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Abstract The integral
∫ ∞
0 xme− 1

2 (x−a)2dx appears in likelihood ratios used to detect a
change in the parameters of a normal distribution. As part of the mth moment of a truncated
normal distribution, this integral is known to satisfy a recursion relation, which has been
used to calculate the first four moments of a truncated normal. Use of higher order moments
was rare. In more recent times, this integral has found important applications in methods of
changepoint detection, with m going up to the thousands. The standard recursion formula
entails numbers whose values grow quickly with m, rendering a low cap on computational
feasibility. We present various aspects of dealing with the computational issues: asymp-
totics, recursion and approximation. We provide an example in a changepoint detection
setting.
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1 Introduction

The objective of the present paper is to propose a computationally feasible way to evaluate

the integral
∫ ∞
0 xme− 1

2 (x−a)2dx even when m is very large.

Obviously, the integral
∫ ∞
0 xme− 1

2 (x−a)2dx is a constant multiple of the mth order
moment of a truncated normal distribution. In the past, interest has been mostly relegated to
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low values of m (see Remark 6 in Appendix D). When m is large, precise evaluation of the
integral becomes difficult. The motivating case for its evaluation whenm is large is a context
of on-line monitoring for a change of parameter(s) of a Normal(μ, σ 2) distribution based
on a sequence of (normally-distributed) independent observations X1, X2, . . . where both
parameters are initially unknown. Classical methods for detecting a change are Shewhart,
Cusum and Shiryaev-Roberts. These methods invariably assume that the baseline parame-
ters μ and σ are known at the onset of surveillance. Often, they are not. For example, if
regarding a hitherto unexplored phenomenon (that can be assumed by, say, the central limit
theorem to yield normally distributed observations), neither of the parameters is initially
known. In such instances, the classical fix is to use a learning sample to estimate unknown
parameters and plug them into the classical procedures. The downside of this is that, even
if a learning sample is available, operating characteristics of these procedures are notori-
ously sensitive to misspecified parameters (van Dobben de Bruyn 1968) so a huge learning
sample is needed to obtain a good handle on operating characteristics (such as average run
length to false alarm). A more modern approach is the use of invariant statistics as the basis
for surveillance instead of the original observations (cf. Quesenberry 1991, for Shewhart;
Pollak and Siegmund 1991, for Cusum and Shiryaev-Roberts; Gordon and Pollak 1995, for
nonparametrics).

If one defines Yi = (Xi−X̄i−1)

√
i−1
i

(where X̄i−1 = 1
i−1

∑i−1
j=1 Xj) andZi = Yi|Y2| , then

the distribution of the sequence Z2, Z3, . . . is invariant with respect to μ and σ (hence can
be calculated explicitly, since it is the same for all μ, σ ). Therefore a detection scheme can
be based on a respective sequence of likelihood ratios. The fact that invariant statistics are
dependent is of no hindrance, as long as the joint distribution is known when the process is in

control. The integral
∫ ∞
0 xme− 1

2 (x−a)2dx appears in the joint density, both when the process
is in control and when it is not (see Appendix C). After observing n ≥ 2 observations,
m = n− 2. So, as the sample size grows, m becomes large. The integral crops up in various
scenarios of change detection in which the baseline parameters are unknown (cf. Pollak et
al. 1993) and in detecting a change in regression parameters when the residuals are normally
distributed (cf. Krieger et al. 2003).

The usual recursion formula involved in calculation of the integral has the form (cf.
Horrace 2015; Dhrymes 2005)

Im(h) = −hm−1 φ(h)

�(h)
+ (m − 1)Im−2(h)

where φ and � are the standard normal pdf and cdf, respectively, and Im(h) =
∫ h
−∞ tmφ(t)dt

�(h)
.

Im(h) can grow quite quickly with m, putting a relatively low cap on m that allows calcu-
lation on standard computers, especially since the right hand side has both a positive and a
negative term .

In the changepoint context, Pollak et al. (1993) circumvented this when the sample size
m is moderate by a recursion method. In a similar context, Krieger et al. (2003) employed a
Taylor series approach. The latter approach works better for larger m when a > 0 (since it
operates on the log scale), but both suffer from the aforementioned computational difficulty
when a < 0.

The paper is organized as follows. We first present an asymptotic formula (Theorem 1).
This formula is pivotal in suggesting a double recursion (8–10) that extends computational
feasibility considerably. Armed with an asymptotic approximation and a computationally
feasible recursion, we examine how quickly the asymptotic formula kicks in. To complete
the picture, we restate the method used by Krieger et al. (2003). In two appendices, we
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provide a proof of the asymptotic formula and a MATLAB program for executing the recur-
sions 8–10. In a third appendix we give an example of an application. We conclude with a
number of remarks.

