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Abstract We investigate the one-dimensional telegraph random process in the presence of an
elastic boundary at the origin. This process describes a finite-velocity random motion that alter-
nates between two possible directions of motion (positive or negative). When the particle hits
the origin, it is either absorbed, with probability α, or reflected upwards, with probability 1−α.
In the case of exponentially distributed random times between consecutive changes of direc-
tion, we obtain the distribution of the renewal cycles and of the absorption time at the origin.
This investigation is performed both in the case of motion starting from the origin and non-zero
initial state. We also study the probability law of the process within a renewal cycle.
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1 Introduction

The (integrated) telegraph process describes an alternating random motion with finite veloc-
ity. This stochastic process deserves interest in various applied fields, such as physics,
finance, and mathematical biology. Among the first authors that studied the solution of the
telegraph equation we recall Goldstein (1951) and Kac (1974). Several aspects and gener-
alization of the telegraph process have been provided in a quite large literature. Orsingher
(1990) studied the probability law, flow function, maximum distribution of wave-governed
random motions of the telegraph type. The distributions of the first-passage time and of the
maximum of the telegraph process were obtained by Foong (1992). The solutions of the
one-dimensional telegraph equation on a semi-infinite line terminated by a trap, and on a
finite line terminated by two traps were determined by Masoliver et al. (1992). The anal-
ysis of the telegraph process in the presence of reflecting and absorbing barriers was also
investigated in Orsingher (1995) and Ratanov (1997).

Restricting the attention to some recent contributions, we also mention Beghin et al. (2001)
and López and Ratanov (2014) for the asymmetric telegraph process, Bogachev and Ratanov
(2011) for the distribution of the occupation time of the positive half-line for the telegraph
process, Crimaldi et al. (2013) for a telegraph process driven by certain random trials, De
Gregorio and Macci (2012) for the large deviation principle applied to the telegraph pro-
cess, Di Crescenzo and Martinucci (2010) for a damped telegraph process, Fontbona et al.
(2012) for the long-time behavior of an ergodic variant of the telegraph process, Stadje and
Zacks (2004) for the telegraph process with random velocities, Pogorui et al. (2015) for esti-
mates of the number of level-crossings for the telegraph process, Di Crescenzo and Zacks
(2015) for the analysis of a generalized telegraph process perturbed by Brownian motion,
De Gregorio and Orsingher (2011) and Garra and Orsingher (2014) for certain multidi-
mensional extension of the telegraph process. Moreover, D’Ovidio et al. (2014) investigate
other types of multidimensional extensions of the telegraph process, whose distribution is
related to space-time fractional n-dimensional telegraph equations. A modern treatment of
the one-dimensional telegraph stochastic processes, with a thorough view to their applica-
tions in financial markets, is provided in the book by Kolesnik and Ratanov (2013). See
also Ratanov (2015) for a generalization of jump-telegraph process with variable velocities
applied to markets modelling.

Most of the above references are concerning analytical results. However, in some instances
one is forced to adopt computational methods to solve the governing equations. See, for
instance, Acebrón and Ribeiro (2015), where a Monte Carlo algorithm is derived to solve
the one-dimensional telegraph equations in a bounded domain subject to suitable boundary
conditions.

Several applications of the telegraph process and its numerous generalizations have been
stimulated by problems involving dynamical systems subject to dichotomous noise. For
instance, such processes can be used for the description of stochastic dynamics of extended
thermodynamic theories far from equilibrium (see Giona et al. 2016). The need to model
physical systems in the presence of a variety of complex conditions encouraged several
authors to analyze stochastic processes restricted by suitable boundaries, such as the elas-
tic ones. Examples of papers dealing with elastic boundaries are provided by Veestraeten
(2006) and Buonocore et al. (2003).

Analytical results on stochastic processes restricted by elastic boundaries have been
obtained by various authors, such as Dominé (1995) and Dominé (1996), for the first-
passage problem of the Wiener process with drift, Giorno et al. (2006) for the construction
of first-passage-time densities for diffusion processes, Beghin and Orsingher (2009) for
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the analysis of fractional diffusion equations. Furthermore, Jacob (2012) and Jacob (2013)
studied a Langevin process with partially elastic boundary at zero and related stochastic
differential equations.

The analysis of finite-velocity random motions subject to elastic boundaries seems to
be quite new. Along the lines of the previous papers, we investigate the distribution of a
one-dimensional telegraph process {X(t); t ≥ 0} in the presence of an elastic boundary at
0. This process describes the motion of a particle over the state space [0, +∞) and start-
ing at x ≥ 0. The particle moves on the line up and down alternating. For simplicity, we
assume that the motion has velocity 1 (upward motion) and −1 (downward motion). Ini-
tially, the motion proceeds upward for a positive random time U1. After that, the particle
moves downward for a positive random time D1, and so on the motion alternates along the
random times U2, D2, U3,D3, . . ., where {Ui}i∈N and {Di}i∈N are independent sequences
of i.i.d. random variables. When the particle hits the origin it is either absorbed, with proba-
bility α or reflected upwards, with probability 1−α, with 0 < α < 1. Specifically, if during
a downward period, say Dj , the particle reaches the origin and is not absorbed, then instan-
taneously the motion restarts with positive velocity, according to an independent random
time Uj+1.

