work of the processing
center should be described by the polling model. Theory of queueing systems with polling is
quite well developed, see, e.g. the surveys (Boon et al. 2011; Hanbali et al. 2012; Vishnevsky
and Semenova 2006). However, the direct application of the known results in the literature
results was impossible due to the following reasons and imposed from the early beginning
restrictions:

• The statistical analysis of the flows of transactions in the real center under investigation
evidently showed the presence of positive correlation of successive inter-arrival times.
As it is already well-known from the existing queueing literature, correlation in the
arrival processes essentially deteriorates performance measures of queueing systems
comparing to the corresponding systems with the stationary Poisson arrival process
having the same arrival rate. But, the overwhelming majority of the relevant papers
assume the stationary Poisson arrival process of customers. This assumption drastically
simplifies the mathematical analysis because it reduces the dimension of the Markov
process describing behavior of the system. However, this assumption does not hold true
for the considered center.

• Essential restriction was to take into account the ban of interruption of a transaction. If
the time slot assigned to a given entity expires during some transaction processing, this
processing cannot be terminated ahead of the schedule. Only after transaction comple-
tion the center may switch to processing of transactions of the next entity. Such a ban
is natural from the point of view of referential integrity of the information.

• Waiting time for a transaction is restricted.

Analysis of the existing literature has shown the lack of the models where all three
listed restrictions are satisfied. Therefore, it was necessary to implement the analysis of the
described system. It is clear that the analytical analysis of the whole system is not possible.
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The well-known approach to analysis of a polling system consists of decomposition of the
system into sub-systems each of which describes processing of transactions of one, tagged,
entity in terms of the appropriate vacation queueing model. Time slot, during which the cen-
ter provides service to these transactions, in what follows we call the server visiting time.
When this times expires, the server switches to service of transactions from another entities.
From the point of view of the tagged entity, the time, during which transactions of other
entities are handled, may be considered as the server vacation. The analysis of the whole
polling system can be successfully performed via the analysis of a set of vacation models
describing the dynamics of the service of the transactions of the tagged entity with properly
chosen distribution of the vacation time. However, in reality these distributions for different
entities are not a priori known and depend on each other. The vacation time in the model of
service of one entity is the sum of visiting times of other entities. But this problem is more
or less easily solved heuristically by means of iterative computations where, at each step, an
unknown distribution of a vacation time in the tagged vacation queue is rectified based on
results of the computation of the distribution of visiting time of other queues by the server,
see, e.g., Vishnevsky et al. (2012).

Thus, the important step in modeling the operation of the processing center is to elaborate
the accurate vacation queueing model taking into account the listed above restrictions.

1.2 The Relevant Literature and Contributions of the Paper

In vacation queueing models, it is suggested that the server of the system can take a vacation
during which the service of customers is temporarily suspended. As important references
concerning the vacation queueing models the studies (Takagi 1990, 1991, 1997, 2000) by H.
Takagi and the book Tian and Zhang (2006) can be mentioned. Vacation queueing models
are very versatile with respect to the rules of beginning and ending vacations (correspond-
ingly, ending and starting the service periods). The existing literature is very extensive.
Therefore, for easier navigation in this literature, the classification of such models was
elaborated, see, e.g., Takagi (1991). This classification is permanently developing due to
appearance of new models of various real-world systems.

Basically, the most popular rules defining the duration of the service period are the fol-
lowing: (i) the exhaustive service that suggests that once the service period begins it will end
only when the system will become empty; (ii) the decremented service that suggests that the
service of customers is terminated when the number of customers in the system decreases
to the predefined number; (iii) the gated service that suggests that the service period con-
tinues until all customers presenting in the system at this period beginning will be served;
(iv) the limited service that suggests that the service period is restricted. This restriction
may have two forms. One form assumes the limitation of the number of customers that can
obtain service during one service period. Usually, this number is restricted from above, how-
ever, restriction from below might be considered as well, see, e.g., the recent paper Boxma
et al. (2015). Another form assumes the limitation of the time during which the server can
continuously provide service. We refer to the latter rule as time-limited service and to the
time, during which the server can continuously provide service, as a service period or the
maximum attendance time. To be short, further we abbreviate this time as MAT. Different
combinations of the listed rules are considered in the literature as well. E.g., it is possible to
combine the gated and time-limited service: a service period ends when the MAT expires or
all customers presenting in the system at the service period beginning instant finish service,
whichever occurs first. Another possible combination is a composition of the exhaustive and
time-limited service: a service period ends when the MAT expires or the system becomes
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empty, whichever occurs first. In this paper, we consider namely such a combination. This
combination is very important from the point of view of potential real-world applications.
In particular, it is effectively applied in the systems where a certain restricted resource is
dynamically shared among several users. Limitation of the time of continuous service of the
requests generated by some user helps to get more fair and timely access for various users,
to avoid any types of monopolization of the resource. Exhaustive service allows to terminate
an access for the user that currently does not need the resource.

The model considered in this paper has the following advantages over the existing in the
literature.

• To take into account the existence of correlation of inter-arrival times, we consider
the known in the literature Markovian Arrival Process (MAP ) of arriving customers
(transaction). For definition, properties and related literature, see, e.g., Chakravarthy
(2001), Lucantoni (1991), and Vishnevski and Dudin (2017).

• Ideally from the mathematical point of view, durations of the maximum attendance time
(MAT) defining restriction on the continuous time of the server operation without going
to vacation, service and vacation times have to be random with the general distribution.
However, practically all papers in this subject, probably except the papers where the
authors intend to analyze the system only in some asymptotic conditions, these distri-
butions are assumed to be exponential or degenerate. E.g., the distribution of the MAT
is assumed to be exponential in de Haan et al. (2009), Hanbali et al. (2012), Katayama
(2001, 2007), Katayama and Kobayashi (2007) adn Leung (1994). The constant MAT is
considered in Frigui and Alfa (1998), Leung and Eisengerg (1990), Leung and Lucan-
toni (1994), and de Se Silva et al. (1995). The coefficient of variation of the exponential
distribution is equal to 1 and the coefficient of variation of the degenerate distribution
is equal to 0. If in the real-world system the MAT or service or vacation time has higher
than 1 coefficient of variation, the hyper-exponential distribution can be recommended.
If this coefficient is less than 1, Erlangian distribution can be applied. Both these distri-
butions are the very special case of the so-called PH (phase-type) distribution, see, e.g.
Neuts (1981). The possibility of approximation (in sense of a weak convergence) of an
arbitrary distribution by the PH distribution is mentioned, e.g., in Asmussen (2003). By
this reason, as a trade-off between the desire to analyze the model under the most gen-
eral assumptions about the distribution of the MAT, service and vacation times and the
possibility to get tractable results ready for computer realization, we suggest that these
times in our model have the PH -type distribution. Very high importance of account of
variation of the MAT and vacation times is demonstrated in our paper by the numerical
examples. E.g., the probability of an arbitrary customer loss differs by two times in the
systems with the same mean vacation time but the different coefficient of variation.

• When the time limited service is considered, it is quite often that the MAT expires
during the service of a certain customer. Two options are possible in such a situa-
tion. The first option is that the service of this customer is preempted. The customer
is lost or will be served after the vacation period completion. This option was consid-
ered, e.g., in de Haan et al. (2009), Hanbali et al. (2012), and Leung and Eisengerg
(1990). The second option is that the service of this customer has to be continued until
this customer receives complete service. This option was considered, e.g., in Katayama
(2007), Katayama and Kobayashi (2007), and Leung (1994). Both options together
were considered in Katayama (2001) and de Se Silva et al. (1995). The option with
non-preemptive service is definitely more difficult for analysis in the case of non-
exponential distribution of the service, vacation and MAT. This is because if one wishes

404 Methodology and Computing in Applied Probability (2020) 22: 401–432



to describe the behavior of the system by the Markov process, during the MAT he/she
must monitor simultaneously the elapsed (or residual) times for the MAT and service
times. If the technique of the supplementary variables will be applied (with two con-
tinuous supplementary variables as the elapsed or residual times for the maximum
attendance and service times at a given time moment), this will lead to the functional
or integro-differential equations of the type solution for which is not known in the rele-
vant literature. In our paper, we consider the more difficult option with non-preemptive
service. The use of the PH distribution of the MAT and service times instead of the
arbitrary distribution implies that it is possible to replace the account of two con-
tinuous supplementary variables by the account of two supplementary variables with
the discrete state space. The corresponding multi-dimensional Markov process can be
analyzed via the matrix analytic methods.

