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Abstract In this paper, the optimization problem of harvesting for a stochastic predator-
prey model with S-type distributed time delays (which contain both discrete time delays
and continuously distributed time delays) is studied by using ergodic method. Sufficient and
necessary conditions for the existence of optimal harvesting strategy are obtained. More-
over, the optimal harvesting effort (OHE, for short) and the maximum of expectation of
sustainable yield (MESY, for short) are given. Some numerical simulations are introduced
to illustrate our main results.
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1 Introduction

Optimal harvesting problem is an important and interesting topic from both biological and
mathematical point of view (Zou and Wang 2014). Since Clark’s works (see Clark 1976,
1990) on the following deterministic logistic model:

dx(t) =x(t) [r —ax(t)]dt — hx(t)dt, (1.1)

the problem of optimal harvesting has caused wide public concern over the recent years
(see e.g. Zou and Wang 2014, Zou et al. 2013, Li et al. 2011, Liu and Bai 2015, Liu 2015,
Bedington and May 1977, Li and Wang 2010, Liu and Bai 2014, a, b). Particularly, it is
necessary to investigate the optimal harvesting problem of predator-prey model which is
one of the most popular area in biological systems (see e.g. Thripathi et al. 2015, Liu and
Bai 2014).

On the one hand, it is essential to take time delays into account since delays are ubiqui-
tous in the real world. As is well known, systems with discrete time delays and those with
continuously distributed time delays do not contain each other. However, systems with S-
type distributed time delays contain both (see e.g. Wang et al. 2009, Wang and Xu 2002).
Considering S-type distributed time delays, we establish the following stochastic time-delay
predator-prey model with harvesting:

d 0
Zit) =x(1) |:”1 —hy —anx(t) —/ y( +9)dﬂlz(9)} ,
e (1.2)
dy(t) 0
7 =y(@) | —r2—h2 +/ x(t +60)duz1(0) —any@) |,
-1

where r; > 0 is the intrinsic growth rate of prey and r, > O is the death rate of preda-
tor. aj; > 0 and az; > 0 are intra-specific competition coefficients of prey and predator,
respectively. f?m y(t 4+ 6)dp12(0) and fi)m x(t + 0)dur1(0) are Lebesgue-Stieltjes inte-
grals. w12(6) and o1 (0) are nondecreasing bounded variation functions defined on [—y, 0],
y = max{ty2, T21}. k1 > 0 and hy > O represent, respectively, the harvesting effort of prey
and predator.

On the other hand, in the real world population systems are inevitably subject to envi-
ronmental noise and many scholars have studied optimal harvesting problems for many
stochastic population systems (see e.g. Liu and Bai 2015, Liu 2015, Gard 1986, Mao 1994,
Mao et al. 2002, Li and Mao 2009, Zhu and Yin 2009). To the best of our knowledge to
date, the problem of optimal harvesting for stochastic predator-prey model with S-type dis-
tributed time delays has not been investigated in the existing literature. So, in this paper we
consider the optimization problem of harvesting for the following stochastic predator-prey
model with S-type distributed time delays:

0

-T2

dx(r) =x(1) [m —hy —anx() —/ y( +9)dmz(9):| dt + o1x(t)d B (1),

0

dy(t) =y(1) |:—r2 o+ f

—121

x(t +0)du2(0) — azzy(t):| dt + o2y (t)d B2 (1),
(1.3)
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where Bi(¢) and B, (t) are standard independent Wiener processes defined on a complete
probability space (2, F, P) with a filtration {F;};>¢ satisfying the usual conditions. O'i2 is
the intensity of environmental noise, i = 1, 2.

For the optimal harvesting problem of stochastic population systems, one method is to
solve the corresponding Fokker-Planck equations (see e.g. Beddington and May 1977, Li
and Wang 2010, Liu and Bai 2014). However, it is difficult to obtain explicit solutions to the
corresponding time-delay Fokker-Planck equations Liu and Bai 2015. Another method to
investigate the optimal harvesting problem of stochastic population systems is the ergodic
method proposed by Zou et al. (2013). The advantage of this method is that it is unnecessary
to solve the corresponding Fokker-Planck equation (see e.g. Liu and Bai 2015, a). Hence,
by combining stochastic analytical techniques with the ergodic method, we are devoted to
get the optimal harvesting effort H* = (h7, h;)T such that

(i) Both the prey x(¢) and the predator y(¢) are not extinct;

(i) The expectation of sustained yield Y (H) = lim;— 400 E[h1x(¢) + hpy(#)] is maxi-
mal.

2 Main Results

Throughout this paper, T represents a generic positive constant whose values may vary at

. . . o
its different appearances. For convenience of reference, we denote by = ri — h; — 7‘,

2
by=rp+hy + %2 and recall some inequalities stated as a lemma.

Lemma 1

n p n
(Zm) <n?) A, ¥p>0, 4,20, 1<i<n,

i=1

AB§’%+%‘7, A>0,B>0, p>0,¢>0, 1 +1=1.