2 Asymptotics and an Approximation

We first present an asymptotic formula for
∫ ∞
0 xme

− 1
2 (x−a)2

dx
∫ ∞
0 xme

− 1
2 x2dx

.

Theorem 1 Let 0 ≤ δ < 1 and max{ 23δ, 1
2 } < η < 1. For |a| = O

(√
m

δ), as m → ∞
∫ ∞
0 xme− 1

2 (x−a)2dx
∫ ∞
0 xme− 1

2 x2dx
= e

a
√

m− 1
4 a2

(
1+O((a

√
m)η−1)

)
.

The integral
∫ ∞
0 xme− 1

2 x2dx will play a central role in our calculations, so we evaluate
it first. Transforming y = − 1

2x
2 yields

∫ ∞

0
xme− 1

2 x2dx =
∫ ∞

0
(
√
2y)me−y 1√

2
y− 1

2 dy

= 2
1
2 (m−1)

∫ ∞

0
y

1
2 (m−1)e−ydy = 2

1
2 (m−1)�

(m + 1

2

)
(1)

where � is the gamma function. By Stirling’s approximation, for large values of m this is
approximately

2
1
2 (m−1)e− m+1

2

(m + 1

2

)m
2 √

2π

(

1+O
( 1

m

))

= e− m+1
2 (m+1)

m
2
√

π

(

1+O
( 1

m

))

, (2)

an expression that tends to ∞ as m → ∞. Theorem 1 leads to the approximation
∫ ∞

0
xme− 1

2 (x−a)2dx ∼ √
πe− m+1

2 (m + 1)
m
2 ea

√
m− 1

4 a2 . (3)

Note that |∫ c

0 xme− 1
2 (x−a)2dx| <

∫ |c|
0 xmdx = |c|m+1

m+1 , which is negligible with respect to
∫ ∞
0 xme− 1

2 x2dx, so that also

∫ ∞

c

xm

1√
2π

e− 1
2 (x−a)2

1 − �(−c)
dx ∼ 1

�(c)
e− m+1

2 (m + 1)
m
2
√

πea
√

m− 1
4 a2 . (4)

3 A Recursion

Although for the changepoint problem the integral of interest is related only to a special
case (c = 0 in Eq. 5) of the truncated normal distribution, we present here the general case.
The chief computational issue is dealing with the integral

gc,a(m) =
∫ ∞

c

xme− 1
2 (x−a)2dx. (5)
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Integration by parts yields

gc,a(m) =
∫ ∞

c

xm−1(x − a + a)e− 1
2 (x−a)2dx

=
∫ ∞

c

xm−1(x − a)e− 1
2 (x−a)2dx + agc,a(m − 1)

= −xm−1e− 1
2 (x−a)2 |∞c + (m − 1)

∫ ∞

c

xm−2e− 1
2 (x−a)2dx + agc,a(m − 1)

= cm−1e− 1
2 (c−a)2 + (m − 1)gc,a(m − 2) + agc,a(m − 1). (6)

This recursion works well when m is small, but breaks down for large values of m, as
the expressions involved become very large, passing beyond limits of precision if m grows
beyond a certain limit. To overcome this, we present the following recursion. The idea is to
scale the problem so that objects do not grow too fast nor decrease too rapidly. The specific
scaling is motivated by Theorem 1.

Note that
∫ ∞
0 xme− 1

2 x2dx = g0,0(m), which obeys the recursion

g0,0(m) = (m − 1)g0,0(m − 2) (7)

and can be expressed analytically as in Eq. 1. Denote

ψc,a(m) = gc,a(m)

g0,0(m)
e−a

√
m and ξc,a(m) = gc,a(m)

g0,0(m − 1)
e−a

√
m. (8)

It follows that

ψc,a(m) = a

m − 1
ξc,a(m − 1)e−a(

√
m−√

m−1)

+ψc,a(m − 2)e−a(
√

m−√
m−2)

+cm−1e− (c−a)2
2 e−a

√
m

2
1
2 (m−1)�(m+1

2 )
(9)

and

ξc,a(m) = aψc,a(m − 1)e−a(
√

m−√
m−1)

+m − 1

m − 2
ξc,a(m − 2)e−a(

√
m−√

m−2)

+cm−1e− (c−a)2
2 e−a

√
m

2
1
2 (m−2)�(m

2 )
. (10)

