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Abstract
A new self-exciting counting process is here considered, which extends the generalized
Pólya process introduced by Cha (Adv Appl Probab 46:1148–1171, 2014). Contrary to
Cha’s original model, where the intensity of the process (linearly) increases at each jump
time, the extended version allows for more flexibility in the dependence between the point-
wise intensity of the process at some time t and the number of already observed jumps. This
allows the “extended Pólya process” to be appropriate, e.g., for describing successive fail-
ures of a system subject to imperfect but effective repairs, where the repair can lower the
intensity of the underlying counting process. Probabilistic properties of the new process are
studied (construction from a homogeneous pure-birth process, conditions of non explosion,
computation of distributions, convergence of a sequence of such processes, ...) and its con-
nection with Generalized Order Statistics is highlighted. Positive dependence properties are
next explored. Finally, the maximum likelihood method is considered in a parametric set-
ting and tested on a few simulated data sets, to highlight the practical use of the new process
in an application context.
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csangues@unizar.es

1 Department of Statistical Methods, University of Zaragoza, Zaragoza, 50018, Spain
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1 Introduction

The point of the paper is the study of a self-exciting counting process (Nt )t≥0, with
stochastic intensity of the shape

λt = h (Nt−) λ (t) (1)

where h (·) : N → R
∗+ and where λ (·) stands for the (deterministic) baseline intensity

function of the system, with λ (t) ≥ 0 for all t > 0.
The specific case h (n) = αn + 1 with α ≥ 0 has already been considered in several

papers from the literature, see, e.g., Asfaw and Lindqvist (2015), Babykina and Couallier
(2010), Cha (2014), Konno (2010), Le Gat (2009, 2014). This specific case is referred to as
Linear Extension of the Yule Process (LEYP) by Le Gat (2009, 2014). In Cha (2014), the
author prefers to consider the model h (n) = αn + β with α ≥ 0, β > 0, which allows
him to easily write down the so-called “restarting property” of the process (details later on).
This provides an equivalent model as the LEYP, which Cha calls Generalized Pólya Process
(GPP). We use this terminology in the following. In such a model, h (·) is non decreasing and
λt makes a positive jump at each arrival time. This can be useful for describing, for instance,
shocks to an organism throughout his lifetime as in Cha and Finkelstein (2016). However, it
can be restrictive in some other application context. As an example from reliability theory,
one can think of a system submitted to instantaneous imperfect repairs at failure times T1 <

T2 < · · · < Tn < . . . , which can be thought as the arrival times of a counting process
(Nt )t≥0. Typically, a repair is expected to improve the state of the system and considering
the intensity of the counting process, one can expect that it is lowered by a repair, so that
λt should make a negative jump at each arrival (repair) time. A GPP model is hence not
adapted for modeling the effect of such repairs. Note that other types of counting processes
have been used in the reliability literature for modeling imperfect repairs, such as virtual
age models (Kijima 1989), among which first-order Arithmetic Reduction of Age models
(Doyen and Gaudoin 2004) with λt = λ

(
t − ρ TNt−

)
and ρ ∈ [0, 1], geometric processes

(Lam 2007) with

λt = 1

ρNt−
λ

(
t − TNt−

ρNt−

)

and ρ > 0 (see also Bordes and Mercier 2013 for an extended version). See Chauvel et al.
(2016) for other models of imperfect repairs. In a similar spirit as GPPs, we here suggest to
consider a stochastic intensity which is piecewise proportional to a baseline deterministic
failure intensity λ (·), with a proportionality coefficient depending of the number of already
suffered failures from the system, as defined by Eq. 1. When h (·) < 1, this allows to
model repairs with a certain efficiency. The case h (·) = 1 corresponds to As Bad As Old
(ABAO) repairs, where the successive failure times are the points of a NHPP with intensity
λ (·) (written NHPP (λ (·))). The case h (·) > 1 corresponds to worse than ABAO repairs,
which deteriorate the state of the system (as a GPP). Note that the model allows to consider
a function h (·) such that h (n) < 1 for n ≤ n0 and h (n) ≥ 1 for n > n0 which would
mean that only the first n0 repairs are efficient and that they become inefficient later on.
The model hence presents more flexibility than GPPs for application purpose.

As we will discuss in Section 2, our model can be seen as a specific non-homogeneous
pure birth process. These processes have been extensively used in the literature with applica-
tions in shock models (see Sheu et al. 2016 and the references therein) or insurance models,
in which the arrival of claims are time-dependent (see Landriault et al. 2014 and the refer-
ences therein). Moreover, considering a slightly generalized version of Eq. 1 (see Definition
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2) allows us to see Generalized Order Statistics (GOS) of continuous distributions as the
arrival points of our model. Generalized order statistics were introduced by Kamps (1995a)
in order to give a unified setting to model ordered random variables, such as usual order
statistics, sequential order statistics or record values. They nowadays constitute an active
area of research (see, for instance, Bedbur and Kamps 2017 and the references therein).

The article is organized as follows. In Section 2, a first general definition of an extended
Pólya process is provided (EPP*: Definition 2), in which the existence of the stochastic
intensity is not required. This definition is next specialized to the case where the intensity
exists (EPP: Definition 4). In the same section, the connection between EPP* and general-
ized order statistics is established. It is also shown that an EPP* can easily be constructed
from a homogeneous pure-birth process through a change of time scales (Proposition 2).
This allows to extend several well-known properties in the context of homogeneous pure
birth processes to extended Pólya processes. In particular, the “restarting property” provided
in Cha (2014) for generalized Pólya processes is shown to remain valid for their extended
version (Proposition 7), which means that given the observation of its previous history, an
EPP/EPP* shifted from an arbitrary time point provides another process of the same fam-
ily. Conditions are next provided under which a sequence of extended Pólya processes is
shown to converge to a limiting process of the same family (Proposition 8). Though a few
explicit formulas are given in the paper for some specific distributions in an EPP/EPP*
(Propositions 4, 5 and 6), computations however often remain complex in a general setting.
The convergence result from Proposition 8 allows to approximate an extended (and com-
plex) Pólya process by a simpler process of the same family for which computations are
easier (see Remark 8). Section 3 is next devoted to other types of properties. At first, note
that in a general setting, neither the increments nor the inter-arrival times of an extended
Pólya process are independent. Also, as ordered random variables, the arrival times of the
process have to exhibit some positive dependence among them. Section 3 is devoted to the
study of the dependence properties between the increments and between the (inter-)arrival
times of the process. Finally, the practical effectiveness of the model is demonstrated in
Section 4 through the development of a classical maximum likelihood parametric estimation
procedure on a few simulated data sets.

2 Definition, Construction and First Properties

2.1 Definitions

We begin by defining what is called cumulative intensity function in all the following.

Definition 1 A function Λ (·) is called cumulative intensity function if:

– There exists MΛ ∈ R+ ∪ {∞} such that Λ (·) : [0, MΛ) → R+,
– Λ(·) is non-decreasing and continuous on [0, MΛ),
– Λ (0) = 0,
– limt→M−

Λ
Λ (t) = ∞.

Remark 1 For some specific applications, Λ(·) will stand for the cumulative hazard rate
function of a non-negative continuous random variable in the sequel. When MΛ < ∞,
the restriction of the domain of Λ(·) to [0,MΛ) allows Λ(·) to remain finite on its whole
domain, even in case of a random variable with a bounded support.
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We are now ready to define Extended Pólya Processes in their most general version,
where the cumulative intensity function is not assumed to be absolutely continuous. They
will be referred to as EPP* in the following. The specific case where the cumulative intensity
function is absolutely continuous will be seen later on and referred to as EPP.

Definition 2 Let h (·) : N → R
∗+ and let Λ(·) be a cumulative intensity function (on

[0, M�)). Let N = (Nt )0≤t<MΛ be a counting process with points (Tn)n∈N where T0 =
0. Then N is called an Extended Pólya Process* with parameter (Λ (·) , h (·)) (written
EPP∗(Λ(·), h(·))) if we have:

P (T1 > t) = e−h(0)Λ(t), t ∈ [0, MΛ) (2)

and

P
(
Tn+1 > t |FTn

) =
{

e−h(n)(Λ(t)−Λ(Tn)), t ∈ (Tn,MΛ)

1, t ∈ [0, Tn] (3)

= e−h(n)(Λ(t)−Λ(Tn))+ , t ∈ [0, MΛ) a.s. (4)

where FTn = σ (Ti, i = 1, . . . , n) is the σ -field generated by {Ti, i = 1, . . . , n} for n =
1, 2, . . . , a.s. means “almost surely” and x+ = max(x, 0) for all x ∈ R.

