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Abstract Stochastic simulations applied to black-box computer experiments are becoming
more widely used to evaluate the reliability of systems. Yet, the reliability evaluation or
computer experiments involving many replications of simulations can take significant com-
putational resources as simulators become more realistic. To speed up, importance sampling
coupled with near-optimal sampling allocation for these experiments is recently proposed
to efficiently estimate the probability associated with the stochastic system output. In this
study, we establish the central limit theorem for the probability estimator from such pro-
cedure and construct an asymptotically valid confidence interval to quantify estimation
uncertainty. We apply the proposed approach to a numerical example and present a case
study for evaluating the structural reliability of a wind turbine.
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1 Introduction

This study concerns the reliability evaluation of systems operating under stochastic con-
ditions. An example of such systems is a wind turbine system. Wind turbines experience
mechanical and structural loads induced from wind and wave (for offshore turbines),
extreme value of which can cause a catastrophic failure. This study is motivated from the
need to quantify the uncertainty associated with the wind turbine reliability evaluation.

Computer experiments for reliability evaluation of such stochastic systems typically
require two-level simulation procedure. At the first level, the operational condition, X, is
generated and in the second level, the system’s response, Y , is simulated, given X. In gen-
eral, the probability distribution of X is known; it can be empirically estimated from field
data (e.g., empirical wind distribution at a site where a turbine is installed) or pre-specified
from a design standard.

Unlike X, the conditional distribution of Y given X is not readily available and Y can
be only observed by running a simulator. In particular, this study considers the simulations
where the process of getting the response, Y , givenX, is unknown. For example, in the wind
turbine case, the U.S. Department of Energy (DOE)’s National Renewable Energy Labora-
tory (NREL) developed aeroelastic simulators such as TurbSim (Jonkman 2009) and FAST
(Jonkman and Buhl 2005) to help design processes. Using this set of NREL simulators, we
first sample the wind condition, X, from a pre-specified density, f , and feed X into the sim-
ulators to generate the load response, Y . The load response, Y , is random even at a fixed
value of X, because the random vector, ε, that causes stochastic outputs is embedded inside
the simulators and we are only allowed to sample X, but not ε (see Fig. 1). This whole sim-
ulation procedure can be viewed as a two-level stochastic simulation where the second level
uses the stochastic black-box simulator. Such simulators are also called stochastic simula-
tion models in the computer experiment literature (Ankenman et al. 2010; Plumlee and Tuo
2014). Recently, two-level stochastic simulations become increasingly used in other appli-
cations in order to study complex real-world systems such as the U.S. power system (Staid
et al. 2014).

As simulation models represent real systems more accurately (e.g., denser mesh in finite
element analysis), the computational costs of running simulations remain high despite the
advance of computing technology. Furthermore, as modern systems are generally expected
to meet a high standard of reliability under many uncertainties, simulation studies focus on
rare events (e.g., highly reliable system’s failure). Estimating the probability of a rare event
requires many simulation replications, exacerbating the computational problem.

To improve the computational efficiency of such estimations, two critical questions need
to be answered: (1) what is the optimal allocation of computational resources to minimize
the estimation uncertainty and (2) how to quantify the estimation uncertainty. In the lit-
erature, these two questions have been answered for the simulation model that generates
a deterministic output given an input, X (Kahn and Marshall 1953; Geweke 2005; Koop-
man et al. 2009). Such simulation models, referred to as deterministic simulation models
in this study, use deterministic black-box simulators in the second level, and the stochastic-
ity comes from X only. Recently, Choe et al. (2015) address the first question and propose

Fig. 1 Two-level stochastic
simulation

Stochastic black box simulator

System~
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importance sampling (IS) for two-level stochastic simulations, to efficiently evaluate the
system reliability.

Capitalizing the results in Choe et al. (2015), this study aims to answer the second
question by establishing the central limit theorem (CLT) for the IS estimator under near-
optimal allocation of the second level simulation effort. This CLT can be readily used to
construct confidence intervals (CIs) and thereby quantify the estimation uncertainty. The
challenge of analyzing this near-optimally allocated estimator lies in the adaptive nature of
the second level replication sizes on all realizations of X at the first level, which introduces
dependencies among all the samples. This source of dependency is quite different from the
serial dependencies typically considered in the stochastic literature (e.g., different mixing
conditions such as α-mixing (also known as strong mixing) (Rosenblatt 1956), ρ-mixing
(Ibragimov 1975), l-mixing (Withers 1981), m-dependence (Hoeffding and Robbins 1948),
and positive/negative associations (Roussas 1994)). Rather, it is more closely related to the
literature of nested simulation, where analysis of variance (e.g., Sun et al. 2011) and kernel
estimator (e.g., Hong et al. 2017) have been suggested. The related problem of estimating
conditional density (e.g., Steckley et al. 2016) has also been studied. However, as far as we
know, there has been no asymptotic distributional analysis on situations where the second
level simulation allocation is adaptive on the first level, which, as Choe et al. (2015) and our
subsequent discussion reveal, is capable of significantly reducing the estimation uncertainty.
Our main contribution in this paper is to conduct such an analysis rigorously and demon-
strate its use in the uncertainty quantification of the considered estimator. We validate the
proposed procedure using a numerical study, and demonstrate the utility of the method via
a case study on the wind turbine reliability evaluation.

The remainder of this paper is organized as follows. Section 2 reviews the background
of this study. Section 3 presents the asymptotic properties of the IS estimator and constructs
CIs. Section 4 presents the numerical study and Section 5 details the case study. Section 6
concludes the paper with a summary.

2 Background

To evaluate the system reliability, we consider the failure probability, py ≡ P(Y > y),
where Y ∈ R is the system output of interest from a simulation run and y is a pre-specified
threshold corresponding to the system’s resistance level.

