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Abstract Adverse events in Phase II comparative clinical trials have received limited atten-
tion in the literature. Bersimis et al. (Stat Med 34:197–214, 2014) in proposed a class of
comparative sequential designs with bivariate endpoints, where as a special case, the termi-
nation of the clinical trial due to the occurrence of a severe adverse event is treated. In this
paper, using the Markov chain embedding technique, we extend this class of designs propos-
ing two new designs, which treat cases where the development of an adverse event does not
immediately stop the clinical trial, but penalizes appropriately the treatment that caused it.
In both designs the penalty can be chosen either by assessing the severity of the adverse
event or by optimizing the power. The numerical results show an excellent performance,
achieving small expected sample sizes in conjunction with large values for power, satisfy-
ing in this way the ethical requirement for small sample sizes and fast decisions in clinical
practice. The formulation of the procedure as a stochastic process is elegantly accomplished
while it offers the necessary mathematical framework for further generalizing the designs
covering more cases such as group sequential designs, etc.
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1 Introduction

Comparative Phase II clinical trials with two or more endpoints have received little attention
in the literature. Recently, Bersimis et al. (2014) introduced a class of designs for random-
ized Phase II comparative clinical trials where pairs of patients enter the trial sequentially
and are randomly assigned between an experimental (E) and a reference (R) treatment.
Patients’ responses are sequentially measured in terms of two characteristics, Y

g

1 , Y
g

2 ,
g = R,E, where each of them takes two values: 1 if the treatment is successful and 0 in the
opposite case. Since the enrollment is sequential, the information is also accrued sequen-
tially as usual and the two dependent dichotomous responses are available relatively soon
after treatment is administered. If Y

g

1 , Y
g

2 are not readily available, surrogate endpoints, or
complete and partial responses, etc may be used (see for example Armitage et al. (2002),
Thall and Cheng (1999), Lu et al. (2005), Thall et al. (2006), O’Connor et al. (2006), and
Pryseley et al. (2010)). The binary (dichotomous) endpoints may be two efficacy endpoints
or one efficacy and one safety endpoint. To early terminate the clinical trial, Bersimis et al.
(2014) defined a set of decision rules based on how early a specific number of cases show-
ing improvement due to “Treatment E” or “Treatment R” in at least one of the characteristics
is observed. This is similar in nature to curtailed sampling procedures (see among others
Herrmann and Szatrowski (1982, 1985) and Kunz and Kieser (2012)).

The class of designs proposed by Bersimis et al. (2014) requires immediate response
which is common in Phase II clinical trials. For example, Yamanaka et al. (2003) presented
the results of a clinical trial where patient’s blood cells were pulsed with a tumour lysate and
patients were monitored for immediate toxicities. Similar trials are encountered in oncol-
ogy, cardiology, surgery, etc. (see among others Bradnock et al. (1995); Solomon et al.
(2002) and Suffoletto et al. (2006)). Several authors have proposed sequential designs for
monitoring clinical trials with immediate response (see for example Pryseley et al. (2010);
Pocock (1977); O’Brien and Fleming (1979); Lan and DeMets (1983, 1989); Kim and
Tsiatis (1990); Salvan (1990) and Kim and DeMets (1992)).

The above mentioned designs cover, among others, the case of terminating the clinical
trial after the occurrence of a severe adverse event (for example, metastasis, coma, death).
All cases are treated under a unified framework using the Markov chain embedding tech-
nique (see e.g. Lou (1996), Glaz et al. (2001), and Balakrishnan and Koutras (2002)) with
minor modifications in the sub-matrices which constitute the transition probability matrix.

However, the design of terminating the clinical trial after an adverse event has occurred,
may not be suitable for non-severe adverse events. Thus, in this paper we propose two
designs that efficiently treat the case where the development of an adverse event does not
immediately terminate the clinical trial, but penalizes the treatment due to which it was
developed.

The paper is organized as follows: In Section 2 two new designs are defined giving the
general form as well as the mathematical background. In addition, two examples of penal-
ization are described, and the use of the Markov chain embedding technique is illustrated.
In Section 3 we present the results of an extensive numerical experimentation in order to
assess the performance of the new designs. More specifically, we make a power exploration
with respect to the parameters of the design and we numerically justify the importance of
the new design. Finally, in Section 4 we give some concluding remarks.



Methodol Comput Appl Probab (2018) 20:719–738 721

2 Assessing the Presence of Adverse Events

In this section we propose two designs - the standard and the superiority one - that efficiently
treat the case where the development of an adverse event penalizes the responsible treat-
ment, instead of immediately terminating the clinical trial. The standard design takes into
account cumulatively all successes of the two treatments while the superiority design applies
a “ties correction” strategy, which is common in clinical trials making the comparison of
the two treatments more straightforward.

2.1 Penalizing the Treatment - The Standard Design

Our aim is to compare two treatments (an experimental E and a reference R one) with
respect to two dependent categorical characteristics (endpoints), Yg

1 , Y
g

2 , g = R,E. Each of
the characteristics takes three values, taking into account the presence of a severe adverse
event; 1 if the treatment is successful, 0 if it is unsuccessful, and ∗ if the treatment causes
an adverse event, i.e. for i = 1, 2

Y
g
i =

⎧
⎨

⎩

1, if treatment g is successful
0, if treatment g is unsuccessful
∗, if treatment g causes an adverse event.