Alternatively to the first line of Eq. 3, one may also write:

P
(
Tn+1 − Tn > u|FTn

) = e−h(n)(Λ(u+Tn)−Λ(Tn)) a.s. (5)

for all u ∈ (0,MΛ − Tn).
This shows that the inter-arrival times of an EPP* are dependent and hence EPP*’s

enlarge several models from the previous literature such as renewal processes (Asmussen
2003) or geometric processes and extensions (Lam 2007; Bordes and Mercier 2013), for
which inter-arrival times are independent.

Remark 2 Note that both sets of functional parameters (C Λ (·) , h (·) /C) and (Λ (·) , h (·))
provide the same Extended Pólya Process*, whatever C > 0 is. In a general setting, the
model hence requires some additional condition to be possibly identifiable such as h(0) = 1
or Λ(1) = 1, to remove the ambiguity on the constant C. As an example, a parametric
framework such as Λ(t) = tb and h(n) = C (n+1) would lead to a theoretically identifiable
model.

To better connect Extended Pólya Processes with their Generalized version introduced
by Cha (2014) and with other models from the literature, we now come to the case where Λ

is absolutely continuous. We begin with defining so-called intensity functions.

Definition 3 A function λ (·) is called an intensity function if:

– There exists Mλ ∈ R+ ∪ {∞} such that λ (·) : [0,Mλ) → R+,
– λ(·) is a measurable (Borel) function,
–

∫ t

0 λ (u) du < +∞ for all 0 ≤ t < Mλ,

–
∫Mλ

0 λ (u) du = ∞.
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Starting from an intensity function λ(·), it is easy to check that the function

Λ(t) :=
∫ t

0
λ (u) du, 0 ≤ t < Mλ (6)

is a cumulative intensity function such that M� = Mλ. Conversely, starting from Λ(·), there
exists λ(·) such that Eq. 6 is true as soon as Λ(·) is absolutely continuous.

Definition 4 Let h (·) : N → R
∗+ and let λ (·) be an intensity function. A counting process

N = (Nt )0≤t<Mλ with stochastic intensity λt = h (Nt−) λ (t) for all t ∈ [0,Mλ) is called an
Extended Pólya Process (on [0,Mλ)) with parameter (λ (·) , h (·)) (written EPP(λ(·), h(·))).

It is easy to check that an EPP(λ(·), h(·)) also is an EPP∗(Λ(·), h(·)) with Λ(·) provided by
Eq. 6 and Mλ = M�. Starting from an EPP(λ(·), h(·)), we shall refer to the corresponding
cumulative intensity function Λ with no further notification. Also, we shall make use of Mλ

or M� indifferently, according to the context.
The case h (·) = C (and Mλ = ∞) corresponds to a Non Homogeneous Poisson Process

(NHPP (C λ (·))). The case h (n) = αn + β with α ≥ 0 corresponds to a GPP (or LEYP).
Two other parametric shapes are also considered in the following, for illustration purpose:

– h (n) = (1 + n)α with α ∈ R,
– h (n) = qn with q > 0.

According to the parameters α and q, we may have h(·) > 1 (case α > 0 and q > 1,
respectively), h(·) < 1 (case α < 0 and 0 < q < 1, respectively) or h(·) = 1 (case
α = 0 and q = 1, respectively). These different behaviors are illustrated in Fig. 1 for
λ (t) = t1.25 and h(n) = n + 1 (case (a)), h(n) = 1.15n (case (b)), h(n) = 0.9n (case (c)),
h(n) = 1/(1 + n)0.15 (case (d)). Accordingly, the interpretation of an EPP for application

Fig. 1 Plot of λ(t) = t1.25 and trajectories of λt for different choices of h(n)
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purpose may hence be similar as for a GPP (cases (a) and (b)) or provide a model for
imperfect but effective repairs (cases (c) and (d)).

Following the vocabulary of Belzunze et al. (2001, p.202) one can note that an EPP on
[0, ∞) is a specific non homogeneous pure birth process with intensity functions ri(t) =
h(i − 1)λ(t) for all i = 1, 2, . . . and t ≥ 0.

In the specific case where λ(·) is a constant function (λ(t) = λ for all t ∈ R+ with
λ > 0), Eq. 5 gives:

P
(
Tn+1 − Tn > u|FTn

) = e−h(n)λu a.s. (7)

for all u ≥ 0. The inter-arrival times then are independent. Also, this specific EPP appears
as a pure birth homogeneous Markov process with generator matrix A = (ai,j )i,j∈N and

ai,j =
⎧
⎨

⎩

h (i) λ if j = i + 1,

−h (i) λ if j = i,

0 elsewhere.
(8)

We now come to the connection between EPPs and Generalized Order Statistics (GOS).
We recall that the connection between GOS and non-homogeneous pure-birth processes was
previously observed by Belzunce et al. (2001). We begin by recalling the definition of GOS,
as introduced in Kamps (1995b, Definition 2.1 page 49).

Definition 5 Let n ∈ N, k ≥ 1, m1, . . . , mn−1 ∈ R, Mr = ∑n−1
j=r mj , 1 ≤ r ≤ n − 1,

be parameters such that γr = k + n − r + Mr ≥ 1, for all r ∈ {1, . . . , n − 1} and let
m̃ = (m1, . . . , mn−1) if n ≥ 2 ( m̃ ∈ R arbitrary for n = 1). We call uniform GOS the
random vector (U(1,n,m̃,k), . . . , U(n,n,m̃,k)) with joint probability density function (p.d.f.)
given by

k

⎛

⎝
n−1∏

j=1

γj

⎞

⎠

⎛

⎝
n−1∏

j=1

(1 − uj )
mj

⎞

⎠ (1 − un)
k−1, 0 ≤ u1 ≤ · · · ≤ un ≤ 1

Now, given a cumulative distribution function (c.d.f.) F, we call GOS based on F the random
vector

(X(1,n,m̃,k), . . . , X(n,n,m̃,k)) = (F−1(U(1,n,m̃,k)), . . . , F
−1(U(n,n,m̃,k))),

in which F−1 denotes the inverse of F (quantile function). Moreover, if F has p.d.f. f , the
joint p.d.f. of (X(1,n,m̃,k), . . . , X(n,n,m̃,k)) is given by

k

⎛

⎝
n−1∏

j=1

γj

⎞

⎠

⎛

⎝
n−1∏

j=1

F̄ mj (xj )f (xj )

⎞

⎠ F̄ (xn)
k−1f (xn),

for all (x1, . . . , xn) such that F−1(0) ≤ x1 ≤ · · · ≤ xn ≤ F−1(1), where F̄ := 1 − F

denotes the survival function.

Now, let us consider a GOS (X(1,n,m̃,k), . . . , X(n,n,m̃,k)) based on a continuous c.d.f. F

parameters (n, m̃, k) as in the previous definition. Assume that F(0) = 0 and let

MΛ := sup{t ≥ 0 : F(t) < 1} ≤ ∞
and let Λ be the cumulative hazard rate for F , that is

Λ(t) = − log(F̄ (t)), t ∈ [0, MΛ). (9)
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Then Λ is a cumulative intensity function on [0, M�). Now, setting

h(i) := γi+1, i = 0, 1, . . . , n − 2, and h(n − 1) := k, (10)

we can see from Eqs. 2 and 3 that the arrival times (T1, . . . , Tn) of an EPP∗(Λ(·), h(·)) are
identically distributed as those of a Markov chain with initial distribution

P (T1 > t) = e−h(0)Λ(t) = F̄ (t)h(0), t ∈ [0, MΛ)

and transition probabilities

P (Ti+1 > t |Ti) =
{

e−h(i)(Λ(t)−Λ(Ti)) =
(

F̄ (t)

F̄ (Ti )

)h(i)

, t ∈ (Ti,MΛ),

1, t ∈ [0, Ti],
(a.s.) for i ∈ {1, . . . , n − 1}. Based on the equivalent representation of GOS in terms of a
Markov Chain provided in Kamps (1995b, Remark 2.8 page 56), this means that the GOS
of order n for the continuous c.d.f. F with F(0) = 0 can be seen as the first n points in an
EPP∗(Λ(·), h(·)).