The input, X ∈ R
p , to a simulator follows a known probability density, f . Due to the

random vector, ε, hidden inside the black-box simulator, the stochastic simulation model
produces the random output, Y , even if the input, X, is fixed. The conditional distribution
of Y given X is unknown. We can estimate the failure probability based on the outputs of
multiple simulation runs.

The crude Monte Carlo (CMC) method (Kroese et al. 2011) is one of the most common
ways to estimate the failure probability. CMC repeats samplingX from its known density, f ,
and passing X to the simulation model generating the corresponding Y . CMC is, however,
inefficient because it does not take into account how likely certain input conditions generate
failure events, {Y > y}.

Alternatively, variance reduction techniques can reduce the number of total simulation
replications (or total sample size), n, necessary to achieve a target variance of the proba-
bility estimation. IS is regarded as one of the most effective variance reduction techniques
(e.g., Glynn and Iglehart 1989, Rubinstein 1999, Botev and Kroese 2008). IS methods have
been applied in stochastic simulations in various settings, such as finance (Glasserman and
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Li 2005; Kawai 2008), insurance (Asmussen et al. 2000), reliability (Heidelberger 1995;
Balesdent et al. 2016), communication networks (Chang et al. 1994), and queueing opera-
tions (Sadowsky 1991; Blanchet et al. 2009; Blanchet and Lam 2014). For many of these
applications, IS methods are designed by exploiting special structures of the underlying
stochastic processes, for instance via large deviations analysis (Juneja and Shahabuddin
2006; Blanchet and Lam 2012; Gatto and Baumgartner 2016).

On the other hand, IS can be also used for stochastic simulations that are not necessarily
represented as stochastic processes. Consider two-level simulations where X is drawn from
a known distribution at the first level, but Y is generated from a black-box simulator using
X at the second level. If the black-box simulator is a deterministic simulation model (i.e., Y
is deterministic, given X), we can use an IS method, referred to as DIS in this study. This
method has been widely used since its development in the ’50s (Kahn and Marshall 1953).

If the black-box simulator at the second level is a stochastic simulation model, we
can use the recently developed method in Choe et al. (2015), called Stochastic Impor-
tance Sampling (SIS). We briefly summarize the method to estimate the failure probability,
py = P(Y > y) = E [E [I(Y > y) | X]]. Note that to better present our method in this
paper, we use slightly different notations from Choe et al. (2015). First, SIS considers that
the simulation output, Y , is random at a fixed input, X, and allows multiple simulation repli-
cations at the sampled input to capture the randomness in the output. The SIS estimator of
the failure probability is

P̂n(y) = 1

m

m∑

i=1

⎛

⎝ 1

Ni

Ni∑

j=1

I

(
Y

(i)
j > y

)
⎞

⎠Li, (1)

where the likelihood ratio, Li , denotes f (Xi )/q(Xi ). m is the input sample size, denoting
the number of times that the input, X, is sampled independently from a new density, q; Ni

is the allocation size, denoting the number of simulation replications alloted to Xi ; Y
(i)
j is

the j th replication output at Xi . In other words, SIS samples m inputs, X1, . . . ,Xm, from q,
and runs the simulator Ni times at each sampled Xi , i = 1, . . . , m. As a result, we observe
the total n = ∑m

i=1 Ni outputs of Y
(i)
j for i = 1, . . . , m, and j = 1, . . . , Ni . Note that the

realizations of X1, . . . ,Xm at the first step can inform the choice of Ni, i = 1, . . . , m, at
the second step. Thus, SIS allows Ni to be a function of X1, . . . ,Xm.

Fixing Ni = 1, i = 1, . . . , m, reduces the SIS estimator in Eq. 1 to the SIS2 estimator in
Choe et al. (2015), which is therein empirically shown to be inferior to the aforementioned
adaptive scheme. This alsomotivates our analytical focus on the adaptive approach in this paper.

In contrast to CMC, SIS samplesXi , i = 1, . . . , m, from the new density, q, instead of f .
This change of distribution allows sampling efforts to be focused on important input regions
where failure events are likely to happen. To compensate for the bias created by the change
of distribution, the estimator, P̂n(y), in Eq. 1 includes the likelihood ratio, f (Xi )/q(Xi ).

For given n and m, the estimator, P̂n(y), in Eq. 1 is unbiased and has the minimum
variance when we use the optimal SIS density, q∗

y (x), and the optimal allocation size,
N∗

i , i = 1, . . . , m, as follows (Choe et al. 2015):

q∗
y (x) = 1

Cq

f (x)

√
1

n
sy(x)

(
1 − sy(x)

)+ sy(x)2 (2)

and

N∗
i = n

h∗(Xi )∑m
j=1 h∗(Xj )

, i = 1, . . . , m, (3)
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where

h∗(x) =
√

n
(
1 − sy(x)

)

1 + (n − 1) sy(x)
. (4)

Here, sy(x) is P(Y > y | X = x) and Cq in Eq. 2 is the normalizing constant. Because the
conditional probability, sy(x), is unknown in practice, the optimal solutions in Eqs. 2 and 3
need to be approximated for implementation in practice. For example, our implementation
(i.e., the numerical study in Section 4 and the case study in Section 5) approximates sy(x)
by a metamodel (see Section 3 for the implementation guideline). The optimality of SIS is
with respect to this approximation. Therefore, the empirical performance of SIS depends on
the approximation of sy(x).