141
P g

Lemma 2 For any initial data (&(9), neNT € C([—y, 0], Ri), system (1.3) has a unique
global positive solution z(t) = (x (1), y(t))T almost surely (a.s.). Moreover, for any p > 0,
there exist K1(p) > 0 and Ky(p) > 0 such that

limsupE [x”(r)] < K1(p) and limsupE [y”(1)] < K2(p). @.1)
t—+400

t—+00
The detailed proof of Lemma 2 will be given in Appendix.
Theorem 1 For system (1.3) :
(A1) Ifb; <0, thenlim,_, y oo x(t) = 0 a.s. and lim;_, 1o y(t) =0 a.s.

.
(A) Ifb; =0, then lim;_ o f"*(ts)ds =0a.s.
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(A3) Ifby > 0and by [° duzi(©) — baary <0, then

. f(;x(s)ds _ b
limy s 4o 7 = an

a.s.and lim;_, 15, y(¢t) =0 a.s.

oo
jo)(;)b =0a.s

(A9) Ifby [°, dusi(0) — brary = 0, then lim,_, 400

21

(As) Ifb1 [2,, dun(®) = bran > 0, then

lim fotx(s)ds _ biaxn + by fi)m dp12(0) a.s.
o400 1 anan + [°, dun®) [°, dpsi©) 22
lim foty(s)ds _ by fgm 41210) = brany a.s. |
i—too 1 anan + [°, dun®) [°, duxn®)

Proof Consider the following auxiliary system:

dY\(t) =Y () [r1 — hy —anY1(@®)]dt +o1Y1(t)d B (1),

0
dY,(t) =Y2(1) [—rz—hz-*-/ Y1(l+9)dM21(9)—a22Y2(t)} dt (2.3)
—121 .
+ 02 Y2 (1)d B2 (1),
Y1(0) =£(0), Y2(0) =n(®), —y <6 <0.
By Itd’s formula we have
dinY (t) =[b; —anY1(t)]dt + 01d B (t),
2.4)

0
dInY>(t) = |:—b2 + / Yi(t +0)du0) — 022Y2(t)1| dt + 02d By (1).

—121
In a view of system (2.4), we compute
InY;(t) — InY;(0)

t
=bt —an/ Yi(s)ds + o1 B1(2),
0

InY>2(¢t) — InY>2(0)

t 0 t
=—byt + / / Y1(s +0)duz1(0)ds — azz/ Y2 (s)ds + 02 By (1) (2.5)
0 —121 0

0 t t
= — byt +/ du21(9)/ Yi(s)ds — azzf Ya(s)ds + 02 B2 (1)
—121 0 0

0 0 0 t
+/ / Yi(s)dsdu21(0) —/ / Yi(s)dsdu21(0).
—121 /0 —11 J1+0
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From the first equation of system (2.5) we deduce that for arbitrary ¢ > 0, there exists
T > O such that forany r > T,

t
(b1 — o)t —an/ Yi(s)ds + o1 B ()
0 . (2.6)
<InY1(t) < (b1 + &)t —a“/ Yi(s)ds + o1 B ().
0

Based on Lemma 2 in Liu and Wang (2014) and the arbitrariness of ¢, we obtain

1! b
lim f/ Yi(s)ds = - a.s., if by > 0. @.7)
0 ari

t—+oo t

Combining (2.7) with the first equation of system (2.5) yields
. InYi(n) _ .
zEToo =2 =0as., if by >0. (2.8)

In view of system (2.5), we compute

0
/ dp21(0) [InY1(t) —InY1(0)] + a1 [InY2() — In¥2(0)]

—121

0 1
= (bl / duz1(0) — bzan) t— 011022/ Y2(s)ds
—T1 0

0
+ o1 / dp21(0)Bi1(t) + o2a11 B2 (1)

—T21

0 0 0 t
+011</ / Yi(s)dsd i (0) — f / Yl(s>dsdu21(e>>.
—171 J6 —11 J1+0

On the basis of Eq. 2.7, for b; > 0, we get

0 0 0 t
/ / Yi(s)dsdu21(0) — / / Yi(s)dsd 1 (0)
—11 JO —121 Jt+6

0 0
Sl/ du1(0) Yi(s)ds (2.10)

—121 —T21

0 t t—T
+ ;/ duo1(6) </ Yi(s)ds —/ ! Y: (s)ds) — 0, (t > +00).
0 0

—T21

(2.9)

1
t

In the light of Egs. 2.8, 2.9 and 2.10 we observe that if b; > 0, then for arbitrary ¢ > 0,
there exists 7 > O such that forany r > T,

0 :
ajplnY, (1) < (bl / duz1(9) — baayy + 8) t— anazz/ Y2(s)ds
—121 0

0
+01/ du21(0)B1(t) + 02a11 B2(1),
—nl (2.11)

0 '
ajpIn¥s(r) > (h/ dp21(0) — brayy — 8) t— anazz/ Y2(s)ds
0

—T21

0
+ o1 / du21(0)B1(t) + o2a11 B2 (1).