• In our paper, we assume that the customers waiting in the queue are impatient and
may leave the system without service after some amount of waiting time. Queues with
impatient customers are a popular subject of research. However, no one of the relevant
papers cited above takes impatience into account. It is worth to note that we assume that
the rate of customer’s leaving the system without service depends on the state of the
server (the server is on the vacation, provides service within the MAT or already after
expiration of this time). Such a dependence, e.g. reflects the fact that the customers
may leave the system more intensively when the MAT already expired, the server will
switch-off soon and will return for service only after a vacation.

• Because consideration of the vacation queue is motivated by the further application of
the obtained results for analysis of the polling system, we supplement the standard in
the literature analysis of the stationary distributions of the queue length and waiting
time with the analysis of the server visiting time defined as the time interval since the
epoch of vacation completion till the moment of the next vacation beginning. Server
visiting time is rarely analysed in the literature by the following reason. If service dis-
cipline is exhaustive, i.e., vacation starts only when the system becomes empty, visiting
time coincides with busy period, distribution of which is well-known. If the service dis-
cipline is time limited with service interruption, visiting time is just the minimum of the
busy period and MAT, therefore, its analysis is trivial. But in the case of the time lim-
ited discipline without service interruption the task of derivation of distribution of the
visiting time becomes complicated. This task is solved in our paper. The corresponding
results have the methodological value.

• The last but not the least, despite the fact that the model is quite complicated we pro-
vide the exact, not approximate, analytical and algorithmic analysis of the formulated
model. Computer realization of the elaborated algorithms for computation of the sta-
tionary distributions of the system states, sojourn time of an arbitrary customer and
server visiting time as well as the major performance measures of the system shows
that the required computation time is very small, negligible comparing to the required
for computer simulation of the model time.

The paper Frigui and Alfa (1998) deserves the special citing. In that paper, the model of
MAP/PH/1 type with time-limited preemptive service is considered in discrete time set-
tings. Analysis of the vacation models with time-limited service in discrete time is easier
than the analysis of the corresponding models in continuous time. Time limit is not assumed
to be having discrete PH distribution. Non-preemption of service, which also makes the
analysis more complicated, is not allowed in Frigui and Alfa (1998).
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1.3 The Outline of Presentation

The paper is organized as follows. In Section 2, the mathematical model under study is
described in detail. In Section 3, the process of the system states is defined by a continuous-
time multi-dimensional Markov chain. This chain belongs to the class of asymptotically
Quasi-Toeplitz Markov chains. The generator of this chain is written down. In Section 4,
the analysis of the Markov chain is presented. It is proved here that if the customers are
impatient at least in one state of the server (the server is on the vacation, provides service
within the MAT or already after expiration of this time), the stationary probabilities of the
system states exist for any set of the system parameters. Expressions for computing key
performance measures of the system are given in Section 5. The Laplace-Stieltjes transform
of the waiting time distribution is derived in Section 6. The formula for computation of the
mean waiting time is given there as well. The Laplace-Stieltjes transform of the distribution
of the visiting time of the server in the case of customers patient during the MAT is derived
in Section 7. The formula for computing the mean visiting time is given there. Results
of numerical experiments are briefly described in Section 8. In particular, importance of
consideration of more general, than the exponential, PH type distribution of the MAT and
vacations time is illustrated. Section 9 concludes the paper.

2 TheMathematical Model

We consider a single-server queueing system with an infinite buffer. The input flow is
described by the MAP . Customer’s arrival in the MAP is directed by an underlying irre-
ducible continuous-time Markov chain νt , t ≥ 0, with a finite state space {0, ...,W }. The
sojourn time of the chain νt , t ≥ 0, in the state ν has an exponential distribution with the
parameter λν, ν = 0,W . Here and throughout this paper the notation of type ν = 0,W
means that ν takes values from the set {0, ...,W }. After this sojourn time expires, with prob-
ability pk(ν, ν′), the process νt jumps to the state ν′, and k customers, k = 0, 1, arrive into
the system. The rates of jumps of the underlying Markov chain from one state into another
with generation of k customers are combined into the matrices Dk, k = 0, 1, of size
(W + 1) × (W + 1). The matrix D(1) = D0 + D1 is the infinitesimal generator of the pro-
cess νt , t ≥ 0. The invariant probability vector (vector of stationary distribution) θ of this
process is computed as the unique solution to the equations θD(1) = 0, θe = 1. Here and
throughout this paper 0 is a zero row vector and e is a column vector of appropriate size con-
sisting of ones. In the case when the size of a vector is not clear from context, it is indicated
as a lower index, e.g. eW denotes the unit column vector of size W = W +1. The fundamen-
tal rate λ of the MAP is defined as λ = θD1e and gives the expected number of arrivals per
unit of time in the stationary mode. The variance v of intervals between customer arrivals
is calculated as v = 2λ−1θ(−D0)

−1e − λ−2, the squared coefficient cvar of variation is
equal to cvar = 2λθ(−D0)

−1e − 1, while the coefficient ccor of correlation of successive
intervals between arrivals is given by ccor = (λ−1θ(−D0)

−1D1(−D0)
−1e − λ−2)/v.

For more information about the MAP , its special cases, properties and related research
see Lucantoni (1991) and the survey paper Chakravarthy (2001). Usefulness of the MAP

in modeling customers flows in telecommunication systems is mentioned in Heyman and
Lucantoni (2003) and Klemm et al. (2003). Methods for constructing the MAP based on
the traces of the customer flows in real-world systems are available in the literature. As the
recent paper, Buchholz and Kriege (2017) can be mentioned.

406 Methodology and Computing in Applied Probability (2020) 22: 401–432



The state of the server alternates between the busy (service) and the vacation peri-
ods. Therefore, an arriving customer never starts service immediately upon arrival. This
customer is placed to the buffer and is then picked up for the service according to the
First In - First Out discipline. The vacation period starts after completion of the service
period. The length of the vacation period has the PH distribution with an irreducible
representation (γ , �). This means the following. The vacation is governed by the under-
lying process ξt , t ≥ 0, which is a continuous time Markov chain with state space
{1, . . . , R, R + 1}. The initial state of the process ξt , t ≥ 0, at the epoch of starting the
vacation is determined within the set {1, . . . , R} of transient states by the probabilistic row-
vector γ = (γ1, . . . , γR). The rates of the process ξt , t ≥ 0, transitions within the set
{1, . . . , R}, which do not lead to the vacation period completion, are defined by the square
irreducible matrix � of size R. The rates of transitions to the absorbing state R + 1, which
lead to vacation completion, are given by the entries of the column-vector �0 = −�e. The
distribution function of vacation time has the form 1 − γ e�xe. The Laplace-Stieltjes trans-
form of this distribution function is γ (sI − �)−1�0, Re s > 0. The average length of the
vacation time is given by v1 = γ (−�)−1 e.

If at the vacation completion instant the system is empty, a new vacation starts
immediately. The new vacation period also has the PH distribution with an irreducible rep-
resentation (γ , �). If the system is not empty, the service period starts. The service period
(maximum server attendance time) has the PH distribution with an irreducible representa-
tion (τ , T ). The underlying process χt , t ≥ 0, of the service period is a continuous-time
Markov chain with the state space {1, . . . , K}. The average duration of the service period
is defined by formula τ1 = τ (−T )−1e. Simultaneously with the beginning of a service
period, the service time of the first customer in the service period starts. The service time
has the PH distribution with an irreducible representation (β, S). An underlying process of
the service time is ηt , t ≥ 0, with finite state space {1, . . . , M}. The average service time
is defined by formula b1 = β(−S)−1e. Service of customers is stopped and the vacation
period starts if during the service completion instant the system is idle. Alternatively, cus-
tomers service should be finished if the maximum service attendance time expires. However,
in contrast to the standard T -limited service, see Tian and Zhang (2006), here we assume
that the currently provided service is not preempted. A new vacation period will start only
when this service will be completed.

Customers staying in the buffer are impatient. Each customer leaves the system indepen-
dently of other customers if its waiting time exceeds an exponentially distributed time. The
parameter of the exponential distribution is equal to αr where r = 0 if a vacation period is in
a progress, r = 1 if the server provides service while the maximum service attendance time
is not expired, and r = 2 if the server provides service but the maximum service attendance
time is finished. We suggest that αr > 0 at least for one value of r, r = 0, 1, 2. It is worth
to mention that we cannot consider here more general, PH , distribution of patience time
because the number of customers in the system is unlimited and the corresponding Markov
chain describing behavior of the system does not belong to the known class of Asymptotically
Quasi-Toeplitz Markov chains which are used for the system analysis in the next section.

Our aim is to analyze stationary behavior of the described queueing model.