Let the function, 0 ≤ ŝy(x) ≤ 1, denote the metamodel (or emulator) of sy(X). In the
implementation, we use the following density that replaces sy(x) in q∗

y (x) in Eq. 2 by ŝy(x):

qy(x) = 1

Ĉq

f (x)

√
1

n
ŝy(x)

(
1 − ŝy(x)

)+ ŝy(x)2, (5)

where Ĉq is the normalizing constant of qy . Similarly, the allocation size, Ni , used in
the implementation, is an approximation of the optimal allocation size, N∗

i , in Eq. 3, by
substituting ŝy(X) for sy(X) and rounding to the nearest positive integer as follows:

Ni ≡ max

(
1,

⌊
n

hn(Xi )∑m
j=1 hn(Xj )

+ 1

2

⌋)
, i = 1, . . . , m, (6)

where

hn(X) =
√

n
(
1 − ŝy(X)

)

1 + (n − 1) ŝy(X)
. (7)

The floor function, �x�, in Eq. 6 yields the largest integer not greater than x. Thus, �x +
1/2� is equivalent to rounding x. The sum of Ni , i = 1, . . . , m, in Eq. 6 may deviate
slightly from the pre-specified total sample size, n. If we want to ensure n = ∑m

i=1 Ni in the
implementation, we can adjust either n or some Ni’s. For simplicity, we ignore such minor
adjustments in the following discussions.

We note that even if the true sy(x) is used in the implementation to achieve the minimum
variance of P̂n(y), in Eq. 1, the minimum variance is not necessarily zero because we can
only optimally allocate the simulation efforts at the first level of simulation and cannot
control the randomness within the stochastic simulation model in the second level.

Although the above optimal solutions minimizing the variance of the estimator in Eq. 1
is derived for stochastic simulation models, the distributional property of the SIS estimator
is not yet understood well. In particular, quantifying the estimation uncertainty by building
a valid CI would be substantially important in practice.

3 Asymptotic Properties of the SIS Estimator

3.1 Confidence Interval for SIS

We first state our main result of the paper, Theorem 1, which constructs the CI for py based
on the SIS estimator in Eq. 1 with the density q satisfying Assumptions 1–3 as well as both
m/n and Ni in Eq. 6 satisfying Assumption 3.
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Assumption 1 If q(x) = 0, then P(Y > y | X = x) f (x) = 0 for any x.

Assumption 2 Eq

[
I(Y > y)L2

]
< ∞ holds, where the expectation is taken with respect

to q.

Assumption 3 For a constant c0 ∈ (0, 1], m/n = c0 + o(1) as n → ∞. The function

h̃(x) ≡
√
1 − ŝy(x)

ŝy(x)
(8)

satisfies the following conditions

Eq

[
h̃(X)

]
< ∞ (9)

and

P

⎛

⎝ h̃(X)

c0Eq

[
h̃(X)

] + 1

2
∈ N

⎞

⎠ = 0 (10)

whereN ≡ {2, 3, . . .}.

We prove Theorem 1 through this section and defer all the other proofs, except for The-
orem 2 which is our main technical result, to the supplementary document. Here, we define
zα/2 ≡ �−1(1 − α/2) for α ∈ (0, 1), where �(·) is the cumulative distribution function of
N(0, 1).

Theorem 1 (CI for SIS) Suppose Assumptions 1–3 hold. Then,
√

m

σ̂ 2
y

(
P̂n(y) − py

)
d→ N(0, 1) (11)

as m → ∞, where

σ̂ 2
y = 1

m − 1

m∑

i=1

⎛

⎝ 1

Ni

Ni∑

j=1

I

(
Y

(i)
j > y

)
Li − P̂n(y)

⎞

⎠
2

. (12)

Therefore, P
(
py ∈

(
P̂n(y) ± zα/2σ̂y/

√
m
))

→ 1 − α for α ∈ (0, 1) as m → ∞. That is,
(
P̂n(y) ± zα/2σ̂y/

√
m
)
is a 100(1 − α)% asymptotic confidence interval for py .

This theorem provides an asymptotically valid way to quantify the uncertainty of esti-
mating py based on the SIS estimator in Eq. 1 and the variance estimator in Eq. 12. We
below discuss the assumptions used in the theorem and its proof.

Assumption 1 implies that we should use the density, q(x), that makes the estimator,
P̂n(y), in Eq. 1 unbiased. This assumption is satisfied when we use the density, qy(x), in
Eq. 5 with the metamodel, ŝy(x), satisfying a mild condition (see Proposition 1). In prac-
tice, this condition can be readily satisfied by imposing the metamodel, ŝy(x), to be strictly
positive in the support of f .

Proposition 1 The SIS density, qy(x), in Eq. 5 for n ≥ 1 satisfies Assumption 1 if sy(x) �= 0
implies ŝy(x) �= 0 in the support of f .
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Assumption 2 implies that the SIS estimator should have a finite variance. This assump-
tion is also satisfied by the density, qy(x), in Eq. 5 if the metamodel, ŝy(x), satisfies another
mild condition (see Proposition 2). This condition is slightly stronger than the condition in
Proposition 1, as it requires the ratio, f (X)sy(X)/ŝy(X), to not explode in the support of f .
Analogous to Assumptions 1 and 2, to prove the CLT for DIS, similar or stronger conditions
are commonly required in the literature (Koopman et al. 2009).

Proposition 2 Under Assumption 1, the SIS density, qy(x), in Eq. 5 for n ≥ 1 satisfies
Assumption 2 if Ef

[
sy(X)/ŝy(X)

]
< ∞.

Assumption 3 generally holds in practical situations. The m/n ratio can be approxi-
mately set at a fixed level (e.g., c0 = 10% or 30%) according to the empirical finding and
implementation guideline suggested in Choe et al. (2015). Proposition 3 proves that h̃(x) in
Eq. 8 satisfies the condition in Eq. 9 for q = qy(x) in Eq. 5. The condition in Eq. 10 is to
address discontinuous points due to the rounding of Ni in Eq. 6, implying that the limit of

non-rounded Ni , h̃(Xi )/(c0Eq

[
h̃(X)

]
) + 1/2, should not belong to a set of integers greater

than 1. This condition holds when we impose the continuity on the metamodel, ŝy(·), for
continuous X. In general simulation studies that develop metamodels (or emulators), it is
common to model an unknown function as a continuous function (e.g., Plumlee and Tuo
2014; Zhang and Apley 2014, 2016).

