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Abstract Health and health service monitoring is among the most promising research area
today and the world work towards efficient and cost effective health care. This paper deals
with monitoring health service performance using more than one performance outcome
variable (multi-attribute processes), which is common in most health services. Although
monitoring whether a health service changes or improves over time is important this is well
covered in the current literature. Therefore this paper focuses on comparing similar health
services in terms of their performance. The proposed procedure is based on an appropri-
ate control chart. The paper deals with firstly the case when no risk adjustment is required
because the health services being compared treat the same patient case-mix which does not
vary over time. Secondly it deals with comparing health services where risk adjustment is
required because the patient case-mix they service do differ because they service either very
different geographical locations or service very different demographics of the same pop-
ulation. The technology developed in this paper could be used for example to assess and
compare health practitioners’ competence over time, i.e. to decide if two doctors are equiv-
alent in terms of their outcome performances. The waiting time random variable associated
with the run length distribution of the control charts (as well as to competence testing) is
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studied using a Markov Chain embedding technique. Numerical results are provided that
exhibit the value of the proposed procedures.

Keywords Competence assessment · Control charting · Health services monitoring ·
Markov Chain embedding technique · Multi-attribute comparative processes · Process
monitoring · Testing competence
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1 Introduction

In many health applications, the event under study is binary, e.g. the person suffers from
a disease or not, the patient survives after a difficult surgery or not, etc. In many cases,
processes are characterized by more than one categorical variable and are called multi-
attribute processes (Topalidou and Psarakis 2009; Woodall 1997).

A common practice in health-care applications when we work with multi-attribute pro-
cesses is to use aggregated data (Burkom et al. 2004; Dubrawski 2011), i.e. contingency
tables, etc. According to Ryan and Thompson (2002) we are unable to compare several
health outcomes without aggregated data. However, data aggregation leads to loss of infor-
mation and it significantly delays the detection of process shifts (Reynolds and Stoumbos
2000; 2004; Woodall and Montgomery 2004). Schuh et al. (2013) assumed an underlying
Poisson process and studied the effect of aggregation. However, the comparison with other
methods for varying aggregation periods, showed significant adverse effect of aggregation.

To improve the quality of medical practice and to ensure that a certain minimum standard
is maintained, it is essential to monitor and assess doctors’ performance and competence.
Monitoring the performance of hospitals and health practitioners is a distinguished problem
in health sector. A review of methods and systems involved in healthcare, public health, and
syndromic surveillance was made by Tsui et al. (2008). Usually, risk adjustment is used to
take into consideration the varying health conditions of the patients (Grigg and Farewell
2004; Sego et al. 2009; Steiner et al. 2000; Zhang et al. 2014; Zhang and Woodall 2015).

Recently, Maruthappu et al. (2014) presented a control chart for monitoring performance
which takes into account both surgeon-specific and patient-specific characteristics. In this
work, we aim in monitoring health practitioners’ performance in an innovative way tak-
ing into account their relative performance (comparing directly their performance). For
example, two endocrine surgeons can be online monitored for checking whether their per-
formance on thyroidectomy under local anaesthesia with respect to two outcome measures
- time taken to complete the operation, and pain experienced by the patient - has changed.

Another critical problem in health decision making is the assessment of competence
among health practitioners. According to Rethans et al. (1990), competence is what a doctor
is capable of doing while performance is what a doctor does in his day-to-day practice. To
ensure that a hospital maintains a certain minimum standard of medical practice, it is crucial
to hire equally experienced doctors and their performance maintained stable. Assume that
two nephrologists perform renal biopsy alternately at the same hospital. The comparison of
two doctors, can be seen from an acceptance sampling point of view. In this case, the aim
is to assess if one doctor outperforms another doctor. Assume that we have a trainee and a
consultant nephrologist and we wish to assess their competence at performing renal biopsy.
Such situations were treated in Lim et al. (2002) through a control chart assessing each
doctor independently. In this work, we assess the competence by introducing an appropriate
hypothesis testing procedure.
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To monitor doctors’ performance and assess their competence we have to assume that the
patients treated are “the same”. However, this assumption is at times infeasible. A solution
in this case is usually some risk adjustment to correct for patient differences. Thus, in the
following section we describe a method for monitoring doctors’ performance and assessing
their competence, while in Section 6 we briefly discuss how the proposed procedure is
applied under risk adjustment, using in this way both homogeneous and non-homogeneous
Markov processes for dealing with the problems under study.

To solve several problems arising in health sector, associated to multi-attribute pro-
cesses without aggregated data, in this paper we present two procedures that are defined
on multivariate sequences of trials that aim to performance monitor and competence assess.
The exact distribution of interest is studied using the Markov Chain embedding technique
(Balakrishnan et al. 2009). We also introduce the necessary details for applying risk
adjustment for monitoring two health practitioners’ performance.

The paper is organized as follows: In Section 2 we present the proposed monitoring
procedures while the methodology for calculating the run length associated distribution,
which is based on Markov chain embedding, is given in Section 3. Numerical results are
presented in Section 4 and two examples are given in Section 5. Three modifications of
the method - the version to detect the deterioration of the performance of both doctors, a
runs sum approach, and the risk-adjusted version - are discussed in Section 6 and, finally,
in Section 7 we give some concluding remarks.

2 Monitoring Health Practitioners’ Performance and Assessing Health
Practitioners’ Competence

In this section, we will present a unified method for monitoring doctors’ performance and
assessing doctors’ competence.

2.1 Monitoring Health Practitioners’ Performance

Assume that a hospital has two surgeons. To assess their performance, we can monitor their
performance in a comparative manner, considering the one of them as a reference (e.g. the
most experienced one). The basic idea of this paper is to monitor the performance of two
doctors in real-time.

2.1.1 Online Monitoring of Health Practitioners’ Performance with Respect to One
Characteristic

Consider first the case that we monitor the two surgeons - surgeon A and surgeon B - with
respect to one characteristic, e.g. the success of the operation. Thus, sequentially surgeries
outcome are accrued in terms of a characteristic, say X

g
s , g = A,B, (s corresponds to the s-

th surgery outcome) which takes two values representing whether the surgery was successful
(0) or not (1), i.e.

X
g
s =

{
0, if the s-th operation by surgeon g is successful
1, if the s-th operation by surgeon g is unsuccessful.

The probability that the s-th operation conducted by surgeon g is successful with respect
toX, is denoted by π

g

0,s = P(X
g
s = 0) while the probability that the s-th operation conducted
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by surgeon g is unsuccessful with respect to X is denoted by π
g

1,s = P(X
g
s = 1) = 1−π

g

0,s .
For each pair of patients s, s = 1, 2, . . ., we have two outcomes regarding the success or
not of the operations. Table 1 gives an example of such a scheme for the first 15 pairs.

As we may observe in Table 1 at the first pair, the operation conducted by surgeon A
is successful while the operation conducted by surgeon B is unsuccessful. At the second
pair both surgeons conducted unsuccessful operations. Thus, in Table 1 we have a two
dimensional sequence, with the first component referring to surgeon A and the second one
referring to surgeon B. Since at each time point, data from a different pair of patients is
accrued from the process, we assume that the results of each pair are independent from the
previous one. Moreover, the performance of the first doctor is considered independent from
the performance of the second doctor.