The analysis of the telegraph process and related processes is often based on the resolu-
tion of partial differential equations with proper boundary conditions. However, in this case
such approach seems to be not fruitful so that we will adopt renewal theory arguments. We
denote by Cx the random time till the first arrival at the origin, with starting point x ≥ 0, and
by C0,i the (eventual) ith interarrival time between consecutive visits at the origin following
Cx , for i ∈ N. Moreover, let Ax denote the time till absorption at the origin conditional on
initial state x ≥ 0. Let M be the random number of arriving at the origin, until absorption.
Clearly, M has a geometric distribution, with

P(M = m) = α(1 − α)m−1, m ∈ N, α ∈ (0, 1). (1)

We remark that the random variables Cx,C0,1, C0,2, . . . are independent. Moreover,
C0,1, C0,2, . . . are identically distributed, and are called renewal cycles. For brevity, we
denote by C0 a random variable that is identically distributed as C0,i , i ∈ N. Clearly, the dis-
tribution of Cx is identical to that of the renewal cycles if x = 0. Figure 1 shows an example
of sample path of X(t), where D∗

j denotes the downward random period Dj truncated by
the occurrence of the visit at the origin. Finally, we point out the following relation:

Ax = Cx + 1{M>1}
M−1∑

i=1

C0,i . (2)

This is the plan of the paper. In Section 2 we provide some basic definitions and recall
some useful results on the distribution of the renewal cycles when Ui are exponentially
distributed and Di have a general distribution. In Section 3 we analyze the absorption time
and renewal cycles when the initial state is zero, and Ui and Di have exponential distribution
with unequal parameters. In this case we obtain the explicit expression of the probability
density function (PDF), moment generating function (MGF), and moments of A0 and C0.
In Section 4 we study the absorption time and renewal cycles for non-zero initial state. We
determine the PDF, the MGF and the moments of Cx , as well as the MGF and the moments
of Ax . Finally, in Section 5 we study the conditional distribution of X(t) within a renewal
cycle.
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Fig. 1 A sample-path of X(t)

The main probabilistic characteristics of the process under investigation will be deter-
mined in an analytical form. Even if the expressions seem complicated they can be evaluated
in standard computer environments, as shown in various figures throughout the paper.

2 Preliminaries on the Renewal Cycles

Let us denote by F and G the cumulative distribution functions of Ui and Di , respectively.
We assume that the upward periods of the motion have exponential distribution, i.e.

F(t) = 1 − e−λt , t ∈ [0, ∞), λ ∈ (0, ∞). (3)

Aiming to determine the distribution of the renewal cycles, we consider the auxiliary
compound Poisson process

Y (t) =
N(t)∑

n=1

Dn, (4)

where

N(t) = max{n ∈ N0 :
n∑

i=1

Ui ≤ t},

and thus N(t) = 0 if U1 > t . Clearly, N(t) is a Poisson process with intensity λ, so that
P[Y (t) = 0] = e−λt , t ∈ [0, ∞), due to Eq. 3. Moreover, if Y (t) = s−t , with t ∈ (0, s), this
means that the total time (from 0 to s) of moving upwards or downwards equals t or s − t ,
respectively. The PDF of the absolutely continuous component of Y (t), for t ∈ (0, ∞), is

h(y; t) := d

dy
P[Y (t) ≤ y] = e−λt

+∞∑

n=1

(λt)n

n! g(n)(y), y ∈ (0, ∞), (5)

where g(n)(y) is the n-fold convolution of the PDF of G.
Let us now define, for any x ∈ [0, ∞), the following stopping time:

Tx = inf{t > 0 : Y (t) ≥ x + t}. (6)
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If the motion starts from the origin, i.e. x = 0, then all renewal cycles C0,i , i ∈ N, are
distributed as C0. In this case, since the first visit to the origin occurs at the first instant in
which the total time downward is greater or equal to that of the time upward, we have

C0
d= 2T0, (7)

where
d= means equality in distribution. When the initial state is away from the origin, i.e.

x ∈ (0, ∞), similarly it is

Cx
d= x + 2Tx. (8)

Notice that the stopping time (6) is not necessarily a proper random variable. Indeed,
P(Tx < ∞) = 1 for x ∈ [0, ∞) if and only if E[D1] ≥ E[U1], and the moments of Tx are
finite only if E[D1] > E[U1] (see, for instance, section 3 of Zacks et al. (1999)).

For all x ∈ [0, ∞), let us now introduce the following subdensity,

gx(y, t) := d

dy
P[Y (t) ≤ y, Tx > t], y ∈ (0, ∞), t ∈ (0, ∞), (9)

and the PDF of the stopping time Tx ,

ψx(t) := d

dt
P(Tx ≤ t), t ∈ (0, ∞). (10)

The following proposition recalls some useful results obtained by Stadje and Zacks (Stadje
and Zacks 2003), concerning the functions introduced in Eqs. 9 and 10.

Proposition 1 (i) The subdensity given in Eq. 9 can be expressed in terms of h(y, t),
defined in Eq. 5, as follows.
– If x = 0, then

g0(y, t) = t − y

t
h(y, t), t ∈ (0, ∞), y ∈ (0, t). (11)

– If x ∈ (0, ∞), then, for 0 < y < x + t and t ∈ (0, ∞),

gx(y, t) = 1{0<y≤x}h(y; t) + 1{x<y<x+t}
[
h(y; t) − h(y; y − x)e−λ(t−y+x)

−(t − y + x)

∫ t

t+x−y

1

u
h(u − t + y − x; u)h(t − u + x; t − u)du

]
. (12)

(ii) For all x ∈ [0, ∞), the PDF of the stopping time Tx is given by

ψx(t) = λe−λtG(t + x) + λ

∫ t+x

0
gx(y, t)G(t − y + x)dy, t ∈ (0, ∞), (13)

where G(t) = 1 − G(t) = P(D1 > t).