Proposition 3 The function h̃(x) in Eq. 8 satisfies the condition Eq

[
h̃(X)

]
< ∞ in Eq. 9

for q = qy in Eq. 5 for n ≥ 1.

To prove Theorem 1, in the sequel, we prove that the CLT for the SIS estimator in Eq. 1
holds under Assumptions 1–3. We then prove that the variance estimator, σ̂ 2

y , in Eq. 12
converges in probability, and conclude with Slutsky’s theorem.

Adding much complexity to DIS, the SIS estimator in Eq. 1 involves the allocation size,
Ni , which takes account of all the realizations of the first-level variables. Our main techni-
cal result, Theorem 2, builds a technique that handles such complication. As the first step
toward proving CLT for SIS, we need to characterize the asymptotic behavior of Ni .

The allocation size,Ni , in Eq. 6 depends not only onXi but also on allXj , j = 1, . . . , m.
Accordingly, Ni is not independent of Nj for j �= i. We address this dependency issue
in Lemma 1 by showing that under certain regularity conditions, the allocation size with a
fixed index, say Nk , becomes asymptotically independent of Nj , j �= k, as m increases.

Lemma 1 (Asymptotic independence between the allocation sizes) Suppose that Assump-
tion 3 holds. Then, for any fixed index k,

Nk
P→ Ñk (13)

≡ max

⎛

⎝1,

⎢⎢⎢⎣ h̃(Xk)

c0Eq

[
h̃(X)

] + 1

2

⎥⎥⎥⎦

⎞

⎠ , (14)

as m → ∞.

Note that the convergence in Eq. 13 is not uniform over k. Our derivation for Theorem
2 shows that, despite the lack of uniform convergence, the CLT for the SIS estimator based
on two-level stochastic simulations still holds.
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Building upon Lemma 1 that characterizes the asymptotic independence of the alloca-
tion sizes, we derive the CLT for SIS in Theorem 2. Its proof is lengthy, so we defer it to
Appendix.

Theorem 2 (CLT for SIS estimator) Suppose Assumptions 1–3 hold. Then,
√

m

σ 2
y

(
P̂n(y) − py

)
d→ N(0, 1) (15)

as m → ∞, where

σ 2
y = Eq

[
1

Ñ
sy(X)

(
1 − sy(X)

)
L2
]

+ Eq

[
sy(X)2L2

]
− p2

y (16)

with

Ñ = max

⎛

⎝1,

⎢⎢⎢⎣ h̃(X)

c0Eq

[
h̃(X)

] + 1

2

⎥⎥⎥⎦

⎞

⎠ .

Theorem 2 describes the asymptotic normality of the SIS estimator, P̂n(y), in Eq. 1. As
m increases, the SIS estimator becomes close to a normal random variable with the mean
of py and the variance of σ 2

y /m. We note that ‘m → ∞’ is equivalent to ‘n → ∞’ under

Assumption 3. Ñ is a random variable depending on X that follows the density, q.
Theorem 2 provides the information on the distributional properties of SIS estimator

in the asymptotic regime. Yet, the asymptotic variance is unknown, because σ 2
y in Eq. 16

involves sy(X) = P(Y > y | X) and py . Lemma 2 states that σ̂ 2
y in Eq. 12 is a consistent

estimator of σ 2
y .

Lemma 2 (Consistency of a variance estimator) Suppose Assumptions 1–3 hold. Then,

σ̂ 2
y

P→ σ 2
y (17)

as m → ∞.

The statement in Eq. 11 in Theorem 1 follows from Theorem 2 and Lemma 2 by Slutsky’s
theorem. This completes the proof of Theorem 1.

3.2 Confidence Intervals With Different Thresholds

The optimal SIS method depends on the failure threshold, y, leading to the sampling and
simulation results optimized for the particular y. Suppose we obtain the simulation outputs
with y. We can still use the obtained simulation outputs to estimate the failure probability
at a different threshold, ỹ, for ỹ > y without conducting experiments again.

Suppose that given y, we sample Xi , i = 1, . . . , m, from the density, q, satisfying
Assumption 1 and obtain the simulation outputs, Y (i)

j for i = 1, . . . , m and j = 1, . . . , Ni .
Then, to estimate the failure probability, pỹ = P(Y > ỹ), we can replace y with ỹ and use

the SIS estimator, P̂n(ỹ), in Eq. 1. The estimator, P̂n(ỹ), is an unbiased estimator of pỹ

for ỹ > y because if q(x) = 0, then P(Y > ỹ | X = x) f (x) = 0 for any x, due to the
fact that P(Y > y | X = x) f (x) = 0 under Assumption 1 and P(Y > ỹ | X = x) f (x) ≤
P(Y > y | X = x) f (x) for ỹ > y (Choe et al. 2016). On the other hand, for ỹ < y, the unbi-
asedness of the estimator, P̂n(ỹ), does not necessarily hold because P(Y > ỹ | X = x) f (x)
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is not necessarily zero for some x even if q(x) = 0. Corollary 1 below constructs the
pointwise CI for pỹ for ỹ > y using the simulation outputs optimized for estimating py .

Corollary 1 (Pointwise CI for ỹ > y) Suppose the conditions in Theorem 1 hold. Then, for

ỹ > y, the CI for pỹ ,
(
P̂n(ỹ) ± zα/2σ̂ỹ/

√
m
)
is asymptotically valid, i.e.,

P

(
pỹ ∈

(
P̂n(ỹ) ± zα/2σ̂ỹ/

√
m
))

→ 1 − α for α ∈ (0, 1) as m → ∞.