—1721
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According to Lemma 2 in Liu and Wang (2014) and the arbitrariness of ¢, we have

0
1! by J_. du21(0) — baay;

lim 7/‘ Ya(s)ds = f Ll a.s.,

1—>+o0 [ Jg apjax
0

if bl/ duz1(9) — baayy > 0; (2.12)
—T21

0
. liI_El Y2(t) =0a.s., if by > 0 and by / duz1(0) — byay; < 0.
— 100

—T21

From Theorem 2.1 in Bao and Yuan (2011) we obtain
x(t) <Yi(@) and y(t) < Ya(t) a.s., t € [0, +00). (2.13)
Applying It6’s formula to In x(¢) and In y(¢) lead to

0

dlnx(t) = [bl —ayx(t) — /

—T12

y(+ 9)dM12(9)] dt + 01d By (1),
0 (2.14)
dlny(t) = |:—b2 +/ x(t +60)dur (6) — azzy(t):| dt + o2d B> (1).
—T21
Based on system (2.14), we compute

Inx(¢) —Inx(0)

t t O
=bt — llllf x(s)ds — / / y(s +0)du12(0)ds + o1 B1(t)
0 0 —T12

0 t 0 0
+/ / y(s)dsdu12(0) — / / y(s)dsdu12(0),
—112 Jt+6 —T12 JO

Iny(z) —Iny(0)

t 0 t
=bit —1111/ x(s)ds —f dmz(e)/ y(s)ds + o1 B (1)
0 712 0

(2.15)

t 0 t
=— byt + / / x(s +0)dur (0)ds — a22/ y(s)ds + o2 Ba(t)
0 J—1 0

0 t t
— b+ / dpini 6) / x(s)ds — an / ¥(s)ds + 02B2(1)
0 0

-1

0 0 0 t
+ / / x($)dsdpa (8) f / x(s)dsda ©).
—171 J6 —121 J1+0

From the first equation of system (2.15) we derive

t_l)igloox(t) =0a.s., if by <O0. (2.16)
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Hence, for arbitrary ¢ > 0, there exists 7 > 0 such that forany t > T,

In y(t) — In y(0)

0 t
<— bt + / dpi21 ) / x(s)ds
0

—T21

T

t 0 0
- azz/(; y(s)ds + 02 B (1) +/ /0 x(s)dsduz1(0)
—121

0 t
< b+ f 21 () f x(s)ds
—17] 0

0 0

t
- azz/O y(s)ds + 02 B () +/ d21(9) x(s)ds

-1 —721

0 T 0
< —bat +/ duzl(Q)/ x(s)ds +/ dun@e@ —1T)
-7 0 -7
0 0

t
—an fo V(s)ds + 02Ba(t) + / dun©® [ x(s)ds,

—121 —T21

which implies that for sufficiently large ¢,

0 t
Iny(t) < (-bz + / duz1(9)e + s) t— azz/ y(s)ds + 02 B (2).
0

—T121
In view of Eq. 2.18 and the arbitrariness of ¢, we obtain

lim y()=0a.s., if by <O.
t—>—+00

So (A;) follows from combining (2.16) with Eq. 2.19.
By the first equation of system (2.15), we have

t
Inx(t) —Inx(0) < bit — a11/ x(s)ds + o1 B1(t).
0
According to Lemma 2 in Liu and Wang (2014), we deduce that

1 [ b
lim sup f/ x(s)ds < 2t a.s., if by > 0.
t—+o00 [ Jo ap

Hence (A) follows from Eq. 2.21.
Combining the second part of Eq. 2.12 with Eq. 2.13 gives

0

, liT y()=0a.s., if by >0 and by / dur1(0) — brayy < 0.
400

—121

(2.17)

(2.18)

(2.19)

(2.20)

2.21)

(2.22)
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Accordingly, for arbitrary ¢ > 0, there exist 7 > 0 and Q(¢) C 2 such that P(Q2(¢g)) >
l—¢and y(t, w) < & (Vo € Q2(¢)). Therefore, based on the first equation of system (2.15),
for any t > T + 713, we obatin

t 0
Inx(t) —Inx(0) <byt — a11/ x(s)ds +o1B1(t) + 8112/ du2(0),
0 -T2
t 0
Inx(t) —Inx(0) >bit — allf x(s)ds —/
0

-T2

T
dia(0) [0 Y(s)ds + o1 Bi(t) (2.23)

0 0 0
—et—=T) dp12(0) —/ dpu12(0) y(s)ds.

-T2 -T2 —T12

On the basis of Eq. 2.23 we observe that for sufficiently large 7,

t
Inx(t) <(by+¢e)t — a11/ x(s)ds + o1 B1(1),
0

0 ¢ (2.24)
Inx(r) > (bl — 8/ du0) — 8) t —a“/ x(s)ds + o1 B (t).
0

-T2

From Lemma 2 in Liu and Wang (2014) and the arbitrariness of ¢ we have

.1 by
lim — [ x(s)ds = — a.s.,
1>+ 1 Jo a

o (2.25)

if by >0and bl_/ dur1(0) — byay; < 0.