It is evident that surgeon A may performs well relative to surgeon B if a large number
of 1s appear in the sequence of XB

s . Analogously, surgeon B may performs well relative to
surgeon A if a large number of 1s appear in the sequence of XA

s . In order to monitor the
process, we propose to compute the difference between the number of “failures” for surgeon
A and the number of “failures” for surgeon B, considering as “failure” for the surgeon g the
case that Xg

s = 1, g = A,B.
For the s-th pair, the probabilities associated with XA

s , X
B
s , i.e.

p(s)
uv = P

(
XA

s = u,XB
s = v

)
, u, v = 0, 1 (1)

are

p
(s)
00 = πA

0,s · πB
0,s , p

(s)
10 = πA

1,s · πB
0,s , p

(s)
01 = πA

0,s · πB
1,s , p

(s)
11 = πA

1,s · πB
1,s (2)

since the two surgeons operate independently. Assuming the patients are “the same”
(patients of equal severity) then the subscript s can be eliminated and the outcomes of the
consecutive operations are considered homogeneous (i.e. having constant probabilities of
success and failure). However, by introducing the subscript s we permit to the proposed
procedure to cover the case that the patients are not “the same” (i.e. they have different
characteristics that affect the final outcome of the operation) and they are subjected to risk
adjustment (and as a result we permit the probabilities of success and failure varying for
different patients).

Thus, having at hand the sequence of random variables XA
s , XB

s , we define a random
variable Dn that is the cumulative difference between the number of “failures” for surgeon
B and the number of “failures” for surgeon A, i.e.

Dn =
n∑

s=1

(
XB

s − XA
s

)
.

The difference XB
s − XA

s can take the values -1, 0, or 1, thus it is obvious that Dn is a
discrete variable taking values in Z with

E(Dn)=E
(∑n

s=1
(XB

s −XA
s )

)
=

∑n

s=1
E

(
XB

s − XA
s

)
=

∑n

s=1

(
E(XB

s ) − E(XA
s )

)
=0,

Table 1 A realization of a health process with the outcomes of the first 15 pairs of patients

Pair of patients (s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

XA
s 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 . . .

XB
s 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1 . . .



Methodol Comput Appl Probab (2017) 19:1169–1190 1173

if the two doctors are equally effective and the probabilities of success of the two doctors
are constant across the pairs of patients (assuming that the patients are “the same”). The
number of “failures” for each surgeon at each time point (pair of operated patients), given
in Table 1, is presented in Table 2. In this table we observe how the difference is evolving
from one time point to the other.

If the difference exceeds a value k we declare that the surgeon B do not performs well,
while if the difference is lower than −k we declare that surgeon B performs well relative to
surgeon A.

If instead of doctors we would like to monitor treatments, drugs, etc we can use the same
methodology as above. A similar approach was used by Bersimis et al. (2015) in the context
of clinical trials. However, this approach demands the difference of the number of successes
of the 2 doctors to exceed a specific threshold while Bersimis et al. (2015) did not take the
difference into account.

2.1.2 Online Monitoring of Health Practitioners’ Performance with Respect to Two
Characteristics

Let us now investigate how we can assess the surgeons’ performance with respect to two
dependent dichotomous characteristics. For example, we compare their performance with
respect to the success of the surgery (X1) and the occurrence of postoperative complications
(X2) (see e.g. Steiner et al. (2000)). X1 and X2 are binary variables defined, for pair of
patients s, as

X
g
i,s =

{
0, if the s-th operation conducted by surgeon g is successful in terms of the i-th characteristic
1, if the s-th operation conducted by surgeon g is unsuccessful in terms of the i-th characteristic,

i = 1, 2.
To monitor the process, we propose again to use Dn. If the differences are small, then

the two surgeons are equally efficient. If the difference exceeds a limit k we declare that
surgeon A performs well relative to surgeon B, while if the difference is lower than −k we
declare that surgeon B is more efficient.

In order to determine the value of limit k, we define two new random variables that count
the cases showing “failure” for surgeon A and surgeon B, respectively. Thus, on the sequence
of events {XA

1,s , X
A
2,s}, {XB

1,s , X
B
2,s}, we define the two dimensional random variable (XA

s ,

XB
s ) as follows:

XA
s = XA

1,s + XA
2,s , XB

s = XB
1,s + XB

2,s .

(XA
s , X

B
s ) takes values on {0, 1, 2} × {0, 1, 2}.

Table 2 Number of “failures” and cumulative number of “failures” for each surgeon at each pair of patients
of the surgical process with one characteristic

Pair of patients (s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

XA
s 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 . . .

XB
s 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1 . . .

XB
s − XA

s 1 0 –1 0 0 0 0 1 –1 1 1 1 0 0 1 . . .

Dn = ∑n
s=1

(
XB

s − XA
s

)
1 1 0 0 0 0 0 1 0 1 2 3 3 3 4 . . .
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The probabilities associated with XA
s , X

B
s , i.e.

p(s)
uv = P(XA

s = u,XB
s = v), u, v = 0, 1, 2, (3)

are
p

(s)
00 = πA

00,s · πB
00,s , p

(s)
10 = πA

10,s · πB
00,s + πA

01,s · πB
00,s , p

(s)
20 = πA

11,s · πB
00,s ,

p
(s)
01 = πA

00,s · πB
10,s + πA

00,s · πB
01,s , p

(s)
11 = πA

10,s · πB
01,s + πA

01,s · πB
10,s + πA

01,s · πB
01,s + πA

10,s · πB
10,s , p

(s)
21 = πA

11,s · πB
01,s + πA

11,s · πB
10,s ,

p
(s)
02 = πA

00,s · πB
11,s , p

(s)
12 = πA

10,s · πB
11,s + πA

01,s · πB
11,s , p

(s)
22 = πA

11,s · πB
11,s ,

(4)
with

π
g
ij,s = P(X

g

1,s = i, X
g

2,s = j), i, j = 0, 1, g = A, B.

The π
g
ij,s’s are assumed to be known or at least estimated from a large enough historical

data set.
Thus, having at hand the sequence of random variables XA

s , X
B
s , we define the random

variable

Dn =
n∑

s=1

(XB
s − XA

s ).

Again, it is obvious that XB
s − XA

s is a discrete variable taking values in C ⊆ Z,
C = {−2, −1, 0, 1, 2}with expected value equal to zero under the assumption that the prob-
abilities of success of the two doctors are equal and constant across the pairs of patients.
The number of “failures” for each surgeon and the evolvement of the difference during time
of a hypothetical health process is given in Table 3.

Analogously, we can extend the method to be used for a process with more than two
characteristics.

2.1.3 Online Monitoring of Health Practitioners’ Performance Taking into Account
the Appearance of a Severe Complication by the Doctor’S Fault

Consider now the case where during the operation, a patient experiences death or another
severe complication (SC) by assumed fault of the surgeon A or B. We assume that this case
immediately terminates the comparison in favor of surgeon B or surgeon A.

In this case, XA
s and XB

s take the values 0, 1, 2, and ξ , where ξ means the occurrence of

a SC. Thus, here the probabilities p
(s)
uv associated with XA

s and XB
s are given by Eq. 3 and

p
(s)
SC corresponds to the probability of a SC in a patient treated by one of the two doctors.