Thus the pair (ψc,a(m), ξc,a(m)) depends recursively on (ψc,a(m − 1), ξc,a(m − 1)) and
(ψc,a(m − 2), ξc,a(m − 2)) and two terms that are easily computed at each stage, both of
which tend to 0 as m → ∞. The recursion can be started after calculating g0,0(1), g0,0(2)
and gc,a(1), gc,a(2). Now

g0,0(0) =
∫ ∞

0
e− 1

2 x2dx =
√

π

2

g0,0(1) =
∫ ∞

0
xe− 1

2 x2dx = 1

g0,0(2) =
∫ ∞

0
x2e− 1

2 x2dx =
√

π

2

Methodol Comput Appl Probab (2019) 21:889–906892



gc,a(0) =
∫ ∞

c

e− 1
2 (x−a)2dx = √

2π[1 − �(c − a)]

gc,a(1) =
∫ ∞

c

xe− 1
2 (x−a)2dx = e− 1

2 (c−a)2 + a
√
2π [1 − �(c − a)]

gc,a(2) =
∫ ∞

c

x2e− 1
2 (x−a)2dx = (c + a)e− 1

2 (c−a)2 + (a2 + 1)
√
2π [1 − �(c − a)]

so the two pairs (ψc,a(1), ξc,a(1)), (ψc,a(2), ξc,a(2)) can be calculated, and the recursion
can be applied from m = 3 onwards. See Appendix B for a MATLAB program.

Finally, the mth moment of the left-curtailed normal distribution can be calculated as

1√
2π

∫ ∞
c

xme− (x−a)2
2 dx

1 − �(c − a)
= 1√

2π

ψc,a(m)ea
√

mg0,0(m)

1 − �(c − a)
= 1√

2π

ψc,a(m)ea
√

m2
1
2 (m−1)�(m+1

2 )

1 − �(c − a)
.

4 Discussion

Theorem 1 implies the approximation

log

(∫ ∞
0 xme− 1

2 (x−a)2dx
∫ ∞
0 xme− 1

2 x2dx

)

∼ a
√

m − 1

4
a2. (11)

Figure 1 is a depiction of this. The accuracy of this approximation depends on the value
of a; the closer |a| is to 0 the better the approximation. This is borne out by Table 1. The
values in the body of the table are lower bounds on m for which the discrepancy between
true and approximate values does not exceed a given bound.

For calculating the values in Table 1,
∫ ∞
0 xme

− 1
2 (x−a)2

dx
∫ ∞
0 xme

− 1
2 x2

dx

was calculated via the recursions

(8)–(10) by the MATLAB program of Appendix B. Higher values of m required more than

100 101 102 103 104

m

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

lo
g 

( 
0,

a (
 m

 )
 )

 +
 0

.2
5 

a2

Fig. 1 logψ0,a(m) + 1
4a2, for (clockwise) a = 1 , a = 2 , a = 5 , a = 8 , a = 10
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Table 1 The smallest value of m with given bound on the absolute difference between

log

( ∫ ∞
0 xme

− 1
2 (x−a)2

dx
∫ ∞
0 xme

− 1
2 x2

dx

)

and {a√
m − 1

4a2}, for various values of a

a\bound .05 .025 .01 .005

−2 288 1199

−1 37 142 865 3431

−.5 8 29 178 685

.5 7 27 167 673

1 32 132 839 3378

2 268 1091 6895 27678

5 16620 66610 416787 1667776

double precision when a < 0 and were calculated with the aid of the Multiprecision Com-
puting Toolbox (2016) for MATLAB. In double precision, for most practical purposes, the
recursion (6) will produce inaccurate results for m > 300 when a < 0 and the double recur-

sion (8)–(10) is not much better: the values of
∫ ∞
0 xme

− 1
2 (x−a)2

dx
∫ ∞
0 xme

− 1
2 x2dx

become small very quickly

as m grows; since the recursion has a negative component (a < 0), the cap on a computer’s
precision does not allow accuracy for large values of m. For a > 0 double precision suffices
and computation time (with an Intel(R) Xeon(R) processor CPU E5-2609,@ 2.50 GHz) was
mostly in fractions or single digits of a second (very high values of m took longer, but even
1667776 took only 75 seconds to obtain). When m becomes very large, the approximation
suggested by Theorem 1 is a reasonable alternative to going through the recursions.