We believe that the result in Corollary 1, which justifies the pointwise CI for ỹ > y,
is practically desirable. At the system design stage, designers want to estimate the failure
probability and quantify the estimation uncertainties at multiple design parameters, ỹ’s,
rather than at a single value of y. In particular, system designers are interested in a large
resistance level, ỹ, which corresponds to a small failure probability, pỹ , to ensure a high
level of system reliability. Corollary 1 suggests that we can construct the CI for pỹ using
the results optimized for py , without rerunning the simulation with each ỹ.

We note that the result in Corollary 1 may not hold when ỹ < y. Also, we remark
that our practical interest in this study lies in the pointwise uncertainty of estimating pỹ at
certain ỹ’s. Under stronger assumptions, simultaneous CI may be established if one wants
to evaluate the simultaneous uncertainty of estimating pỹ over a range of ỹ, which is beyond
the scope of this study.

3.3 Implementation Guideline

We summarize the implementation procedure to obtain the CI for SIS estimator.

Implementation procedure

1. Given y, sample Xi , i = 1, . . . , m, from the SIS density, qy in Eq. 5.

2. For each Xi , run the simulator Ni (in Eq. 6) times to obtain Y
(i)
j for i = 1, . . . , m and

j = 1, . . . , Ni .
3. Estimate the failure probability for ỹ by P̂n(ỹ) in Eq. 1 for ỹ ≥ y.
4. Obtain σ̂ỹ in Eq. 12.

5. Construct the 100(1 − α)% pointwise CI,
(
P̂n(ỹ) ± zα/2σ̂ỹ/

√
m
)
, for pỹ .

In Steps 1 and 2, as noted in Section 2, the SIS density and allocation size need the
metamodel, ŝy(x), of the conditional probability, sy(x) = P(Y > y | X = x). Depending
on applications, different methods can be used for constructing the metamodel, ŝy(x). For
example, Choe et al. (2015) provide a guideline on how to build the metamodel for wind
turbine reliability estimation, which we employ in our implementation. Specifically, we
build the metamodel based on a small pilot sample, using the generalized additive model
for location, scale and shape (GAMLSS) (Rigby and Stasinopoulos 2005) that allows us to
model the conditional distribution of Y at X = x with a parametric distribution (e.g., we
use the normal distribution in Section 4 and the generalized extreme value (GEV) distribu-
tion (Coles 2001) in Section 5). In GAMLSS, the conditional distribution parameters can be
modeled using cubic spline functions of x. The model fitting is done by the backfitting algo-
rithm commonly used in generalized additive modeling (Rigby and Stasinopoulos 2005).
The smoothing parameters in the model are determined by minimizing the Bayesian infor-
mation criterion (Schwarz 1978), as suggested by Rigby and Stasinopoulos (2005). The
metamodel’s goodness-of-fit can be tested using the Kolmogorov-Smirnov test (Choe et al.
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2015). Once we have the metamodel, we can draw X from the SIS density in Eq. 5 using
the acceptance-rejection algorithm (Kroese et al. 2011).

4 Numerical Study

This section presents a numerical example to show that the empirical coverage level of the
proposed CI agrees with the target coverage probability, 1 − α, under various settings.

Cannamela et al. (2008) originally develop a deterministic simulation model example,
which is later modified by Choe et al. (2015) into the stochastic simulation model example.
We use the latter data generating model as follows:

X ∼ N(0, 1) , Y |X ∼ N
(
μ(X) , σ 2(X)

)
, (18)

with

μ(X) = 0.95δX2 (1 + 0.5 cos(5X) + 0.5 cos(10X)) , (19)

σ(X) = 1 + 0.7 |X| + 0.4 cos(X) + 0.3 cos(14X).

The metamodel of the conditional distribution of Y |X is set as the normal distribution with
its mean and standard deviation modeled as cubic spline functions of X in the GAMLSS
framework described in Section 3. The model is fitted to a pilot sample of size 600 that
includes X’s uniformly sampled between (−4, 4) and their corresponding Y ’s from the true
conditional distribution.

In this example, all model and experiment parameters are set as in Choe et al. (2015).
The parameter, δ, in Eq. 19 determines the similarity of the optimal SIS density, q∗

y , in Eq. 2
to the original input density, f . For δ = 1 (−1), the important regions are far from (close
to) X = 0, which is the mode of f , the density of N(0, 1). Consequently, the SIS densities
that focus on the important regions differ significantly for different δ’s. We use the failure
threshold, y, that corresponds to the true failure probability, py = 0.01. The ratio of m/n is
set as 30%.

To compute the empirical coverage level, we repeatedly construct the 100(1 − α)% CI,(
P̂n(y) ± zα/2σ̂y/

√
m
)
, 10,000 times and calculate the proportion of the CIs covering the

true failure probability, py . We consider the target coverage probability, 1 − α, of 0.90 and
0.95. Table 1 shows the experiment results. We summarize the key observations as follows:

Table 1 Empirical coverage level vs. the total sample size, n, in the numerical study

δ = 1 δ = −1

1 − α 0.90 0.95 0.90 0.95

n Empirical coverage level

1000 0.89 0.94 0.87 0.92

10000 0.89 0.94 0.89 0.95

100000 0.90 0.95 0.90 0.95

NOTE: The empirical coverage level is the proportion of CIs (out of 10,000 experiments) that include the
true failure probability, py = 0.01.
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– With the moderate size of n of 1000 (note that py = 0.01), the corresponding empirical
coverages are close to the target coverage probabilities, 1 − α.

– As n increases, the empirical coverage level reaches the target coverage probability,
1 − α. This result agrees with the asymptotic result stated in Theorem 1.

– The parameters, α and δ, do not appear to significantly affect the behavior of CI
coverage.