The potential adverse events are assumed to be associated with the characteristics we
measure. This is a key assumption that is often encountered in clinical research. For exam-
ple, if characteristic Y1 is blood pressure reduction, then Y

g

1 = 1 if g reduces blood pressure,
Y

g

1 = 0 if g does not reduce blood pressure, and Y
g

1 = ∗ if g causes syncope due to low
pressure (Leitch et al. 1991; Figueroa et al. 2010). Similarly, if endpoint Y2 is diabetes reg-
ulation, then Y

g

2 = 1 if g regulates diabetes, Y
g

2 = 0 if g does not regulate diabetes, and
Y

g

2 = ∗ if g leads to a coma due to hypoglycemia (Bending et al. 1985). Adverse events
(AE) not related to the characteristics have been treated in Bersimis et al. (2014).

As it is natural, the random variables Y
g

1 , Y
g

2 are dependent for g = R,E with joint
probabilities for the two dimensional random variable

(
Y

g

1 , Y
g

2

)

π
g
ij = P

(
Y

g

1 = i, Y
g

2 = j
)

and π
g∗∗ = Pg(AE),

where i, j = 0, 1, g = R,E and AE stands for
{
Y

g

1 = ∗, Y
g

2 = ∗} ∪ {
Y

g

1 = ∗, Y
g

2 = 1
} ∪

{
Y

g

1 = ∗, Y
g

2 = 0
} ∪ {

Y
g

1 = 1, Y g

2 = ∗} ∪ {
Y

g

1 = 0, Y g

2 = ∗}
. Note that the probability of

an AE depends on the treatment. More specifically, the AE rate may be different from the
control (reference) arm to the treatment arm.

Whenever treatment g causes an adverse event in either characteristic, we penalize treat-
ment g with a penalty of size m, m = 1, 2, 3, . . .. Thus the outcome under penalization for
each patient receiving treatment g is given by the random variables LR

s , L
E
s defined as

L
g
s =

⎧
⎪⎪⎨

⎪⎪⎩

2, if
(
Y

g

1 , Y
g

2

) = (1, 1)
1, if

(
Y

g

1 , Y
g

2

) = (1, 0) or (0, 1)
0, if

(
Y

g

1 , Y
g

2

) = (0, 0)
-m, if

(
Y

g

1 , Y
g

2

) = (∗, ∗) or (∗, 1) or (∗, 0) or (1, ∗) or (0, ∗).

g = R,E while s is the number of pair and ∗ means that an adverse event appears. LR
s

and LE
s score the cases showing improvement due to “Treatment R” and “Treatment E” in

each pair while they take the value −m whenever “Treatment R” or “Treatment E” cause
an adverse event, respectively. In other words, the design parallels two study endpoints,
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combines their outcomes using a success count, and equalizes the effect of adverse events
to a fixed negative integer. The design can straightforwardly be extended to assign different
weights to the two characteristics, by appropriately defining the Yi’s.

The valuem of penalty may be chosen depending on the severity of the adverse event and
remains constant from pair to pair and from treatment to treatment. The more serious the
adverse event the higher the value of m. For example, if a drug causes fever (mild adverse
event) we can use m = 1; if it causes hemorrhage (moderate adverse event) we can use
m = 2 while for anaphylactic shock (severe adverse event) we can use m = 3. This strategy
gives researchers the opportunity to actively participate in the study design, deciding the
value of m, using clinical criteria. Later on, we will provide mathematical directions for
choosing m in order to maximize power.

The probabilities associated with LR
s , LE

s , i.e. puv = P(LR
s = u,LE

s = v), u, v =
0, 1, 2, ∗, are
p00 = πR

00 · πE
00, p11 = πR

10 · πE
01 + πR

01 · πE
10 + πR

01 · πE
01 + πR

10 · πE
10, p22 = πR

11 · πE
11,

p01 = πR
00 · πE

10 + πR
00 · πE

01, p02 = πR
00 · πE

11, p12 = πR
10 · πE

11 + πR
01 · πE

11,

p10 = πR
10 · πE

00 + πR
01 · πE

00, p20 = πR
11 · πE

00, p21 = πR
11 · πE

01 + πR
11 · πE

10,

p0∗ = πR
00 · πE∗∗, p1∗ = πR

10 · πE∗∗ + πR
01 · πE∗∗, p2∗ = πR

11 · πE∗∗,
p∗0 = πR∗∗ · πE

00, p∗1 = πR∗∗ · πE
01 + πR∗∗ · πE

10, p∗2 = πR∗∗ · πE
11,

p∗∗ = πR∗∗ · πE∗∗,
(1)

In order to terminate the clinical trial, we use the same rule as in Bersimis et al. (2014):

– (sr)1: The study is terminated in favor of “Treatment E” when a total of k cases
(patients) showing improvement due to “Treatment E” in at least one of the character-
istics are observed early enough, say before the c-th pair of patients or

– (sr)2: The study is terminated in favor of “Treatment R” when a total of k cases
(patients) showing improvement due to “Treatment R” in at least one of the character-
istics are observed early enough, say before the c-th pair of patients or

– (sr)3: The study is terminated with a decision that the two drugs are equivalent when
a total of k cases (patients) showing improvement due to “Treatment R” or due to
“Treatment E” are not observed until the c-th pair of patients.

To determine k and c that appear in (sr)1 - (sr)3 we shall use the cumulative sum of
L

g
s ’s under the restriction that it cannot take negative values. More specifically, we define

a random variable S, which counts the number of pairs of patients until one of the rules
is realized. It is evident that S equals n if and only if upon the completion of the n-th
comparison, we have

ZR
s ≥ k or ZE

s ≥ k,

where
Z

g
s = max{Zg

s−1 + L
g
s , 0}, s = 1, 2, . . .

and none of the events stated above have occurred before the n-th pair. We take Z
g

0 = 0.
Z

g
s is the cumulative sum of L

g
s under the restriction that it cannot take negative values. As

we have already mentioned, L
g
s , g = R,E counts the cases showing improvement due to

“Treatment g” in each pair, so it is meaningless to let Z
g
s to take negative values. In other

words, S counts the number of pairs enrolled until the first appearance of either k cases
showing improvement due to “Treatment R” in at least one of the characteristics or k cases
showing improvement due to “Treatment E” in at least one of the two characteristics. S is a
discrete variable taking values 1, 2, . . ..