—T21

Hence (Aj3) follows from combining (2.22) with Eq. 2.25.
Clearly, (A4) follows from combining (2.12) with Eq. 2.13.
In the light of Egs. 2.8 and 2.13 we deduce that

lim sup w <O0a.s., if by > 0. (2.26)

t—+00

According to system (2.15), we compute

0
/ dp21(0) (Inx(r) — Inx(0)) + a1 (Iny(2) — In y(0))

—n1

0
= (bl / du(0) — bzGu) t
—11

0 0 t
- <a11a22+ / dp12(6) duzl(9)> / y(s)ds
-T2 —11 0

0
+01/ du21(0)B1(t) + o2a11 By (t) + 1P (1),

—T21

(2.27)
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where

1 0 0 t
d(1) =- / d.uzl(@)/ / y(s)dsd12(0)
t -1 —T12 Jt+6

0 0 0
- / diin (6) f / ¥(s)dsdpra(©) (2.28)
—121 —112 JO

0 0 0 pr
+011/ f x(S)dsd,u21(9)—(111/ / x(S)dde21(9)>-
—T1 JO —11 Jt+0

From Egs. 2.26 and 2.27 we derive that if b; > 0, then for arbitrary ¢ > 0, there exists
T > Osuch thatforany t > T,

In y(7) 0
an yt >(be dpin1 (0) — bray — ¢

—21

0 0 ! d
- (auazz +/ du12(9) dM21(9)> w

—T12 -1 (2.29)
0
Bi(t By (t
+01/ du21(0) lt( ) + ozany 2[( )
—121
0
In x(0) In y(0)
+/ G +an—2 D).
- t t
Based on Eq. 2.13, we have
1 t 1 t 1 t 1 =112
7/ y(s)ds < f/ Yo(s)ds = f/‘ Ya(s)ds — f/‘ Y>(s)ds,
t =112 t t—112 t 0 t 0 (2 30)

A

1 t 1 t 1 t l 1—11
f/ x(s)ds < f/ Yi(s)ds = 7/‘ Yi(s)ds — f/‘ Yi(s)ds.
t J; t Ji—ry tJo rJo

—T21

In view of Eqgs. 2.7, 2.12 and 2.30, we obtain

1 [t 1 [t
lim 7/ x(s)ds = lim f/ y(s)ds =0,
t——+oo t t—1To1 t——+oo t t—112
(2.31)

0
if bl/ duz1(0) — bray = 0.
—121

On the basis of Eq. 2.31, we obtain

1 0 0 t
|d>(t)|§t(/ din® [ dun® [ vds

—11 —T12 =112
0 0 0
+/ dp21(0) dur2(0) y(s)ds
-1 —T12 —T12
0 0 (2.32)
+ap / du1(9) x(s)ds

—T21 —121

0 t
+a11/ dur1(0) x(s)ds) — 0, (t = +00).

—T21 =12
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In the light of Egs. 2.29 and 2.32, we deduce that for sufficiently large ¢,

In y(r) 0
an——> by duz1(0) — brayy — 2¢

—T21

0 0 ! d
- (011022 +/ d12(9) du21(9)> w (2.33)

—T12 —121

0
By (1) By (1)
+01/ du21(9) + oza1; P

—1 t

From Lemma 2 in Liu and Wang (2014), Eq. 2.33 and the arbitrariness of ¢, we have

0

1! by [~ duz1(8) — brayy

/ y(s)ds > f 2 s,
0

lim inf — 5 5 a
anan + [C. dpia®) O dui6)

t——+0o0

712 21

(2.34)
0
if by / du21(0) — bragr > 0.

—T21

Thus, for arbitrary & > 0, there exists 7 > 0 such that forany t > T,

1/’ by f?m dp21(0) — baay

y(s)ds > —&. (2.35)
tJo anan + [°, dun©) [°, dus(©)

712
Substituting (2.35) into the first equation of system (2.15) leads to
Inx(r) Inx(0)
t t
t t
x(s)ds By (t 0 _p, Y(s)ds
fo (t) + o ]()+/ (Q)II flzt

<by —an . 3 dpiz (2.36)

112

0
- /O du12(0) ( b1 oy dit21(6) ~ baayy e) .

~12 a11022+f£) dmz(@)fi) duzi(9)

According to Egs. 2.31 and 2.36, we obtain that for sufficiently large z,

712 21

Inx(¢)

0 by f?m dp21(0) — baain
<|b1 —/ du12(9) o 5 —e]+e|r (237)
—m12 antan + [~ dp®) [ duai©) :

712 21

'
— all[ x(s)ds + o1 B1(t).
0

By Lemma 2 in Liu and Wang (2014), Eq. 2.37 and the arbitrariness of ¢, we get

) 1! biax + by fi)rlzdl/«lz(g)
limsup — | x(s)ds < 5 5 a.s.,
t—>+o0 LJo anan + [~ duin®) O du6)

112

0
if b / dp21(8) — bragr > 0.