3 The Process of the System States

Let

• it be the number of customers in the system, it ≥ 0,
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• rt be the current state of the server: rt = 0 if the vacation period is in a progress,
rt = 1 if the server provides service while the maximum service attendance time is not
expired, and rt = 2 if the server provides service but the MAT is already finished,

• νt be the state of the underlying process of the MAP , νt = 0,W,

• mt be the current phase of the underlying process ξt of the vacation time if rt = 0;
mt = (χt , ηt ) (the pair of the current phases of the underlying processes of the MAT
and service time) if rt = 1; and mt = ηt if rt = 2,

at the moment t, t ≥ 0.
It is easy to see that the state space of the multi-dimensional process ζt =

{it , rt , νt , mt }, t ≥ 0, is

� = {(i, 0, ν, ξ), i ≥ 0, 0 ≤ ν ≤ W, 1 ≤ ξ ≤ R)}
⋃

{(i, 1, ν, χ, η), i ≥ 1, 0 ≤ ν ≤ W, 1 ≤ χ ≤ K, 1 ≤ η ≤ M}
⋃

{(i, 2, ν, η), i ≥ 1, 0 ≤ ν ≤ W, 1 ≤ η ≤ M}
and this process is an irreducible continuous-time Markov chain with one component, it ,

having infinite state space and finite other components.
To analyse the behavior and properties of the Markov chain ζt , we have to compute the

infinitesimal generator of this chain. Let us denote this generator asQ. The diagonal entries
of the generator are negative. Modulus of each diagonal entry defines the rate of departure of
the Markov chain from the corresponding state. The non-diagonal entries are non-negative
and define the rates of the transitions of the Markov chain within its state space.

To simplify the structure of the generator Q, let us enumerate the states of the Markov
chain ξt in the lexicographic order and compose all the states of the chain having value (i, r)

of the first two components to a sub-level (i, r). The sub-level (i, 0) contains WR states, the
sub-level (i, 1) contains WKM states and the sub-level (i, 2) contains WM states. Then,
we compose sub-levels (i, r), r = 0, 1, 2, to the level i.

Lemma 1 The generator Q has a block-tridiagonal structure:

Q =

⎛

⎜⎜⎜⎝

Q0,0 Q0,1 O O . . .

Q1,0 Q1,1 Q1,2 O . . .

O Q2,1 Q2,2 Q2,3 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎠ (1)

where non-zero blocks Qi,j defining the rates of the transition from the level i to the level
j, j = max{0, i − 1}, i, i + 1, are defined as follows:

Q0,0 = D0⊕(�+�0γ ), Q1,0 =
⎛

⎝
α0IWR

IW ⊗ eK ⊗ S0 ⊗ γ

IW ⊗ S0 ⊗ γ

⎞

⎠ , Q0,1 = (
D1 ⊗ IR |O |O)

,

Qi,i−1 =
⎛

⎝
O O O

O IW ⊗ IK ⊗ S0 ⊗ β O

IW ⊗ S0 ⊗ γ O O

⎞

⎠ +

+diag{iα0IWR, (i − 1)α1IWKM, (i − 1)α2IWM }, i ≥ 2,

Qi,i =
⎛

⎝
D0 ⊕ � IW ⊗ �0 ⊗ τ ⊗ β O

O D0 ⊕ T ⊕ S IW ⊗ T0 ⊗ IM

O O D0 ⊕ S

⎞

⎠ −
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−diag{iα0IWR, (i − 1)α1IWKM, (i − 1)α2IWM }, i ≥ 1,

Qi,i+1 =
⎛

⎝
D1 ⊗ IR O O

O D1 ⊗ IK ⊗ IM O

O O D1 ⊗ IM

⎞

⎠ , i ≥ 1.

Here, I is the identity matrix, and O is a zero matrix of appropriate dimension, diag{. . . }
means a diagonal matrix with the diagonal blocks listed in the brackets, ⊗,⊕ are the
symbols of the Kronecker product and sum of matrices correspondingly, see Graham (1981).

Proof of Lemma 1 consists of analysis of the Markov chain ξt , t ≥ 0, transitions during
an infinitesimal interval of time and further combining the corresponding transition rates
into the matrix blocks. The block structure with three block rows and three block columns of
the matrices Qi,i ,Qi,i+1, i ≥ 1, Qi,i−1, i ≥ 2, corresponds to possible transitions of the
component rt of the Markov chain ζt from the states 0,1,2 to the states 0,1,2, respectively.
E.g., the blocks (Qi,i+1)r,r ′ contain the rates of the transitions from the sub-level (i, r), i ≥
1, to the sub-level (i + 1, r ′). The Kronecker product and sum of matrices are very useful
here for compact description of the rates of joint transition of several independent Markov
processes. The boundary blocks Q0,0,Q0,1,Q1,0 have less sub-blocks because the process
rt may have only state 0 when the system is empty.

4 Analysis of theMarkov Chain

The following statement is true.

Theorem 1 Let αr > 0 at least for one value of r, r = 0, 1, 2. The Markov chain ζt is
ergodic for any set of the system parameters.

Proof Let Ar, r = 0, 1, 2, be the diagonal matrix with the diagonal entries defined by the
moduli of the diagonal entries of the matrix D0 ⊕ �, if r = 0, D0 ⊕ T ⊕ S, if r = 1 and
D0 ⊕ S, if r = 2.

Let Ri be the diagonal matrix with the diagonal entries given by the moduli of the
diagonal entries of the matrix Qi,i . It can be verified that the matrix Ri is defined by the
formula

Ri = diag{A0, A1, A2} + diag{iα0IW̄R, (i − 1)α1IW̄KM, (i − 1)α2IW̄M }.
It can be checked that the following limits exist:

Y0 = lim
i→∞R−1

i Qi,i−1, Y1 = lim
i→∞R−1

i Qi,i + I, Y2 = lim
i→∞R−1

i Qi,i+1

and the matrix Y = Y0 + Y1 + Y2 is stochastic.
This implies that all conditions of the definition of asymptotically Quasi-Toeplitz Markov

Chain (AQT MC) given in Klimenok and Dudin (2006) are fulfilled and the Markov chain
ξt belongs to the class ofAQT MC. This gives us an opportunity to derive the ergodicity and
non-ergodicity conditions for this Markov chain and compute its steady-state distribution.

It is easy to make sure that, if αr > 0 at least for one value of r, r = 0, 1, 2, then the
matrix Y is reducible. In such a case, according to Klimenok and Dudin (2006) the matrix
Y has to be transformed into the canonical normal form, for details see Gantmakher (1967).
Let this normal form contains m irreducible stochastic blocks, say, Y(l), l = 1,m. Then, as
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follows from Klimenok and Dudin (2006), the sufficient condition for the ergodicity of the
Markov chain ζt is the simultaneous fulfilment of the inequalities

y(l)Y(l)
0 e > y(l)Y(l)

2 e, l = 1,m, (2)

where the vectors y(l) are defined as solutions of the systems of linear algebraic equations

y(l) = y(l)Y(l), y(l)e = 1, l = 1,m,

and Y(l)
0 , Y(l)

2 are blocks of the matrices Y0 and Y2 corresponding to the block Y(l) in the
canonical normal form of the matrix Y.

It can be shown, that, if exactly m′ rates among αr, r = 0, 1, 2, are positive, m′ =
1, 2, 3, then the number m of irreducible stochastic blocks Y(l) in the canonical normal
form of the matrix Y is equal to m′ and Y(l) = Y(l)

0 = I, l = 1,m′. Correspondingly,
Y(l)
2 = O, l = 1, m′. Thus, for any stochastic vector y(l) inequalities (2) take the form

1 > 0 what is always true. Theorem 1 is proved.

Remark 1 The statement of Theorem 1 may seem, at first sight, a bit strange. The status r

of the server can have three possible values, r = 0, 1, 2, see above. However, if αr > 0 at
least for one value of r, the system is always ergodic. The explanation of this phenomenon
stems from the intuitive consideration that an ergodicity condition for any queueing system
is defined as the condition of its ability to reduce the number of customers in the system in
the situation when the system is overloaded. Because the mean duration of the time when
the server has status r is strictly positive, positive value of the rate αr of departure of the
customers from the system under this status of the server implies departure of the huge
number of customers from the overloaded buffer.