It is obvious that the ZR
s , ZE

s , s = 1, 2, . . . constitute a random walk on the discrete
plane, which is directly related to the maximum number of patients that will be needed
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in order to make a decision, and the distribution of the “waiting time” S can be studied
using the Markov chain embedding technique, where an absorbing barrier depending on k

is introduced in the random walk (see e.g. Bersimis et al. (2014)).
Terminating the clinical trial in favor of TreatmentR orE is associated with the probabil-

ities of Eq. 1. The procedure for the early termination of the clinical trial can be represented
as a test of hypothesis based on the distribution of S, and will be presented below. The
threshold value k, the penalty m and the probabilities of Eq. 1 are parameters of the distri-
bution of S while c is an appropriate percentile of the distribution of S, a critical value that
denotes the maximum number of patients to be enrolled.

A visualization of the procedure with m = 1 and m = 2 penalizations on the first
twelve pairs of patients of a clinical trial is given in Table 1. Let us first see what happens
for the m = 1 case. At the first stage “Treatment R” is unsuccessful with respect to both
characteristics and this leads to LR

1 = 0. Contrary, at the same stage “Treatment E” is
successful with respect to both characteristics and thus we have LE

1 = 2. At the second
stage “Treatment R” is successful with respect to the first characteristic but unsuccessful
with respect to the second one. Thus we have LR

2 = 1. At the same stage “Treatment E” is
again successful with respect to both characteristics, so we have LE

2 = 2. An adverse event
due to “Treatment R” on the second characteristic appears for the first time at the fourth
pair. This leads to LR

4 = −1. As far as Z
g
s , g = R,E is concerned at the first stage we have

ZR
1 = LR

1 = 0 andZE
1 = LE

1 = 2. At the second stage we haveZR
2 = ZR

1 +LR
2 = 0+1 = 1

and ZE
2 = ZE

1 + LE
2 = 2 + 2 = 4. Every time that an adverse event appears, we subtract

a unit from the Z
g
s , g = R,E. Thus, at the fourth stage that we have an adverse event due

to “Treatment R”, we have ZR
4 = ZR

3 + LR
4 = 3 − 1 = 2. At the sixth pair, “Treatment

E” causes an adverse event on the first characteristic and this leads to the subtraction of a
unit from the ZE

s . At pairs 7, 8, and 9 we also have subtraction of a unit from the ZR
s . In

the case of the m = 2, the procedure differs only in that at stages 4, 7, 8, and 9 we subtract
two units from the ZR

s , while in the sixth stage we subtract two units from the ZE
s . Due to

the restriction that ZR
s and ZE

s cannot take negative values we do not make the subtraction
from ZR

s at stages 8 and 9. This restriction is used for the first time at the eighth stage of the
m = 2 case where instead of ZR

8 = ZR
7 + LR

8 = 1− 2 = −1 we set ZR
8 = 0. Here we have

Table 1 The clinical trial with the outcomes of the first twelve pairs of patients for the m = 1 and m = 2
penalizations under the standard design

Pair of patients (s) 1 2 3 4 5 6 7 8 9 10 11 12 . . .

Treatment R YR
1 0 1 1 1 1 0 ∗ ∗ ∗ 0 0 0 . . .

YR
2 0 0 1 ∗ 1 0 1 1 0 1 0 1 . . .

Treatment E YE
1 1 1 0 1 1 ∗ 0 1 0 1 1 1 . . .

YE
2 1 1 1 0 1 1 1 0 0 1 0 0 . . .

m = 1 LR
s 0 1 2 −1 2 0 −1 −1 −1 1 0 1 . . .

LE
s 2 2 1 1 2 −1 1 1 0 2 1 1 . . .

ZR
s 0 1 3 2 4 4 3 2 1 2 2 3 . . .

ZE
s 2 4 5 6 8 7 8 9 9 11 12 13 . . .

m = 2 LR
s 0 1 2 −2 2 0 −2 −2 −1 1 0 1 . . .

LE
s 2 2 1 1 2 −2 1 1 0 2 1 1 . . .

ZR
s 0 1 3 1 3 3 1 0 0 1 1 2 . . .

ZE
s 2 4 5 6 8 6 7 8 8 10 11 12 . . .
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to note that the adverse event prevails over the success or failure. As already mentioned,
the proposed method can be easily modified in order to accommodate groups of patients
(leading to a group sequential design). However, this while being more practical it would
lead to larger sample sizes.

2.2 The Exact Distribution of S

To find the exact cumulative distribution of S, we use the Markov Chain embedding
technique as in Bersimis et al. (2014). We have

P(S ≤ n) = P(Vn = αd) = π ′
0�

n
0ed ,

and
P(S = n) = P(S ≤ n) − P(S ≤ n − 1) = π ′

1(�1)
n−1h,

where αd is an appropriate absorbing state, π ′
0 is the (row) vector of initial probabilities of

the Markov chain, �0 is the transition probability matrix, e′
d is an 1 × d vector of the form

(0, 0, . . . , 1), π1 is a (d − 1) × 1 column vector that contains all the entries of the initial
probability vector π0 except the last one (which, for non-degenerate cases, vanishes) and
�1 is matrix �0 without the last column and the last row. The vector h is calculated by
h = 1 − �11, where 1 is a (d − 1) × 1 column vector of ones; using the fact that �0 is a
stochastic matrix. The h contains the transition probabilities from the corresponding state to
the absorbing state (for more details see Balakrishnan et al. (2009) and references therein).