In the sequel we assume that the distribution of the downward random times Dn is exponen-
tial with parameter μ, i.e.

G(t) = 1 − e−μt , t ∈ [0, ∞), (14)

with 0 < μ < λ in order to ensure that E[D1] > E[U1].
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3 Absorption Time and Renewal Cycles for Zero Initial State

In the present section we consider the special case of initial state x = 0. Recalling that U1
and D1 are exponentially distributed with parameters λ and μ, respectively, with 0 < μ < λ,
from Eq. 5 we have

h(y, t) =
√

λμt√
y

I1

(
2
√

λμty
)

e−λt−μy, y ∈ (0,∞), t ∈ (0, ∞), (15)

where I1(·) is the modified Bessel function;

In(z) :=
( z

2

)n
∞∑

k=0

(z/2)2k

k!(k + n)! , n ∈ N0. (16)

We are now able to obtain the PDF of Eq. 6 when x = 0.

Proposition 2 Under assumptions (3) and (14), with 0 < μ < λ, the PDF of T0 is given by

ψ0(t) = λe−(λ+μ)t

t
√

λμ
I1

(
2t
√

λμ
)

, t ∈ (0, ∞). (17)

Proof From Eq. 13, and recalling Eqs. 3 and 14, it follows that, for t ∈ (0, ∞),

ψ0(t) = λe−(λ+μ)t

[
1 +

√
λμ

t

∫ t

0

(t − y)√
y

I1

(
2
√

λμty
)

dy

]
.

Hence, after a change of variable, and recalling Eq. (1.11.1.1) of Prudnikov et al. (1986b),
we get

ψ0(t) = λe−(λ+μ)t

{
1 + λμt2

2

[
2 1F2(1; 2, 2; λμt2) − 1F2(2; 3, 2; λμt2)

]}
, (18)

where

1F2(a; b, c; z) =
+∞∑

n=0

(a)n

(b)n(c)n

zn

n! (19)

is the hypergeometric function, with (d)0 = 1 and (d)n = d(d + 1) · · · (d + n − 1) for
n ∈ N (the rising factorial). Making use of identities (1) of ‘http://functions.wolfram.com/
07.22.17.0005.01’ and (5) of ‘http://functions.wolfram.com/07.22.03.0122.01’, from Eq. 18
we obtain

ψ0(t) = λe−(λ+μ)t

[
1 + λμt2

2

{
2

(λμt2)3/2
I1

(
2t
√

λμ
)

− 2

λμt2

]}
,

so that Eq. 17 finally follows.

We remark that the PDF given in Eq. 17 identifies with the busy period PDF of an M/M/1
queue with arrival rate μ and service rate λ.

http://functions.wolfram.com/07.22.17.0005.01
http://functions.wolfram.com/07.22.17.0005.01
http://functions.wolfram.com/07.22.03.0122.01
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Let us now study the renewal cycle for zero initial state. We recall that the Gauss
hypergeometric function is defined as

2F1(a, b; c; z) =
+∞∑

n=0

(a)n(b)n

(c)n

zn

n! . (20)

Proposition 3 Under the assumptions of Proposition 2, the PDF of C0 is given by

fC0(y) = 1

y

√
λ

μ
λe− (λ+μ)

2 yI1

(
y
√

λμ
)

, y ∈ (0, ∞). (21)

The nth moment of C0 is

E(Cn
0 ) = λ 2nn!

(λ + μ)n+1 2F1

(
n + 1

2
,
n + 2

2
; 2; 4λμ

(λ + μ)2

)
, n ∈ N, (22)

with mean and variance

E(C0) = 2

λ − μ
, V ar(C0) = 4(λ + μ)

(λ − μ)3
.

Proof From assumptions (3) and (14), due to relation (7), we immediately obtain the PDF
(21). Hence, the moments (22) follow recalling Eq. (3.15.1.2) of Prudnikov et al. (1992a).

In the following proposition we obtain the expression of the MGF of the absorption time
A0.

Proposition 4 Under the same assumptions of Proposition 2, for s < (
√

λ − √
μ)2/2, the

MGF of A0 is

MA0(s) := E(esA0) = 2αλ

2λ(α − 1) + (λ + μ − 2s) +√(λ + μ − 2s)2 − 4λμ
. (23)

Proof From Eq. 2, and recalling Eq. 1, we have

MA0(s) =
+∞∑

m=1

[
MC0(s)

]m
P(M = m) = αMC0(s)

1 + (α − 1)MC0(s)
, (24)

where MC0(s) is the MGF of C0. Due to Eq. 21, and recalling Eq. (3.15.1.8) of Prudnikov
et al. (1992a), for s < (

√
λ − √

μ)2/2 it is

MC0(s) =
√

λ

μ

∫ +∞

0

e−((λ+μ)/2−s)y

y
I1

(
y
√

λμ
)

dy

= (λ + μ − 2s) −√(λ + μ − 2s)2 − 4λμ

2μ
. (25)

Finally, Eq. 23 immediately follows from Eqs. 24 and 25.

In the following theorem we obtain the PDF of the absorption time A0.
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Theorem 1 Under the same assumptions of Proposition 2, for y ∈ (0, ∞) we have

fA0(y) = α
e− (λ+μ)

2 y

y

{√
λ

μ
I1

(
y
√

λμ
)

+
+∞∑

m=2

(λy/2)m(1 − α)m−1

(m − 1)(m − 1)!