Remark 3 Note that considering the reverse construction and starting from the points of
an EPP*, we would recover the points of an extended GOS as proposed in Kamps (1995b,
Remark 2.2 page 50), where k > 0 and γr > 0 (whereas k ≥ 1 and γr ≥ 1 is required in
Kamps (1995b, Definition 2.1 page 49) and Kamps 1995a).

2.2 Construction - Conditions of Non-explosion

We here provide several probabilistic constructions of an EPP* together with conditions
of non-explosion. As a first step, we check that the assumptions on (Λ (·) , h (·)) given in
Definition 2 allow the points (Tn)n∈N of an EPP* to be well defined (finite).

Lemma 1 Let (Λ (·) , h (·)) (and MΛ) as in Definition 2 and let (Tn)n∈N be recursively
constructed through Eqs. 2–3 with T0 = 0. Set N = (Nt )0≤t<MΛ to be the corresponding
counting process. Then:

1. Tn < Tn+1 < MΛ a.s. for all n ∈ N.
2. limt→M−

Λ
Nt = +∞ a.s.

Proof For the first point, let us first show that Tn < MΛ a.s., namely that P (Tn ≥ MΛ) = 0
for all n ∈ N

∗. We proceed by induction.
For n = 1, we have by monotonous convergence:

P (T1 ≥ MΛ) = lim
t→M−

Λ

P (T1 > t) = lim
t→M−

Λ

e−h(0)Λ(t) = 0

because limt→M−
Λ

Λ (t) = ∞ and h (0) > 0.
Now, assume the property to be true for some n ∈ N

∗. Based on Eq. 4, we have

P
(
Tn+1 > t |FTn

) = φ (Tn) (11)

with φ (Tn) = e−h(n)(Λ(t)−Λ(Tn))+ . Taking the expectation in Eq. 11, we get:

P (Tn+1 > t) = E [φ (Tn)] = E

[
e−h(n)(Λ(t)−Λ(Tn))+

]
.
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This provides

P (Tn+1 ≥ MΛ) = lim
t→M−

Λ

P (Tn+1 > t) = lim
t→M−

Λ

E

[
e−h(n)(Λ(t)−Λ(Tn))+

]
= 0

by dominated convergence. The property is hence true for all n ∈ N
∗, namely Tn < MΛ a.s.

for all n ∈ N. The fact that Tn < Tn+1 a.s. now is a direct consequence of Eq. 5, taking into
account that Tn < MΛ (and thus Λ(Tn) < ∞).

The second point is a classical consequence of the first point and its proof is omitted.

The points (Tn)n∈N of an EPP*, as expected, form an almost surely increasing sequence.
Our aim now is to provide other different constructions in terms of well-known processes.
For this purpose, given a cumulative intensity function Λ, we need to introduce its gener-
alized inverse function. The function Λ is non-decreasing with range Λ([0,MΛ)) = R+,
whatever MΛ is. Then, we can introduce its generalized inverse function Λ−1 on R+, with:

Λ−1(s) = inf{0 ≤ t < MΛ : Λ(t) ≥ s} = sup{0 ≤ t < MΛ : Λ(t) < s} (12)

for all s ≥ 0 with the convention sup ∅ = 0. The function Λ−1 is known to be
left-continuous on R+ and such that Λ(Λ−1(s)) = s for all s ∈ R+ (based on the right-
continuity of Λ and on its range). Also, for all s ∈ R+, t ∈ [0, MΛ), we have Λ(t) < s

if and only if t < Λ−1(s) (based on the right-continuity of Λ ). Finally, Λ−1 is (strictly)
increasing, based on the continuity of Λ. See Embrechts and Hofert (2013) or Boyer and
Roux (2016) for more details on generalized inverse functions.

If Λ is not strictly increasing, we have the problem that the previous inverse function
is not a continuous function despite the fact that Λ is continuous. To be more specific, the
discontinuity points of the function Λ−1 are of the shape Λ(s) with Λ−1(Λ(s)) < s. This
can happen when Λ is constant on an interval, for instance Λ(s) = k for all s ∈ [a, b]. In
that case, for all s ∈ [a, b], we have Λ−1 (Λ(s)) = Λ−1(k) = a. To avoid problems with
the discontinuities of the inverse function, our aim is to show that the points of our process
will not enter into intervals on which Λ is constant. To this end, let

D := {s ∈ [0, MΛ)| Λ−1(Λ(s)) < s}. (13)

If [a, b] is the only interval on which Λ is constant, then D = (a, b]. As Λ−1 is
increasing, such intervals are countably many so that D can be written as:

D =
⋃

i∈I

(ai, bi] (14)

where I is at most countable. Note that if ΛDc stands for the restriction of Λ to Dc, the
function ΛDc now is a one-to-one function from Dc to R+. As a consequence, for all s ∈
R+, t ∈ Dc, we have Λ(t) > s if and only if t > Λ−1

Dc(s), namely if and only t > Λ−1(s).
Next result shows us that the probability of observing the points of an EPP* process in

the set D is 0. This property will be important to show the equivalent constructions of an
EPP* provided in Proposition 2.

Proposition 1 Let (Tn)n∈N be the arrival points of an EPP∗(Λ(·), h(·)) and let D be the set
defined in Eq. 13. We have

(a) P
(
Tn+1 ∈ D|FTn

) = 0, n = 0, 1, . . .

(b) P(Tn ∈ D) = 0, n = 1, 2, . . .
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Proof For part (a), let us consider an interval Ii = (ai, bi] ⊆ D, i ∈ I . This means, using
Eqs. 3 (or Eq. 2 for n = 0) that

P
(
Tn+1 ∈ Ii |FTn

) = P
(
Tn+1 > ai |FTn

)− P
(
Tn+1 > bi |FTn

)

= e−h(n)(Λ(ai )−Λ(Tn))1{ai>Tn} + 1{ai≤Tn}
−e−h(n)(Λ(bi )−Λ(Tn))1{bi>Tn} − 1{bi≤Tn}

=
(

1 − e−h(n)(Λ(ai )−Λ(Tn))
)
1{ai≤Tn<bi }

= 0

for all n ∈ N, using that Λ(ai) = Λ(bi) for the previous to last line and Λ(Tn) = Λ(ai)

when ai ≤ Tn < bi for the last one. Thus, (a) follows as I is a countable set. To show (b),
the case n = 1 is included in part (a), whereas for n = 2, 3, . . .

P(Tn ∈ D) = E[P (Tn ∈ D|FTn−1

)] = 0.

Remark 4 By Proposition 1 (b), we obviously have that

P

( ∞⋃

n=1

{Tn ∈ D}
)

= 0.

We now provide two different constructions of an EPP*, to be used later on. One con-
struction is very similar to that of Daley and Vere-Jones (2003, Theorem 7.4.I. page 258)
(under different assumptions however). The other one allows to recover the points of a
general EPP* from those of an EPP with λ(·) = 1 (with 1 the constant function equal to 1).

Proposition 2 Let h (·) : N → R
∗+ and let Λ(·) be a cumulative intensity function. Let

(Tn)n∈N be the arrival points of a counting process on [0,MΛ), with T0 = 0 and let (Sn)n∈N,
(Vn)n∈N be the arrival points of two counting processes on R+, with S0 = V0 = 0. We
assume the following link between the points of the three processes:

{
Tn = Λ−1 (Sn)

Tn+1 = Λ−1
(
Λ (Tn) + Vn+1−Vn

h(n)

) (15)

for all n ≥ 0, where we recall that Λ−1 stands for the left-continuous generalized inverse
function of Λ.

1. We have
{

Sn = Λ(Tn) ,

Vn = ∑n−1
i=1 h (i) (Λ (Ti+1) − Λ(Ti))

(16)

for all n ∈ N.
2. The three following assertions are equivalent:

(a) (Tn)n∈N are the points of an EPP∗ (Λ (·) , h (·)),
(b) (Sn)n∈N are the points of an EPP (1, h (·)),
(c) (Vn)n∈N are the points of a homogeneous Poisson process with rate 1 (written

HPP (1)).
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Proof Assume the points of the three processes to be linked by Eq. 15. Then, it is easy
to check that the first line of Eq. 16 is true, based on the fact that Λ(Λ−1(s)) = s for all
s ∈ R+. Next, we know from Eq. 15 that

Vn+1 − Vn

h (n)
= Λ(Tn+1) − Λ (Tn)

for all n ∈ N, which readily provides the second line of Eq. 16. Hence point 1 is proved.
In order to prove point 2, let us now consider the filtrations

(
FTn

)
,
(
GSn

)
and

(
HVn

)

generated by the Tn’s, Sn’s and Vn’s, respectively. Based on Eqs. 15 and 16, we clearly have
FTn = GSn = HVn for all n ∈ N. As a first step, assume that (Sn)n∈N are the points of an
EPP (1,h (·)). Then, on {t > Vn}:

P
(
Vn+1 > t |HVn

) = P
(
Vn + h (n) (Sn+1 − Sn) > t |HVn,GSn

)

= P

(
Sn+1 − Sn >

t − Vn

h (n)

∣∣
∣
∣HVn,GSn

)

= e
−h(n)

(
t−Vn
h(n)

)

= e−(t−Vn)

This shows that (Vn)n∈N are the points of an HPP (1) so that assertion 2b implies assertion
2c. The converse implication is similar and its proof is omitted.