The steps and notation are the same as in Bersimis et al. (2014). The main difference is
that instead of using the pivotal variables

∑n
s=1 LR

s and
∑n

s=1 LE
s we use ZR

s and ZE
s due

to the penalization and the restriction that their cumulative sum cannot take negative values.
The general form of the transition probability matrix �1 is

�1=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0 + �0 B0 �0
�1 A1 B1 �1
...

. . .
. . .

. . .

...
. . .

. . .
. . .

...
. . .

. . .
. . .

�m 0 0 0
. . . Am Bm �m

�m+1 0 0 0 Am+1 Bm+1 �m+1
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . Ak−3 Bk−3 �k−3
. . .

. . .
. . . 0 Ak−2 Bk−2 �k−2

�k−1 0 0 0 Ak−1 Bk−1
�k 0 0 0 Ak

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where Ai = A, i = 0, 1, . . . , k, Bi = B, i = 0, 1, . . . , k − 1, �i = �, i = 0, 1, . . . , k − 2,
and �i = �, i = 0, 1, . . . , k are k × k matrices. Matrices A, B, �, and � are described
below.
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Matrix A includes the probabilities of the transitions of the Markov chain from states of
the form (j1, j2) to states of the form (j1, j2+x), where x = 0, 1, 2; it describes transitions
of the Markov chain due to different numbers of successes of “Treatment E” while “Treat-
ment R” is totally unsuccessful. The transition probabilities from states of the form (j1, j2)

to states of the form (j1 + 1, j2 + x), where x = 0, 1, 2 are contained in matrix B. In other
words this matrix describes transitions of the Markov chain due to different numbers of suc-
cesses of “Treatment E” while “Treatment R” is successful to one of the characteristics. The
transition probabilities from states of the form (j1, j2) to states of the form (j1 + 2, j2 + x),
where x = 0, 1, 2 are contained in matrix �. Alternatively, matrix � describes transitions of
the Markov chain due to different numbers of successes of “Treatment E” while “Treatment
R” is successful in both characteristics. The transition probabilities from states of the form
(j1, j2) to states of the form (j1 + y, j2 + x), where x = −m, −(m − 1), . . . , 0, 1, 2 and
y = m if ji ≥ m or y = ji if ji < m are contained in matrix �. In other words � describes
transitions of the Markov chain due to the penalization of “Treatment R”. The empty cells
of the above matrices are equal to zero. The Markov Chain describes the possible values
taken by ZR

s and ZE
s under the restriction that ZR

s and ZE
s do not get negative values.

The first three elements of the first line of �1 are A0 + �1, B0, �0, respectively. The
sequence of Ai , Bi , �i , i = 1, 2, . . . , k begins from the second element of the second line
and moves one position to the right - the full sequence (Ai , Bi , �i) appears until the k − 1
line of �0. From the second to the m + 1 line, matrix �i , i = 1, . . . , m appears in the first
column of �1. From the m + 2 line, �i , i = m + 1, . . . , k moves one position to the right.
Between �i and Ai , i = m, . . . , k there are m − 1 zero matrices 0. The form of A, B, �,
and � for general m is given in Appendix. The empty cells of �1 are filled by k × k zero
matrices 0.

It is obvious that the exact distribution of S depends on the πR
ij ’s, the πE

ij ’s and m and k.
Moreover, m specifies matrix � and the position of matrix � in the transition probability
matrix �1.

2.3 Penalizing the Treatment - The Superiority Design

Amodification of the standard design, following the rationale of the Design 4.2 proposed in
Bersimis et al. (2014), is to take into account only superiority of one treatment applying in
that way a “tie correction” strategy. The main characteristic of this design is that none of the
treatments scores in the decision process if the two treatments are both successful in terms of
the same characteristic. This means that whenever, for example we have (YR

1 = 1, YR
2 = 1)

and (YE
1 = 1, YE

2 = 1), LR
s and LE

s do not take the value 2 but the value 0.
The methodology remains the same as in the standard design. The stopping rules and S

are as defined in Section 2.1. This means that we can find the exact cumulative distribution
of S, exploiting the Markov Chain already defined without changing the general form of
�1. The only change is associated to some of the probabilities puv = P(LR

s = u, LE
s = v),

u, v = 0, 1, 2, given in Eq. 1. Because of the fact that only superiority of one treatment
is taken into account, it holds that p22 = p12 = p21 = 0. In this case p21 of Eq. 1 has
been added to p10, p12 of Eq. 1 has been added to p01, and p22 of Eq. 1 has been added to
p00. Furthermore, the last two components of p11 of Eq. 1 has been added to p00. Thus the
probabilities that change are

p00 = πR
00 · πE

00 + πR
01 · πE

01 + πR
10 · πE

10 + πR
11 · πE

11, p22 = 0, p11 = πR
10 · πE

01 + πR
01 · πE

10,

p01 = πR
00 · πE

10 + πR
00 · πE

01 + πR
10 · πE

11 + πR
01 · πE

11, p12 = 0,
p10 = πR

10 · πE
00 + πR

01 · πE
00 + πR

11 · πE
01 + πR

11 · πE
10, p21 = 0.
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Table 2 visualizes the procedure on the first twelve pairs of patients of the clinical trial
described in Table 1, under the superiority case. Note that for pair 2 we have one tie and
thus (LR

2 , LE
2 ) = (0, 1) instead of (1, 2). As in the standard case, we subtract one or two

units from ZR
s at stages 4, 7, 8, and 9, for the m = 1 and m = 2 cases, respectively, while

we subtract one or two units from ZE
s at the sixth stage, for the m = 1 and m = 2 cases,

respectively. The difference of the superiority design is that whenever we have a tie (i.e.
both treatments are successful or unsuccessful on a characteristic) none of the treatments
scores. Again, due to the restriction that ZR

s and ZE
s cannot take negative values we force

them to be zero whenever the case arise. The tie correction leads to smaller ZR
s and ZE

s than
in the standard case.