The p
(s)
SC = 1 − ∑

u,v p
(s)
uv .

Table 3 Number of “failures” and cumulative number of “failures” for each surgeon at each pair of patients
of the surgical process with two characteristics

Pair of patients (s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

XA
1,s 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 . . .

XA
2,s 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 . . .

XB
1,s 1 1 0 1 1 0 0 1 0 1 1 1 1 0 0 . . .

XB
2,s 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 . . .

XB
s − XA

s 2 1 –1 0 1 0 –1 0 0 1 1 1 2 0 -1 . . .

Dn = ∑n
s=1(X

B
s − XA

s ) 2 3 2 2 3 3 2 2 2 3 4 5 7 7 6 . . .
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In this case, we want three rules to assess comparatively the performance of the two
surgeons:

– if −k < Dn < k the two surgeons are equally efficient,
– if Dn > k or we observe a SC by assumed fault of surgeon B, surgeon A is more

efficient,
– if Dn < −k or we observe a SC by assumed fault of surgeon A, surgeon B is more

efficient.

2.1.4 Run Length Distribution of the Monitoring Scheme

In Section 3 we will study the run length distribution of the proposed procedure, by studying
the waiting time LD defined formally as

LDn = min {n : Dn > k or Dn < −k} , n = 1, 2, . . .

for the cases presented in Sections 2.1.1 and 2.1.2 and

LDn = min {n : Dn > k or Dn < −k or a SC happened} , n = 1, 2, . . .

for the case of Section 2.1.3.
Someone could argue why not to use the method exploiting the multinomial CUSUM

chart proposed by Ryan et al. (2011). This method requires a prior knowledge of the direc-
tion of the shift. However, it is unlikely in practice to know in advance if the performance of
a doctor has improved or worsened. In our method we do not need to know the direction of
the shift. Moreover, although the method of Ryan et al. (2011) can be applied to the cases
of Sections 2.1.1 and 2.1.2, it cannot be applied when a SC occurs.

2.2 Assessment of Two Doctors’ Competence

When we want to assess two doctors’ competence, we apply a strategy similar to accep-
tance sampling strategy. This resembles the designs of Bersimis et al. (2015) for the early
termination of Phase II comparative clinical trials.

2.2.1 Comparison of Doctors’ Competence with Respect to One and Two
Characteristics

Assume that we want to evaluate whether a trainee surgeon (T) has sufficient experience and
training to take on more severe cases. For this reason we can compare his/her competence
with that of a consultant surgeon (C). The framework is the same as in the case of online
monitoring with respect to one characteristic. Again, we consider that the two surgeons
operate alternately on similar incidents as patients enter the operating room sequentially and
we define Xg , g = T , C for the s-th pair of patients, as

X
g
s =

{
0, if the s-th operation by surgeon g is successful
1, if the s-th operation by surgeon g is unsuccessful.

The probabilities associated with XT
s , X

C
s , i.e. p

(s)
uv = P(XT

s = u,XC
s = v), u, v = 0, 1,

are the same as in Eq. 2.
It is again evident that surgeon C may be considered better than T if larger number

of 1s than expected appeared in the sequence of XT
s . Thus, here we are not interested in

monitoring the performance of the surgeons over time, but whether there is evidence that the
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two surgeons are not equivalent in performance. Here, the hypothesis is tested by observing
whether Dn exceeds the threshold value k.

The generalization to the two characteristics is straightforward. The only difference is
that the probabilities p

(s)
uv = P(XT

s = u,XC
s = v), u, v = 0, 1, are not those given in Eq. 2

but those given in Eq. 4.
The waiting time LDn defined in the previous subsection can be used in order to define a

sequential acceptance sampling scheme, in the sense that if one of the two doctors is signif-
icantly better than the other, we will quickly identify a value of Dn beyond the thresholds k

or −k.

3 The Exact Distribution of LDn

The aim of this section is to establish the exact distribution of the discrete random variable
LDn . To this end, we will exploit the widely used Markov Chain embedding technique
(Balakrishnan et al. 2009).

In light of this, we first define an appropriate Markov Chain {Vs, s = 0, 1, 2, . . .}, and
then its state space and its transition probability matrix. The state space, which has d =
2k + 1 elements, has the form � = {i : i = −k, . . . , k} ∪ {αd}, where αd is the absorbing
state and the indice i tracks the difference Dn. The Markov Chain is defined as

Vn =
{

i, if Dn = i

αd, ifDn > k or Dn < −k or SC happened,

n = 1, 2, . . .. By convention, it holds that V0 = 0. The state αd corresponds to all the
possible absorbing states of the chain. Absorbing are all the states of the form i, for i ≥ k+1
or i ≤ −(k + 1). The transition probability matrix is

�
(s)
0,j = [P(Vs = α�|Vs−1 = α�′)]d×d ,

where here α�′ and α� are states of � and s corresponds to the s-th patient. This setup
provides us with the necessary tool to handle the case that the patients are not “the same”
as in the case of risk adjustment which is presented at Section 6. The index j corresponds
to the number of the characteristics we treat. Thus, �(s)

0,1 is the transition probability matrix

in the case of one characteristic and �
(s)
0,2 is the transition probability matrix in the case of

two characteristics.
According to the Markov Chain embedding technique it holds that

P(LDn ≤ n) = P(Vn = αd) = π ′
0

(
n∏

s=0

�
(s)
0,j

)
ed , (5)

and
P(LDn ≤ n) = P(Vn = αd) = π ′

0�
n
0,j ed , (6)

when �
(s)
0,j = �0,j , i.e. all the patients assumed “the same” (patients of equal severity), π ′

0
is the 1 × d vector of initial probabilities (vector of 0s, except the middle element which is
equal to 1, since the starting point of the Markov chain is 0), and finally e′

d is an 1×d vector
of the form (0, 0, . . . , 1). Then, the probability distribution of LDn may be calculated using
the formula

P(LDn = n) = P(LDn ≤ n) − P(LDn ≤ n − 1) = π ′
0

(
n∏

s=0

�
(s)
0,j −

n−1∏
s=0

�
(s)
0,j

)
ed
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and specifically for the case that there is not risk adjustment we may use the

P(LDn = n) = P(LDn ≤ n) − P(LDn ≤ n − 1) = π ′
1(�1,j )

n−1h,

where π1 is a (d − 1) × 1 vector with elements all the entries of π0 except the last one (this
vanishes for non-degenerate cases) and �1,j is matrix �0,j without the last column and the
last row. The vector h equals 1 − �1,j1, where 1 is a (d − 1) × 1 vector containing ones;
exploiting the fact that the transition probability matrix �0,j is stochastic. The vector h is
filled up with the transition probabilities from the corresponding state to the absorbing state
(for more details see Balakrishnan et al. (2009) and references therein).

The transition probability matrix as well as the vectors of initial probabilities for the
cases of one and two characteristics is given and described in Appendices A.1 and A.2,
respectively. Guidelines for the case that risk adjustment is applied is given in Section 6.