×
[

2m 1F2

(
m − 1

2
; m + 1

2
,m; λμy2

4

)

− (m + 1) 1F2

(
m − 1

2
; m + 1

2
, m + 1; λμy2

4

)]}
, (26)

with 1F2 defined in Eq. 19.

Proof Denoting by

Ls[f (t)] =
∫ +∞

0
e−st f (t)dt, s ∈ [0, ∞), (27)

the Laplace transform of a certain integrable function f (t), from Eq. 24 we have

Ls[fA0(t)] =
+∞∑

m=1

[
(λ + μ + 2s) −√(λ + μ + 2s)2 − 4λμ

2μ

]m

P(M = m). (28)

We recall that, due to Eqs. (2.1.9.18) and (1.1.1.8) of Prudnikov et al. (1992b), it is, for
a = 2

√
λμ,

Ls

[∫ t

0

{m

x
(2
√

λμ)m+1Im−1(2x
√

λμ)

−m(m + 1)

x2
(2
√

λμ)mIm(2x
√

λμ)

}
dx

]
=
(
s −

√
s2 − a2

)m

, (29)

for m ∈ N, m ≥ 2, where In(·) is defined in Eq. 16. Moreover, from Eq. (1.11.1.1) of
(Prudnikov et al. 1986b), we have

∫ t

0

{
m

x
(2
√

λμ)m+1Im−1(2x
√

λμ) − m(m + 1)

x2
(2
√

λμ)mIm(2x
√

λμ)

}
dx

= (2λμ)mtm−1

(m − 1)(m − 1)!
{

2m 1F2

(
m − 1

2
; m + 1

2
, m; λμt2

)

−(m + 1) 1F2

(
m − 1

2
; m + 1

2
, m + 1; λμt2

)}
. (30)

Hence, from Eq. 28, taking the inverse Laplace transformation, due to Eqs. 25, 29 and 30,
and recalling Eq. (1.1.1.4) of Prudnikov et al. (1992b) the proof finally follows.

In Fig. 2 we provide some plots of the PDF fA0(y) for various choices of α. Such density
is decreasing in y, with fA0(0) = αλ/2.
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Fig. 2 Density fA0 (y), given in Eq. 26, for (λ, μ) = (2, 0.5) (left-hand side) and (λ, μ) = (2, 1.5) (right-
hand side) with α = 0.1, 0.3, 0.5, 0.7, 0.9 from bottom to top near the origin

We conclude this section by evaluating the moments of the absorption time A0.

Proposition 5 Under the same assumptions of Proposition 2, for n ∈ N the nth moment of
A0 is given by

E(An
0) = 2αλ n!

[4λα(μ + λ(α − 1))]n+1

{
[2μ + 2λ(α − 1)][8λ(α − 1)]n

+
n∑

h=1

[4λα(μ + λ(α − 1))]h [8λ(α − 1)]n−h λμ 2h+1

(λ + μ)h+1

× 2F1

(
h + 1

2
,
h + 2

2
; 2; 4λμ

(λ + μ)2

)}
. (31)

The mean and the variance of A0 are given by

E(A0) = 2

α(λ − μ)
, V ar(A0) = 4[λ + μ(2α − 1)]

α2(λ − μ)3
.

Proof From Eqs. 23, 25 and 22 we have that the MGF of A0, for s < (
√

λ − √
μ)2/2 can

be rewritten as

MA0(s) =
2αλ

[
2λ(α − 1) + (λ + μ − 2s) −√(λ + μ − 2s)2 − 4λμ

]

4λα(μ + λ(α − 1)) − 8λ(α − 1)s

=
2αλ

[
2λ(α − 1) + 2μ +

+∞∑

r=1

2r+1λμ

(λ + μ)r+1 2F1

(
r + 1

2
,
r + 2

2
; 2; 4λμ

(λ + μ)2

)
sr

]

4λα(μ + λ(α − 1)) − 8λ(α − 1)s
.

Hence, the proof follows after straightforward calculations.

4 Absorption Time and Renewal Cycles for Non-Zero Initial State

In this section we obtain the distribution of the renewal cycles in the case x ∈ (0,∞). We
first determine the PDF of the first-passage-time (6) for non-zero initial state.
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Proposition 6 Under assumptions (3) and (14), for 0 < μ < λ, the PDF of Tx , x > 0, for
t ∈ (0, ∞) is given by

ψx(t) = λe−(λ+μ)t e−μx

⎧
⎨

⎩I0(2
√

λμt(t + x)) + 1

2

+∞∑

r=0

(λμtx)r

r!(r + 1)!
r∑

j=0

(
r

j

)

×(j + r + 1)

(
t

x

)j [
−1 + 1F2

(
−1

2
; (j + r + 1)

2
, 1 + (j + r)

2
; λμt2

)]}
, (32)

where I0(·) and 1F2(a; b, c; ·) are defined in Eqs. 16 and 19, respectively.

Proof Substituting Eq. 15 in Eq. 12, considering the series form of I1, and making use of
Eq. (2.2.6.1) of (Prudnikov et al. 1986a), we have

gx(y, t) = 1{0<y≤x}e−λt−μy

√
λμt√
y

I1(2
√

λμty) + 1{x<y<x+t}e−λt−μy

×
{√

λμt√
y

I1(2
√

λμty) −
√

λμ(y − x)√
y

I1(2
√

λμ(y − x)y)

−
+∞∑

k=0

+∞∑

r=0

k∑

j=0

yr

r! (j + k)! (λμ)k+r+2(t + x − y)k+1−j (y − x)k+r+j+2

(k + r + j + 2)!(k + 1)!j !(k − j)!