In monitoring schemes where the recursion may be applied, m is (approximately) the
sample size. Since monitoring (for instance: heartbeat in an ICU) may go on for a long
time, producing many observations, the sample size n may become very large. Although the
recursions (8)–(10) take only a number of seconds to calculate, when monitoring a sequence
such as described in Appendix C, one has to go through O(n3) calculations of ψ0,δU by
the nth observation; the nth observation necessitates n − 1 calculations of ψ to calculate the
surveillance statistic (Rn), each of which is based on n − 2 iterations of the recursion. This
can get to be time consuming, especially if one is interested in doing simulations. A way
to circumvent this is to construct a table of log(ψ) that can be used with interpolation for
large sequences or simulations. When the sample size n becomes very large, the asymptotics
stated in Theorem 1 kicks in, and can be used safely without a time-consuming calculation.

5 A Different Method of Calculation

Another way to evaluate
∫ ∞
0 xme− 1

2 (x−a)2dx
∫ ∞
0 xme− 1

2 x2dx

is given by Krieger et al. (2003). For the sake of completeness we provide it here. It should
be noted that this method is not more successful than the (8)–(10) recursion method in
calculating ψ when a < 0.
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Recall that ∫ ∞

0
xme− 1

2 x2dx = 2
m−1
2 �

(m + 1

2

)

and
∫ ∞

0
xme− 1

2 (x−a)2dx = e− 1
2 a2

∫ ∞

0
eaxxme− 1

2 x2dx = e− 1
2 a2

∞∑

j=0

aj

j !
∫ ∞

0
xm+j e− 1

2 x2dx

so
∫ ∞
0 xme− 1

2 (x−a)2dx
∫ ∞
0 xme− 1

2 x2dx
= e− 1

2 a2
∞∑

j=0

aj

j ! 2
m+j−1

2
�(

m+j+1
2 )

2
m−1
2 �(m+1

2 )
= e− 1

2 a2
∞∑

j=0

(
√
2a)j

j !
�(

m+j+1
2 )

�(m+1
2 )

.

Fix an integer J such that
∑∞

j=J+1
(
√
2a)j

j !
�(

m+j+1
2 )

�( m+1
2 )

is negligible and define and calculate

μj = j log(
√
2a) + log

(

�
(m + j + 1

2

))

− log

(

�
(m + 1

2

))

− log(j !)

μmax = max
1≤j≤J

μj

(J and μmax depend on a). Now calculate
∫ ∞
0 xme− 1

2 (x−a)2dx
∫ ∞
0 xme− 1

2 x2dx
∼ e− 1

2 a2
( J∑

j=0

eμj −μmax

)

eμmax .

(For negative values of a, separate the even n’s from the odd ones, and handle each
separately in a manner like the above.)

Note that for the general truncated normal distribution (i.e. c �= 0) this approach will not

work well if m is not large (since
∫ ∞
c

eaxxme− 1
2 x2dx is not expressable in terms of a com-

plete Gamma function). However, as mentioned in Section 2,
∫ c
0 xme

− 1
2 (x−a)2

dx
∫ ∞
0 xme

− 1
2 x2

dx

is negligible

with respect to
∫ ∞
0 xme

− 1
2 (x−a)2

dx
∫ ∞
0 xme

− 1
2 x2

dx

for large values of m, so also

∫ ∞
c

xme− 1
2 (x−a)2dx

∫ ∞
0 xme− 1

2 x2dx
∼ e− 1

2 a2
( J∑

j=0

eμj −μmax

)

eμmax .
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Appendix A: Proof of Theorem 1

The case a = 0 is trivial. In the following we assume a �= 0. Recall that
∫ ∞

0
xme− 1

2 x2dx = 2
1
2 (m−1)�

(m + 1

2

)
.
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Hence by Stirling’s approximation
∫ ∞
0 xm+1e− 1

2 x2dx
∫ ∞
0 xme− 1

2 x2dx
= 2

1
2m�(m+2

2 )

2
1
2 (m−1)�(m+1

2 )

= 2
1
2
e− m+2

2 (m+2
2 )

m+1
2

e− m+1
2 (m+1

2 )
m
2

(

1 + O
( 1

m2

))

= e− 1
2

(m + 2

m + 1

)(m+1) 12
(m + 1)

1
2

(

1 + O
( 1

m2

))

= √
m + 1

(

1 + O
( 1

m

))

and so

e
1
2 a2

∫ ∞
0 xme− 1

2 (x−a)2dx
∫ ∞
0 xme− 1

2 x2dx
=

∫ ∞
0 eaxxme− 1

2 x2dx
∫ ∞
0 xme− 1

2 x2dx

=
∞∑

j=0

∫ ∞
0

(ax)j

j ! xme− 1
2 x2dx

∫ ∞
0 xme− 1

2 x2dx

=
∞∑

j=0

aj

j !
∫ ∞
0 xm+j e− 1

2 x2dx
∫ ∞
0 xme− 1

2 x2dx

=
∞∑

j=0

aj

j !
j∏

i=1

∫ ∞
0 xm+ie− 1

2 x2dx
∫ ∞
0 xm+i−1e− 1

2 x2dx

=
∞∑

j=0

aj

j !
j∏

i=1

(√
m + i

(

1 + O
( 1

m

)))

=
∞∑

j=0

(

|a|√m
(
1 + O

( 1
m

))
)j

j !