4 Numerical Results

In this section we present examples of monitoring the performance of two surgeons with
respect to one and two characteristics. Moreover, we present examples of monitoring
two surgeons taking into account the appearance of a SC, and of assessing two doctors’
competence with respect to two characteristics.

4.1 Monitoring Doctors’ Performance

Online monitoring of two doctors’ performance with respect to one characteristic
Assume that the surgeons A and B acquiring patients of equal severity conduct successful

operations with probability πA
0 = πB

0 = 0.950 and unsuccessful operations with probabil-
ity πA

1 = πB
1 = 0.050. This is the in-control case (ICC) under the Case A given in Table 4.

The same table also shows 3 different out-of-control cases (OCC): OCC A, OCC B, and
OCC C which represent that although surgeon’s A performance remains constant, the per-
formance of surgeon B deteriorates. The 3 OCCs are ordered according to the value of a
“non-centrality like statistic” defined as

λ1 =
√√√√∑

i

(
πICC

i − πOOC
i

)2
πICC

i

.

Table 4 The ICC and the OCCs for online monitoring of two doctors’ performance with respect to one
characteristic

ICC OCC A OCC B OCC C

πA
0 πB

0 πA
1 πB

1 πA
0 πB

0 πA
1 πB

1 πA
0 πB

0 πA
1 πB

1 πA
0 πB

0 πA
1 πB

1

Case A 0.95 0.95 0.05 0.05 0.95 0.90 0.05 0.10 0.95 0.80 0.05 0.20 0.95 0.75 0.05 0.25

Case B 0.85 0.85 0.15 0.15 0.90 0.85 0.10 0.15 0.93 0.85 0.07 0.15 0.95 0.85 0.05 0.15
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Table 5 shows the average run length (ARL), the standard deviation of the run length
(SDRL), and the percentage ARL improvement (PI%) for the three OCCs for k from 4 to
10. According to Antzoulakos and Rakitzis (2008), the ARL is the mean of LDn , i.e.

ARL = E(LDn) = π ′
1(I − �1,j )

−11,

while SDRL, is the standard deviation of LDn , i.e.

SDRL =
√
2π ′

1�1,j (I − �1,j )−21 + π ′
1(I − �1,j )−11 − (

π ′
1(I − �1,j )−11

)2
.

Let us consider OCC B which claims that the probability of successful operation by
surgeon B has decreased from 95% to 80%. For k = 5, the in-control ARL (ARL0) equals
to 378.947 while the out-of-control ARL (ARL1) equals to 39.993, which corresponds to
a 89.45% decrease. From Table 5 we observe that as k increases, the PI% increases too.
Furthermore, as λ1 increases, the PI% increases too.

Table 4 also presents Case B which corresponds to the case where the performance of
surgeon A improves while surgeon B remains at the same level. The results for this case
are similar to those of Case A, indicating that the proposed method has good performance
regardless whether the performance of a doctor improves or worsens.

Here arises the question which k should the researcher choose. There are two options
about the selection of k: the first one is according the desired ARL0, while the latter is
according the maximum PI% for given shift. Assume that by design we set the ARL0 to
be almost 370.4 which is the ARL0 for a standard Shewhart control chart. Thus, for Case A

Table 5 The ARL, SDRL, and the PI% for online monitoring of two doctors’ performance with respect to
one characteristic

ICC OCC A OCC B OCC C

k ARL SDRL ARL SDRL PI% ARL SDRL PI% ARL SDRL PI%

Case A 4 263.158 216.398 95.342 65.832 63.77% 33.306 17.473 87.34% 24.995 12.108 90.50%

5 378.947 310.942 117.319 76.265 69.04% 39.993 19.190 89.45% 29.999 13.274 92.08%

6 515.789 422.674 138.510 84.870 73.15% 46.665 20.741 90.95% 34.999 14.339 93.21%

7 673.684 551.595 159.191 92.181 76.37% 53.333 22.177 92.08% 40.000 15.330 94.06%

8 852.632 697.705 179.568 98.595 78.94% 59.999 23.523 92.96% 45.000 16.260 94.72%

9 1052.630 861.005 199.773 104.387 81.02% 66.667 24.795 93.67% 50.000 17.139 95.25%

10 1273.680 1041.490 219.882 109.733 82.74% 73.333 26.006 94.24% 55.000 17.976 95.68%

λ1 0.000 0.229 0.688 0.918

Case B 4 98.039 80.237 81.992 62.096 16.37% 60.760 40.175 38.02% 49.765 29.110 49.24%

5 141.176 115.458 105.924 77.687 24.97% 74.102 45.784 47.51% 59.916 32.224 57.56%

6 192.157 157.083 129.431 91.721 32.64% 87.052 50.413 54.70% 69.971 34.934 63.59%

7 250.980 205.113 152.287 104.116 39.32% 99.781 54.397 60.24% 79.990 37.393 68.13%

8 317.647 259.546 174.487 115.005 45.07% 112.395 57.955 64.62% 89.997 39.678 71.67%

9 392.157 320.383 196.121 124.604 49.99% 124.950 61.219 68.14% 99.999 41.830 74.50%

10 474.510 387.624 217.304 133.141 54.20% 137.477 64.271 71.03% 110.000 43.874 76.82%

λ1 0.000 0.140 0.224 0.280
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we choose k = 5 as this is the value that gives ARL0 ≈ 370.4. Alternatively, if we decide
to achieve a decrease in ARL of at least 90%, we should select k = 6 as this is the lowest
value that gives PI% ≥ 90%.

Online monitoring of two doctors’ performance with respect to two characteristics
Assume now the in-control case ICC under Case A given in Table 6, in which the prob-

ability of an unsuccessful operation is small. Table 6 also shows 3 OCCs, which represent
increasing probability of unsuccessful operations. The OCCs are ordered according to the
value of a “non-centrality like statistic” defined as

λ2 =

√√√√√∑
i

∑
j

(
πIC

ij − πOOC
ij

)2
πIC

ij

.

As Case B (also given in Table 6) we consider the case where π00 = 0.050, π01 =
0.100, π10 = 0.100, π11 = 0.750. Here we assume that the probability of an unsuccessful
operation is large. Three different OCCs representing decreasing probability of complica-
tions are shown in Table 6, as well. The 3 out-of-control cases are again ordered according
to the value of λ2.

Table 7 shows the ARL, the SDRL, and the PI% for various threshold values of k.
Assume OCC B under Case A. The ARL0 equals to 247.982 while the ARL1 equals
to 23.872, which corresponds to a 90.37% decrease. From Table 7 we observe that as k

increases the percentage improvement PI% increases too. Furthermore, as λ2 increases
PI% increases too. Similar results hold for Case B, indicating again that the proposed
method has good performance regardless whether the probability of unsuccessful operations
is small or large.

The choice of k can also be chosen according to the desired in-control ARL or the desired
percentage ARL reduction.
Online monitoring of doctors’ performance taking into account the appearance of a
severe complication by the doctor’s fault.