2.4 The Exact Distribution of S with m = 1 and m = 2 Penalizations

In this subsection we present the special cases that we penalize the responsible for an
adverse event treatment with a penalty of size 1 and 2.

The transition probability matrix of the Markov Chain, for m = 1 and m = 2, is

�1,m=1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0 + �1 B0 �0
�1 A1 B1 �1

�2 A2 B2 �2

�3 A3 B3
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . Ak−3 Bk−3 �k−3
�k−2 Ak−2 Bk−2 �k−2

�k−1 Ak−1 Bk−1
�k Ak

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and �1,m=2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0 + �1 B0 �0
�1 A1 B1 �1
�2 0 A2 B2 �2

�3 0 A3 B3
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . . Ak−3 Bk−3 �k−3
. . . 0 Ak−2 Bk−2 �k−2

�k−1 0 Ak−1 Bk−1
�k 0 Ak

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where Ai = A, i = 0, 1, . . . , k, Bi = B, i = 0, 1, . . . , k − 1, �i = �, i = 0, 1, . . . , k − 2,
and�i = �, i = 0, 1, . . . , k−1 are k×k matrices andA,B,�,� are as given in Section 2.2.
The pair (0, 0) is the starting point of the Markov Chain, thus, π ′

0 = (1, 0, 0, . . . , 0)1×d .
�1,m=2 only differs from �1,m=2 in the position of the �i , i = 2, . . . , k. These are

one position to the left and thus a k × k zero matrix is between �i and Ai , i = 2, . . . , k.

Table 2 The clinical trial with the outcomes of the first twelve pairs of patients for the m = 1 and m = 2
penalizations under the superiority design

Pair of patients (s) 1 2 3 4 5 6 7 8 9 10 11 12 . . .

Treatment R YR
1 0 1 1 1 1 0 ∗ ∗ ∗ 0 0 0 . . .

YR
2 0 0 1 ∗ 1 0 1 1 0 1 0 1 . . .

Treatment E YE
1 1 1 0 1 1 ∗ 0 1 0 1 1 1 . . .

YE
2 1 1 1 0 1 1 1 0 0 1 0 0 . . .

m = 1 LR
s 0 0 1 −1 0 0 −1 −1 −1 0 0 1 . . .

LE
s 2 1 0 0 0 −1 0 0 0 1 1 1 . . .

ZR
s 0 0 1 0 0 0 0 0 0 0 0 1 . . .

ZE
s 2 3 3 3 3 2 2 2 2 3 4 5 . . .

m = 2 LR
s 0 0 1 −2 0 0 −2 −2 −2 0 0 1 . . .

LE
s 2 1 0 0 0 −2 0 0 0 1 1 1 . . .

ZR
s 0 0 1 0 0 0 0 0 0 0 0 1 . . .

ZE
s 2 3 3 3 3 2 2 2 2 3 4 5 . . .
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Analogously we can create the matrix�1 form > 2. We recall that the transition probability
matrix is the same for both the standard and the superiority designs.

The method can be easily modified in order to accommodate different penalty values (m
value) depending on which characteristic the adverse event is associated to, by appropriately
manipulating the transition probabilities and the transition probability matrix. This is a key
advantage of the proposed mathematical framework which is based on the formulation of
the method using an appropriate stochastic process (Markov chain).

2.5 Setting up a Hypothesis Test Using the Distribution of S

Let us assume that for the cure of an illness we use a reference treatment following a dis-
tribution FYR

1 YR
2
. A new treatment for the same illness is proposed which we assume that

follows a distribution FYE
1 YE

2
. In order to compare the two treatments using the standard or

the superiority design we should set up a hypothesis test.
The hypothesis test, based on the distribution of S, is of the form

H0 : FYR
1 YR

2
= FYE

1 YE
2

,

i.e. the probabilities of the treatment being successful with respect to the two character-
istics and the probabilities of the adverse event for both treatments are equal for both
characteristics. The alternative hypothesis is

H1 : FYR
1 YR

2
�= FYE

1 YE
2

,

Design parameters of the procedure are k and c.
The procedure for determining k and c and then applying the decision rule may now be

described in the form of Algorithm 1. The algorithm holds for both designs. At each stage
we examine all three sub-rules (sr)1, (sr)2, (sr)3 to see if they are satisfied or not. The
above procedure has the following features: (i) terminates the study as soon as the outcome
is known, (ii) does not involve repeated significance testing on accumulating data (thus it
protects from an increased overall significance level), (iii) allows the exact power to be
easily calculated under different alternatives.

Algorithm 1 Hypothesis testing procedure

1: Define FYR
1 YR

2
(H0) and FYE

1 YE
2
(H1).

2: Define the desired probability of type I error, α and power γ .
3: Set the appropriate penalty m.
4: For various k’s,

(i) calculate ck,m using P(S ≤ ck,m|k,m, H0) = α.
(ii) calculate γk,m using P(S ≤ ck,m|k, m,H1).