√√
√
√

j∏

i=1

(
1 + i

m

)
. (12)

We break the sum in Eq. 12 into pieces and analyze them separately.
Let γ > e and let M = a

√
mγ . We first show that the sum from M to ∞ in Eq. 12 is

negligible. Again, by Stirling’s approximation
j∏

i=1

(
1 + i

m

)
= (m + j)!

m!mj
=

e−(m+j)(m + j)m+j+ 1
2

(
1 + O

( 1
m+j

))

mje−mmm+ 1
2

(
1 + O

( 1
m

))

= e−j
(m + j

m

)m+j+ 1
2
(

1 + O
( 1

m

))

and so
(

|a|√m
(
1 + O

( 1
m

))
)j

j !

√√
√
√

j∏

i=1

(
1 + i

m

)
=

(|a|√m)j e− 1
2 j

√
(m+j

m

)m+j+ 1
2
(
1 + O

( 1
m

))j

√
2πe−j j j+ 1

2

×
(

1 + O
( 1

m

))

.
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Hence

log

{
(
|a|√m

(
1 + O( 1

m
)
))j

j !

√√
√
√

j∏

i=1

(
1 + i

m

)
}

= j log(|a|√m) + 1

2
(m + j + 1

2
) log

(m + j

m

)
− 1

2
log(2π) + 1

2
j − (j + 1

2
) log(j)

+j log

(

1 + o
( 1

m

))

= −
(
j + 1

2

)
log(j) + 1

2

(
m + j + 1

2

)
log(m + j) − 1

2

(
m + j + 1

2

)
log(m) + j log(|a|√m)

+1

2
j + j log

(

1 + o
( 1

m

))

− 1

2
log(2π).

For large enough m and j = M = |a|√mγ , this expression equals

−|a|√mγ
(
log(γ ) − 1 + o(1)

) + 1

4
a2γ 2(1 + o(1)

)
< −1

2
a
√

mγ
(
log(γ ) − 1

)
.

Let 0 < ε. For j ≥ M the derivative with respect to j of

−
(
j + 1

2

)
log(j)+ 1

2

(
m+j + 1

2

)
log(m+j)− 1

2

(
m+j + 1

2

)
log(m)+j log(|a|√m)+ 1

2
j

+j log
(
1 + ε

m

)

equals

− log(
j

|a|√m
) − 2m + j

4j (m + j)
+ 1

2
log

(
1 + j

m

)
+ log

(
1 + ε

m

)
≤ −1

2
log(γ ).

It follows that as m → ∞
∞∑

j=M

(
a
√

m
(
1 + O

( 1
m

)))j

j !

√√
√
√

j∏

i=1

(
1 + i

m

)
≤ e

− 1
2 a

√
mγ

(
log(γ )−1

) ∞∑

j=0

e− 1
2 log(γ )j

= e
− 1

2 a
√

mγ
(
log(γ )−1

)

1 − e− 1
2 log(γ )

→ 0. (13)

For j ≤ M

log

( j∏

i=1

(
1 + i

m

))

=
j∑

i=1

[
i

m
− 1

2

i2

m2
+ 1

3

i3

m3
. . .

]

= j (j + 1)

2m
−

j∑

i=1

i2

m2

(
1

2
− 1

3

i

m
+ 1

4

i2

m2
. . .

)

= j
(1

2

j

m

)
− O

( |a|3√
m

)
.

It follows that

M∑

j=0

(
a
√

m
(
1 + O

( 1
m

)))j

j !