5 Case Study

Wind turbines experience stochastic weather conditions (Byon et al. 2010). To reflect the
randomness into the reliability evaluation of the turbine design, the international stan-
dard, IEC 61400-1 (International Electrotechnical Commission 2005), requires the turbine
designer to use stochastic simulations. The wind industry commonly uses NREL aeroelastic
simulators that simulate stochastic loads imposed on a turbine (Moriarty 2008; Manuel et al.
2013; Choe et al. 2016). We focus our analysis on a load response type, namely, the bending
moment at a blade root. The blade bending moment represents the structural response of a
blade due to an external force or moment causing the blade to bend (Soleimanzadeh et al.
2012; Byon et al. 2016). The extreme bending moment at a blade root can lead to the struc-
tural failure of the blade and is extensively studied in the wind industry to ensure the turbine
reliability. Therefore, our simulation output of interest, Y , is the blade bending moment.
We estimate a small failure probability associated with an extreme load level, which can be
observed rarely with the probability less than, or equal to, 0.01.

5.1 Details of the Simulations

We use the benchmark simulation setup required in the IEC 61400-1 standard (International
Electrotechnical Commission 2005) with the same setting used in the studies by Moriarty
(2008) and Choe et al. (2015), and obtain the blade bending moment, following the pro-
cedure in Moriarty (2008). The simulation input, X, is the wind speed (unit: m/s) sampled
from a truncated Rayleigh distribution (with the support of [3, 25] and the scale parame-
ter of 10

√
2/π ). The supplementary document includes the implementation details on the

NREL simulators.
In the implementation, one simulation replication represents sampling one X from the

truncated Rayleigh distribution and running the NREL simulators to simulate 10-min tur-
bine operations using the input,X. Each simulation replication takes about 1-min wall-clock
time by a regular computer available nowadays. To sample X from the SIS density, we
use the same metamodel and sampling technique used in Choe et al. (2015). For the meta-
model to approximate sy(x) = P(Y > y | X = x), the GEV distribution is used with its
location and scale parameters varying with x while keeping the shape parameter constant
in the GAMLSS framework described in Section 3. The model is fitted to a pilot sample of
size 600 includingX’s uniformly sampled from [3, 25] and the corresponding Y ’s generated
from the NREL simulators. The model’s goodness-of-fit is tested and confirmed using the
Kolmogorov-Smirnov test (Choe et al. 2015).

5.2 Implementation Results

We first test whether the empirical coverage level of CI is similar to the target coverage prob-
ability. Unlike the numerical studies in Section 4 where we repeat the experiment 10,000
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Table 2 100(1 − α)% CI’s empirical coverage level based on 200 experiments in the case study

Target coverage, 1 − α 0.70 0.80 0.90 0.95 0.99

Empirical coverage 0.755 0.85 0.93 0.95 0.99

(95% CI) (0.695, 0.815) (0.80, 0.90) (0.89, 0.97) (0.92, 0.98) (0.98, 1.00)

NOTE: The empirical coverage level denotes the proportion of experiments whose CIs include the estimated
py in the total 200 experiments, e.g., 151/200 = 0.755 for 1−α = 0.70. Because the empirical coverage level
is a binomial proportion estimator, we compute and present the 95% normal approximate CI of the coverage
probability in the parentheses.

times, we limit the repetition to 200 times in this case study because of the high computa-
tional cost (high-performance computing with 28 cores takes about 6 weeks of wall-clock
time). We use y = 14, 300 kNm, n = 9, 000, and m/n = 30%. Because py is unknown
in this case study, we estimate it with the sample average of the 200 failure probabil-
ity estimates , namely, 0.0105. We compute the empirical coverage level by obtaining the
proportion of CIs that cover the estimated py .

Table 2 shows the empirical coverage levels for different target coverage probabilities
(1 − α = 0.70, 0.80, 0.90, 0.95, and 0.99). The observed coverage level appears to generally
match the target level, as the 95% CIs of the coverage probabilities all cover the target cov-
erage levels and are reasonably narrow. We note that 200 repetitions result in the coverage
probability estimates accurate enough for our validation purpose.

Next, to illustrate how the CIs can help a design process, we estimate the failure proba-
bility of 10−2 or less because such a small failure probability is desired in the wind industry
(Lee et al. 2013). To do so, we pool all the results from the 200 experiments. The pooled
estimator of the failure probability, py , is P̂200n(y) in Eq. 1 with m replaced by 200m. We
also use the result in Theorem 1 with 200n and 200m in place of n and m, respectively, and
construct the CIs of pỹ for some ỹ’s greater than y, based on Corollary 1.

Table 3 shows the point estimates and CIs for the failure probabilities corresponding to
three ỹ’s greater than y = 14,300 kNm. We note that the ratio of CI width to the corre-
sponding point estimate increases as ỹ increases, reflecting the increasing uncertainty in the
distribution tail. This is because the experiments were optimized to estimate py for y =
14,300 kNm. As the threshold, ỹ, increases, a smaller number of simulation outputs, which
were generated from the original experiments with y = 14,300 kNm, contribute to P̂200n(ỹ)

in Eq. 1 and the corresponding CI in Corollary 1, because a larger number of outputs result

in I

(
Y

(i)
j > ỹ

)
= 0 in Eq. 1. Accordingly, as ỹ becomes greater than y, the estimation

uncertainty gets larger.