Now, assume that (Vn)n∈N are the points of an HPP (1). Remembering that Λ−1(s) > t

if and only if s > Λ(t), we have on {t > Tn} :

P
(
Tn+1 > t |FTn

) = P

(
Λ−1

(
Λ(Tn) + Vn+1 − Vn

h (n)

)
> t |FTn

)

= P

(
Λ (Tn) + Vn+1 − Vn

h (n)
> Λ (t) |FTn,HVn

)

= P
(
Vn+1 − Vn > h (n) (Λ (t) − Λ(Tn)) |FTn,HVn

)

= e−h(n)(Λ(t)−Λ(Tn))

because Λ(t) ≥ Λ(Tn). This shows that (Tn)n∈N are the points of an EPP∗ (Λ (·) , h (·))
and assertion 2c (or 2b) implies assertion 2a. Now, the only thing remaining is to show
that assertion 2a implies assertion 2c (or 2b). Then, assume (Tn)n∈N to be the points of an
EPP∗ (Λ (·) , h (·)). Recall that, due to Proposition 1, P(Tn ∈ D) = 0, where D is defined in
Eq. 13. But note that on the set Dc, Λ is a one-to-one function and the generalized inverse
function coincides with the “true” inverse function. Thus, on {t > Sn},

P
(
Sn+1 > t |GSn

) = P
(
Λ(Tn+1) > t, Tn+1 ∈ Dc|FTn

)

= P

(
Tn+1 > Λ−1(t), Tn+1 ∈ Dc|FTn

)

= P

(
Tn+1 > Λ−1(t)|FTn

)

= e−h(n)
(
Λ
(
Λ−1(t)

)−Λ(Tn)
)

= e−h(n)(t−Sn)

This shows that (Sn)n∈N are the points of an EPP (1,h (·)) and concludes this proof.

Remark 5 The previous proposition allows us to construct the points of a general
EPP∗ (Λ (·) , h (·)) from those of an EPP(1, h(·)) or from those of an HPP (1). Using the
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fact that the inter-arrival times of an HPP (1) are standard exponential and can hence be
simulated through setting Vn+1 − Vn = − ln(Un) for all n ∈ N, where (Un)n∈N is an
i.i.d. sequence of uniform random variables on [0, 1], it is now easy to recursively simulate
the points (Tn)n∈N of a general EPP*: first set T0 = 0; next construct the Tn’s recursively
through

Tn+1 = Λ−1
(

Λ(Tn) − ln (Un)

h (n)

)
(17)

for all n ∈ N.

The following corollary is a direct consequence of Proposition 2. This corollary allows
to see EPP*’s as homogeneous Pure-Birth processes in which a change of time scales has
been performed. This property will be very useful to relate properties of EPP*’s with the
ones of this simpler and well-known class of processes.

Corollary 1 Let h (·) : N → R
∗+ and let Λ2(·) be a cumulative intensity function on

[0, MΛ2). Let N(1) = (N
(1)
t )t≥0 and N(2) = (N

(2)
t )t∈[0,MΛ2 ) be two counting processes on

R+ and [0,MΛ2), respectively, such that N
(2)
t = N

(1)
Λ2(t)

for all t ∈ [0, MΛ2). Then N(1) is

an EPP (1, h (·)) if and only if N(2) is an EPP∗ (Λ2 (·) , h (·)).

Proof For i ∈ {1, 2}, let
(
T

(i)
n

)

n∈N be the points of N(i). For n ∈ N and t ∈ [0, MΛ2), we

have
{
N

(2)
t ≥ n

}
=
{
N

(1)
Λ2(t)

≥ n
}

with
{
N

(2)
t ≥ n

}
=
{
T (2)

n ≤ t
}

and {
N

(1)
Λ2(t)

≥ n
}

=
{
T (1)

n ≤ Λ2(t)
}

=
{
Λ−1

2

(
T (1)

n

)
≤ t)

}
.

This implies {
T (2)

n ≤ t
}

=
{
Λ−1

2

(
T (1)

n

)
≤ t)

}

for all t ∈ [0, MΛ2) and T
(2)
n = Λ−1

2

(
T

(1)
n

)
. The results follow from point 2 in

Proposition 2.

We now come to conditions of non explosion. Let us first remind that a counting process
with points (Tn)n∈N in [0,MΛ) is said to be explosive as soon as P

(
supn Tn < MΛ

)
> 0.

Also, based on the fact that an EPP (1, h (·)) is a homogeneous Markov pure birth process, it
is known from Gikhman and Skorokhod (1969, page 323) that the EPP (1, h (·)) with points
(Sn)n∈N is explosive if and only if

∑+∞
i=0

1
h(i)

< +∞ and that P
(
supn Sn < +∞)

can only
be either 0 or 1. This allows to get the following result for a general EPP.

Proposition 3 Let (Tn)n∈N be the points of an EPP∗(Λ(·), h(·)). We have the following
dichotomy, whatever Λ (·) is:
1. If

∑+∞
i=0

1
h(i)

= +∞, then supn Tn = MΛ a.s. (almost sure non explosion). Also Nt <

+∞ a.s. for all 0 ≤ t < MΛ.
2. If

∑+∞
i=0

1
h(i)

< +∞, then supn Tn < MΛ a.s. (almost sure explosion). Also, for almost
all ω, there exists T (ω) < MΛ such that Nt (ω) = ∞ for all t ∈ (T (ω) ,MΛ).
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Proof Let us assume the Tn’s to be constructed from the points Sn, n ∈ N of an EPP(1, h(·))
as in Proposition 2, with Tn = Λ−1(Sn), all n ∈ N. Then:

P

(
sup
n

Tn = MΛ

)
= P

(
sup
n

Sn = +∞
)

.

The dichotomy between almost sure explosion (point 1) and almost sure non explosion
(point 2) hence is a direct consequence of the same result for the EPP (1, h (·)) with points
(Sn)n∈N. The induced almost sure infiniteness (finiteness) of Nt under almost sure (non)
explosion is classical and hence omitted.

Example 1 If h (n) = αn + β with α ≥ 0, β > 0 or if h (n) = qn with q ≤ 1, there is
almost surely no explosion, whatever Λ(·) is. The explosive and non explosive cases are
illustrated in Fig. 2 for Λ(t) = t1.25 with h (n) = 0.75n (left; almost sure no explosion) and
h (n) = 1.5n (right; almost sure explosion).

2.3 First Probabilistic Properties

We here provide several probabilistic results for an EPP*. We begin with the marginal dis-
tribution of an EPP* (probability mass function of Nt ) together with the distribution of its
arrival times Tn, n ≥ 1 in the case where all h (j)’s are distinct.

Proposition 4 Let (Nt )t∈[0,MΛ) be an EPP∗ (Λ (·) , h (·)) and assume that h (j), j ≥ 0 are
all distinct. Then:

P (Nt = n) = αn ×
n∑

j=0

γj,n e−h(j)Λ(t)

Fig. 2 A few trajectories of (Nt )t≥0 for Λ (t) = t1.25 with h (n) = 0.75n (left) and h (n) = 1.5n (right)
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for all n ≥ 0 and 0 ≤ t < MΛ with

αn =
n−1∏

k=0

h (k) , (18)

γj,n = 1
∏

0≤k≤n,k �=j (h (k) − h (j))
(19)

for n ≥ 1 and α0 = γ0,0 = 1.

Proof In the specific case where λ(·) = 1, the result can be found in the literature on
homogeneous Markov pure birth processes, see, e.g., Gikhman and Skorokhod (1969, for-
mulas (3–4) page 322). It is next easy to extend it to the case of a general Λ(·) by using the
construction of a general EPP* from an EPP (1, h (·)) provided in Corollary 1.