√√
√
√

j∏

i=1

(
1 + i

m

)
=

M∑

j=0

(
a
√

m
(
1 + O

( 1
m

)))j

j ! e
1
4

j2

m
−O

(
|a|3√

m

)

. (14)
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Note that if X ∼ Poisson(λ) then P(X > y) ≤ EetX

ety = eλ(et −1)

ety for all t > 0, which is

minimal at t = log
( y

λ

)
; hence log

(
P(X > y)

)
< ey−λ/

( y
λ

)y . Recall that 1
2 < η < 1 and

denote λ = a
√

m + 1
4γ a2 , y = a

√
m + (a

√
m)η. Thus

M=γ a
√

m∑

j=a
√

m+(a
√

m)η

(
a
√

m
(
1 + O

( 1
m

)))j

j ! e
1
4

j2

m

< ea
√

m+ 1
4 a2e

1
4 a2(γ−1)P(Poisson(λ) > y)

≤ ea
√

m+ 1
4 a2e

1
4 a2(γ−1)e

log((a
√

m)η− 1
4 γ a2)−(a

√
m+(a

√
m)η) log

(
a
√

m+(a
√

m)η

a
√

m+ 1
4 γ a2

)

≤ ea
√

m+ 1
4 a2O

(
e−(a

√
m)η

)
. (15)

If X ∼ Poisson(λ) then P(X < y) ≤ Ee−tX

e−ty = eλ(e−t −1)

e−ty for all t > 0, which is minimal

at t = − log
( y

λ

)
; hence log

(
P(X < y)

)
< ey−λ/

( y
λ

)y . Hence for j < a
√

m − (a
√

m)η

a
√

m−(a
√

m)η∑

j=0

(
a
√

m
(
1 + O

( 1
m

)))j

j ! e
1
4

j2

m

< ea
√

m+ 1
4 a2 × P

(

Poisson

(

a
√

m
(
1 + O

( 1

m

)))

< a
√

m − (a
√

m)η
)

= ea
√

m+ 1
4 a2O

(
e−(a

√
m)2η−1)

. (16)

Finally, for a
√

m − (a
√

m)η ≤ j ≤ a
√

m + (a
√

m)η

a2[1 − 2aη−1m
1
2 (η−1) + a2(η−1)m(η−1)] ≤ j2

m
≤ a2[1 + 2aη−1m

1
2 (η−1) + a2(η−1)m(η−1)].

Hence j2

m
= a2

[
1 + O

(
(a

√
m)η−1

)]
and

a
√

m+(a
√

m)η∑

j=a
√

m−(a
√

m)η

(
a
√

m
(
1 + O

( 1
m

)))j

j ! e
1
4

j2

m = e
a
√

m+ 1
4 a2

[
1+O

(
(a

√
m)η−1

)]
. (17)

Combining Equations (12)–(17) accounts for Theorem 1.

Appendix B: Computing

This is a MATLAB (2014) program for calculating
∫ ∞
c

xme− 1
2 (x−a)2dx

∫ ∞
0 xme− 1

2 x2dx
e−a

√
m

Input: m > 2, a, c. Output: psi =ψa,c =
∫ ∞
c xme

− 1
2 (x−a)2

dx
∫ ∞
0 xme

− 1
2 x2

dx

e−a
√

m.
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Remark The program above is intended to cover all cases of c, including c = 0. When n

becomes large, log(�(n/2)) is calculated more precisely than �(n/2), so that when c �= 0
the last summands in both psi(n) and xi(n) should be completely calculated first on the log
scale and only then exponentiated.

Appendix C: A Sequential Changepoint Detection Context

The need for calculating ψ0,a(m) appears in a number of changepoint problems (cf. Pollak
et al. 1993 and Krieger et al. 2003). For example, consider independent normally dis-
tributed random variables observed sequentially whose mean may (or may not) increase at
an unknown time ν and one monitors the sequence to detect such a change. Formally,

X1, . . . , Xν−1 ∼ Normal(μ, σ 2)

Xν, . . . ∼ Normal(μ + δσ, σ 2)

where X1, X2, . . . are independent. Consider the case that μ and σ are unknown and one
considers an increase of δ standard deviations to be of import. Define:

Yi = (Xi − X̄i−1)

√
i − 1

i

Zi = Yi

|Y2| .
The sequence {Zi} is invariant with respect to the unknown parameters μ and σ . Therefore,
the likelihood ratio

�n
k = fν=k(Z2, . . . , Zn)

fν=∞(Z2, . . . , Zn)
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Fig. 2 Weight (in grams) at birth of 196710 infants born at a large hospital in Israel between 13/10/2004 and
19/5/2017

of the first n − 1 invariant statistics Z2, . . . , Zn (for a change occurring at the ν = kth

observation vs. no change ever occurring) can be calculated. Once done, the Shiryaev–
Roberts statistic

Rn =
n∑

k=1

�n
k

can be used to declare that a change is in effect; an alarm would be raised if Rn crosses a
pre-specified threshold A.