We suggest that conditions of Theorem 1 are fulfilled. Then the stationary distribution of
the Markov chain ζt exists. Denote the stationary state probabilities of the chain as

π(i, 0, ν, ξ) = lim
t→∞ P {it = i, rt = 0, νt = ν, ξt = ξ}, i ≥ 0, ν = 0,W, ξ = 1, R,

π(i, 1, ν, χ, η) = lim
t→∞ P {it = i, rt = 1, νt = ν, χt = χ, ηt = η},

i ≥ 1, ν = 0,W, χ = 1,K, η = 1,M,

π(i, 2, ν, η) = lim
t→∞ P {it = i, rt = 2, νt = ν, ηt = η}, i ≥ 1, ν = 0,W, η = 1,M .

Let π(i, r) be the row vector of probabilities of the states belonging to the sub-level (i, r)
and π i be the row vector of probabilities of the states belonging to the level i :

π i = (π(i, 0),π(i, 1),π(i, 2)), i ≥ 1, π0 = π(0, 0).

Computation of stationary probability vectors for asymptotically quasi-Toeplitz Markov
chains is a pretty difficult task. Fortunately, the corresponding effective numerically stable
algorithms are elaborated in Klimenok and Dudin (2006) for the case when the generator Q
of the Markov chain ζt has the block upper-Hessenbergian form and in Dudina et al. (2013)
when this generator has more simple block tridiagonal form. We use for computations the
algorithm from Dudina et al. (2013).

5 PerformanceMeasures of the System

As soon as the vectors π i , i ≥ 0, have been computed, we are able to calculate various
performance measures of the system.
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– The average number of customers in the system L =
∞∑
i=1

iπ ie.

– The average number of customers in the queue

Lq =
∞∑

i=1

iπ(i, 0)eW̄R +
∞∑

i=2

(i − 1)π(i, 1)eW̄KM +
∞∑

i=2

(i − 1)π(i, 2)eW̄M .

– The fraction of time when the server has the vacation (has status 0) F (0) =
∞∑
i=0

π(i, 0)e.

– The fraction of time when the server provides the service within the MAT (has status

1) F (1) =
∞∑
i=1

π(i, 1)e.

– The fraction of time when the MAT is over but the server does not finish service (has

status 2) F (2) =
∞∑
i=1

π(i, 2)e.

– The average number of customers in the system conditional that the vacation is in a
progress

L(0) = (F (0))−1
∞∑

i=1

iπ(i, 0)e.

– The average number of customers in the system conditional that the server has status r

L(r) = (F (r))−1
∞∑

i=1

iπ(i, r)e, r = 1, 2.

– The probability that an arbitrary arriving customer meets the server being on the
vacation

P0 = λ−1
∞∑

i=0

π(i, 0)(D1 ⊗ IR)e.

– The probability that an arbitrary arriving customer meets the server having status r

Pr = λ−1
∞∑

i=1

π(i, r)(D1 ⊗ IK2−rM)e, r = 1, 2.

– The rate λ(out) of the flow of customers, which successfully received service in the
system

λ(out) =
∞∑

i=1

π(i, 1)(eW̄K ⊗ S0) +
∞∑

i=1

π(i, 2)(eW̄ ⊗ S0).

– The probability of an arbitrary customer loss from the system (due to impatience)

P (loss) = λ−1
[ ∞∑

i=1

iα0π(i, 0)e +
∞∑

i=1

(i − 1)α1π(i, 1)e +
∞∑

i=1

(i − 1)α2π(i, 2)e
]

or

P (loss) = 1 − λ(out)

λ
.

– The rate J of server’s switching on (average number of server’s switching on per unit
time)

J =
∞∑

i=1

π(i, 0)(eW̄ ⊗ �0).
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6 Waiting Time Distribution

Let Z(x) be the distribution function of the waiting time of an arbitrary customer and

z(s) =
∞∫

0
e−sxdZ(x), Re s > 0, be its Laplace-Stieltjes transform. Let also z(r)

i (s) be the

column vectors of LST s of the waiting time of an arbitrary customer conditional it arrives
when there are i customers in the system, the status of the server is r and the states of the
underlying Markov processes of the vacation time (if r = 0), the service time and the MAT
(if r = 1), or the service time (if r = 2) are fixed.

Theorem 2 The Laplace-Stieltjes transform z(s) can be computed as follows:

z(s) = 1

λ

[ ∞∑

i=0

π(i, 0)(D1eW̄ ⊗ IR)z(0)i (s) +
∞∑

i=1

π(i, 1)(D1eW̄ ⊗ IKM)z(1)i (s)+

+
∞∑

i=1

π(i, 2)(D1eW̄ ⊗ IM)z(2)i (s)

]
(3)

where the column vectors z(r)i (s), r = 0, 1, 2, constitute the column vectors zi (s) of dimen-

sion R + KM + M, zi (s) =
(
z(0)
i (s), z(1)

i (s), z(2)
i (s)

)′
, i ≥ 0, that are computed

recursively by

z0(s) =
(
z(0)
0 (s), eKM, eM

)′
, (4)

zi (s) = Mi (s)(gi (s) + Ni (s)zi−1(s)), i ≥ 1, (5)

where
z(0)
0 (s) = A(0)

0 (s)(�0 + α0e),

gi (s) =
(

α0A(0)
i (s)e, α1A(1)

i (s)e, α2A(2)
i (s)e

)
,

Mi (s) =
⎛

⎝
I A(0)

i (s)�0(τ ⊗ β) A(0)
i (s)�0(τ ⊗ β)A(1)

i (s)(T0 ⊗ IM)

O I A(1)
i (s)(T0 ⊗ IM)

O O I

⎞

⎠ ,

Ni (s) =
⎛

⎜⎝
iα0A(0)

i (s) O O

O A(1)
i (s)(IK ⊗ S0β + (i − 1)α1IKM) O

A(2)
i (s)S0γ O (i − 1)α2A(2)

i (s)

⎞

⎟⎠ ,

A(0)
i (s) = (sI + (i + 1)α0I − �)−1,

A(1)
i (s) = (sI + iα1I − T ⊕ S)−1, A(2)

i (s) = (sI + iα2I − S)−1.

Here a′ denotes the transpose of the vector a.

Proof To derive an expression for the LST z(s), we use the method of collective marks,
see, e.g., Kesten and Runnenburg (1956) and van Dantzig (1955). Let us tag an arbitrary
arriving customer and monitor its stay in the system. According to the idea of the method
of collective marks, z(s) has the meaning of the probability that no catastrophe from some
virtual stationary Poisson flow of catastrophes with the rate s arrives during the waiting
time of the tagged customer. A catastrophe does not have any physical meaning and does
not have any impact on the behavior of the queueing system. The notion of the catastrophe
is used just to give the probabilistic interpretation for the LST . Analogously, components
of the vector z(r)

i (s) have the meaning of the probability that no catastrophe occurs during
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the waiting time of the tagged customer conditional it arrives when there are i customers in
the system, the status of the server is r and the states of the underlying Markov processes of
the vacation time (if r = 0), the service time and the MAT (if r = 1), or the service time (if
r = 2) have the corresponding values.

Taking into account the probabilistic meaning of the conditional LST s z(r)
i (s) and the

formula of total probability, the expressions (4) and (5) for the LST s z(r)
i (s), r = 0, 1, 2,

can be derived. In the derivation of these expressions for the column vectors zi (s) it is taken
into account that the number of customers in the system can decrease by one not only due
to customer’s service completion. The decrease can be also caused by the escape of some
waiting customer from the system due to impatience. If the departing customer is one of
the customers, which arrived to the system earlier than the tagged customer, this departure
causes the reduction of the queue length before the tagged customer. But the departing
customer can be the tagged customer itself. In this case, the customer leaves the system
permanently. Its waiting time is finished and the probability of no catastrophe arrival during
the residual waiting time is equal to 1. This explains the presence of the vectors gi (s) in the
right hand sides of relations (5).