Table 3 Failure probability point estimates and 95% CIs (in parentheses) for blade bending moments using
the simulation outputs from 200 experiments with y = 14,300 kNm

Failure threshold, ỹ (kNm)

14,500 15,000 15,500

Point Est. 0.00515 0.000733 0.0000928

95% CI (0.00508, 0.00522) (0.000704, 0.000761) (0.0000819, 0.0001038)
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6 Summary

SIS can significantly save computational resources in estimating the probability associated
with the output of two-level stochastic simulation (Choe et al. 2015). This paper studies the
asymptotic properties of the SIS estimator with a focus on measuring the estimation uncer-
tainty. We establish the CLT for the SIS estimator and construct the asymptotically valid
CI that uses a consistent variance estimator. Our numerical study shows that the asymptotic
CI’s empirical coverage level indeed converges to the target coverage probability. In our
case study, we use the CI to quantify the uncertainty of the failure probability estimation for
wind turbine reliability evaluation.
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Appendix: Proof of Theorem 2

To prove the CLT in Eq. 15,
√

m

σ 2
y

(
P̂n(y) − py

)
d→ N(0, 1),

we introduce the following estimator:

P̃n(y) = 1

m

m∑

i=1

⎛

⎝ 1

Ñi

Ñi∑

j=1

I

(
Y

(i)
j > y

)
⎞

⎠ f (Xi )

q(Xi )
, (20)

where Ñi is defined in Eq. 14. Then, we express the left-hand side of Eq. 15 as
√

m

σ 2
y

(
P̂n(y) − py

)
=
√

m

σ 2
y

(
P̂n(y) − P̃n(y) + P̃n(y) − py

)

=
√

m

σ 2
y

(
P̂n(y) − P̃n(y)

)
+
√

m

σ 2
y

(
P̃n(y) − py

)
(21)

Our proof for Eq. 15 consists of three main steps:

1. Proof for the first term in Eq. 21 converging to zero in probability:
√

m

σ 2
y

(
P̂n(y) − P̃n(y)

)
P→ 0. (22)

2. Proof for the second term in Eq. 21 converging to N(0, 1) in distribution:
√

m

σ 2
y

(
P̃n(y) − py

)
d→ N(0, 1). (23)

3. Application of Slutsky’s theorem to Eq. 21.
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To prove the first main step’s result in Eq. 22, we show

P

(∣∣∣
√

m
(
P̂n(y) − P̃n(y)

)∣∣∣ > ε
)

→ 0 (24)

for any ε > 0 as m → ∞. Both estimators, P̂n(y) and P̃n(y), are unbiased estimators of py

by Assumption 1, making

Eq

[
P̂n(y) − P̃n(y)

]
= Eq

[
P̂n(y)

]
− Eq

[
P̃n(y)

]

= py − py

= 0.

By Chebyshev’s inequality, the left-hand side of Eq. 24 is bounded from above as follows:

P

(∣∣∣
√

m
(
P̂n(y) − P̃n(y)

)∣∣∣ > ε
)

≤ m

ε2
V arq

[
P̂n(y) − P̃n(y)

]
. (25)

Now we show that the right-hand side of Eq. 25 converges to zero as m → ∞. We obtain
m

ε2
V arq

[
P̂n(y) − P̃n(y)

]

= m

ε2

(
Eq

[
V ar

[
P̂n(y) − P̃n(y) | X1, . . . ,Xm

]]
+ V arq

[
E

[
P̂n(y) − P̃n(y) | X1, . . . ,Xm

]])
(26)

by variance decomposition. The second term of Eq. 26 vanishes because

E

[
P̂n(y) − P̃n(y) | X1, . . . ,Xm

]

= E

⎡

⎣ 1

m

m∑

i=1

⎛

⎝ 1

Ni

Ni∑

j=1

I

(
Y

(i)
j > y

)
− 1

Ñi

Ñi∑

k=1

I

(
Y

(i)
k > y

)
⎞

⎠Li | X1, . . . ,Xm

⎤

⎦

= 1

m

m∑

i=1

(
sy(Xi ) − sy(Xi )

)
Li

= 0.

In the first term of Eq. 26, we obtain

V ar
[
P̂n(y) − P̃n(y) | X1, . . . ,Xm

]

= V ar

⎡

⎣ 1

m

m∑

i=1

⎛

⎝ 1

Ni

Ni∑

j=1

I

(
Y

(i)
j > y

)
− 1

Ñi

Ñi∑

k=1

I

(
Y

(i)
k > y

)
⎞

⎠Li | X1, . . . ,Xm

⎤

⎦

= 1

m2

m∑

i=1

V ar

⎡

⎣

⎛

⎝ 1

Ni

Ni∑

j=1

I

(
Y

(i)
j > y

)
− 1

Ñi

Ñi∑

k=1

I

(
Y

(i)
k > y

)
⎞

⎠ | X1, . . . ,Xm

⎤

⎦L2
i

= 1

m2

m∑

i=1

E

⎡

⎢⎣

⎛

⎝ 1

Ni

Ni∑

j=1

I

(
Y

(i)
j > y

)
− 1

Ñi

Ñi∑

k=1

I

(
Y

(i)
k > y

)
⎞

⎠
2

| X1, . . . ,Xm

⎤

⎥⎦L2
i .
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Here, the conditional expectation in the last equation can be simplified as follows:

E

⎡

⎢⎣

⎛

⎝ 1

Ni

Ni∑

j=1

I

(
Y

(i)
j > y

)
− 1

Ñi

Ñi∑

k=1

I

(
Y

(i)
k > y

)
⎞

⎠
2

| X1, . . . ,Xm

⎤

⎥⎦

= E

⎡

⎣ 1

N2
i

Ni∑

j=1

I

(
Y

(i)
j > y

)
+ 2

N2
i

Ni∑

k=1

Ni∑

l>k

I

(
Y

(i)
k > y

)
I

(
Y

(i)
l > y

)

+ 1

Ñ2
i

Ñi∑

j=1

I

(
Y

(i)
j > y

)
+ 2

Ñ2
i

Ñi∑

k=1

Ñi∑

l>k

I

(
Y

(i)
k > y

)
I

(
Y

(i)
l > y

)