× 2F1

(
j + k + 1, −r; j + k + r + 3; y − x

y

)}
,

with 2F1(a, b; c; ·) defined in Eq. 20. Hence, using the above expression of gx(y, t) in
Eq. 13, and recalling that G(t) = e−μt , t ∈ [0, ∞), for 0 < μ < λ (due to Eq. 14), we
obtain

ψx(t) = λe−(λ+μ)t−μx

{
1 +√λμt

∫ t+x

0

I1(2
√

λμty)√
y

dy

−
∫ t+x

x

√
λμ(y − x)I1(2

√
λμ(y − x)y)√

y
dy

−
+∞∑

k=0

+∞∑

r=0

k∑

j=0

(λμ)k+r+2(j + k)!
(k + r + j + 2)!(k + 1)!j !r!(k − j)!

×
∫ t+x

x

yr (t + x − y)k+1−j (y − x)k+r+j+2

× 2F1

(
j + k + 1, −r; j + k + r + 3; y − x

y

)
dy

}
, (33)

for t ∈ (0, ∞). Due to Eq. (1.11.1.1) of Prudnikov et al. (1986b) and Eq. (7.14.2.84) of
Prudnikov et al. (1990), we have

∫ t+x

0

I1(2
√

λμty)√
y

dy = 1√
λμt

[
I0(2

√
λμt(t + x)) − 1

]
, (34)
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whereas, from Eq. (2.2.6.1) of (Prudnikov et al. 1986a), it is
∫ t+x

x

√
λμy(y − x)I1(2

√
λμ(y − x)y)√

y
dy =

+∞∑

k=0

(λμ)k+1

k!(k + 1)!
∫ t

0
(x + z)kzk+1dz

= λμt2
+∞∑

k=0

(λμtx)k

k!(k + 2)! 2F1

(
−k, k + 2; k + 3;− t

x

)
. (35)

Moreover, recalling Eq. (2.21.1.4) of Prudnikov et al. (1990), we get
∫ t+x

x

yr (t + x − y)k+1−j (y − x)k+r+j+2

× 2F1

(
j + k + 1, −r; j + k + r + 3; y − x

y

)
dy

= t2k+r+4xr(k + 1 − j)!(k + r + j + 2)!
(2k + r + 4)! 2F1

(
−r, r + 2; 2k + r + 5;− t

x

)
.

(36)

Hence, making use of Eqs. 34, 35 and 36 in Eq. 33, for t ∈ (0, ∞) we obtain

ψx(t) = λe−(λ+μ)t−μx

{
I0(2

√
λμt(t + x))

−λμt2
+∞∑

k=0

(λμtx)k

k!(k + 2)! 2F1

(
−k, k + 2; k + 3; − t

x

)

−2
+∞∑

k=0

+∞∑

r=0

(λμ)k+r+2t2k+r+4xr(2k + 1)!
(k + 2)!k!r!(2k + r + 4)! 2F1

(
−r, r + 2; 2k + r + 5; − t

x

)}
.

(37)

Finally, recalling the integral form of the Gauss Hypergeometric function (see, for instance,
Eq. 15.3.1 of Abramowitz and Stegun (1994)), and making use of Eq. (7.2.1.2) of Prudnikov
et al. (1990) and Eq. (2.15.1.1) of Prudnikov et al. (1986b), the proof follows from Eq. 37
after some calculations.

We are now able to obtain the PDF of the first renewal cycle when x ∈ (0, ∞).

Proposition 7 Under the same assumptions of Proposition 6, the PDF of Cx for y > x is
given by

fCx (y) = 1

2
λe−λ

y−x
2 −μ

y+x
2

{
I0

(√
λμ(y2 − x2)

)

+1

2

+∞∑

r=0

(λμx(y − x)/2)r

r!(r + 1)!
r∑

j=0

(
r

j

)
(j + r + 1)

(
y − x

2x

)j

×
[
−1 + 1F2

(
−1

2
; (j + r + 1)

2
, 1 + (j + r)

2
; λμ

(
y − x

2

)2
)]}

. (38)

Proof The proof immediately follows from Proposition 6, and recalling Eq. 8.
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Some plots of the PDF fCx (y) are provided in Fig. 3. We note that fCx (x) = λe−μx/2,
x ∈ (0, ∞).

Remark 1 It is not hard to show that if x → 0+, then the PDF of Tx , given in Eq. 32, tends
to the PDF of T0, shown in Eq. 17. Indeed, by virtue of Eq. (2.15.1.1) of Prudnikov et al.
(1986b), for any fixed t ∈ (0, ∞), we have

lim
x→0+ ψx(t) = λe−(λ+μ)t

{
I0

(
2t
√

λμ
)

−
∫ 1

0

1

z
I1

(
2tz
√

λμ
)

I1

(
2t (1 − z)

√
λμ
)

dz
}
.

The latter expression is identical to Eq. 17, due to Eq. (2.15.19.9) of Prudnikov et al. (1986b)
and the following well-known recurrence relation for the Bessel function (see, for instance,
(9.6.26) of Abramowitz and Stegun (1994)): In−1(z) − In+1(z) = (2n/z)In(z).

Similarly, one can show that if x → 0+, then the PDF given in Eq. 38 tends to the PDF
(21).

In the following proposition we obtain the MGF of the first-passage-time defined in Eq. 6.