5: Choose k and ck,m that give γk,m ≥ γ , preserving α to the desired level.
6: Run the clinical trial, tracking ZR

s , Z
E
s . If for the first time at the n-th pair,

n ≤ c and ZR
s ≥ k interrupt the study in favor of “Treatment R”.

n ≤ c and ZE
s ≥ k interrupt the study in favor of “Treatment E”.

n > c and both ZR
s , Z

E
s ≥ k interrupt the study with a decision that the two treatments

are equivalent.
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3 Power Study and Numerical Comparisons

In this section we provide a power investigation in order to evaluate the two designs. We
first present numerical results for the case that the probability of an adverse event is the
same (constant for the two treatments) while in the sequel we give results for the case that
the probability of an adverse event is different. Finally, we numerically justify the necessity
of the new designs.

3.1 Constant Adverse Event Probabilities

Assume that we have a placebo (reference treatment) following the distribution F
H0
Y1Y2

=
FYR

1 ,YR
2
given in Table 3 and that we want to identify the case where an experimental treat-

ment is better than the reference one with level of significance α at most 0.05, power
γ ≥ 0.90 and keeping the sample size as small as possible. Table 4 gives the power, the
expected number of pairs (in brackets) and c (i.e the maximum number of pairs of patients
required to be enrolled) for k = 5 to 10 and the m = 1 and the m = 2 penalizations for both
the standard and the superiority designs.

Let the experimental treatment follow the distribution F
H 5
1

Y1Y2
. For the standard design

with m = 1, the obvious choice is k = 6, as this is the smallest k which gives γ ≥
0.90. The value of the critical point c equals 9, which corresponds to an α = 0.046. The
expected number of pairs is approximately 6, so the expected number of enrolled patients
is 12. For the m = 2 penalization, we choose k = 7, as this is the smallest k which gives
γ ≥ 0.90. The value of the critical point c equals 12, which corresponds to an α = 0.043.
The expected number of pairs is approximately 8, so the expected number of patients to
be enrolled is 16 - 4 more than the previous case. The same table presents results for the
other four alternative hypotheses, given above, keeping the probability of development of
an adverse event constant.

For the superiority design with m = 1 the obvious choice is k = 6. The value of the
critical point c equals 10, which corresponds to an α = 0.039. The expected number of
pairs is approximately 7, so the expected number of patients to be enrolled is 14. For the
m = 2 penalization, we choose k = 7, as this is the smallest k which gives γ ≥ 0.90. The
value of the critical point c equals 15, which corresponds to an α = 0.052. The expected
number of pairs is approximately 9, so the expected number of patients to be enrolled is 18
- 4 more than the previous case. We observe that we choose the same k (k = 6 for m = 1
and k = 7 for m = 2) regardless of the design. However, for the standard design we have
to recruit two patients less, regardless m. In most cases the two designs give similar results.
However, because we use a discrete test statistic we cannot have exactly the same α, and
thus we cannot make straightforward comparisons.

Table 3 The null and alternative hypotheses with constant adverse event probability

H0 H 1
1 H 2

1 H 3
1 H 4

1 H 5
1

Y2 Y2 Y2 Y2 Y2 Y2

0 1 0 1 0 1 0 1 0 1 0 1

Y1 0 0.645 0.080 0.590 0.085 0.485 0.090 0.375 0.100 0.235 0.140 0.070 0.160

1 0.080 0.045 0.085 0.090 0.090 0.185 0.100 0.275 0.140 0.335 0.160 0.460

AE 0.150 0.150 0.150 0.150 0.150 0.150
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Fig. 1 The pmf of S for k = 8, 10 and m = 1, 2 for H0 and H 4
1 under the superiority design

In both cases, as k increases the power γ increases. Furthermore, as k increases the
difference between the power of the m = 1 and the power of the m = 2 case increases. The
power also increases as the alternative hypothesis departs from the null hypothesis.

Figures 1a–f present the probability mass function (pmf) of S for k = 8 and k = 10
and probabilities from H0 for the superiority design. In each row three graphs are presented
- the left graph corresponds to H0 while the second one to the alternative hypothesis H 4

1
for m = 1 and the third one to the same alternative hypothesis for m = 2. It is evident
that the distribution of S has excellent discrimination properties. Similar graphs hold for the
standard design as well.

3.2 Varying the Adverse Event Probability

Table 6 shows the results for m = 1 and m = 2 for both designs, allowing the probability
of occurrence of an adverse event to vary. Assume that the reference treatment follows the
distribution F

H0
Y1Y2

given in Table 5 and that we want to identify the case where an experi-
mental treatment is better than the reference one with α at most 0.05, γ ≥ 0.90 and keeping
the sample size as small as possible. Let the experimental treatment follow the distribution

F
H 4
1

Y1Y2
in Table 5.

As far as the standard design with m = 1 is concerned, we choose k = 6 that gives
γ = 0.925. The c equals 9 and the expected number of pairs is approximately 7 (i.e. 14
patients). For m = 2, we choose k = 7 that gives γ = 0.949, c = 12, and the expected

Table 5 The null and alternative hypotheses with varying adverse event probability

H0 H 1
1 H 2

1 H 3
1 H 4

1 H 5
1

Y2 Y2 Y2 Y2 Y2 Y2

0 1 0 1 0 1 0 1 0 1 0 1

Y1 0 0.645 0.080 0.590 0.105 0.485 0.125 0.375 0.145 0.235 0.190 0.070 0.215

1 0.080 0.045 0.105 0.090 0.125 0.185 0.145 0.275 0.190 0.335 0.215 0.460

AE 0.150 0.110 0.080 0.060 0.050 0.040
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number of pairs is approximately 8 (i.e. 16 patients). Thus for the m = 2 penalization we
have to recruit 2 more patients obtaining, however, higher power (Table 6).