Remark 6 In the explosive case (see Proposition 3), the distribution of Nt is defective in the
sense that

∑+∞
n=0 P(Nt = n) < 1 and it admits a non zero mass at ∞.

Example 2 In case of an EPP* with h (n) = αn + β, we get for n ≥ 1:

αn =
n−1∏

k=0

(αk + β) = αn
�
(
n + β

α

)

�
(

β
α

)

and

γj,n = 1

αn
∏

0≤k≤n,k �=j (k − j)
= (−1)j

αnn!
(

n

j

)
.

We easily derive that

P (Nt = n) =
�
(
n + β

α

)

�
(

β
α

)
n!

× e−βΛ(t)
(

1 − e−αΛ(t)
)n

so that Nt has a negative binomial distribution, which can be found in several papers from
the literature (in the specific case of an EPP), see e.g. Asfaw and Lindqvist (2015), Babykina
and Couallier (2010), Cha (2014), Konno (2010), Le Gat (2009, 2014).

We now provide the c.d.f. (p.d.f.) of arrival times of an EPP* (EPP), here again in the
case where all h(j)’s are distinct. When λ(·) = 1, the result can be found in e.g. Cox
(1970, page 17). It is next easy to extend it to the case of general EPP*’s by considering
that Tn = Λ−1(Sn) in the notations of Proposition 2, which entails that FTn(t) = FSn(Λ(t))

and, for an EPP (λ (·) , h (·)), fTn(t) = λ(t)fSn(Λ(t)).

Proposition 5 Let (Tn)n≥0 be the points of an EPP∗ (Λ (·) , h (·)) (with T0 = 0) and assume
that h (j), j ≥ 0 are all distinct. For n ≥ 1, the c.d.f. of Tn is given by

FTn (t) = 1 −
n−1∑

i=0

Ai,n−1 e−h(i)Λ(t),

for all t ∈ [0, MΛ), with

Ai,n−1 =
∏

0≤k≤n−1,k �=i

h(k)

h(k) − h(i)
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for n ≥ 1 and i ≥ 0, A0 = 1. If, in addition the process is an EPP (λ (·) , h (·)), the p.d.f. is
given by

fTn (t) = αnλ(t)

n−1∑

i=0

γi,n−1 e−h(i)Λ(t),

where αn and γi,n are given by Eqs. 18 and 19.

In case where the h(j)’s are possibly not all distinct and λ(·) = 1, there are many dif-
ferent formulations in the literature for the distribution of Tn, e.g. see the section devoted
to sums of gamma random variables in Nadarajah (2008), with references therein. We here
propose two different formulations. The first one from Efthymoglou and Aalo (1995) gives
the result through a computable integral form, the second one from Aalo et al. (2005) pro-
poses a full form expression in terms of the confluent Lauricella hypergeometric function
of n variables. We recall that this function is defined by


(n)
2 (β1, · · · , βn; γ ; x1, · · · , xn) =

+∞∑

m1,··· ,mn=0

(β1)m1
· · · (βn)mn

(γ )m1+···+mn

x
m1
1

m1! · · · x
mn
n

mn! ,

where (α)k = �(α+k)
�(α)

is the Pochammer symbol. Here again, the results are derived from

those of Aalo et al. (2005), Efthymoglou and Aalo (1995) by considering Tn = Λ−1(Sn) in
the notations of Proposition 2.

Proposition 6 Let (Tn)n≥0 be the points of an EPP∗ (Λ (·) , h (·)) (with T0 = 0). For n ≥ 1
and t ∈ (0,MΛ) , the c.d.f. of Tn is given by

FTn (t) = 1

2
− 1

π

∫ ∞

0

sin
(∑n−1

i=0 arctan
(

s
h(i)

)
− s Λ (t)

)

s
∏n−1

i=0

(
1 +

(
s

h(i)

)2
) 1

2

ds

and, if it is an EPP (λ (·) , h (·)), its p.d.f is given by

fTn (t) = λ (t)

π

∫ ∞

0

cos
(∑n−1

i=0 arctan
(

s
h(i)

)
− s Λ (t)

)

∏n−1
i=0

(
1 +

(
s

h(i)

)2
) 1

2

ds,

alternatively, we can write

fTn (t) = αn

λ(t) (Λ (t))n−1

(n − 1)! 
(n)
2 (1, · · · , 1; n; −h (0)Λ (t) , · · · , −h (n − 1) Λ (t)) ,

FTn (t) = αn
(Λ (t))n

n! 
(n)
2 (1, · · · , 1; n + 1; −h (0)Λ (t) , · · · ,−h (n − 1)Λ (t))

The previous result allows to compute the probability mass function of Nt as an
immediate consequence, using the fact that

P(Nt = n) = FTn(t) − FTn+1(t).

However, this expression does not seem easy to simplify.
We now come to other probabilistic properties. As a first, we show that an EPP* has a

similar “restarting property” as a GPP (Cha 2014). This means that if the previous history
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of the process is known, then the increments of the process observed from an arbitrary point
u behave as a new EPP* process (whose parameters depend on the previous history of the
process before time u).

Proposition 7 (“Restarting property”) Let (Nt )t∈[0,MΛ) be an EPP∗ with parameter

(Λ (·) , h (·)) and u ∈ (0,MΛ) be fixed. SetN(u)
t = Nt+u−Nu for all t ∈ [0,MΛ−u). Then,

given Fu− = σ (Ns, s < u), the conditional process
(
N

(u)
t

)

t∈[0,MΛ−u)
is an EPP∗ with

parameter (Λ (·|u) , h (·|Nu−)) where Λ(t |u) = Λ(t + u) − Λ(u) for all t ∈ [0, MΛ − u)

and h (k|n) = h (n + k) for all k ∈ N.

Proof Let us first consider the case where
(
N̄t

)
t∈[0,∞)

is an EPP (1, h (·)) with Λ(t) = t . In
this case, it is a homogeneous pure-birth Markov process and the Markov property at time

u entails that
(
N̄

(u)
t

)

t∈[0,∞)
is an EPP

(
1, h

(·|N̄u−
))

. To show the general case, recall that,

due to Corollary 1,
(
Nt := N̄Λ(t)

)
t∈[0,MΛ)

is an EPP∗ (Λ (·) , h (·)). Also,

N
(u)
t = Nt+u − Nu = N̄Λ(t+u)−Λ(u)+Λ(u) − N̄Λ(u) = N̄

(Λ(u))
Λ(t |u) (20)

The restarting property for
(
N̄t

)
t∈[0,∞)

says us that
(
N̄

(Λ(u))
t

)

t∈[0,∞)
is an

EPP
(
1, h

(·|N̄Λ(u)−
))

. Noting that Λ(·|u) is a cumulative intensity function, we conclude

by Eq. 20 and Corollary 1 again that
(
N

(u)
t

)

t∈[0,MΛ−u)
is an EPP∗ (Λ(·|u), h (·|Nu−)).

The restarting property allows to easily obtain many probabilistic results (see Cha
2014 for more details). As an example, considering an EPP(λ(·), h(·)), we can derive the
following conditional p.d.f. for Tn+1 given FTn from Eq. 3:

h (n) λ (tn+1) e−h(n)(Λ(tn+1)−Λ(Tn)) (21)

for all tn+1 ∈ (Tn,Mλ). The restarting property now allows to write down the joint density
of the arrival times (T1, T2, . . . , Tn) as follows:

f (t1, . . . , tn) =
n∏

i=1

(
h (i − 1) λ (ti) e−h(i−1)(Λ(ti )−Λ(ti−1))

)

=
n−1∏

i=1

(
h (i − 1) λ (ti) e(h(i)−h(i−1))Λ(ti )

)
h(n − 1)λ(tn)e

−h(n−1)Λ(tn)

(22)

for all 0 = t0 ≤ t1 < t2 < · · · < tn < MΛ. Here, we recognize the p.d.f. for the GOS of an
absolutely continuous F , when we choose Λ as given in Eq. 9 and h(· ) as given in Eq. 10.