Corollary 1 The average waiting time of an arbitrary customer, Z1, can be computed as
follows:

Z1 = −z′(s)|s=0 = 1

λ

[ ∞∑

i=0

π(i, 0)(D1eW̄ ⊗ IR)Z̃(0)
i

+
∞∑

i=1

π(i, 1)(D1eW̄ ⊗ IKM)Z̃(1)
i +

∞∑

i=1

π(i, 2)(D1eW̄ ⊗ IM)Z̃(2)
i

]

where the column vectors Z̃(r)
i = −(z(r)i (s))′|s=0, i ≥ 0, r = 0, 1, 2, are defined in the

following way. These column vectors constitute the column vectors

Z̃i =
(
Z̃(0)

i , Z̃(1)
i , Z̃(2)

i

)T

,

which are recursively computed by

Z̃0 =
(
Z̃(0)
0 , 0T , 0T

)T

,

Z̃i = M̃i (gi (0) + Ni (0)zi−1(0)) + Mi (0)(g̃i + Ñizi−1(0) + Ni (0)Z̃i−1), i ≥ 1,

where
Z̃(0)
0 = Ã(0)

0 (�0 + α0e),

g̃i =
(

α0Ã(0)
i e, α1Ã(1)

i e, α2Ã(2)
i e

)T

,

M̃i (0) =
⎛

⎝
I Ã(0)

i (0)�0(τ ⊗ β) Li

O I Ã(1)
i (0)(T0 ⊗ IM)

O O I

⎞

⎠ ,

Li = (Ã(0)
i (0)�0(τ ⊗ β)A(1)

i (0) + A(0)
i (0)�0(τ ⊗ β)Ã(1)

i (0))(T0 ⊗ IM),

Ñi =
⎛

⎜⎝
iα0Ã(0)

i O O

O Ã(1)
i (IK ⊗ S0β + (i − 1)α1IKM) O

Ã(2)
i S0γ O (i − 1)α2Ã(2)

i

⎞

⎟⎠ ,

Ã(0)
i = ((i + 1)α0I − �)−2, Ã(1)

i = (iα1I − T ⊕ S)−2, Ã(2)
i = (iα2I − S)−2.
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The presented above results concern the waiting time of an arbitrary customer, including
a customer which is lost due to impatience. Let us consider now the waiting time distribution
of an arbitrary customer, which is not lost in the system, and let V (x) be the distribution

function of waiting time of such a customer and v(s) =
∞∫

0
e−sxdV (x), Re s > 0, be its

LST . Let us stress that we assume that V (x) is not the distribution function of the waiting
time of a customer conditional it is not lost in the system. V (x) is the probability that an
arbitrary customer is not lost in the system and its waiting time is less than x. Denote by
v(r)
i (s) the column vectors of the LST s of the waiting time of an arbitrary customer, which

is not lost in the system, conditional it arrives to the system when there are i customers in
the system, the status of the server is r and the states of the underlying Markov processes
are fixed.

Theorem 3 The Laplace-Stieltjes transform v(s) can be computed as follows:

v(s) = 1

λ

[ ∞∑

i=0

π(i, 0)(D1eW̄ ⊗ IR)v(0)
i (s) +

∞∑

i=1

π(i, 1)(D1eW̄ ⊗ IKM)v(1)
i (s)+

+
∞∑

i=1

π(i, 2)(D1eW̄ ⊗ IM)v(2)
i (s)

]

where the column vectors v(r)
i (s), r = 0, 1, 2, constitute the column vectors vi (s) of

dimension R + KM + M

vi (s) =
(
v(0)
i (s), v(1)

i (s), v(2)
i (s)

)T

, i ≥ 0,

that are recursively computed by

v0(s) =
(

(sI − �)−1�0
e(K+1)M

)
, vi (s) = Mi (s)Ni (s)vi−1(s)), i ≥ 1.

Corollary 2 The average waiting time V1 of an arbitrary customer, which is not lost in the
system, can be computed as follows:

V1 = −v′(s)|s=0 = 1

λ

[ ∞∑

i=0

π(i, 0)(D1eW̄ ⊗ IR)Ṽ(0)
i

+
∞∑

i=1

π(i, 1)(D1eW̄ ⊗ IKM)Ṽ(1)
i +

∞∑

i=1

π(i, 2)(D1eW̄ ⊗ IM)Ṽ(2)
i

]

where the column vectors Ṽ(r)
i = −(v(r)

i (s))′|s=0, i ≥ 0, r = 0, 1, 2, are defined in the
following way. These column vectors constitute the column vectors

Ṽi =
(
Ṽ(0)

i , Ṽ(1)
i , Ṽ(2)

i

)T

,

which are recursively computed by

Ṽ0 =
(
Ṽ(0)
0 , 0T , 0T

)T

,

Ṽi = M̃iNi (0)vi−1(0) + Mi (0)(Ñivi−1(0) + Ni (0)Ṽi−1), i ≥ 1,

where
Ṽ(0)
0 = Ã(0)

0 α0e.
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Corollary 3 The probability P (loss) that an arbitrary customer will be lost is computed as
follows:

P (loss) = 1 − 1

λ

[ ∞∑

i=0

π(i, 0)(D1eW̄ ⊗ IR)v(0)
i (0)

+
∞∑

i=1

π(i, 1)(D1eW̄ ⊗ IKM)v(1)
i (0) +

∞∑

i=1

π(i, 2)(D1eW̄ ⊗ IM)v(2)
i (0)

]
.

Proof According to the definition and probabilistic meaning of the LST v(s), the value
v(0) is a probability that an arbitrary customer will not be lost during its waiting time.
Because an arbitrary customer may be lost due to impatience only during its waiting time,
the statement of Corollary 3 immediately follows from Theorem 3.

Note, that in Section 5 we got another two expressions for the probability P (loss). Avail-
ability of the three different formulas is helpful for the control of analytical derivations and
computer implementation.

7 Visiting Time Distribution and Perspectives of Application
to the Analysis of Polling System

Mention, that the vacation time for the tagged vacation queue consists of a sequence of
phases representing the visiting times to other buffers alternating with possible switching
times between the queues. Thus, we can conclude that: (i) assumption made in our paper that
the vacation time has the PH distribution ideally fits to possible application of results of
the analysis of a vacation queue to the analysis of a polling system; (ii) the presented above
analysis has to be complemented by the analysis of a visiting time in the considered queue.
The visiting time in the vacation queueing model under consideration is the time interval
since the epoch of vacation completion till the moment of the next vacation beginning. Let
us remind that in this model the next vacation begins when the system becomes empty or
the MATs expires and, then, service of a customer being in service at the moment of the
MATs expiration finishes, whichever occurs earlier. Account of the residual service time
after the MAT completion essentially complicates analysis comparing to the discipline with
service termination at the MAT completion epoch because it is necessary to simultaneously
monitor two non-exponentially distributed random variables: the residual service time and
residual MAT. Assumption that the full service time and full MAT have PH distribution
helps in implementation of this analysis. If al least one of these distributions is arbitrary, the
analysis does not seem to be feasible.

Let κj be the row vector of size W̄ the ν-th component of which is equal to the probability
that the state of the underlying Markov process of customers arrival is equal to ν and j

customers present in the system at an arbitrary vacation completion moment, ν = 0,W,

j ≥ 0.

Lemma 2 The vectors κj , j ≥ 0, are computed by the formula

κj = π(j, 0)(IW̄ ⊗ �0)
∞∑

k=0
π(k, 0)(eW̄ ⊗ �0)

, j ≥ 0.

415Methodology and Computing in Applied Probability (2020) 22: 401–432



Proof of Lemma 2 is straightforward because j customers can present in the system at an
arbitrary vacation completion moment if j customers present in the system at an arbitrary
moment when the server is on vacation and vacation time expires.

Theorem 4 If customers are patient when the MAT is not finished (i.e., α1 = 0), the
Laplace-Stieltjes transform ψ(u), Re u > 0, of the visiting time can be computed as
follows:

ψ(u) =
∞∑

k=0

κk(IW̄ ⊗ τ ⊗ β)ψ(u, k) (6)

where the column vectors ψ(u, k), k ≥ 0, of size W̄KM are defined by the formula

ψ(u, k) = Fk(u)eW̄KM+
+ (I − Fk(u))(uI − (D0 + D1) ⊕ T ⊕ (S + S0β))−1(eW̄ ⊗ T0 ⊗ (uI − S)−1S0) (7)

and the matrix F(u) is defined as the minimal non-negative solution to the quadratic matrix
equation:

IW̄K ⊗ S0β − (uI − D0 ⊕ T ⊕ S)F(u) + (D1 ⊗ IKM)F2(u) = O. (8)

Proof To derive an expression for the LST ψ(u), we again use the method of collective
marks. According to the idea of the method of collective marks,ψ(u) has the meaning of the
probability that no catastrophe from a virtual stationary Poisson flow of catastrophes with
the rate u arrives during the visiting time. Formula (6) evidently follows from the formula
of total probability if we take into account the probabilistic meaning of the vector ψ(u, k).
The entries of this column vector of size W̄KM define the probability that no catastrophe
arrives during the rest of the visiting time conditional on the fact that, at the given moment,
k customers present in the system, the server provides service, the MAT is not expired
and the states of underlying Markov chains of arrival, MAT and service processes have the
corresponding values. Therefore, to finish the proof, we need to derive formulas (6) and (7).