Proposition 8 Under the same assumptions of Proposition 6, for s < (
√

λ−√
μ)2 we have

MTx (s) := E(esTx ) = λ + μ − s −√(λ + μ − s)2 − 4λμ

2μ

× e
x
2

[
λ−μ−s−

√
(λ+μ−s)2−4λμ

]

. (39)

Proof Recalling Eq. 27, from Eq. 32 we have

MTx (s) = λe−μxLλ+μ−s

[
I0

(
2
√

λμ
√

t2 + tx
)]

+1

2
λe−μx

+∞∑

r=0

(λμ)r

r!(r + 1)!
r∑

j=0

(
r

j

)
(j + r + 1)xr−j

×Lλ+μ−s

[
t r+j

(
−1 + 1F2

(
−1

2
; (j + r + 1)

2
, 1 + (j + r)

2
; λμt2

))]
.
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Fig. 3 Density fCx (y), given in Eq. 38, for λ = 2, x = 1 (left-hand side) and λ = 2, x = 2 (right-hand
side) with μ = 0.1, 0.5, 1, 1.5 from top to bottom near the origin
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Hence, due to Eqs. (3.15.3.1) of Prudnikov et al. (1992a) and (4.23.17) of Erdelyi (1954),
we have for s < (

√
λ − √

μ)2

MTx (s) = λe−μx e
x
2

[
λ+μ−s−

√
(λ+μ−s)2−4λμ

]

√
(λ + μ − s)2 − 4λμ

+ 1

2
λe−μx

[
−1 +

√

1 − 4λμ

(λ + μ − s)2

]

× 1

λ + μ − s

+∞∑

r=0

(
λμx

λ + μ − s

)r r∑

j=0

(
1

x(λ + μ − s)

)j (
j + r + 1

j

)
1

(r − j)! .

Consequently, due to Eqs. (7.2.2.1), (7.2.2.8) and (7.11.1.15) of (Prudnikov et al. 1990), we
obtain

MTx (s) = λe−μx e
x
2

[
λ+μ−s−

√
(λ+μ−s)2−4λμ

]

√
(λ + μ − s)2 − 4λμ

+ 1

2
λe−μx

[
−1 +

√

1 − 4λμ

(λ + μ − s)2

]

× 1

λ + μ − s
eλμx/(λ+μ−s)

+∞∑

j=0

[
λμ

(λ + μ − s)2

]j

Lj+1
j

(
− λμx

λ + μ − s

)
,

where Lβ
n , n ∈ N, denotes the generalized Laguerre polynomials. Finally, recalling Eq.

(5.11.4.7) of Prudnikov et al. (1986b), it is

MTx (s) =
4λμ −

[
λ + μ − s −√(λ + μ − s)2 − 4λμ

]2

4μ
[√

(λ + μ − s)2 − 4λμ
] e

x
2

[
λ−μ−s−

√
(λ+μ−s)2−4λμ

]

,

so that Eq. 39 immediately follows.

Hereafter we obtain the MGF of the absorption time at the origin.

Proposition 9 Under the same assumptions of Proposition 6, for s < (
√

λ − √
μ)2/2, the

MGF of Ax is

MAx (s) := E(esAx ) = 2αλe
x
2

[
λ−μ−

√
(λ+μ−2s)2−4λμ

]

2λ(α − 1) + (λ + μ − 2s) +√(λ + μ − 2s)2 − 4λμ
. (40)

Proof From Eqs. 1 and 2, we have the following relation:

MAx (s) = αMCx (s)

1 + (α − 1)MC0(s)
.

Hence, recalling Eq. 25 and noting that

MCx (s) := E(esCx ) = λ + μ − 2s −√(λ + μ − 2s)2 − 4λμ

2μ

× e
x
2

[
λ−μ−

√
(λ+μ−2s)2−4λμ

]

(41)

for s < (
√

λ − √
μ)2/2, Eq. 40 follows after some calculations.

Let us now determine the moments of the renewal cycle when the initial state is non-zero.
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Proposition 10 Under the same assumptions of Proposition 6, for n ∈ N the nth moment
of Cx is given by

E(Cn
x ) = λ

λ + μ
e

x
2 (λ−μ) 2n

(λ + μ)n

n∑

h=0

(
− λ + μ

(
√

λ − √
μ)2

)h

× 2F1

(
1 + n − h

2
,

2 + n − h

2
; 2; 4λμ

(λ + μ)2

)

×
+∞∑

j=0

[
− (λ − μ)x

2

]j 1

j !
(

j/2

h

)
2F1

⎛

⎝−h,−j

2
; j

2
+ 1 − h;

(√
λ − √

μ√
λ + √

μ

)2
⎞

⎠ ,

(42)

with 2F1 given in Eq. 20, and
(
x
h

) := x(x−1)(x−2) . . . (x−h+1)/h! for x ∈ R and h ∈ N.