Assume now the ICC under Case C in Table 6, in which the probability of the occurrence
of a severe complication by a surgeon’s assumed fault is 0.005. The 3 OCCs shown in

Table 6 The ICC and the OCCs for online monitoring of two doctors’ performance with respect to two
characteristic

ICC OCC A OCC B OCC C

X2 X2 X2 X2

0 1 0 1 0 1 0 1

Case A X1 0 0.950 0.020 0.850 0.050 0.750 0.090 0.650 0.125

1 0.020 0.010 0.050 0.050 0.090 0.070 0.125 0.090

Case B X1 0 0.050 0.100 0.100 0.125 0.200 0.100 0.250 0.125

1 0.100 0.750 0.125 0.650 0.100 0.600 0.125 0.500

Case C X1 0 0.950 0.020 0.900 0.025 0.850 0.030 0.800 0.050

1 0.020 0.005 0.030 0.040 0.040 0.075 0.050 0.095

Case D X1 0 0.300 0.100 0.100 0.125 0.050 0.100 0.010 0.020

1 0.100 0.500 0.125 0.650 0.100 0.750 0.020 0.950
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Table 7 The ARL, SDRL, and the PI% for online monitoring of two doctors’ performance with respect to
two characteristic

ICC OCC A OCC B OCC C

k ARL SDRL ARL SDRL PI% ARL SDRL PI% ARL SDRL PI%

Case A 4 174.092 144.232 36.765 24.103 78.88% 20.001 11.204 88.51% 13.676 6.845 92.14%

5 247.982 204.563 44.224 26.986 82.17% 23.872 12.301 90.37% 16.311 7.492 93.42%

6 334.966 275.580 51.525 29.413 84.62% 27.727 13.281 91.72% 18.944 8.082 94.34%

7 435.038 357.285 58.742 31.553 86.50% 31.576 14.186 92.74% 21.576 8.631 95.04%

8 548.200 449.679 65.918 33.500 87.98% 35.423 15.032 93.54% 24.208 9.147 95.58%

9 674.450 552.760 73.077 35.312 89.17% 39.269 16.595 94.18% 26.839 9.635 96.02%

10 813.789 666.528 80.226 37.021 90.14% 43.115 16.595 94.70% 29.471 10.099 96.38%

λ2 0.000 0.261 0.892 1.945

p00 0.950 0.850 0.750 0.650

Case B 7 107.086 87.475 50.537 35.642 52.81% 27.319 16.504 74.49% 18.386 9.450 82.83%

10 200.384 163.653 72.871 46.839 63.63% 37.531 19.771 81.27% 25.071 11.086 87.49%

14 369.943 302.096 100.781 57.362 72.76% 50.910 23.140 86.24% 33.962 12.914 90.82%

15 420.397 343.291 107.584 59.517 74.41% 54.246 23.893 87.10% 36.184 13.331 91.39%

20 721.055 588.777 141.200 68.780 80.42% 70.915 27.334 90.17% 47.295 15.247 93.44%

λ2 0.000 0.261 0.892 1.945

p00 0.750 0.650 0.600 0.500

Case C 4 76.147 67.676 40.830 31.205 46.38% 25.433 17.308 66.60% 19.188 12.062 74.80%

5 81.148 76.150 46.862 35.058 42.25% 29.464 19.268 63.69% 22.356 13.398 72.45%

6 89.543 82.467 52.168 38.489 41.74% 33.304 21.105 62.81% 25.429 14.678 71.60%

7 93.145 87.148 56.873 41.699 38.94% 36.898 22.942 60.39% 28.361 15.976 69.55%

8 95.540 90.602 61.089 44.767 36.06% 40.307 24.774 57.81% 31.184 17.283 67.36%

9 97.129 93.140 64.881 47.734 33.20% 43.527 26.620 55.19% 33.894 18.612 65.10%

10 98.182 94.996 68.300 50.610 30.44% 46.575 28.475 52.56% 36.498 19.960 62.83%

λ 0.000 0.504 1.008 1.317

p00 0.950 0.900 0.850 0.800

Table 6 represent increasing probability of unsuccessful operations and constant probability
of appearance of a severe complication. The OCCs are ordered according to the value λ2.

Table 7 shows the ARL, the SDRL, and the PI% for the three OCCs for k from 4 to 10.
Consider OCC B which claims that the probability of successful operation by the surgeons
has decreased from 95% to 85%. For the case of k = 5, the ARL0 equals to 81.148 while
the ARL1 equals to 29.464, which corresponds to a 63.69% decrease. Contrary to Cases A
and B, we observe that as k increases, the PI% decreases. However, as λ2 increases, the
PI% increases too.

4.2 Assessment of Two Doctors’ Competence

The Case D given in Table 6 concerns the case we want to assess two surgeons’ competence
with two characteristics. The two surgeons conduct successful operations with probabil-
ity π00 = 0.300 while both surgeons are unsuccessful with π11 = 0.500. Surgeon A is
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successful and surgeon B is unsuccessful with probability π01 = 0.100 while surgeon A is
unsuccessful and surgeon B is successful with probability π10 = 0.100. Table 6 also shows
3 OCCs which represent increasing probability of unsuccessful operations. The OCCs are
ordered according to the value λ2.

As we have already discuss, this case resembles a comparative acceptance sampling
scheme. The results for several ks from 10 to 40 are shown in Table 8. Assume the OCC
B which corresponds to an increase in the probability of unsuccessful operation from 50%
to 75%. For k = 21, we will identify that the two surgeons have different competence
before the 64th pair of operations with power 91.3%. From Table 8, we observe that as k

increases, the power γ = P(Dn ≤ c|k, π00, π01, π10, π11) increases, while as λ2 increases,
γ increases.

5 Illustrative Examples

Here we will present two illustrative examples concerning the online monitoring of two
surgeons’ performance with respect to one and two characteristics, respectively. Assume
the Case A of Table 4. If we set by design the ARL0 to be almost 370.4, we choose k = 5
which gives ARL0 equal to 378.947 (see Table 5). Thus, we have to set the upper and lower
control limit of the control chart to 5 and −5, respectively.

From Fig. 1 we observe that until the 19th day the two surgeons had similar performance
(the line regresses around the central line). After the 20th day we observe that the cumulative

Table 8 The power of the
comparison of the competence of
two doctors with respect to two
characteristics

OCC A OCC B OCC C

k c0.05 power γ

10 16 0.153 0.296 0.647

11 19 0.180 0.356 0.744

12 22 0.203 0.408 0.816

13 26 0.249 0.494 0.896

14 30 0.290 0.568 0.943

15 34 0.327 0.631 0.969

16 38 0.361 0.684 0.983

17 43 0.412 0.751 0.993

18 48 0.459 0.804 0.997

19 53 0.501 0.846 0.999

20 59 0.556 0.890 1.000

21 64 0.589 0.913 1.000

22 70 0.633 0.938 1.000

23 77 0.685 0.960 1.000

24 83 0.719 0.971 1.000

25 90 0.758 0.981 1.000

30 127 0.895 0.998 1.000

35 172 0.991 1.000 1.000

40 222 0.992 1.000 1.000
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Fig. 1 The control chart for online monitoring of two surgeons’ performance with respect to one
characteristic

difference Dn increased, which means that the performance of surgeon B worsened. Finally,
at day 29, Dn went above the upper control limit. This means that we must take action in
order to identify what went wrong with the performance of surgeon B.

Assume now that a death occurred by assumed fault of surgeon B at day 16, depicted as
a solid cycle in Fig. 1. In this case we ought to stop the process declaring that surgeon A is
more efficient.