For the superiority design with m = 1 we choose k = 7, which gives power equal 0.969.
The c equals 14 and the expected number of pairs is approximately 9 (i.e. 18 patients). For
the m = 2 penalization we choose k = 6 that gives γ = 0.909, c = 11, and the expected
number of pairs is approximately 8 (i.e. 16 patients). This means that we want 2 patients
less on the m = 2 case but with lower power.

These results demonstrate an important property of the proposed method. Our method is
a flexible one, in the sense that it enables researchers to choose the values of the parameters
k and m with respect to the power γ and the sample size. For example, let a researcher use
the superiority design and fixes k to 6. He will then choosem = 2 as this gives greater power
(γ = 0.909 vs γ = 0.899). If the researcher fixes m to 1 (he may assume that the adverse
event is non-severe) he will choose k = 7 as this gives power γ ≥ 0.90. However, recruiting
only one more pair of patients he can choose k = 8 that gives higher power (γ = 0.990).

3.3 Choosing m

A reasonable question is how to choose the value of m. In Section 2.1 we mentioned that
the doctor may choose m according to the severity of the adverse event. The more serious
the adverse event the higher the value of m. However, m can be optimized in such a way to
obtain the maximum power as the value of m is influenced by the probabilities of Eq. 1.

Figure 2a–d present the power for the m = 1 and m = 2 penalization for the superiority
design allowing one of the parameters to change. Similar graphs hold for the standard design
as well. More specifically, Fig. 2a shows the power for m = 1 and m = 2 when k changes
from 5 to 10 with constant probability of adverse event. The larger the k the larger the
power for both m = 1 and m = 2, with m = 1 giving higher power. Figure 2b shows the
power for m = 1 and m = 2 with k from 5 to 10 when the reduction of the probability of
adverse event affects only the probability of treatment being successful. The larger the k the
larger the power for both m = 1 and m = 2, with m = 2 giving higher power. Figure 2c
shows the power for m = 1 and m = 2 when the probability of adverse event πE

�� increases.
The smaller the πE

�� the larger the power for both m = 1 and m = 2, an excellent feature
of the method. Figure 2d presents the power for m = 1 and m = 2 when the difference
δ = πE

11 − πR
11 increases from 10% to 50%. The larger the difference δ the larger the power

for both m = 1 and m = 2. Comparing the m = 1 and m = 2 penalizations, the power
curves converge as k and δ increase while the curves diverge as πE

�� increases.
Summarizing, we can select m = 1 when we have constant probability of adverse event.

Contrary, we can select m = 2 when we can assume that the reduction of the probability
of adverse event affects only the probability of treatment being successful. Moreover, the
interested reader can experiment numerically himself using specific practical scenarios and
decide himself whichm is suitable, using the Mathematica program which is available under
request, or by programming Algorithm 1 by himself.

3.4 Comparison with the Design of Stopping Immediately the Clinical Trial
for an Adverse Event

In this subsection we compare the new design using the penalization of the treatment in case
of an adverse event with Design 4.3 of Bersimis et al. (2014) where the development of an
adverse event immediately terminates the clinical trial. Assume that a reference treatment
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Fig. 2 The power against to (a) k with constant probability of adverse event, (b) k with decreasing proba-
bility of adverse event, (c) probability of adverse event πE

1,3, and (d) difference δ = πE
11 −πR

11 for m = 1 and
m = 2 and the superiority design

is described by the distribution H0 : πR
00 = 0.899, πR

11 = 0.003, πR
�� = 0.004 and that we

want to identify the case where “Treatment E” with distribution H1 : πE
00 = 0.487, πE

11 =
0.090, πE

�� = 0.004 is better than “Treatment R” with α at most 0.05, γ ≥ 0.95 and keeping
the sample size as small as possible. We assume that we have a rare adverse event (e.g. the
patient experiences a coma), so its probability is too small (πR

�� = 0.004). Table 7 shows
the results for the Design 4.3 and the m = 1 and m = 2 penalization under the superiority
design. Design 4.3 terminates the clinical trial early enough but with very low power. In
fact, as k increases, the power decreases. Using the case of penalization we select k = 5
which gives c equal to 18 for both m = 1 and m = 2. In both cases the expected number of
pairs is approximately 10, so the expected number of patients to be enrolled is 20.

Assume now that a reference treatment causes a common non-severe adverse event such
as dizziness or sleepiness. Usually such adverse events occur with high probability. For
example, let a reference treatment is described by H0 shown in Table 3 and that we want
to identify the case that “Treatment E” described by H 5

1 shown in Table 3 is better than
“Treatment R” with α at most 0.05, γ ≥ 0.90 and keeping the sample size as small as
possible. From Table 7 we see that Design 4.3 gives c = 1 for all k. This means that this
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design tends to terminate the clinical trial at the first pair of patients and this leads to a low
power. However, this is reasonable since it is likely an adverse event to immediately occur
due to its high probability. Conversely, with the m = 1 penalization we select k = 7 which
gives c = 14, γ = 0.973 and 8 pairs of patients. With the m = 2 penalization we select
k = 8 which gives c = 19, γ = 0.962 and 10 pairs of patients.

4 Discussion

In this paper, we proposed two designs for Phase II comparative clinical trials: the standard
and the superiority one. Here we consider that the development of an adverse event penalizes
the corresponding treatment by m points. We presented the general m penalization of the
corresponding treatment and the special cases of m = 1 and m = 2 penalization.