—T21

21

(2.38)
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Hence, for arbitrary ¢ > 0, there exists 7 > 0 such that forany t > T,

+e. (2.39)

0

1 (! biaxn +by [~ dui2(9)
f/ x(s)ds < 5 f 2 5

0 anan + [~ dwuin®) O dua(6)

712 01

Substituting (2.39) into the second equation of system (2.15) gives

Iny(r) Iny(0)
r

- /o ) ( biax + by [°, dp12(0) N )
<—-b 21 € 2.40
—1 ajlan +f3 dmz(@)fi) du2 (9) (2:40)

t
s)ds Bs(t 1 (9 0
—ay foy(t ) + oo 2t( ) + ;/ du1(0) x(s)ds.

21 —T21

712 21

From Eq. 2.40 we obtain that for sufficiently large ¢,
Iny(7)

0 biax + b [°, dpia(6)
= €—b2+/ du2(9) 5 o +e] |t 2.41)
—m aytan + [, dp®) [ dupai(9) :

21

112

t
- azz/ y(s)ds + 02 B(¢).
0

Based on Lemma 2 in Liu and Wang (2014), Eq. 2.41 and the arbitrariness of ¢, we obtain

- /, 15 < by [0, dun(®) — b
imsup — | y(s)ds < a.s.,
t—+o0 1Jo ajlaxp + f?m d,u12(9)f8121 dp21(0) (2.42)
0
if bl/ du21(0) — baayy > 0.
—T21
Accordingly, for arbitrary & > 0, there exists 7 > 0 such that forany ¢t > T,
1/’ () by fi)m dp21(0) — baann N 2.43)
— [ y(s)ds < €. .
tJo arjaxn + f?m dp12(0) fgm dp21(0)
Substituting (2.43) into the second equation of system (2.15) leads to
Inx(t) Inx(0)
t t
0
o /0 dn®) ( bi 2, du2i(©) — b . 8) oas
~mi anan + [°, dun©) [°, duai©) '

1 $)d 0 0
—anfox(t‘) S 4o B0 —1/ dun® [ y(s)ds.

! t —T12 —T12

@ Springer



48 Methodol Comput Appl Probab (2018) 20:37-68

On the basis of Eq. 2.44 we obtain that for sufficiently large ¢,

Inx (1)
0 b fgm du21(0) — baany
~Ti2 anan + [Z, dun®) [~ du )
t
— 1111/ x(s)ds + o1 B ().
0

In view of Lemma 2 in Liu and Wang (2014), Eq. 2.45 and the arbitrariness of ¢, we have

biaxn + by [, dpia(©)
a
ajlaxn +f£) d/m(G)fE du21(0)

.S.,
t——+00 t

1 t
1iminff/ x(s)ds >
0

712 21

(2.46)
0
if b f du21(0) — baay; > 0.

—T21

Consequently, (As) follows from Eqs. 2.34, 2.38, 2.42 and 2.46. The proof is complete. [

Lemma 3 Let (x(t; ¢), y(t; )T and (x(t; ¢*), y(t; ™)) be, respectively, the solution to
system (1.3) with initial data ¢ and ¢* € C([—y, 0], Ri_). If

ap — fi)m duz1(0) >0, ax — fi) dp2(8) > 0, then

712

im Ey1x(59) xR +1y@9) — v 9P =0, @47

Proof For this purpose, we only need to show

Jim Elx(t; ¢) —x(t; )] =0, (2.48)
and

Jim E[y(; ¢) = y(t;¢")| =0. (2:49)
Define

(2.50)

Wi(t: ¢, ¢*) =|Inx(t; ¢*) — Inx(1: )|,
Wa(t: ¢, ¢™) =|Iny(t; %) — Iny(1: )| .

By Itd’s formula, we have
LIV (t; ¢, ¢")] =sign (x(t; o) — x(1; ¢)) {—an [X(t; ¢*) — x(t; ¢)]
0
—/ [Y(f +6:9") —y(t +6; ¢)] du12(0)
e (2.51)
< —a |x(t; ¢*) — x(1; 9)|

0
+/ |y(t + 65 ¢™) — y(t + 0; )| du12(0).