Remark 7 In Cha (2014, Thm. 2), the author shows what he calls the “unconditional restart-
ing property”, which states that if a GPP is observed from an arbitrary point u without

any knowledge of the past history, the unconditional process of increments
(
N

(u)
t

)

t∈[0,∞)

remains a GPP. In general, this property is not valid any more for an EPP*. To see it, let
us consider the case of a pure-birth process with Λ(t) = t . If we know that Nu = k,
the conditional restarting property from Proposition 7 states that the conditional process of
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increments
(
N

(u)
t

)

t∈[0,∞)
is a pure birth process with hk(· ) = h(k+· ), where h is the orig-

inal pure-birth function. Now, let (T u
1 , . . . , T u

n ) be the arrival times of the unconditional
process observed from point u. Applying Eq. 22, and the conditional restarting property, the
density of this random vector is given by

∞∑

k=0

n−1∏

i=1

(
hk (i − 1) e(hk(i)−hk(i−1))ti

)
hk(n − 1)e−hk(n−1)tnP(Nu = k).

In general, this formula cannot be written in a product form, as is required for the uncondi-
tional process of increments to possibly be an EPP (see Eq. 22). To show that, let us consider
h (0) = 1 and h (i) = 2 for i ≥ 2. Taking n = 3, we get:

f(T u
1 ,T u

2 ,T u
3 ) (t1, t2, t3) =

2∏

i=1

(
h (i − 1) e(h(i)−h(i−1))ti

)
h(2)e−h(2)t3P(Nu = 0)

+
∞∑

k=1

2∏

i=1

(
hk (i−1) e(hk(i)−hk(i−1))ti

)
hk(n−1)e−hk(n−1)tnP(Nu =k).

(23)

Observe that

2∏

i=1

(
hk (i − 1) e(hk(i)−hk(i−1))ti

)
hk(2)e−hk(2)t3 = 23e−2t3 , k = 1, 2, . . .

Moreover, P (N (u) = 0) = P(T1 > u) = e−u (recall Eq. 2). Thus, from Eq. 23 we obtain

f(T u
1 ,T u

2 ,T u
3 ) (t1, t2, t3) = et1 22e−2t3e−u + 23e−2t3P(Nu > 0)

= et1 22e−2t3e−u + 23e−2t3(1 − e−u)

which cannot be written in a product form, as required in Eq. 22, for the unconditional
restarting property to be true.

We now go on with another consequence of Eq. 22 and the conditional joint density
of (T1, . . . , Tn) given Nt = n is provided in the following corollary. Note that in Cha
(2014), the author observed that in case of GPPs, this conditional joint density was that of
an ordinary order statistics (just as for Poisson processes). The following proposition shows
that GPPs are the only EPPs for which this property is true.

Corollary 2 Let (Nt )t∈[0,Mλ) be an EPP with parameter (λ (·) , h (·)) and let (Tn)n∈N be its
arrival times. For n ∈ N

∗, the conditional p.d.f. of (T1, · · · , Tn) givenNt = n is provided by

f(T1,··· ,TNt |Nt) (t1, · · · , tn|n) = e−h(n)Λ(t)

P(Nt = n)

n∏

i=1

(
h(i − 1)λ (ti) e(h(i)−h(i−1))Λ(ti )

)
(24)

for all 0 ≤ t1 < t2 < · · · < tn ≤ t and the conditional distribution of (T1, · · · , Tn) given
Nt = n is not an order statistics unless h (i) − h (i − 1) is independent of i (constant),
namely unless the process is a GPP (h (i) = αi + β for all i ≥ 0).

Methodol Comput Appl Probab (2019) 21:1057–10851072



Proof Expression (24) is a direct consequence of the restarting property (using a similar
procedure as for Eq. 22). Then, the conditional distribution of (T1, · · · , Tn) given Nt = n

is an order statistics if and only if λ (u) e(h(i)−h(i−1))Λ(u) is of the shape Ci f (u), which
provides the result.

We now look at the convergence of a sequence
(
N(k)

)
k∈N of EPP*’s. We restrict our-

selves to the non explosive case, in order to use results concerning convergence of point
processes (Jacod and Shiryaev 1987, Thm 3.37 page 354), which require a finite number of
points in a bounded interval.

Proposition 8 Let
(
h(k) (·))

k∈N be a sequence of functions from N to R
∗+ such that

+∞∑

i=0

1

h(k) (i)
= +∞

for all k ∈ N (non explosion condition), and let
(
Λ(k) (·))

k∈N be a sequence of cumulative
intensity functions such that MΛk

= MΛ for all k ∈ N, with MΛ > 0. Assume that:

(A1) limk→+∞ h(k) = h, where h (·) : N → R
∗+ is such that

∑+∞
i=0

1
h(i)

= +∞,

(A2) limk→+∞ Λ(k) (t) = Λ(t) for all t ∈ [0,MΛ), with Λ continuous and
limt→M−

Λ
Λ (t) = ∞.

Then, the sequence
(
N(k)

)
k∈N of EPP*’s with respective parameters

(
Λ(k), h(k)

)
weakly

converges towards an EPP* N = (Nt )0≤t<MΛ
with parameters (Λ, h) (namely in the

Skorohod topology).

Proof Let us first observe that, under conditions of non explosion, N and N(k)’s are finite-
valued non decreasing point processes. This allows to use Jacod and Shiryaev (1987, Thm
3.37 page 354), from which we know that it is sufficient to show the finite dimensional

(fidi) convergence property, namely that
(
N

(k)
t1

, · · · , N
(k)
td

)
converges in distribution to

(
Nt1 , · · · , Ntd

)
for all d ≥ 1 and all t1 < · · · < td , where symbol (k) refers to the EPP*

N(k), as in all the remaining of this proof. This convergence will follow if we show the
convergence of the corresponding probability mass functions, due to Scheffe’s Theorem
(Billingsley 1995, Thm. 16.11). At first, note that

P

(
N

(k)
t1

= n1, · · · , N
(k)
td

= nd

)

= P

(
N

(k)
t1

= n1, N
(k)
t2

− N
(k)
t1

= n2 − n1 · · · , N
(k)
td

− N
(k)
td−1

= nd − nd−1

)

= P

(
N

(k)
t1

= n1

) d∏

j=2

P

(
N

(k)
tj

− N
(k)
tj−1

= nj − nj−1|N(k)
t1

= n1, . . . N
(k)
tj−1

= nj−1

)

= P

(
N

(k)
t1

= n1

) d∏

j=2

P

(
N

(k)
tj

− N
(k)
tj−1

= nj − nj−1|N(k)
tj−1

= nj−1

)

for all 0 ≤ t1 < · · · < td ≤ MΛ. From the restarting property, we can see that the j -
th term in this product is the probability mass function of an EPP* with Λ(k)

(
t |tj−1

) =
Λ(k)

(
t + tj−1

) − Λ(k)
(
tj−1

)
and h(k)

(
n|nj−1

) = h(k)
(
n + nj−1

)
. Thus, the problem is

reduced to prove the unidimensional convergence of the probability mass function of N
(k)
t
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towards that of Nt for t < MΛ, when conditions (A1) and (A2) are satisfied. (Obviously,
the “restarted” processes also verify these properties if the original does so).

Now, assume the sequences (T
(k)
n )n∈N with k ∈ N to be constructed by Eq. 17 from the

same uniform sequence (Un)n∈N, with no loss of generality. Then, under (A1) and (A2), let
us prove that

T (k)
n

D=⇒ Tn, n = 1, 2, . . . (25)

where T1, T2, . . . , Tn, . . . are the points of the limiting EPP, and where
D=⇒ denotes

convergence in distribution.
Let us first look at the case where Λ(k) (t) = t, k = 1, 2, . . . for all t ≥ 0. For k =

1, 2, . . . , based on Eq. 17, the S
(k)
n ’s can be recursively constructed through:

S
(k)
1 = − ln (U0)

h(k) (n)
, (26)

S
(k)
n+1 = S(k)

n − ln (Un)

h(k) (n)
(27)

for all n ∈ N. Thus, it is easy to see that

S(k)
n

a.s.=⇒ Sn, n = 1, 2, . . . , (28)

where
a.s.=⇒ denotes almost sure convergence. In fact, Eq. 28 for n = 1 is clear from Eq. 26

and the general case follows from Eq. 27 and induction.
Now, consider an arbitrary Λ(k) (t). Based on Eq. 28, we have

S
(k)
n

Λ(k)(t)

a.s.=⇒ Sn

Λ(t)
,

and consequently

lim
k→∞P

(
S(k)

n ≤ Λ(k)(t)
)

= P(Sn ≤ Λ(t)),

as the almost sure convergence implies the convergence in distribution. Using Corollary 1,
we now have

lim
k→∞P(T (k)

n ≤ t) = lim
k→∞P

(
S(k)

n ≤ Λ(k)(t)
)

= P(Sn ≤ Λ(t)) = P(Tn ≤ t) (29)

and Eq. 25 follows.
Recalling that

P

(
N

(k)
t ≤ n

)
= P

(
T

(k)
n+1 > t

)
, n = 0, 1, 2, . . . (30)

we deduce from this expression and Eq. 25 that

lim
k→∞P

(
N

(k)
t ≤ n

)
= P (Nt ≤ n) .