Using the probabilistic meaning of the vectors ψ(u, k), k ≥ 1, and the law of total
probability, it is not difficult to derive the following recursive equations:

ψ(u, k) =
∞∫

0

e−(uI−D0⊕T ⊕S)t [D1 ⊗ IKMψ(u, k + 1) + IW̄K ⊗ (S0β)ψ(u, k − 1)

+ eW̄ ⊗ T0 ⊗ (uI − S)−1S0]dt, k ≥ 2. (9)
The matrix

H(u) = −(uI − D0 ⊕ T ⊕ S)

is a sub-generator with strict domination of the diagonal entries. Consequently, it is non-
singular, the real parts of its eigenvalues are negative and the following relation is true:

∞∫

0

eH(u)t dt = (−H(u))−1.

Therefore, by introducing, for brevity, the following notation:

r(u) = eW̄ ⊗ T0 ⊗ (uI − S)−1S0, D̂1 = D1 ⊗ IKM, C1 = IW̄K ⊗ (S0β),

system (9) can be rewritten in the form:

H(u)ψ(u, k) + D̂1ψ(u, k + 1) + C1ψ(u, k − 1) + r(u) = 0, k ≥ 2. (10)
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Analogously, it is possible to derive the equation

H(u)ψ(u, 1) + D̂1ψ(u, 2) + c2 + r(u) = 0 (11)

where c2 = eW̄ ⊗ S0.
On noting that c2 = C1eW̄KM and setting

ψ(u, 0) = eW̄KM

we combine Eqs. 10 and 11 into the following inhomogeneous system of the vector
difference equations of the second order for the vectors ψ(u, k), k ≥ 1 :

H(u)ψ(u, k) + D̂1ψ(u, k + 1) + C1ψ(u, k − 1) + r(u) = 0, k ≥ 1. (12)

By analogy with the known way for solving the scalar counterpart of such equations, we
will try to find solution to system (12) in the following form:

ψ(u, k) = Fk(u)x(u) + A(u)r(u), k ≥ 1, (13)

where F(u) and A(u) are still unknown matrices and x(u) is an unknown vector. By substi-
tuting (13) into (12), after performing some transformations, we get the following system
of equations for k ≥ 1:

(H(u)F(u) + D̂1F2(u) +C1)Fk−1(u)x(u) + ((H(u) + D̂1 +C1)A(u) + I )r(u) = 0. (14)

It is easy to see that the expression H(u)F(u) + D̂1F2(u) + C1 is equal to zero matrix
because it is assumed in the theorem statement that the matrix F(u) is defined as the minimal
non-negative solution to quadratic matrix equation (8).

Therefore, Eq. 14 reduce to the form

((H(u) + D̂1 + C1)A(u) + I )r(u) = O.

In particular, this equation becomes identity if

(H(u) + D̂1 + C1)A(u) + I = O.

In this case, the still unknown matrix A(u) is defined by the formula

A(u) = −(H(u) + D̂1 + C1)
−1. (15)

Note that the inverse matrix exists because the inverted matrix is a sub-generator with strict
domination of diagonal entries. Thus, only the vector x(u) remains unknown. To derive an
expression for this vector, we substitute the vectors ψ(u, k) of form (13) to equation of the
system (12) with k = 1. Taking into account equation (8), we reduce this equation to the
following one:

C1(eW̄KM − A(u)r(u) − x(u)) = 0,

which is fulfilled if the vector x(u) is chosen as

x(u) = eW̄KM − A(u)r(u). (16)

By substituting (15) and (16) to (13) we get (7). Theorem 7 is proved.

Remark 2 It is easy to understand that the entries of the matrix F(u) define the probability
that a catastrophe does not arrive, the MAT does not expire and the components {νt , χt , ηt }
of the Markov chain ζt make the corresponding transitions at the time interval during which
the number of customers in the system decreases by 1. This observation makes formula (7)
more transparent. The first summand in the right hand side of Eq. 7 is a vector, components
of which define the probabilities that no catastrophe arrives during the rest of the visiting
time conditional of the fact that, at the given moment, k customers present in the system,
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the server provides service, the MAT is not expired, the states of the processes {νt , χt , ηt }
have the corresponding values and the visiting time will be finished because the system will
become empty. The second summand in the right hand side of Eq. 7 is a vector, components
of which define analogous probabilities when the visiting time will be finished after the
maximum attendance time expiration and the finish of the residual service time.

Remark 3 Using results by M. Neuts from the book Neuts (1981), it is possible to show
that, for any nonnegative u, the minimal non-negative solution to quadratic matrix equation
(7) exists and its maximal eigenvalue is less than 1. Thus, Fk(u) tends to zero matrix when
k approaches infinity. Then, it follows from Eq. 7 that

ψ(u,∞) = lim
k→∞ ψ(u, k) = A(u)r(u)

what coincides with the formula

ψ(u,∞) = (uI − (D0 + D1) ⊕ T ⊕ (S + S0β))−1eW̄ ⊗ T0 ⊗ (uI − S)−1S0

which can be derived in the direct way based on the obvious consideration that if k is huge,
the visiting time will be finished by expiration of the MAT and the residual service time, but
not by emptying the system. This consideration essentially simplifies the derivation because
it in not necessary to monitor the number of customers which receive service before the
MAT expires. It is necessary only to monitor the state of the service underlying process to
compute the Laplace-Stieltjes transform of the residual service time after the MAT expires.

Remark 4 As it was discussed above, the LST of the distribution of the visiting time given
by formula (6) does not separate the visiting times finished via emptying the system or
via the MAT expiration. Let now ψempty(u) be the LST of the distribution of the visiting
time that is finished by emptying the system and ψexpire(u) be the LST transform of the
distribution of the visiting time that is finished after the MAT expiration and the finish of the
residual service time. It can be verified that these LST transforms are given by the formulas

ψempty(u) =
∞∑

k=0

κk(IW̄ ⊗ τ ⊗ β)Fk(u)eW̄KM,

ψexpire(u) =
∞∑

k=1

κk(IW̄ ⊗ τ ⊗ β)(I − Fk(u))(uI − (D0 + D1) ⊕ T ⊕ (S + S0β))−1×

×(eW̄ ⊗ T0 ⊗ (uI − S)−1S0).

Corollary 4 The probabilities P empty and P expire that an arbitrary visiting time finishes
due to emptying the system and due to the MAT expiration, correspondingly, are computed
as

P empty = ψempty(0), P expire = ψexpire(0).

Note that formula (6) defines the LST transform of the distribution of an arbitrary
visiting time, including possible zero visiting time when the system is empty upon vaca-
tion completion and the server immediately takes one more vacation. The LST transform
ψnon−zero(u) of the distribution of the visiting time conditional on the fact that zero visiting
times are not accounted is given by formula

ψnon−zero(u) =

∞∑
k=1

κk(IW̄ ⊗ τ ⊗ β)ψ(u, k)

1 − κ0eW̄

.
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Using (7), it is possible to verify that the evident from probabilistic considerations relation
ψ(0, k) = eW̄KM holds for all k, k ≥ 1.

Corollary 5 The average visiting time �1 is given by the formula

�1 = −ψ ′(0) = −
∞∑

k=1

κk(IW̄ ⊗ τ ⊗ β)ψ ′(0, k)

where the derivatives ψ ′(0, k) are given by the formula

ψ ′(0, k) = (I − Fk(0))[eW̄ ⊗ (T −1eK) ⊗ eM + (T ⊕ (S + S0β))−1(T0 ⊗ (−S)−1eM))].
Note that �1 is the average visiting time including the visiting times which are equal to zero
(because the system is empty at the vacation completion moment). The average visiting time
�̂1 of visits having non-zero length is obviously computed by

�̂1 = �1

1 − κ0e
.

In application of the considered vacation model to the analysis of a polling model, the
service processes of customers from the different buffers can be modeled by this vacation
model. The dependence between these processes stems from the fact that the vacation time
in the tagged buffer indeed is the sum of server’s visiting times to another buffers. Having
computed the mean values of these visiting times, one can assume the distribution of the
vacation time in the tagged buffer as the generalized Erlangian distribution. This distribution
can be considered as the particular case of the PH distribution of the service time which
consists of a fixed number of sequential phases having an exponential distribution with the
mean value equal to the average visiting time in the corresponding system.

8 Numerical Results

As it was mentioned in Introduction, advantages of our results over the existing in the lit-
erature are more general assumptions about the arrival process, distribution of vacation,
service and MATs, account of impatience of customers and analysis of the server’s visiting
time. It is obvious that these generalizations are valuable from the mathematical point of
view. However, their usefulness for adequate modeling of real-world systems can be shown
only via the computer experiments. The first part of this section is devoted to analysis of
degree of importance of these generalizations. We separately illustrate the importance of
generalizations of the existing models listed in Introduction.