− 2

NiÑi

Ni∑

k=1

Ñi∑

l=1

I

(
Y

(i)
k > y

)
I

(
Y

(i)
l > y

)
| X1, . . . ,Xm

⎤

⎦

= 1

Ni

(
sy(Xi ) + (Ni − 1) s2y (Xi )

)
+ 1

Ñi

(
sy(Xi ) +

(
Ñi − 1

)
s2y(Xi )

)

− 2

NiÑi

(
min(Ni, Ñi)sy(Xi ) +

(
NiÑi − min(Ni, Ñi)

)
s2y(Xi )

)

= sy(Xi )
(
1 − sy(Xi )

) Ni + Ñi − 2min(Ni, Ñi)

NiÑi

= sy(Xi )
(
1 − sy(Xi )

)
∣∣∣Ni − Ñi

∣∣∣

NiÑi

= sy(Xi )
(
1 − sy(Xi )

) ∣∣∣∣
1

Ni

− 1

Ñi

∣∣∣∣ (27)

Therefore, the equation in Eq. 26 is simplified as
m

ε2
V arq

[
P̂n(y) − P̃n(y)

]

= m

ε2
Eq

[
1

m2

m∑

i=1

sy(Xi )
(
1 − sy(Xi )

) ∣∣∣∣
1

Ni

− 1

Ñi

∣∣∣∣L
2
i

]

= 1

ε2m

m∑

i=1

Eq

[
sy(Xi )

(
1 − sy(Xi )

) ∣∣∣∣
1

Ni

− 1

Ñi

∣∣∣∣L
2
i

]

= 1

ε2
Eq

[
sy(X1)

(
1 − sy(X1)

) ∣∣∣∣
1

N1
− 1

Ñ1

∣∣∣∣L
2
1

]
, (28)

where the last equation in Eq. 28 holds because X1, . . . , Xm are identically distributed.
We show that the expectation in Eq. 28 converges to zero as m → ∞. By the continuous

mapping theorem and Lemma 1, we obtain

sy(X1)
(
1 − sy(X1)

) ∣∣∣∣
1

N1
− 1

Ñ1

∣∣∣∣L
2
1

P→ 0

as m → ∞. Because

sy(X1)
(
1 − sy(X1)

) ∣∣∣∣
1

N1
− 1

Ñ1

∣∣∣∣L
2
1 ≤ 2sy(X)L2 (29)
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and Eq

[
sy(X)L2

]
< ∞ by Assumption 2, the dominated convergence theorem yields that

the expectation in Eq. 28 converges to zero as m → ∞. Because the right-hand side of Eq. 25
converges to zero, we complete the proof of Eq. 24, which implies (22).

To prove the second main step’s result in Eq. 23,
√

m

σ 2
y

(
P̃n(y) − py

)
d→ N(0, 1),

we use the Lindeberg—Lévy central limit theorem. For the theorem to hold, we verify its
conditions as follows. First, P̃n(y) in Eq. 20 is the sample mean of

Z̃i ≡
⎛

⎝ 1

Ñi

Ñi∑

j=1

I

(
Y

(i)
j > y

)
⎞

⎠Li, i = 1, . . . , m, (30)

which are i.i.d. with

Eq

[
Z̃i

]
= Eq

⎡

⎣

⎛

⎝ 1

Ñi

Ñi∑

j=1

I

(
Y

(i)
j > y

)
⎞

⎠Li

⎤

⎦

= Eq

⎡

⎣ 1

Ñi

Ñi∑

j=1

E

[
I

(
Y

(i)
j > y

)
| Xi

]
Li

⎤

⎦

= Eq [P (Y > y | Xi ) Li]

= py, (31)

where the last equality holds by Assumption 1.

Next, we obtain V arq

[
Z̃i

]
= σ 2

y < ∞ because

V arq

[
Z̃i

]
= Eq

[
Z̃2

i

]
−
(
Eq

[
Z̃i

])2

= Eq

⎡

⎣ 1

Ñ2
i

⎛

⎝
Ñi∑

j=1

I

(
Y

(i)
j > y

)2 + 2
Ñi∑

k=1

Ñi∑

l>k

I

(
Y

(i)
k > y

)
I

(
Y

(i)
l > y

)
⎞

⎠L2
i

⎤

⎦− p2
y

= Eq

⎡

⎣E

⎡

⎣ 1

Ñ2
i

⎛

⎝
Ñi∑

j=1

I

(
Y

(i)
j > y

)
+ 2

Ñi∑

k=1

Ñi∑

l>k

I

(
Y

(i)
k > y

)
I

(
Y

(i)
l > y

)
⎞

⎠L2
i | Xi

⎤

⎦

⎤

⎦− p2
y

= Eq

[
1

Ñ
sy(X)L2 + Ñ − 1

Ñ
sy(X)2L2

]
− p2

y

= Eq

[
1

Ñ
sy(X)

(
1 − sy(X)

)
L2
]

+ Eq

[
sy(X)2L2

]
− p2

y (32)

= σ 2
y

and Assumption 2 ensures that the expectation terms in σ 2
y are finite:

Eq

[
1

Ñ
sy(X)

(
1 − sy(X)

)
L2
]

≤ Eq

[
sy(X)

(
1 − sy(X)

)
L2
]

≤ Eq

[
sy(X)L2

]
< ∞, (33)

Eq

[
sy(X)2L2

]
≤ Eq

[
sy(X)L2

]
< ∞. (34)

Thus, V arq

[
Z̃i

]
= σ 2

y < ∞ follows, completing the proof of Eq. 23 by the Lindeberg—

Lévy central limit theorem.
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Finally, by applying Slutsky’s theorem to Eq. 21 based on Eqs. 22 and 23, we complete
the proof of Eq. 15.
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