Since one cannot differentiate between the case that there is no change ever and the case
that a change occurred at the very beginning, necessarily �n

1 = 1. Clearly,

�2
2(δ) =

{

�

(
δ√
2

)

I (Z2 = 1) +
[

1 − �

(
δ√
2

)]

I (Z2 = −1)

}

/
1

2

= 1 +
[

2�

(
δ√
2

)

− 1

]

sign(Z2).

Letting

Uk(n) = (k − 1)

∑n
i=k

Zi√
i(i−1)

√∑n
i=2 Z2

i

= (k − 1)

∑n
i=k

Yi√
i(i−1)

√∑n
i=2 Y 2

i
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Fig. 3 A Shiryaev–Roberts control chart for the weights of the first 5000 babies described in Fig. 2 born
after 13/10/2004

a lengthy calculation (similar to that in Pollak et al. 1993) yields for 2 ≤ k ≤ n

�n
k(δ) = {�2

2I {k = 2} + I {k �= 2}}e− 1
2 (k−1)2δ2[ 1

k−1− 1
n
]e

1
2 δ2U2

k (n) g0,δUk(n)(n − 2)

g0,0(n − 2)
.

(Note that g0,a(m)

g0,0(m)
= ψ0,a(m)ea

√
m. For the sake of precision, it is advisable to first calculate

the log of the components of �n
k(δ) and then exponentiate their sum.)

As an example where m can be very large, we consider the list of weights at birth of
196710 babies born at a large hospital in Israel between 13/10/2004 and 18/5/2017 whose
weight at birth was between 2000 and 5000 grams. Figure 2 is a histogram of the data. A
normal distribution seems to fit the data well.

During the last decades, worldwide, obesity and macrosomia have been on the rise. It
would have been reasonable to monitor the weight of newborn infants for an increase in
mean. Since a rise could be gradual, it would be reasonable to start by trying to detect a
small change — for example’s sake, we choose δ = 0.1, an increase of one tenth of a
standard deviation (ca. 46 grams). Figure 3 presents the sequence of surveillance statistics
Rn for the first 5000 observations and Fig. 4 for the first 65000 observations.

The choice of the threshold A is made in light of the risk one is willing to take regarding
a false alarm. Suppose one were willing to tolerate a false alarm on the average once in 20
years. With an average of roughly 15000 babies born each year, this would mean a false
alarm on the average once in 300000 observations. Using a renewal-theoretic approximation
for the ARL2FA (Pollak 1987), this means that the cutoff level A should be 300000/1.06 ∼
283000. It is clear from Figs. 3 and 4 that such a change would not been detected within the
first 65000 observations.
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Figure 5 presents the sequence of surveillance statistics Rn for the entire sequence.
Clearly, Rn exceeds A = 283000 a short while after the 70000th observation. In fact,the
70440th is the first to carry Rn over the threshold. This means that it would have been
declared after the 70440th newborn that the mean weight has increased. Figure 6 depicts
the loglikelihood function log�70440

k (δ = 0.1), k = 1, . . . , 70440. This function attains its
maximum at k = 65834, so 65834 can be regarded at the time of stopping (70400) as the
maximum likelihood estimate of the changepoint. This could be interpreted as the increase
being detected 4606 observations (ca. 4 months) after its occurrence.

In fact, the average weight of the first 65833 newborns is 3286 grams, whereas the aver-
age weight of newborns #65834− #67000 is 3332 grams (an increase of approximately 0.1
standard deviations).

Continuing with the ensuing newborns, Rn drops again, and until the end of the sequence
does not cross the A = 283000 level again. In fact, the average weight of the newborns from
babies #67001−196710 is 3291 grams. So, it seems as if the increase was either temporary,
or apparent. Was the alarm false? After observing 67000 newborns, it would have seemed
that the increase was real. With hindsight, one may either believe that the increase was real,
but a change (a decrease) took place thereafter and the mean weight reverted to its original
level, or one may interpret the episode as having been a false alarm.

The calculation of Rn was done in the following way. R1, . . . , R5000 were calculated
using the recursions of Section 3; ensuing Rn

′s were calculated by applying Theorem 1.

Rather than calculating
g0,δUk(n)(n−2)

g0,0(n−2) by the recursions separately for each δUk(n), calcu-

lation time drops immensely by creating a fine enough grid of g0,x (n)

g0,0(n)
and interpolating.

Creation of such a grid (in our example for n = 1, . . . , 5000 and approximately 500 values
of x, spaced so that between adjacent x’s the function g0,x (n)

g0,0(n)
is almost perfectly linear). This

grid is calculated much faster by the recursions of Section 3 than by the method of Section 5
(after all, the recursion that generated g0,x (5000)

g0,0(5000)
created all of g0,x (n)

g0,0(n)
, n = 1, . . . , 5000 along

the way, whereas by the method of Section 5 each g0,x (n)

g0,0(n)
has to be calculated separately.)