Account of Correlation in the Arrival Process High importance of account of correlation in
the arrival process and huge errors in the prediction of performance measures of the system
if the existing correlated arrival process is approximated by the stationary Poisson process
is already known in the queueing literature, see, e.g. Dudin et al. (2015) and Kim et al.
(2014). Results of our computations confirm this importance for the model under study as
well. Here, we omit these results to reduce the size of the paper.

Experiment 1. Account of the Coefficient of Variation of the Service Time In further
experiments we fix the basic MAP arrival process. Let this MAP be defined by the
matrices

D0 =
( −1.352 0.0

0.0 −0.043875

)
, D1 =

(
1.343 0.009
0.04443 0.019445

)
. (17)
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Fig. 1 Dependence of the probability of an arbitrary customer loss P (loss) on λ

This arrival process has the average arrival rate λ = 1, the coefficient of correlation of
two successive intervals between arrivals ccor = 0.2, and the squared coefficient of variation
of the intervals between customer arrivals cvar = 12.34.

In the experiments we will show the dependence of some performance measures of the
system on the average arrival rate λ. The MAP having a fixed value λ of the average arrival
rate is defined by the matrices D0 and D1 given by Eq. 17 entries of which are multiplied
by λ.

The distribution of the vacation time is assumed to be exponential with the rate 0.2.
The distribution of the MAT is assumed to be exponential with the rate 0.5. The rates of
customers impatience during the vacation period, the MAT and the residual service time
after the MAT expiration are α0 = 0.05, α1 = 0, α2 = 0.08, correspondingly.

In experiment 1, we clarify the importance of account of variation of the service time.
To this end, we consider two distributions of the service time with the same average service
time. The first distribution is the exponential with the rate 10. The coefficient of variation of
this distribution is equal to 1. The second distribution is the hyper-exponential distribution.

Fig. 2 Dependence of the average waiting time of an arbitrary customer Z1 on λ
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It is defined by the vector β = ( 2729 ,
2
29 ) and the diagonal matrix S having the diagonal

entries −30 and −1. The coefficient of variation of this distribution is equal to 3.6. The
average service time for both distributions is equal to 0.1.

Figures 1, 2 and 3 illustrate the dependence of the probability P (loss) of an arbitrary
customer loss from the system (due to impatience), the average waiting time of an arbitrary
customerZ1 and the average visiting time (conditional that the visit does not have a duration
equal to 0) �̂1 on the average arrival intensity λ for the exponential and hyper-exponential
distributions of the service time.

The following conclusions follow from Figs. 1, 2 and 3:

1) Influence of the variation of the service time is not very essential. The difference
between the values of Z1 for two considered distributions of service time is only about
14 percent for λ = 4 and decreases when λ decreases.

2) For large λ, the values of P (loss) and Z1 are smaller for the service time with the hyper-
exponential distribution having a higher variation. This may be explained that with high
probability ( 2729 ) the service time is very short (with rate 30) and customers quickly

get service and only with the small probability ( 2
29 ) an arbitrary customer has a long

waiting time.
3) If the service time has the hyper-exponential distribution and we approximate this dis-

tribution by the exponential one, we overestimate the values of P (loss) and Z1. This
is quite good in practical applications because it is much worse when the approxi-
mation gives too optimistic prediction of the values of P (loss) and Z1 than when the
approximation is a bit pessimistic.

4) For large λ, the value of the average duration �̂1 of visiting period is larger for the
service time with the hyper-exponential distribution. This may be explained by the fact
that the visiting period includes the residual service time after the MAT expires. This
time is longer for the hyper-exponential distribution.

Experiment 2. Account of the Coefficient of Variation of the MAT Let the arrival process,
impatience rates and distribution of the vacation time be the same as in Experiment 1. Let
the service time distribution be exponential with the rate 10. We consider two distributions
of the MAT with the mean value 2. The first distribution is the exponential with the rate
0.5. The coefficient of variation of this distribution is equal to 1. The second distribution is

Fig. 3 Dependence of the average duration �̂1 of visiting period on λ
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Fig. 4 Dependence of the probability of an arbitrary customer loss P (loss) on λ

the hyper-exponential distribution. It is defined by the vector θ = ( 89 ,
1
9 ) and the diagonal

matrix S having the diagonal entries −1 and −0.05. The coefficient of variation of this
distribution is equal to 3.16.

Figures 4, 5 and 6 illustrate the dependence of the probability P (loss) of an arbitrary
customer loss (due to impatience), the average waiting time of an arbitrary customer Z1
and the average visiting time �̂1 on the arrival intensity λ for the exponential and hyper-
exponential distributions of the MAT.

The following conclusions follow from Figs. 4–6:

1) Influence of the coefficient of variation of the MAT is quite essential, especially for
large values of λ.

2) If the MAT has the hyper-exponential distribution and we approximate this distribution
by the exponential one, we underestimate the values of P (loss) and Z1. This is bad in
practical applications because this approximation gives too optimistic prediction of the
values of P (loss) and Z1.

Fig. 5 Dependence of the average waiting time of an arbitrary customer Z1 on λ
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Fig. 6 Dependence of the average duration �̂1 of visiting period on λ

3) Worse values of P (loss) and Z1 in the case of the hyper-exponential distribution of the
MAT are explained by Fig. 6. In the case of the hyper-exponential distribution, the
mean time, during which the server continuously provides the service, is less than in
the case of the exponential distribution. In turn, this evidently stems from the analysis
of the parameters of the hyper-exponential distribution. With the high probability, 8

9 ,

the duration of the MAT is quite short. With the complimentary probability, 1
9 , the

duration of the MAT is pretty long. But in the latter case the server visiting time may
finish earlier than the MAT expires because the system becomes empty.

Experiment 3. Account of the Coefficient of Variation of theVacation Time Let the arrival
process, impatience rates and distribution of the MAT be the same as in Experiment 1 and
the service time distribution be exponential with the rate 10. We consider two distributions
of the vacation time with the mean value 5. The first distribution is the exponential with
the rate 0.2. The coefficient of variation of this distribution is equal to 1. The second one is
the hyper-exponential distribution. It is defined by the vector θ = ( 1619 ,

3
19 ) and the diagonal

Fig. 7 Dependence of the probability of an arbitrary customer loss P (loss) on λ
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Fig. 8 Dependence of the average waiting time of an arbitrary customer Z1 on λ

matrix S having the diagonal entries −0.8 and −0.04. The coefficient of variation of this
distribution is equal to 2.65.

Figures 7, 8 and 9 illustrate the dependence of the probability P (loss) of an arbitrary
customer loss, the average waiting time Z1 and the average visiting time �̂1 on the arrival
intensity λ for the exponential and hyper-exponential distributions of the vacation time.

The following conclusions stem from Figs. 7–9:

1) Again, if the vacation time has the hyper-exponential distribution but this distribution
is approximated by the exponential distribution with the same expectation, this leads to
the underestimation of the loss probability and the average waiting time what is bad in
the practical applications.

2) Worse values of P (loss) and Z1 in the case of the hyper-exponential distribution of the
vacation time are explained by Fig. 9. In the case of the hyper-exponential distribution
of the vacation time, the mean time, during which the server continuously provides the
service, is less than in the case of the exponential distribution. Again, this evidently
stems from analysis of the parameters of the hyper-exponential distribution. With the

Fig. 9 Dependence of the average duration �̂1 of visiting period on λ
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Fig. 10 Dependence of the probability of an arbitrary customer loss P (loss) on small λ

probability 3
19 , the duration of the vacation time is quite long. Therefore, many cus-

tomers are lost due to impatience and often the visiting time finishes not because the
MAT expires, but because the system becomes empty.

Figure 10 illustrates the same dependencies as Fig. 7, but only for small rates λ. It shows
that the loss probability in the case of the hyper-exponential distribution of the vacation time
is twice larger than in the case of the exponential distribution.

Experiment 4. Account of the Coefficients of Variation of the MAT and Vacation Times
In this experiment, we compare the values of P (loss), Z1 and �̂1 in the cases when both
distributions of the MAT and vacation times are exponential and both are hyper-exponential.
The parameters of the corresponding distributions are the same as in Experiments 3 and 4.

Figures 11–13 illustrate the dependence of the values of P (loss), Z1 and �̂1 on the arrival
intensity λ for these cases.