—T12
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In the same way, we get
LIWa(t; ¢, )] =sign (y(1; ¢*) — y(t; §)) {—an [y(1: ¢*) — y(1; $)]
0
[ [0+ 0:67 = x4 0:9)] dian )
T (2.52)
< —an |yt ¢") — y(t: 9)|
0
+ f (2 + 0 %) — x(t +6: )| d i (0).
—721
Define
W(t; ¢, ¢") = Wi(t; ¢, ") + Wa(t; ¢, ¢™) + Wa(t; ¢, ™), (2.53)
where
0 '
Ws(t; ¢, ¢) =/ / (53 ¢) = y(s; 9)| dsdpu12(6)
—T120 t+60 t (2.54)
+/ / (5 ¢%) — x(s; 8)| dsd i (6).
—171 Jt+6
From It6’s formula, Eqgs. 2.51, 2.52, 2.53, and 2.54 we obtain
LIW(t; ¢, ")) =LIW1 (15 ¢, §¥)] + LIW (15 ¢, ¢*)] + DaE0.00
0
_ _ d 2] CAFY .
< (6111 /_m a1 )) [x(t: 6% — x(t: )| oss)
0
- (azz —f dmz(@)) |y(t: %) — y(1: 9)] -
—T12
According to Eq. 2.55, we have
E[W(t: ¢, ¢™)]
0 '
<W(0; ¢, ¢*) — (an - / d;m(e)) [ E[|x(s; ¢*) — x(s; )|] ds
-7 0 (2.56)
0 '
- (a22 —/ dM12(9)> /o E[|y(s: ¢%) — y(s: 9)|] ds.
—T12
which implies
t w O, , *
05/E[|x<s;¢>*)—x<s;¢)|]dss ©:0.00
0 ann — 2, duai (0)
. W(0: 6. ") (2.57)
05/E[!y<s;¢*>—y<s;¢)!]dss 000
0 an — [, dun®)
From Eq. 2.57 we obtain
+oo
/ E[|x(r;¢*) —x(t;¢>)|] dt < 400,
0 (2.58)

+00
/0 E[|y(t: ¢ — y(t: ¢)|] dr < +o0.
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Define F(t) and G(¢) as follows:

F(t)=F(t:¢.¢") =E[|x(t; ") — x(t; 9)|],
Git)=G(t;¢,¢") =E[|yt;: ¢ — y(; 9)|].

Then for any 71, 2 € [0, +00), we compute

|F (1) — F(1)| = [E[|x(t2: ¢*) — x(t2: ¢)| — |x(11: ") — x(t1: 9) ]|
<IE[Hx(rz- ¢*) — x(t2: )| — |x(t1: %) — x(t1: ) |||
<E[|(x(t2; ¢*) — x(t2: $)) — (x(t1: ¢*) — x(11: )]
<E[|x(r2: ¢*) — x(t1; ¢™)| + |x(12: ¢) — x(11: §)|]
=E [|x(t2: ¢*) — x(11: ¢)|] + E [Ix (12: ¢) — x(11: $)11.

In the same way, we obtain

1G(12) = G))| < E[|y(r25 ¢*) = y(t1; 6] + Elly (12 ¢) — y(t1; D)1 -

Clearly, system (1.3) is equivalent to the following stochastic integral system:

—T12

t
+/ o1x(s)d By (s),
0

—T21

t
+/ 02y(s)d Ba(s).
0
Based on system (2.62), we compute

x(t2; @) — x(t1; @)

n 0
:[ x(s; @) |:V] —h —a11X(S;¢>)—/ y(S+9;¢)du1z(9)} ds
14l

—T12
15
+/201x(S;¢)dB1(S),
n
y(t2; @) — y(11; @)

—T1

4]
+ f o2y (3 ) Ba(s).
1

@ Springer

t B 0
x(1) =x<0)+/0x(s) = —aux<s>—/ y(s+9)dmz(9)} ds

t 0
y(@) =y(©0) + /0 y(s) | —r2—ha+ / x(s +60)duz(6) — azzy(S)i| ds

123 0
:[ y(s; @) [—rz —hy + / x(s + 05 9)du21(0) — axny(s; ¢>)} ds
1

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)
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For t; > t; and p > 1, on the basis of Holder’s inequality, the first equation of system
(2.63) and Lemma 1, we have

E[lx(t2; ¢) — x(t1; 9)ID? < E[lx(t2; ) — x(t1; $)I7]

15) 0
S]EK/ x(s; @) |r1 —hy —aux(suzb)—/ y(s +0; d)dui2(9)
n
n
/ o1x(s; ¢)d By (s)

-T2
n

p
) i| (2.64)
%) 0 p
§2pE|:<f x(s; P) ds) i|
n
+2PE[

ds

_|._

F— b1 —anx(s; ) —/ ¥(s +0: $)dpr2(6)

—112
p:|
In the same manner, we deduce

E[ly(t2; ¢) — y(t1; §)D? <E[ly(t2; ¢) — y(11: $)17]

t 0
<E [(/ y(s; @)
31

—ry —hy —axny(s; ¢) +/ x(s +0; ¢)du (0)
15}
/ 02y (s; $)d B (s)

—n1
)p:l
151
0

n
<2PE [(/ y(s; @) |—r2 — ha —any(s; ¢) +/ x(s +0; ¢)d 21 (0)
1 —T121
P
+m[ ]

From Holder’s inequality and Lemma 1 again we have

(e

n
fE[(/ (i1 = mlx(s: @) +ana’(s: 9)

n

0 )4
+ / X(S;¢)y(5+9;¢)dmz(9)> ds) }

—T12

5]
/ o1x(s; ¢)dB(s)

n

ds

+

p
ds) :|
(2.65)