This shows that N
(k)
t converges in distribution towards Nt for all 0 ≤ t < MΛ, thus

completing the proof.
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Example 3 Let h(k) (n) = (qk)
n for all n ∈ N where 0 ≤ qk ≤ 1 for all k ∈ N and

limk→+∞ qk = q ∈ [0, 1]. We set h (n) = qn for all n ∈ N. Then, under assumption (A2)

from the proposition, the sequence
(
N(k)

)
k∈N weakly converges towards an EPP∗ (Λ, h).

Example 4 Let h(k) (n) = α(k)n + β(k) where α(k) ≥ 0, β(k) > 0, limk→+∞ α(k) = α ≥ 0
and limk→+∞ β(k) = β > 0. Then, under assumption (A2), the sequence

(
N(k)

)
k∈N weakly

converges towards an EPP∗ (Λ, h), where h (n) = αn + β.

Remark 8 Note that we can also use the previous proposition to obtain approximations for
probabilities in an EPP* with h(j) not necessarily all distinct by means of EPP*’s with h(j)

all distinct and therefore, we can approximate the expressions given in Proposition 6 by
linear combinations of exponentials as in Proposition 5. For instance, let us consider a Pure-
Birth process in which h(n) = λ for n = 0, 1, . . . m and h(n) = β for n = m+1, m+2, . . .

(λ �= β). We can approximate this process by a pure-birth process in which h(ε)(n) = λ+nε

for n = 0, 1, . . . m and h(ε)(n) = β + nε for n = m + 1,m + 2, . . . (ε small enough)
and use Propositions 4 and 5 to evaluate the corresponding probabilities. In this way, we
could give approximations both to the expressions given in Proposition 6 and to the integral
expressions given in Janardan (2005) for this specific case.

3 Positive and Negative Dependence Properties

In this section, we establish positive (and negative) dependence properties of distributions
related to an EPP*. Some of our results extend to EPP*’s previous ones obtained in Badı́a
et al. (2018) and Cha and Finkelstein (2017) in the context of Generalized Pólya processes.

As a first step, we begin with a technical lemma (to be used later on), which provides a
stochastic comparison result between the arrival times of two EPP*’s which share the same
Λ, with different functions h(i)’s, however. The result is given in term of the usual stochastic
order, where we recall that two random variables X and Y are said to be ordered in the usual
stochastic order (X ≤st Y ) as soon as P(X > x) ≤ P(Y > x), for all x ∈ R (see, for
instance, Shaked and Shanthikumar 2007).

Lemma 2 Let us consider two EPP*’s
(
N

(i)
t

)

t∈[0,MΛ)
, i = 1, 2 with parameters

(h(i), Λ), i = 1, 2 such that h(1)(· ) ≤ h(2)(· ). Let (T
(i)
n )n=1,2,..., i = 1, 2 be their

respective arrival times. Then T
(1)
n ≥st T

(2)
n for all n ∈ N

∗.

Proof Let us show the result recursively on n.
Based on Eq. 2, we have P(T

(1)
1 > t) ≥ P(T

(2)
1 > t) for all t > 0, and the result follows

for n = 1.
Assume that T

(1)
n ≥st T

(2)
n for some n ≥ 1 and let t > 0. Starting from Eq. 3, we have:

P

(
T

(1)
n+1 > t

)
= E

[

e
−h1(n)

(
Λ(t)−Λ

(
T

(1)
n

))+]

≥ E

[

e
−h2(n)

(
Λ(t)−Λ

(
T

(1)
n

))+]

because h(1) ≤ h(2).
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Based on the non-decreasingness of e−h2(n)(Λ(t)−Λ(u))+ with respect to u and on T
(1)
n ≥st

T
(2)
n , we derive that

P

(
T

(1)
n+1 > t

)
≥ E

[

e
−h2(n)

(
Λ(t)−Λ

(
T

(2)
n

))+]

and the result.

Next proposition explores the impact of the monotonicity of h on the positive/negative
dependence property between the increments of an EPP*. Given an EPP* (Nt )t∈[0,MΛ) and
some arbitrary points 0 < t1 < t2 < · · · < tn < MΛ, the corresponding vector of
increments will be denoted by

(M̄1 := Nt1 , M̄2 := Nt2 − Nt1 , . . . , M̄n := Ntn − Ntn−1). (31)

With these notations, we recall that the vector (M̄1, . . . , M̄n) is said to be Conditionally
Increasing/Decreasing in Sequence (CIS/CDS) if, for all 1 ≤ k ≤ n − 1, M̄k+1|M̄1 =
i1, . . . , M̄j−1 = ik is increasing/decreasing in (i1, . . . , ik) with respect to the usual stochas-
tic order (see, for instance, Müller and Stoyan 2002, p. 125). We also recall that CIS (CDS)
is a positive (negative) dependence property. We are now ready to state the result.

Proposition 9 Let (M̄1, . . . , M̄n) be a vector of increments of an EPP*, as defined in
Eq. 31. If h is increasing, then (M̄1, . . . , M̄n) is conditionally increasing in sequence. If h

is decreasing, the previous vector is conditionally decreasing in sequence.

Proof From the restarting property, given that Nu = m, the process
(
N

(u)
t

)

t∈[0,MΛ−u)
is

known to be an EPP* on [0, MΛ − u) with parameters (Λ (·|u) , h (·|m)). Let us denote by
T m

i the i-th arrival time in this process. If h is increasing, we have for m ≤ m′ that

h (·|m) = h (· + m) ≤ h
(· + m′) = h

(·|m′) .

Based on Lemma 2, we derive that T m′
i ≤st T m

i (the Λ(·|u) is the same). Now let
(i1, . . . , ik) ≤ (j1, . . . , jk) for k = 1, . . . , n − 1 , and let us set Ik = i1 + · · · + ik and
Jk = j1 + · · · + jk . For u = tk , we now have:

P(M̄k+1 > i|M̄1 = i1, M̄2 = i2, . . . , M̄k = ik) = P(T
Ik

i+1 ≤ tk+1 − tk)

≤ P(T
Jk

i+1 ≤ tk+1 − tk) = P(M̄k+1 > i|M̄1 = j1, M̄2 = j2, . . . , M̄k = jk).

Thus (M̄1, . . . , M̄n) is conditionally increasing in sequence. If h is decreasing, the pre-
vious inequalities are reversed, and therefore (M̄1, . . . , M̄n) is conditionally decreasing in
sequence.

Remark 9 Notice that (M̄1, . . . , M̄n) conditionally increasing in sequence implies that this
vector is associated. In particular the increments in such EPP are positive upper orthant
dependent and positive lower orthant dependent, that is:

P(M̄1 > x1, . . . , M̄n > xn) ≥
n∏

i=1

P(M̄i > xi) for all (x1, . . . , xn) ∈ R
n

P(M̄1 ≤ x1, . . . , M̄n ≤ xn) ≥
n∏

i=1

P(M̄i ≤ xi) for all (x1, . . . , xn) ∈ R
n
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Note that the positive lower orthant dependency was already established in Cha and
Finkelstein (2017) in the specific case of a GPP process. Moreover, (M̄1, . . . , M̄n) condi-
tionally decreasing in sequence implies that this vector is negative upper orthant dependent
and negative lower orthant dependent (that is, the previous inequalities are reversed).

An analogous property to Proposition 9 can be shown for the interarrival times in an EPP,
but in this case, using shape properties of Λ.

Proposition 10 Let Xi := Ti − Ti−1 be the interarrival times in an EPP*. If Λ is concave,
then (X1, . . . , Xn) is conditionally increasing in sequence. If Λ is convex, the previous
vector is conditionally decreasing in sequence.

Proof Using the restarting property, it is clear that

P(Xn+1 > x|(X1, . . . , Xn)) = e−h(n)(Λ(Tn+x)−Λ(Tn)) (32)

where Tn = X1 + · · · + Xn. Thus, if Λ(x) is concave (convex) the previous expression
shows that Xn+1 is stochastically increasing (decreasing) in (X1, . . . , Xn), thus providing
the result.