Comparing Figs. 7 and 11, 8 and 12, 9 and 13, it is easy to conclude that if both dis-
tributions of the MAT and vacation times are hyper-exponential then the approximation

Fig. 11 Dependence of the probability of an arbitrary customer loss P (loss) on λ
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Fig. 12 Dependence of the average waiting time of an arbitrary customer Z1 on λ

of the major performance measures of the system by their values in the case of the expo-
nential distributions is worse comparing the case when only one MAT or vacation time is
approximated via the exponentially distributed random variable. Consideration of the PH

distribution instead of the exponential distribution in the model under study has not only the-
oretical importance but is also very valuable for exact prediction of performance measures
of the real-world systems described by the queueing model under study.

Experiment 5. Account of Customers Impatience As it was mentioned in Introduction, it
is obvious that the impatience phenomenon is vital in the context of the systems with the
time-limited service because service of customers may be interrupted due to termination
of the working period. In principle, even several vacations can occur during sojourn time
of a customer and the customer may decide not to wait in the queue during a long time.
Thus, effect of customers impatience must be taken into account. The impatience can be
related, e.g., with the psychological factors if the customer is a human or the obsolescence
of information if the customer is the information unit, etc. This subsection contains figures

Fig. 13 Dependence of the average duration �̂1 of visiting period on λ
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Fig. 14 Dependence of the probability of an arbitrary customer loss P (loss) on intensities α0 and α1

illustrating the dependence of performance measures of the system on the intensities of
impatience.

The arrival process is defined by the matricesD0 andD1 given by formula (17) all entries
of which are multiplied by 4. This arrival process has the average arrival rate λ = 4.

The vacation, service, and MATs have the Erlangian distribution of order 2 with the
intensities of the phases equal to 1, 40, and 0.5, correspondingly. Under the fixed above
parameters of the system, in particular because the service time (as well as the residual
service time) has small expectation and the coefficient of variation, the value of the intensity
α2 of impatience of each customer during the interval when the server provides the residual
service to a customer when theMAT expired has a very small impact. Let us fix this intensity
equal to 0.08.

Figures 14 and 15 show the dependencies of the probability of an arbitrary customer
loss P (loss) and the average waiting time of an arbitrary customer Z1 on the intensities α0
of impatience of each customer during the vacation time and α1 of impatience during the
MAT. It is evidently seen from these Figures that impatience of customer has the significant
effect and must be taken into account.

Experiment 6. Optimization Problem Besides the transparent possible application of the
analyzed vacation model to performance evaluation and capacity planning of polling sys-
tems, this vacation model can be applied, e.g., in the following situation. Some company
provides the service to customers using some leased equipment, e.g., an information trans-
mission channel. According to conditions of leasing, the maximum time of continuous using
the equipment is limited. After this time expires, during a certain time the equipment is not

Fig. 15 Dependence of the average waiting time of an arbitrary customer Z1 on intensities α0 and α1
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Fig. 16 Dependence of the average number of customers in the queue Lq on the parameters v1 and t1

available to this company. An interruption of current service at the moment of the maximum
time expiration is not allowed. There are several tariff plans. These plans are distinguished
by the mean duration of the maximum time of using the equipment and mean duration of
time when the equipment is not available. Plans with longer maximum time of continuous
using of the equipment are more expensive. Company’s managers should optimally choose
a tariff plan taking into account the price of a plan, the profit gained by service of cus-
tomers and the possibility of the potential users loss due to long waiting for the service. The
goal of the example presented in this subsection is to show some dependencies of the key
performance measures of the system on the average vacation period and MAT.

Let us again the MAP arrival process is defined by the matrices given by formula (17)
all entries of which are multiplied by 4.

The PH distribution of customer’s service process is characterized by the vector β =
(1, 0) and the matrix S =

( −40 40
0 −40

)
. The mean service time b1 in this service process

is equal to 0.05, the coefficient of variation c
(1)
var is equal to 0.5.

The PH distribution of the vacation time is characterized by the vector γ = (1, 0) and

the matrix � =
(

− 2
v1

2
v1

0 − 2
v1

)
. The mean vacation time is equal to v1, the coefficient of

variation is equal to 0.5.

Fig. 17 Dependence of the probability of an arbitrary customer loss from the system (due to impatience)
P (loss) on the parameters v1 and t1
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Fig. 18 Dependence of the average waiting time of an arbitrary customer Z1 on the parameters v1 and t1

The PH distribution of the MAT is characterized by the vector τ = (1, 0) and the matrix

T =
(

− 2
t1

2
t1

0 − 2
t1

)
. The mean MAT is equal to t1, the coefficient of variation is equal to 0.5.

The rates of customers impatience during the vacation period, the MAT and the residual
service time after the MAT expiration are α0 = 0.05, α1 = 0, α2 = 0.08, correspondingly.

Let us vary parameters v1 and t1 over the interval [0.1, 4] with step 0.1 and show the
dependence of various performance measures of the system on v1 and t1. Figures 16, 17
and 18 illustrate the behavior of the average number of customers in the queue Lq, the
probability of an arbitrary customer loss P (loss) and the average waiting time of an arbitrary
customer Z1.

The qualitative behavior of these system’s performance measures is clear. All these mea-
sures are fairly small when the mean vacation time v1 is small and the mean MAT t1 is large.
Figures 16–18 evaluate this behavior more exactly, quantitatively. It is evidently seen that
Lq and P (loss) are close to zero when v1 is small and t1 is large. When v1 is large, about 4,
and t1 is small, about 0.1, the values of Lq and P (loss) become very large, about 70 and 0.9,
respectively. It is worth to mention that the surfaces for the average number of customers
in the queue Lq and the average waiting time of an arbitrary customer Z1 look very simi-
lar. This is easily explained by the fact established by means of more extensive numerical
results that the famous Little formula is valid for this system in the form

λZ1 = Lq .

Figure 19 illustrates the behavior of the rate J of the server’s switching on (average
number of server’s switching on per unit time) depending on the values of v1 and t1. The

Fig. 19 Dependence of the rate J of the server’s switching on on the parameters v1 and t1
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Fig. 20 Dependence of the average visiting time �1 on the parameters v1 and t1

value of J is more sensitive with respect to the parameter v1. The largest value of J is
achieved when both v1 and t1 are small.

Figures 20 and 21 illustrate the behavior of the average visiting time �1 and the average
visiting time �̂1 of visits having non-zero length.

The values �1 and �̂1 are pretty small when t1 is small. They grow when v1 and t1
increase. This is clear because the increase of v1 implies larger number of customers in the
system at the visit beginning epoch and larger chances that the visit will be finished due to
the maximal attendance time expiration, not due to exhausting the queue. The increase of t1
obviously leads to the increase of the average visit times when the visit is finished after the
maximal attendance time expiration and the finish of the residual service time.

After we got information about the quantitative behavior of the main performance mea-
sures of the system, we can formulate a cost criterion for evaluation of quality of the system
operation and consider optimization problem. Usually the cost criterion is defined as a profit
gained from a system operation, which should be maximized, or losses of the system which
should be minimized. We choose the latter option and fix the criterion in the form

N = N(v1, t1) = aλP (loss) + bJ + ct1

where the cost coefficient a is the penalty cost for one customer loss, b is the fee for each
switching off the server operation and c is the average cost paid per unit of time according
to the tariff plan with the value of the average MAT t1. In the presented above example, we
fix the values of the cost coefficient as follows: a = 2, b = 1, c = 0.2.

The surface representing dependence of the cost criterion N(t1, v1) on the controlled
parameters v1 and t1 has the form given in Fig. 22.

Fig. 21 Dependence of the average visiting time �̂1 for the visits having non-zero length on the parameters
v1 and t1
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Fig. 22 Dependence of the cost criterion N(t, v) on the parameters v1 and t1

The minimal value N∗ of this cost criterion is achieved when v1 = 1.1 and t1 = 0.9. This
minimal value is equal to 1.0184. The value of the loss probability P (loss) for this optimal
choice of v1 and t1 is equal to 0.040634.

9 Conclusion

In this paper, a single-server queueing system with vacations and restriction on the contin-
uous time of the server operation is considered. The arrival flow is described by the MAP,

the distributions of the vacation time, the service and the MAT are of the phase-type. Ser-
vice is not preemptive: if the MAT expires, currently provided service has to be performed
completely. Customers are impatient. The individual rate of customer’s leaving the system
without service depends on the state of the server (the server is on the vacation, the MAT is
not finished, the MAT is expired).

Condition for existence of the stationary distribution of the system states is proved, the
stationary distributions of the system states, waiting times and the server visiting time are
obtained. Numerical results highlight the importance of account of the coefficient of varia-
tion of vacation and MAT and show the potential applicability of the results to optimization
of operation of the system with vacations and time-limited service.
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