)]

n
/ 02y (s; ¢)d B> (s)

n

0

ri —hy —anx(s; ¢) —/ (s +0; d)d12(0)

—T12

5]
<(t—-1)'E |:/ (lrl — hilx(s; @) +anx’(s; )

ol

0 4
+ / x(s: B)y(s + 6 qb)dulz(e)) ds}

—T12

t
<(n -’ IEU23P (I = m1? 27 (53 9) + afy 2% (53 )

5l

0 p
+ (/ x(S;¢>)y(s+9;¢)dmz(9)) )4
=712
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I
=321 — hy|? (12 — )P f CE[x7(s: )] ds

n

B
+ 3%af) (tz—zl)”*‘/ ]E[xz”(s;@]ds (2.66)

n

r 0 P
+37 (6 —t)’'E [/ 2 (/ x(s;@)y(s +6; ¢)dM12(9)> dS} .
3l -T2

Similarly, we obtain
p
ds) i|

15}
]E[(/ y(s; @)

15}
s]E[(/ (Ir2 + B2l 353 6) + a2y (55 9)

151

0 P
+/ y(s; @)x(s + 65 p)duai (9)> dS) }
—T21

15)
<(t—1)P'E [/ (lrz + hal y(s5 §) + any*(s; ¢)

n

0
—ry —hy —axny(s; ¢) + / x(s +0; ¢)du2 (0)

—T21

. » (2.67)
+f y(S;¢)x(s+9;¢)duz1(9)> dS}

—T21

[5)
<3PIra + ha|? (12 —Il)p_lf E[y?(s; ¢)]ds

n

5]
+3Pal, (tz—tl)”*l/ E[yz”(smb)]ds

n

t 0 p
+37 (6 — 1)’ 'E [/ ’ (/ y(s; P)x(s +6; ¢)du21(0)> dS} .
n —T21

By Holder’s inequality and Lemma 1 once again, we get

B 15 0 p
E / (/ x(s: )y(s + 6 ¢)dmz(9)> ds}
—T112

P
y2(s +6; ¢)dulz(9)> ds}

0

1
dp@)22(s: §) + 2/

_712 —T12

0 P
sE/ (( d/uz(@)) 2"(s;<z>)+</ y2(S+9;¢)dM12(9)> )ds}

( dmz(e)) x?P (53 ¢)
—T12

0 0
+ (/ du12(9)> f y?P (s + 0; ¢)dM12(9)) dS}
—T12 —T12
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0 P 15
=</ du12(9)> / E [0 (s: )] ds
—T12 n
0 p=l . 0
+</ dmz(9)> / / E [ +6: )] duin®)ds.
—T12 1 —T12

Analogously, we derive

B 15 0 I3
E / (/ y(s: )x(s +0; ¢)dﬂ«21(9)> dS}
—T21

(2.68)

0

4
1
dpi210) 5 ) + 3 / x2<s+9;¢)du21<0)) ds}

*TZI —721

0 P
<E (( du21(9)> 2P (55 9) + (/ x2(s +0; ¢)dM21(9)> )dS]

<E ( dua (9)) Y (55 ¢) (2.69)
—121

0
+</ dM21(9)> / 2”(S+9;¢)duz1(9))d5}
—171 —121
0 P %)
=(/ duzl(9)> / B[y (5 9)] ds
—121 131
0 p=l 0 0
+</ dM21(9)> / / E[xzf’(s+o;¢)]du21(e>ds.
—171 n —71

In view of Theorem 7.1 in Mao (2007), for t, > #; and p > 2, we obtain
P
(| ]

P
<(250) -7 E[/ jo1x(s; ¢>|pds] (2.70)

[5)
/ 01x(s; ¢)d By (s)

n

p—=2

p
—lon1” (2502 o, —n)Tf E[x"(s; )] ds
n
P
(| }
4 p—2 15}
s(@)zm—mTE[/ |azy(s;¢>|f’ds] @)

P 2
=loal” (252) (12— 1) 2f E[y7(s: )] ds

n

And

15)
/ 02y (s; $)d By (s)

n
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From Lemma 2 we observe that there exist K{*(p) > 0 and K;*(p) > 0 such
that sup,-_,, E[xp(t)] < K{*(p) and sup,zny[yp(t)] < K}*(p). Hence, based on
Eqgs. 2.64, 2.66, 2.68 and 2.70, we deduce that for p > 2 and |t, — 11| < 4,

Ellx(2; ¢) — x(1; PIDP
V4
<27 [w" (P52) % ki) 2 mg}
+ 27 [3P|r) — hi|PK{*(p) (2 — 1) + 3Pal K (2p) (12 — 1) ] (2.72)

0 14
+273P (/ dM12(9)) [K{*2p) + K5 2p)] (o — 1)?