The second example concerns the online monitoring of two surgeons’ performance with
respect to two characteristics. Consider the Case C of Table 6. Setting by design the ARL0
to almost 90.0, the appropriate choice of k is 6 which gives ARL0 equal to 89.543 (see
Table 7). This, drives us to set the upper control limit of the control chart to 6 and the lower
control limit to −6. The Fig. 2 shows that from day 9 the Dn increased until day 15 where
Dn surpassed the upper control limit. Appropriate corrective actions were taken and two
days later the Dn started to decrease and eventually was stabilized after the 23rd day.

5
0

0 5 10 15 20 25 30

Day

D

-
5

Fig. 2 The control chart for online monitoring of two surgeons’ performance with respect to two
characteristic
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6 Extended Schemes

6.1 Detection of Deterioration of the Performance of Both Doctors

The proposed method compares two doctors assuming that one of them has a stable high
performance. In this subsection we outline a modification of the method in order to detect
deterioration of the performance of both doctors.

To this end, along with the monitoring of the Dn, we can monitor the performance of
one of the doctors, by depicting in the same chart the sequence Xn of his surgery outcomes,
i.e. success (0) or failure (1). Thus, on the chart we will depict a sequence of the form of
0001101110111. If we identify a run of length, say r , of failures then we stop the com-
parison processes declaring that the doctor’s performance has worsened, or both doctors’
performance has worsened if simultaneously we have small value of Dn. The use of runs
rules in the statistical process control has been discussed by Koutras et al. (2007).

Denoting by ARL(1) the in-control ARL of our method and by ARL(2) the in-control
ARL of the individual doctor’s chart, the total in-control ARL (ARL(t)) is approximated
(see Koutras et al. (2006)) by

1

ARL(t)
∼= 1

ARL(1)
+ 1

ARL(2)
.

For the computation of ARL(2) we exploit a generalized geometric distribution (Koutras
et al. 2007).

Assuming that we monitor doctor A, Table 9 shows theARL(1),ARL(2), and the approx-
imated and simulated ARL(t) for online monitoring the two doctors’ performance with
respect to one characteristic for k = 4, 5, 6 and runs of length r = 2, 3. If we consider the
ICC of Case A with k = 5 and r = 2, we have ARL(1) = 378.947, ARL(2) = 420.000,

Table 9 The ARL(1), ARL(2), and the approximate and simulated ARL(t) for online monitoring of two
doctors’ performance with respect to one characteristic for k = 4 − 10 and r = 2, 3 under Case A

ICC OCC A

k r ARL(1) ARL(2) Approx ARL(t) Simul ARL(t) ARL(1) ARL(2) Approx ARL(t) Simul ARL(t)

4 2 263.158 420.000 161.787 179.896 95.342 420.000 77.703 67.566

3 263.158 1706.140 227.992 259.679 95.342 1706.140 90.296 93.273

5 2 378.947 420.000 199.209 222.058 117.319 420.000 91.703 76.039

3 378.947 1706.140 310.077 370.536 117.319 1706.140 109.771 113.740

6 2 515.789 420.000 231.496 258.457 138.510 420.000 104.160 82.511

3 515.789 1706.140 396.056 497.893 138.510 1706.140 128.110 132.924

OCC B OCC C

ARL(1) ARL(2) Approx ARL(t) Simul ARL(t) ARL(1) ARL(2) Approx ARL(t) Simul ARL(t)

4 2 33.306 420.000 30.859 22.911 24.995 420.000 23.591 16.471

3 33.306 1706.140 32.668 31.931 24.995 1706.140 24.634 23.675

5 2 39.993 420.000 36.516 24.748 29.999 420.000 27.999 17.560

3 39.993 1706.140 39.077 37.594 29.999 1706.140 29.481 27.549

6 2 46.665 420.000 41.999 26.106 34.999 420.000 32.307 18.314

3 46.665 1706.140 45.423 42.970 34.999 1706.140 34.295 31.253
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approximate ARL(t) = 199.209, and simulated ARL(t) = 222.058. For the OCC A we
have ARL(1) = 117.319, ARL(2) = 420.000 (doctor A remains stable), approximate
ARL(t) = 91.703, and simulated ARL(t) = 76.039.

Figure 3 shows three examples of the modified version. In all cases, Dn is depicted. With
a red square we have visualized the time point that the cumulative difference exceeds the
upper or lower control limit, while with a red star we have visualized the time points that
doctor A has a failure. Specifically, in Fig. 3a although doctor A has a stable performance
(we see a few non-continuous red stars), the Dn went under the lower control limit at day
30. This means that the Dn decreased and eventually went below the lower control limit due
to the many failures of doctor A. Thus, doctor B is more efficient than doctor A. In Fig. 3b
the Dn remains between the control limits, which means that both doctors are equivalent.
However, at day 25 a run of failures of length 3 appeared for doctor A. This means that we
have to stop the monitoring procedure declaring that doctor B is more efficient. Finally, in
Fig. 3c both “rules” give an out-of-control signal. For the first time, the Dn went below the
lower control limit at day 24, which means that doctor A is responsible for the out-of-control
signal. However, 3 days later a run of failures of length 3 appeared for doctor A. This means
that we have to stop the monitoring procedure.

6.2 A Run Sum Approach

In this subsection we modify our method following the rational of the run sum control chart
(Montgomery 2013). As we will show, this extension appears to be better if we aim at large
values of in-control ARL.

In this case we assume that the Dn run sum type statistic equals to Dn−1 + 1 if the
difference XB − XA is positive (i.e. we have a failure for doctor B) for Dn−1 > 0 while it
equals to 0 if the Dn−1 < 0. Analogously, Dn equals to Dn−1−1 if the difference XB −XA

is negative (i.e. we have a failure for doctor A) for Dn−1 < 0 while it equals to 0 if the
Dn−1 > 0. Thus, the Dn run sum type statistic is

Dn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dn−1, if XB − XA = 0
Dn−1 + 1, if XB − XA > 0 and Dn−1 > 0

0, if XB − XA > 0 and Dn−1 < 0
Dn−1 − 1, if XB − XA < 0 and Dn−1 < 0

0, if XB − XA < 0 and Dn−1 > 0,

The transition probability matrix for the case of one characteristic is given in Appendix A.3.
Table 10 presents the ARL, the SDRL, and the PI% for the Case A of Table 4 for k from

3 to 10. We observe that in both cases the run sum modification achieves very high ARL
improvement. Let us now compare these results to those of Table 5. In order the comparison
to be valid, we should compare the PI% for similar in-control ARLs. For example, see the
results for k = 4 of Table 5 with in-control ARL equal to 263.158 and the results for k = 3 of
Table 10 with in-control ARL equal to 231.579. For the OCC A, the proposed method gives
PI% = 63.71% while for the run sum extension we have less PI% (equal to 63.71%). For
the OCC B, we have PI% = 87.34% for the proposed method and PI% = 86.80% for
the extended one. For the OCC C, we have PI% = 90.50% for the proposed method and
PI% = 90.38% for the extended one. Similar results we have for k = 5 of Table 5 with
in-control ARL = 515.789 and for k = 3 of Table 10 with in-control ARL = 484.211.
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Fig. 3 The modified control chart
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Table 10 The ARL, SDRL, and the PI% under the run sum modification for online monitoring of two
doctors’ performance with respect to one characteristic under Case A