The new designs fall within the family of cases that can be handled with the unifying
and flexible framework based on the Markov chain embedding technique introduced by
Bersimis et al. (2014). The formulation of the procedure as a stochastic process can be easily
accomplished and it offers the indisputable advantage of further generalizing the designs to
cover more cases such as group sequential designs, more than two binary responses, more
complex scoring systems implying unequal weights to the outcomes, etc., through slight
modifications in the transition probability matrix.

The numerical illustration showed a very good performance of the new designs. The test
terminates the clinical trial early enough (involving a small number of patients) with high
power. The penalization case should be preferred over Design 4.3 proposed by Bersimis
et al. (2014).

The method also offers the necessary tools in order to select penalty m based on either
power values or medical practice. A rational choice for researchers is to select m with
respect to the severity of the adverse event. This means that researchers can use a low
penalty with a mild adverse event, a moderate penalty with a moderate adverse event and a
larger penalty with a severe adverse event. An alternative solution is to select k with respect
to desirable power γ and then to select m which gives the maximum power or the minimum
number of pairs of patients (i.e. minimum number of patients). The numerical illustration
showed that m is also influenced by the probabilities of success and adverse event (i.e. the
probabilities defined in Eq. 1). For example, when the probability of adverse event is con-
stant, the difference between H0 and H1 is small, and k is small, larger m gives higher
power. As H1 departs more from H0, the m = 1 penalization gives higher power regardless
of k. The m = 2 penalization also gives higher power when the reduction of the probabil-
ity of adverse event is accounted for only by the probability of the experimental treatment
being successful. Because several parameters are involved the researcher may use ready
Mathematica programs.

The practitioner having in hand a specific problem (i.e. knowing the joint distribution
for the reference treatment and assuming the joint distribution for the experimental one) can
decide which of the proposed designs is preferable to his problem, guided by the power and
the sample size required. The best choice is the design that gives high power with small
sample size. A Mathematica program for computing the power for any choice of H0, H1, k,
and m is available upon request.

The method evaluates individuals randomized in pairs, and involves two responses,
binary or continuous converted to binary, a scoring system implying equal weights for
the two outcomes and an integer penalty for the occurrence of adverse events associated
with each of the outcomes. However, as already mentioned, the proposed method can
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be appropriately modified to handle cases where greater weight is given in one of the
characteristics or two or more adverse events are encountered.

The proposed method is essentially a pair randomization design. The pair randomiza-
tion may introduce imbalance in baseline covariables as other types of randomization, such
as simple randomization or block randomization, may do as well. To overcome this, the
researcher should match patients according to their characteristics and then evaluate similar
pairs. Another choice is to adopt a risk adjusted procedure. For the last case, the transition
probabilities are computed dynamically through a logit model and thus, they depend on the
patients’ characteristics.

Combined with the proposed methodology, paired randomization leads to a significant
reduction in sample size, which from the clinical researcher’s point of view is very important
in terms of time, resources, etc. The proposed method can also be modified to cover other
randomization schemes or group sequential designs with group sizes larger than 2 with a
slight modification in the transition probability matrix. The proposed design can also be
used for Phase III trials provided that the patients’ outcome is known relatively quickly.
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Appendix: The Components of the Transition Probability Matrix

The matrices that compose the transition probability matrix �1 are

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(ji , 0) (ji , 1) (ji , 2) . . . (ji , k − 3) (ji , k − 2) (ji , k − 1)
(ji , 0) p00 + p0∗ p01 p02
(ji , 1) p0∗ p00 p01
(ji , 2) p0∗ p00

(ji , 3) p0∗
. . .

...
. . .

(ji , k − 4) p01 p02
(ji , k − 3) p00 p01 p02
(ji , k − 2) p00 p01
(ji , k − 1) p0∗ p00

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(ji + 1, 0) (ji + 1, 1) (ji + 1, 2) . . . (ji + 1, k − 3) (ji + 1, k − 2) (ji + 1, k − 1)
(ji , 0) p10 + p1∗ p11 p12
(ji , 1) p1∗ p10 p11
(ji , 2) p1∗ p10

(ji , 3) p1∗
. . .

...
. . .

(ji , k − 4) p11 p12
(ji , k − 3) p10 p11 p12
(ji , k − 2) p10 p11
(ji , k − 1) p1∗ p10

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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� =
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(ji + 2, 0) (ji + 2, 1) (ji + 2, 2) . . . (ji + 2, k − 3) (ji + 2, k − 2) (ji + 2, k − 1)
(ji , 0) p20 + p2∗ p21 p22
(ji , 1) p2∗ p20 p21
(ji , 2) p2∗ p20

(ji , 3) p2∗
. . .

...
. . .

(ji , k − 3) p20 p21 p22
(ji , k − 2) p20 p21
(ji , k − 1) p2∗ p20

⎤

⎥
⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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�=
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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(ji + y, 0) (ji + y, 1) (ji + y, 2) . . . (ji + y, k − m + 1) (ji + y, k − m) (ji + y, k − m − 1) . . . (ji + y, k − 4) (ji + y, k − 3) (ji + y, k − 2) (ji + y, k − 1)
(ji , 0) p∗0 + p∗∗ p∗1 p∗2
(ji , 1) p∗∗ p∗0 p∗1
(ji , 2) p∗∗ p∗0

...
...

. . .
. . .

. . .

(ji , k − m) p∗∗ p∗0 p∗1 p∗2
(ji , k − m − 1) p∗∗ p∗0 p∗1 p∗2
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(ji , k − 4)
. . . p∗0 p∗1 p∗2

(ji , k − 3) p∗0 p∗1 p∗2
(ji , k − 2) p∗∗ p∗0 p∗1
(ji , k − 1) p∗∗ p∗0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

ji = 0, 1, . . . , k − 1 for i = 1, 2.
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