Proof Comparing the MGFs (25) and (41), for s < (
√

λ − √
μ)2/2 we have

MCx (s) = MC0(s) · e
x
2

[
λ−μ−

√
(λ+μ−2s)2−4λμ

]

. (43)

We note that

e
x
2

[
λ−μ−

√
(λ+μ−2s)2−4λμ

]

=
+∞∑

n=0

xn

2nn!
[
λ − μ −

√
(λ + μ − 2s)2 − 4λμ

]n

=
+∞∑

n=0

xn

2nn!
n∑

j=0

(
n

j

)
(λ − μ)n−j (−1)j [(λ + μ − 2s)2 − 4λμ]j/2,

where

[(λ + μ − 2s)2 − 4λμ]j/2

= (λ − μ)j
+∞∑

k=0

(
j/2

k

)(
− 2s

(
√

λ − √
μ)2

)k +∞∑

l=0

(
j/2

l

)(
− 2s

(
√

λ + √
μ)2

)l

= (λ − μ)j
+∞∑

r=0

sr
r∑

h=0

(
j/2

h

)(
j/2

r − h

)(
− 2

(
√

λ − √
μ)2

)r−h (
− 2

(
√

λ + √
μ)2

)h

,

so that

e
x
2

[
λ−μ−

√
(λ+μ−2s)2−4λμ

]

= e
x
2 (λ−μ)

+∞∑

r=0

sr

(
− 2

(
√

λ − √
μ)2

)r +∞∑

j=0

[
− (λ − μ)x

2

]j 1

j !

×
r∑

h=0

(
j/2

h

)(
j/2

r − h

)(√
λ − √

μ√
λ + √

μ

)2h

= e
x
2 (λ−μ)

+∞∑

r=0

sr

(
− 2

(
√

λ − √
μ)2

)r

×
+∞∑

j=0

[
− (λ − μ)x

2

]j 1

j !
(

j/2

r

)
2F1

⎛

⎝−r,−j/2; j/2 + 1 − r;
(√

λ − √
μ√

λ + √
μ

)2
⎞

⎠ .

(44)
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Hence, the moments of Cx can be obtained from Eq. 43 and taking into account Eqs. 22 and
44, after some calculations.

We can now provide the moments of Ax .

Proposition 11 Under the same assumptions of Proposition 6, the nth moment of Ax , for
n ∈ N, is given by

E(An
x) = 2αλe

x
2 (λ−μ)

n∑

h=0

(
− 2

(
√

λ − √
μ)2

)h
(8λ(α − 1))n−h

(4λα(μ + λ(α − 1)))n−h+1

×
[

2μ + 2λ(α − 1) + 2λμ

λ + μ

n−h∑

m=1

(
αμ + αλ(α − 1)

(α − 1)(λ + μ)

)m

× 2F1

(
m + 1

2
,
m + 2

2
; 2; 4λμ

(λ + μ)2

)]

×
+∞∑

j=0

[
− (λ − μ)x

2

]j 1

j !
(

j/2

h

)
2F1

⎛

⎝−h, −j

2
; j

2
+ 1 − h;

(√
λ − √

μ√
λ + √

μ

)2
⎞

⎠ .

(45)

Proof Due to Eqs. 23 and 40, the following relation holds:

MAx (s) = MA0(s) · e
x
2

[
λ−μ−

√
(λ+μ−2s)2−4λμ

]

.

The moments (45) then follow from Eqs. (31) and (44), similarly as in the proof of
Proposition 10.

From Propositions 10 and 11 the following results immediately follow.

Proposition 12 For 0 < μ < λ and α ∈ (0, 1), the means of Cx and Ax are

E(Cx) = 2 + (λ + μ)x

λ − μ
, E(Ax) = 2 + α(λ + μ)x

α(λ − μ)
,

whereas their variances are given by

V ar(Cx) = 4μ

(λ − μ)3
− 2(λ2 − μ2 − 2λμ)x

(λ − μ)3
− (λ + μ)2x2

2(λ − μ)2
,

V ar(Ax) = 4μ

α(λ − μ)3
− 2(λ2 − μ2 − 2αλμ)x

α(λ − μ)3
− (λ + μ)2x2

2(λ − μ)2
.

It is easy to see that E(Ax) is decreasing in α, and clearly tends to E(Cx) as α → 1−.
Indeed, Ax identifies with Cx when α = 1.

5 Conditional Distribution of the Process within a Renewal Cycle C0

In this section we derive the conditional distribution of X(t) within a renewal cycle in the
case of zero initial state. Specifically, let us consider renewal cycles that start with X(0) = 0
and ends at C0. We recall that Y (t) is the compound Poisson process defined in Eq. 4
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Fig. 4 Sample paths of the processes X(t) and Y(t), with x = 0

and T0 is the stopping time introduced in Eq. 6 for x = 0. Given T0, we consider any
sample path of Y (t) which crosses the boundary {B(t) = t, t > 0} at T0. For any given
t ∈ (0, C0), let W(t) be the time coordinate at which the sample path of Y (t) crosses the
line {Lt(w) = t − w, w ∈ (0, t)}. The value of X(t) within a renewal cycle is then
X(t) = 2W(t)− t , in the case of zero initial state. Notice that W(t) is the total time in (0, t]
at which the telegraph process is moving upwards. As example, Figs. 4 and 5 provide sample
paths of such processes. We observe that, for every t ∈ (0, C0) and given T0 = C0/2, it
results t/2 < W(t) ≤ T0.