ICC OCC A OCC B OCC C

k ARL SDRL ARL SDRL PI% ARL SDRL PI% ARL SDRL PI%

3 231.579 208.918 93.318 77.887 59.70% 30.578 21.014 86.80% 22.283 14.156 90.38%

4 484.211 452.464 151.880 130.560 68.63% 42.344 29.447 91.25% 30.028 19.147 93.80%

5 989.474 948.249 237.357 209.903 76.01% 56.541 40.305 94.29% 38.983 25.357 96.06%

6 2000.000 1948.990 362.299 328.775 81.89% 73.712 54.125 96.31% 49.349 32.981 97.53%

7 4021.050 3960.020 545.970 506.149 86.42% 94.495 71.533 97.65% 61.352 42.236 98.47%

8 8063.160 7991.930 816.199 769.959 89.88% 119.652 93.283 98.52% 75.249 53.374 99.07%

9 16147.400 16065.800 1214.110 1161.340 92.48% 150.105 120.291 99.07% 91.341 66.689 99.43%

10 32315.700 32223.100 1800.280 1740.880 94.43% 186.969 153.666 99.42% 109.974 82.522 99.66%

The only difference is that now the extended method gives a slight larger PI% for the OCC
B. Finally, let us consider two cases with larger in-control ARL (k = 10 of Table 5 with in-
control ARL = 1052.630 and k = 5 of Table 10 with in-control ARL = 989.474). In this
case, the extended method achieves higher percentage ARL improvement in all cases apart
from OCC A. Concluding, we can say that the proposed method is always better for small
shifts in the doctor’s performance while the extended method with the run sum approach is
better for larger in-control ARLs and moderate and large shifts in the doctor’s performance.

6.3 A Risk-Adjusted Procedure

Up until this stage we have assumed that the patients are matched with very similar char-
acteristics over time when comparing surgeons, but this may only be possible for very busy
surgeons with nearly identical patients over time. Thus, we now outline a process for com-
paring two surgeons’ performance when their patient case mix differs locally in time but
overlaps in the long-term, e.g. several years.

Phase I monitoring for the risk adjustment approach uses training data involving recent
past surgery performance to fit a logistic regression model on whether the surgery of two
surgeons was a success or not as a response. The explanatory variables in the logistic regres-
sion are the patient risk factors such as age, gender, patient co-morbidities, patient social
disadvantage index, etc. An indicator variable for the two surgeons is included as a factor
in the model using the combined data from both surgeons to fit this model. If the surgeon
indicator variable is not significant as an explanatory variable and it failures to interact with
any of the risk factors or with time then the two surgeons performances do not differ sig-
nificantly. In addition the time variable is not significant and time fails to interact with the
surgeon indicator variable then these two surgeons are not significantly different from each
other and are in-control (retrospectively speaking). This model will have adjusted for the
differing case mix of the patients used across time and therefore is a fair comparison of
surgery performance. If the surgeons use different hospitals to perform their surgery and
these do not overlap in some way then the comparison may still be unfair because hospi-
tal differences is difficult to be adjusted for. However, as this is beyond the scope of this
paper, we will assume that both surgeons use the same hospitals. If we assume that there are
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no differences between the two surgeons, the logistic regression model fitted in the Phase
I analysis provides practitioners a risk adjustment tool for monitoring differences between
two surgeons prospectively. It is worth noting that by updating the fitted logistic regression
model, monitoring changes in its parameters is useful for monitoring only linear changes
in the logit response, whereas the control chart approach is appropriate for both linear and
non-linear changes and therefore is more appropriate.

The adjusted risk of the surgeon g’s probability of failure for patient with risk factors x
is π

g

1,s = θ
g
x ρ

g
s where θ

g
x is the corresponding risk adjustment to the failure for an average

patient with risk factors x and ρ
g
s is the baseline risk of the doctor. We want to use the same

risk adjustment for both surgeons g = A and B. If do this using the same logistic regression
model for both surgeons using the following model:

logit (π
g

1,s ) = x′
sβ + αδg + x′

sγ
g

where β is the risk adjustment parameters, e.g., how much do we adjust for increases in
age, δg = 1 if operated on by surgeon g otherwise it is zero, γ g is the influence the sur-
geon g have on the adjustment risk factors, e.g., the surgeon performance is not good for
older patients, α is the additive influence of the first surgeon, and γ g is the influence of the
g-th surgeon on the covariates x (e.g. where surgeon A performs worse for older patients
than surgeon B). If the risk factors and surgeons interact then the surgeons do differ in
performance. This approach is very similar to Phase I analysis outlined earlier but is only
useful if you wish to monitoring performance monthly or quarterly and each surgeon per-
forms enough surgeries to warrant this approach. If vector γ g is equal to the zero vector
and δg = 0 then we are interested in monitoring whether these two surgeons performance
remains equal over time using a prospective control chart. We still need to adjust for case
mix to remove the variation in well-being of the patient during surgery to give our approach
a better chance of detecting drifts in surgery performance. This model could be refitted
using monthly or quarterly data to assess changes in performance over time.

However it is important to realize that this model is only good at monitoring changes
that are linear on the logit scale, and it is not good at monitoring changes that are non-linear
on the logit scale. For example, if the surgeon B performs temporal changes for a week in
a quarterly evaluation of performances while he is on medication and this is not recorded,
then the logistic regression is unlikely to find this because this will occur in the residuals of
the model but the control chart will have a good chance of finding it if it is a big effect.

Then, take the probabilities from the above logistic regression model, fitted using in-
control data (often in Phase I), and plug them in Eq. 3 in order to compute the exact
distribution of LDn , after adjusting for the characteristics of each patient.

7 Conclusions

The aim of the paper was to present a procedure for monitoring multi-attribute comparative
health processes. More specifically, we presented two cases: the comparison of doctors’
performance and the assessment of doctors’ competence. The latter can be treated as an
acceptance sampling. The main idea in both cases is to use the difference between two
quantities: the difference between the number of “failures” for doctor A and the number of
“failures” for doctor B.
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To compare the doctors, we consider the one of them as reference (a doctor with stable
high performance). The reference doctor may be the most experienced one, the one with
the most years of service, etc. In such a way, we assume that the good performance of the
reference doctor is assured.

The proposed method can also be modified to handle the comparison of more than two
doctors (say �). For example, we can use as test statistic the cumulative sum of the maximum
difference between the number of “failures” for doctor i and the number of “failures” for
doctor j , for i 	= j , i, j = 1, 2, . . . , �.

A third modification exploiting the run sum approach was also presented. In this case
the test statistic goes to 0 whenever the difference XB − XA is positive and simultaneously
Dn−1 is negative or whenever XB − XA is negative and simultaneously Dn−1 is positive.
Otherwise, it increases or decreases by one unit.

The exact run length distribution is derived, using the Markov Chain embedding
technique. In the proposed procedure we do not need to know the direction of the shift.