As we can see, the increments (inter-arrival times) in an EPP* have positive or nega-
tive dependence properties, according to the monotonicity (shape) of h (Λ). However, in
Belzunce et al. (2003), the authors show the so-called Multivariate Increasing Failure Rate
property for the jump times (T1, . . . , Tn) of a general non-homogeneous pure-birth process,
which includes EPP*. Remembering that Multivariate Increasing Failure Rate property is
a positive dependence property implying CIS, this shows that the successive jump (arrival)
times of an EPP* are CIS, and hence positively dependent. We next show that they exhibit
the stronger Multivariate Totally Positive property of order 2 (MTP2), which is known to
imply CIS. For sake of completeness, we recall that a function f : Rn �−→ R+ is said to be
MTP2 as soon as

f (x)f (y) ≤ f (x ∨ y)f (x ∧ y), ∀x, y ∈ R
n

where ∨ and ∧ are the max and min component-wise operations, respectively.

Proposition 11 The vector (T1, . . . , Tn) of arrival times in an EPP is MTP2.

Proof Let
A := {(t1, . . . , tn) ∈ R

n+|0 ≤ t1 < t2 < · · · < tn}. (33)

Recalling Eq. 22, the joint density function for this vector is given by

1A(t1, . . . , tn)

n−1∏

i=1

(
h (i − 1) λ (ti) e(h(i)−h(i−1))Λ(ti )

)
h(n − 1)λ(tn)e

−h(n−1)Λ(tn)

The functions inside the product are all MTP2, because they are unidimensional. On the
other hand, as A is a lattice (stable by minimum and maximum), then 1A is clearly MTP2.
The conclusion follows as the product of MTP2 functions is also MTP2.

Remark 10 In a general EPP*, the vector (T1, . . . , Tn) is known to be Conditionally Increas-
ing (CI, see Müller and Stoyan 2002, p. 125), which is a stronger property than CIS. This
can be easily derived from the previous result as the MTP2 property for (S1, . . . , Sn) implies
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their CI property. The CI property for (T1, . . . , Tn) now follows from Ti = Λ−1(Si) and the
preservation of the CI property under increasing transforms.

4 Parametric Estimation Procedure

The classical maximum likelihood method is here considered in a parametric setting, which
is tested on a few simulated data sets. We assume that m independent trajectories of
an EPP (Nt )t≥0 with parameters (λ (·) , h (·)) are observed. For each 1 ≤ j ≤ m, the

j−th path is observed on
[
0, t

(j)
f

]
, which provides an observation

(
n(j), t

(j)
1 , · · · , t

(j)

n(j)

)

of

(
N

t
(j)
f

, T1, · · · , TN
t
(j)
f

)
. The data are denoted by (n, t) with n = (

n(j)
)

1≤j≤m
and

t = (
t(j)

)
1≤j≤m

with t(j) =
(
t
(j)
i

)

1≤i≤n(j)+1
, where we set t

(j)

n(j)+1 = t
(j)
f for ease of

notation.
Setting Θ to be the parameters to estimate and

λ̄
(j)
s = h

(
n

(j)

s−
)

λ (s) ,

Λ̄
(j)
s =

∫ s

0
λ̄

(j)
u du =

n
(j)
s −1∑

i=0

h (i)
(
Λ
(
t
(j)
i+1

)
−Λ

(
t
(j)
i

))
+ h

(
n

(j)
s

)(
Λ(s)−Λ

(
t
(j)

n
(j)
s

))
,

for all s > 0 and j = 1, ...,m (where n
(j)
s refers to the j−th observation of Ns), the

likelihood function is

L (Θ|n, t) =
m∏

j=1

⎛

⎝
n(j)∏

i=1

λ̄
(j)

t
(j)
i

⎞

⎠ e
−Λ̄

(j)
tf (j) ,

see, e.g., Daley and Vere-Jones (2003, Prop. 7.2.III.). This provides the following log-
likelihood function:

l (Θ|n, t) = log (L (Θ|n, t))

=
m∑

j=1

n(j)∑

i=1

log

(
λ̄

(j)

t
(j)
i

)
−

m∑

j=1

Λ̄
(j)

tf (j)

=
m∑

j=1

n(j)∑

i=1

log
(
h (i − 1) λ

(
t
(j)
i

))
−

m∑

j=1

⎛

⎝
n(j)∑

i=0

h (i)
(
Λ
(
t
(j)
i+1

)
− Λ

(
t
(j)
i

))
⎞

⎠

remembering that t
(j)

n(j)+1
= t

(j)
f .

Considering Λ(t) = atb for t ∈ R
+, we get:

l (a, b, θ |n, t) =
m∑

j=1

n(j)∑

i=1

log (h (i − 1|θ)) + (log (a) + log (b))

m∑

j=1

n(j)

+ (b − 1)

m∑

j=1

n(j)∑

i=1

log
(
t
(j)
i

)
−a

m∑

j=1

⎛

⎝
n(j)∑

i=0

h (i|θ)

((
t
(j)
i+1

)b−
(
t
(j)
i

)b
)
⎞

⎠ .

where θ stands for the parameter(s) of h.

Methodol Comput Appl Probab (2019) 21:1057–10851078



Solving ∂l(a,b,θ |n,t)
∂a

= 0 provides a = â (b, θ) with

â (b, θ) =
∑m

j=1 n(j)

∑m
j=1

(
∑n(j)

i=0 h (i|θ)

((
t
(j)
i+1

)b −
(
t
(j)
i

)b
)) .

Maximizing

l
(
â (b, θ) , b, θ |n, t

)

∝ g (θ |n, t) −
⎛

⎝
m∑

j=1

n(j)

⎞

⎠ log

⎛

⎝
m∑

j=1

⎛

⎝
n(j)∑

i=0

h (i|θ)

((
t
(j)
i+1

)b −
(
t
(j)
i

)b
)⎞

⎠

⎞

⎠

+ log (b)

m∑

j=1

n(j) + (b − 1)

m∑

j=1

n(j)∑

i=1

log
(
t
(j)
i

)

(where ∝ means equal up to a constant) with

g (θ |n, t) =
m∑

j=1

n(j)∑

i=1

log (h (i − 1|θ))

next provides
(
b̂, θ̂

)
. We finally set â = â

(
b̂, θ̂

)
.

We take h (n) = qn with q ∈ [0, 1] as a first case (which provides an identifiable model,
see Remark 2), so that θ = q and

g (q|n, t) = log (q)

2

m∑

j=1

n(j)
(
n(j) − 1

)
.

Numerical experiments are performed, where
(
t
(j)
f

)

1≤j≤m
are chosen as i.i.d. observations

of a uniform r.v. on [t0, t1]. Also, R = 500 i.i.d. sets of m i.i.d. paths are generated, which
provides R estimates. The corresponding empirical mean and square root of the empirical
variance (std) are reported in Tables 1 and 2, together with an approximate 95% (normal-
based) confidence interval (IC). Finally, the mean number of jumps observed per trajectory
(denoted by n̂f ) is also reported, to have an idea of the size of a data set (which corresponds
to m trajectories). The only difference between the two tables is that b = 1.5 (Λ (·) is
convex) in Table 1 whereas b = 0.9 (Λ (·) is concave) in Table 2. As expected, the concave
case requires a longer observation period than the convex case to have enough data to get
reliable results. Also, we can see that multiplying the number m of observed trajectories by
4 (40 = 10 × 4; 160 = 40 × 4) divides the standard deviation by 2, which shows a root-of-
m convergence in coherence with a likely asymptotic normality (which is beyond the scope
of the present paper). Finally, the bias decreases with the size of the data set.

We now take h (n) = (1 + n)α with α > 0 (identifiable model, see Remark 2), so that
θ = α and

g (α|n, t) = α

m∑

j=1

log
(
n(j)!

)
.

Estimation results are given in Tables 3 and 4, with similar observations as for Tables 1
and 2. The estimation procedure hence seems to behave well, which allows EEPs to be used
in an application context.
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46:1148–1171

Cha J, Finkelstein M (2016) Justifying the Gompertz curve of mortality via the generalized Polya process of
shocks. Theor Popul Biol 109:54–62

Cha JH, Finkelstein M (2017) New shock models based on the generalized Pólya process. Eur J Oper Res
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