Fig. 5 Sample path of W(t) corresponding to the case of Fig. 4
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Let us now determine the subdistribution function of Y (t) and T0, in the case of zero
initial state. For any t ∈ (0,∞) it is defined as

FY(t),T0(y, τ )dτ := P[Y (t) ≤ y, T0 ∈ dτ ], y ∈ (0, t), τ ∈ (t, ∞). (46)

Proposition 13 Under assumptions (3) and (14), for 0 < μ < λ, the subdistribution
function defined in Eq. 46 is given by

FY(t),T0(y, τ ) = λe−(λ+μ)τ
{
I0

(
2
√

λμτ(t − τ)
)

+1

2

+∞∑

r=0

[λμt(τ − t)]r
r!(r + 1)!

r∑

j=0

(
r

j

)
(j + r + 1)

(
τ − t

t

)j

×
[
−1 + 1F2

(
−1

2
; j + r + 1

2
, 1 + j + r

2
; λμ(τ − t)2

)]

+λ μ y

+∞∑

j=0

[λμy(τ − t)]j
j ! 0F1 (; j + 1; λμ(t − τ)(y − τ))

×
[

t

(j + 1)! 1F2 (1; j + 2, 2; λμty) − y

(j + 2)! 1F2 (2; j + 3, 2; λμty)

]

+λ μ

2

+∞∑

r=0

[λμ(τ − t)]r
r!(r + 1)!

r∑

s=0

(
r

r − s

)
(2r + 1 − s)(τ − t)r−s

×
[
−1 + 1F2

(
−1

2
; r − s − 1

2
, r + 1 − s

2
; λμ(τ − t)2

)]

×
s+1∑

k=0

(
s + 1

k

)
(t − y)s+1−k yk+1

k + 1
1F2 (1; k + 2, 2; λμty)

}
, (47)

where

0F1 (; b; z) =
+∞∑

n=0

zn

(b)nn! (48)

and 1F2(a; b, c; z) is defined in Eq. 19.

Proof Due to Eq. 46, we note that, for t > 0,

FY(t),T0(y, τ ) = P[Y (t) = 0, T0 ∈ dτ ]/dτ +
∫ y

0
pY(t),T0(x, τ )dx, (49)

where p is the subdensity pY(t),T0(x, τ ) := ∂
∂x

FY(t),T0(x, τ ). We point out that for τ ∈
(t, ∞) and y ∈ (0, t), it is

P[Y (t) = 0, T0 ∈ dτ ]/dτ = e−λtψt (τ − t), (50)

since P[Y (t) = 0] = P[U1 > t] = e−λt , t > 0, and P[T0 ∈ dτ | Y (t) = 0] = P(t + Tt ∈
dτ), τ > t . By a similar reasoning, one also has

pY(t),T0(x, τ ) = g0(x, t)ψt−x(τ − t), (51)

where g0 and ψt−x are defined in Eqs. 12 and 13, respectively. Making use of Eqs. 50 and
51 in 49, the function FY(t),T0(y, τ ) can be obtained by recalling the expressions of g0(y, t)
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and ψx(t) provided by Eqs. 11, 15 and 32. The resulting expression of FY(t),T0(y, τ )

involves the following identities:

∫ y

0

(t − x)r−j+1

√
x

I1

(
2
√

λμtx
)

dx

= √λμt

r−j+1∑

k=0

(
r − j + 1

k

)
(t − y)r−j+1−k yk+1

k + 1
1F2 (1; k + 2, 2; λμty)

and

λ
√

λμ√
t

e−(λ+μ)τ

∫ y

0

t − x√
x

I1

(
2
√

λμtx
)

I0

(
2
√

λμ(τ − t)(τ − x)
)

dx

= λ2μe−(λ+μ)τ ×
+∞∑

r=0

[λμ(τ − t)]r
r!2

r∑

j=0

(
r

j

)
(τ − y)r−j yj+1

j + 1

×
{
t 1F2 (1; j + 2, 2; λμty) − y

j + 2
1F2 (2; j + 3, 2; λμty)

}

= λ2 μ y e−(λ+μ)τ
+∞∑

j=0

[λμy(τ − t)]j
j ! 0F1 (; j + 1; λμ(t − τ)(y − τ))

×
[

t

(j + 1)! 1F2 (1; j + 2, 2; λμty) − y

(j + 2)! 1F2 (2; j + 3, 2; λμty)

]
,

the latter being due to Eq. (2.15.2.5) of Prudnikov et al. (1986b) and identity

I0

(
2
√

λμ(τ − t)(τ − x)
)

=
+∞∑

r=0

[λμ(τ − t)]r
r!2

r∑

j=0

(
r

j

)
(τ − y)r−j (y − x)j .

The proof thus follows after some calculations.

We conclude this paper by giving the expression of the conditional distribution of X(t)

given T0, within C0. The proof is omitted since it immediately follows from the definition
of W(t).

Proposition 14 The conditional distribution of X(t) given T0, during a renewal cycle C0,
is expressed as

P[X(t) ≤ x | T0 = τ ] = P[W(t) > t/2 | T0 = τ ] − P[W(t) > (t + x)/2 | T0 = τ ], (52)

for t ∈ (0, τ ) and x ∈ [0, t], where
P[W(t) > w | T0 = τ ] = FY(w),T0(t − w, τ)

ψ0(τ )
, w ∈

( t

2
, t
)
,

with ψ0(x) and FY(w),T0(y, τ ) given in Eqs. 17 and 47, respectively.

We omit the explicit expression of the distribution (52), being too cumbersome. Some plots
of the corresponding PDF are given in Fig. 6 for some choices of μ. We remark that the corre-
sponding discrete component of such distribution is

P[X(t) = t | T0 = τ ] = e−λtψt (τ − t)

ψ0(τ )
, t ∈ (0, τ ).
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1 2 3 4 5
x

0.1
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0.5

fX t T0 x τ

Fig. 6 Conditional density of X(t) given T0 = τ , for τ = 6, t = 5 and λ = 2 with μ = 0.1, 0.5, 1, 1.5 from
bottom to top near the origin

Finally, we omit the determination of the conditional distribution of X(t) within a
renewal cycle in the case of non-zero initial state, since the involved calculations are very
cumbersome.
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