Appendix D: Remarks

Remark 1 A lower bound can be obtained by Jensen’s inequality:

log

(

e
1
2 a2

∫ ∞
0 xme− 1

2 (x−a)2dx
∫ ∞
0 xme− 1

2 x2dx

)

= log

(∫ ∞

0
eax xme− 1

2 x2dx
∫ ∞
0 xme− 1

2 x2dx

)

≥
∫ ∞

0
ax

xme− 1
2 x2dx

∫ ∞
0 xme− 1

2 x2dx

= a

∫ ∞
0 xm+1e− 1

2 x2dx
∫ ∞
0 xme− 1

2 x2dx

= a
2

1
2m�(m+2

2 )

2
1
2 (m−1)�(m+1

2 )
= a

√
2�(m+2

2 )

�(m+1
2 )

= a
√

m

(

1 + O
( 1

m2

))

.
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Fig. 4 A Shiryaev–Roberts control chart for the weights of the first 65000 babies described in Fig. 2 born
after 13/10/2004

Remark 2 Cook (2010) presented an upper bound

∫ ∞

c

xme− 1
2 (x−a)2dx ≤ π

2
√
2
e
−c2−m+ ma

c
+ m2

2c2
cm

c +
√

c2 + 4
π

(18)

for c > 0. On the log scale, Cook’s upper bound has an asymptotic (m → ∞) order of
magnitude m2, whereas Theorem 1 posits an order of magnitude m logm.

Remark 3 A similar type of analysis can be done for
∫ ∞
−∞ xme− 1

2 (x−a)2dx (cf. Pollak et al.
1993). Note that

∫ ∞

−∞
xme− 1

2 (x−a)2dx =
∫ 0

−∞
xme− 1

2 (x−a)2dx +
∫ ∞

0
xme− 1

2 (x−a)2dx

= (−1)m
∫ ∞

0
xme− 1

2 (x+a)2dx +
∫ ∞

0
xme− 1

2 (x−a)2dx

and (unless m = 0) that (depending on a) one of the two integrals is asymptotically negli-
gible with respect to the other. Thus Theorem 1 can be applied to obtain an approximation
to the mth moment of a (non-truncated) normal distribution.
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Fig. 5 A Shiryaev–Roberts control chart for the weights all of the babies born described in Fig. 2 between
13/10/2004 and 18/5/2017

Remark 4 A similar type of analysis can be done when the truncation is from both ends.

To see this, it suffices to consider
∫ c

0 xme− 1
2 (x−a)2dx for c > 0. Clearly,

∫ c
0 xme

− 1
2 (x−a)2

dx
∫ c
0 xmdx

→
e− 1

2 (c−a)2 as m → ∞. It follows that

∫ c

0
xme− 1

2 (x−a)2dx = e− 1
2 (c−a)2 cm+1

m + 1
(1 + o(1)).

Without loss of generality, assume that c > |b|. A recursion for
∫ c

b
xme− 1

2 (x−a)2dx that
builds on this is

ha,b,c(m) = m + 1

c2

[

ha,b,c(m − 2) + ac

m
ha,b,c(m − 1) +

(
b

c

)m−1

e− 1
2 (b−a)2 − e− 1

2 (c−a)2
]

where ha,b,c(m) = m+1
cm+1

∫ c

b
xme− 1

2 (x−a)2dx. (Note that for |b| > c > b,
∫ c

b
xme− 1

2 (x−a)2dx = (−1)m
∫ −b

−c
xme− 1

2 (x+a)2dx.)

Remark 5 A similar recursion can be constructed for densities proportional to
econst×x2I (b < x < c) where const > 0 and b, c are finite.
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Fig. 6 The loglikelihood ratio of {increase at k} vs. {no increase} after declaring at observation #70440 that
an increase is in effect

Remark 6 Tables relevant to the truncated normal distribution have been around for over a
century (cf. Pearson and Lee 1908 and Lee 1914). Even today it is considered as part and
parcel of applied distributions (cf. O’Connor 2011) and papers have been devoted to esti-
mation of its parameters (cf. Barr and Sherrill 1999; Horrace 2015; Liquet and Nazarathy
2015). For most practical purposes, the first four moments of the distribution (mean, vari-
ance, skewness and kurtosis) have been of applied interest. Higher order moments may
appear in quadrature methods (cf. Burkardt 2014); their order of magnitude would seem to
be in the tens at most.
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