For the above mentioned procedures we have assumed that the patients are matched. This
is more plausible when patients have similar characteristics. For the case where we cannot
make the above assumption we should adjust the probability of successful operation for
several characteristics of the patients. For this reason we briefly discussed a risk-adjusted
method.

A Appendix

A.1 The Transition Probability Matrix for the Process with One
Characteristic

In the case where we assess only one characteristic, the transition probability matrix is

�
(s)
1,1=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−i −(i − 1) −(i − 2) . . . −2 −1 0 1 2 . . . i − 2 i − 1 i

−i p
(s)
00 + p

(s)
11 p

(s)
01

−(i − 1) p
(s)
10 p

(s)
00 + p

(s)
11 p

(s)
01

−(i − 2) p
(s)
10 p

(s)
00 + p

(s)
11

...
. . .

−2 p
(s)
00 + p

(s)
11 p

(s)
01

−1 p
(s)
10 p

(s)
00 + p

(s)
11 p

(s)
01

0 p
(s)
10 p

(s)
00 + p

(s)
11 p

(s)
01

1 p
(s)
10 p

(s)
00 + p

(s)
11 p

(s)
01

2 p
(s)
10 p

(s)
00 + p

(s)
11

...
. . .

i − 2 p
(s)
00 + p

(s)
11 p

(s)
01

i − 1 p
(s)
10 p

(s)
00 + p

(s)
11 p

(s)
01

i p
(s)
10 p

(s)
00 + p

(s)
11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Matrix �
(s)
1,1 includes the probabilities of the transitions of the Markov chain from state

to state. More specifically, the chain moves from state i to state i, i = −k, . . . , k with
probability p

(s)
00 +p

(s)
11 ; from state i moves to state i+1, i = −k, . . . , (k−1), with probability

p
(s)
01 ; and from state i moves to state i − 1, i = −(k − 1), . . . , k, with probability p

(s)
10 .

For any other case, the chain moves to the absorbing state. The empty cells of �
(s)
1,1 are

filled by zero. Thus, the (row) vector of initial probabilities of the Markov chain is π ′
0 =

(0, 0, . . . , 1, . . . , 0)1×d .
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A.2 The Transition Probability Matrix for the Process with Two
Characteristics

In the case where we assess two characteristics, the transition probability matrix is

�
(s)
1,2=

⎡
⎢⎢⎢⎢⎢⎢⎣

−i −(i − 1) −(i − 2) . . . −2 −1 0 1 2 . . . i − 2 i − 1 i

−i p
(s)
00 + p

(s)
11 + p

(s)
22 p

(s)
01 + p

(s)
12 p

(s)
02

−(i − 1) p
(s)
10 + p

(s)
21 p

(s)
00 + p

(s)
11 + p

(s)
22 p

(s)
01 + p

(s)
12

−(i − 2) p
(s)
20 p

(s)
10 + p

(s)
21 p

(s)
00 + p

(s)
11 + p

(s)
22

...
. . .

−2 p
(s)
00 + p

(s)
11 + p

(s)
22 p

(s)
01 + p

(s)
12 p

(s)
02

−1 p
(s)
10 + p

(s)
21 p

(s)
00 + p

(s)
11 + p

(s)
22 p

(s)
01 + p

(s)
12 p

(s)
02

0 p
(s)
20 p

(s)
10 + p

(s)
21 p

(s)
00 + p

(s)
11 + p

(s)
22 p

(s)
01 + p

(s)
12 p

(s)
02

1 p
(s)
20 p

(s)
10 + p

(s)
21 p

(s)
00 + p

(s)
11 + p

(s)
22 p

(s)
01 + p

(s)
12

2 p
(s)
20 p

(s)
10 + p

(s)
21 p

(s)
00 + p

(s)
11 + p

(s)
22

...
. . .

i − 2 p
(s)
00 + p

(s)
11 + p

(s)
22 p

(s)
01 + p

(s)
12 p

(s)
02

i − 1 p
(s)
10 + p

(s)
21 p

(s)
00 + p

(s)
11 + p

(s)
22 p

(s)
01 + p

(s)
12

i p
(s)
20 p

(s)
10 + p

(s)
21 p

(s)
00 + p

(s)
11 + p

(s)
22

⎤
⎥⎥⎥⎥⎥⎥⎦

Matrix �
(s)
1,2 includes the probabilities of the transitions of the Markov chain from state

to state. More specifically, the chain moves from state i to state i, i = −k, . . . , k with
probability p

(s)
00 + p

(s)
11 + p

(s)
22 ; from state i moves to state i + 1, i = −k, . . . , (k − 1), with

probability p
(s)
01 +p

(s)
12 ; from state i moves to state i−1, i = −(k−1), . . . , k, with probability

p
(s)
10 +p

(s)
21 ; from state i moves to state i+2, i = −k, . . . , (k−2), with probability p

(s)
02 ; from

state i moves to state i − 2, i = −(k − 2), . . . , k, with probability p
(s)
20 . For any other case,

the chain moves to the absorbing state. The empty cells of �
(s)
1,2 are filled by zero. Thus, the

(row) vector of initial probabilities of the Markov chain is π ′
0 = (0, 0, . . . , 1, . . . , 0)1×d .

In a similar way we can construct the transition probability matrix for the case of more
than two characteristics.

A.3 The Transition Probability Matrix for the Run Sum Approach

In the case of the run sum modification, the transition probability matrix is

�
(s)
1,2=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−i −(i − 1) −(i − 2) . . . −2 −1 0 1 2 . . . i − 2 i − 1 i

−i p
(s)
00 + p

(s)
11 p

(s)
01

−(i − 1) p
(s)
10 p

(s)
00 + p

(s)
11 p

(s)
01

−(i − 2) p
(s)
10 p

(s)
00 + p

(s)
11 p

(s)
01

...
. . .

−2 p
(s)
00 + p

(s)
11 p

(s)
01

−1 p
(s)
10 p

(s)
00 + p

(s)
11 p

(s)
01

0 p
(s)
10 p

(s)
00 + p

(s)
11 p

(s)
01

1 p
(s)
10 p

(s)
00 + p

(s)
11 p

(s)
01

2 p
(s)
10 p

(s)
00 + p

(s)
11

...
. . .

i − 2 p
(s)
10 p

(s)
00 + p

(s)
11 p

(s)
01

i − 1 p
(s)
10 p

(s)
00 + p

(s)
11 p

(s)
01

i p
(s)
10 p

(s)
00 + p

(s)
11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Matrix �
(s)
1,1 includes the probabilities of the transitions of the Markov chain from state

to state. More specifically, the chain moves from state i to state i, i = −k, . . . , k with
probability p

(s)
00 + p

(s)
11 ; from state i moves to state i + 1, i = 1, . . . , (k − 1), (i.e., if the

difference is positive) or to 0 if the difference is negative, with probability p
(s)
01 ; and from

state i moves to state i − 1, i = −(k − 1), . . . , −1, (i.e., if the difference is negative) or to 0
if the difference is positive, with probability p

(s)
10 . For any other case, the chain moves to the

absorbing state. The empty cells of �
(s)
1,1 are filled by zero. Thus, the (row) vector of initial

probabilities of the Markov chain is π ′
0 = (0, 0, . . . , 1, . . . , 0)1×d .
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