—T12
*kk E
M|t — 12,
where

P P
My* =lo11? 2p(p — D12 K{*(p) + [36812 [Ir1 — hi|PK{*(p) + af| Ki*(2p)]

p 0 b (2.73)
+ 36612 ( / dM12(9)> (K7 @p) + K3*2p)].
—T12
Thus, by combining (2.60) with Eq. 2.72 we obtain
|F(t2) — F(t)| <E[|x(t2; ¢*) — x(t1; ")|] + E [Ix (12 ¢) — x(11; $)1]
(2.74)

L2 M|ty — ).

Similarly, on the basis of Egs. 2.65, 2.67, 2.69 and 2.71, we derive that for p > 2 and
|t — 1] <6,

Elly@s @) — yt; 9)D?
)4
<2” [ml" (252)% K5 (2 - n)’z’}
+27 [371r2 + ha| PK3*(p) (12 — 11)P + 3P ag, K3*(2p) (12 — 11)7] (2.75)

0 p
+2P3P ( / duzl(G)) [K7*2p) + K3 C@p)] (ta — 11)”

—121
kk B
M5 |tp — 12,
where

r r
M3 =02l [2p(p — D12 K5*(p) + [368]2 [Ir2 + ha|? K5*(p) + ab, K5*(2p) ]

» 0 P (2.76)
+1[36812 ( f d/m(@)) [K*2p) + K3*2p)].
-1
Therefore, it follows from Eqgs. 2.61 and 2.75 that
|G(t2) — G| <E[ly(t2; ¢) — y(t1; 9 + E[|y(t2; ¢*) — y(t1: ¢™)|]
(2.77)

20 M3*\/ |t — 1.
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So Eq. 2.48 follows from the first inequality of Eqs. 2.58, 2.74 and Barbalat’s conclu-
sion in Barbalat (1959); Eq. 2.49 follows from the second inequality of Eq. 2.58, 2.77 and
Barbalat’s conclusion in Barbalat (1959). The proof is complete. O

Now, let us denote by P([—y, 0],Ri) the space of all probability measures on
C([—y,0],R3). For Py, P, € P([—y, 0], R?), define

dpr(Py, P;) = sup
feBL

, (2.78)

/ f(Z)Pl(dZ)_/ f(@) P (dz)
R% R%

where
BL = [f : C([—J/,O],Ri) = R:|f(z) = f@)] =2zt =220 1 fO)] < 1}. (2.79)

Denote by p(t, ¢, dz) the transition probability of the process z(#). Denote by P (¢, ¢, A)
the probability of event z(t; ) = (x(t; @), y(t; o))T € A with initial data ¢ €
C([—y. 0. R%).

Lemma4 Ifaj; — f?m duz1(0) >0, a» — fi)m du12(0) > 0, then for any initial data

¢ € C([—v,0], Ri), {p(t, @, : t = 0} is cauchy in the metric space P([—y, 0], Ri).

Proof By Eq. 2.78 and the Markov property of z(¢), for any ¢t > 0 and s > 0, we compute
dBL(P([ +, ¢a ')7 p([! ¢7 ))

= sup / f(z(r+s;¢>)p(r+s,¢,dz)—/ Gt ¢)p(t, ¢, dz)
feBL |JRZ RZ

= sup |E[f(z(t +s; )] — EL[f(z(t; p))]I
feBL

= sup [E[E[f(z(t +s;o)IF]] —ELf ;o))
feBL

feBL

= sup /RZ ELf @@ yN] pls, ¢, dy) —E[f(z(t;¢))]’

= swp | [ BLrGE 66 - [ 2E[f(z<u¢))]p(s,¢,dw>‘ (250
+ +

feBL

= sup /Rz E[f (@ ¥) — fz@; ¢))]p(s,¢,d1/f)‘

feBL

< sup / E[1£ () — £ D1 pls, 6. d)
feBLJRZ

< sup/ E[1 £ ) — £ o)1 pls, 6, dvr)
feBL JBy

+ SUP/ E[lf @ ¢) — fz@ oD pls, ¢, dy),
RI\By

feBL

where By = {(x, T e Ri 10 < x24+y2 < N}. According to Lemma 2 and Chebysh-
sev’s inequality we observe that for any initial data ¢ € C([—y, 0], Ri), the family of
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transition probability p(z, ¢, -) is tight. That is, for any € > 0, there exists a compact subset
D of ]Ri such that for any ¢ > 0,

P(t,¢,D)>1—¢€. (2.81)

So, for sufficiently large N > 0, we get

sup /Rz . E[1f(z(t;:9)) = £ )11 pls, ¢, dY) < 2P(s, ¢, RE \ By) < 2.
+ \DPN

feBL
(2.82)
On the other hand, based on Eq. 2.79 and Lemma 3, we observe that there exists 7 > 0
such that forany r > T,

sup /B Ef1f @) — [ o)l ps, ¢, dy)
N

feBL

< sup /B E[lz(t: ) — 23 $)1] pls. &, ) 2.83)

= SUP/ ep(s,¢,dy) =€P(s,¢,By) <e.
feBL JBy

Hence the desired result follows from Eqgs. 2.80, 2.82 and 2.83. The proof is complete. [

Lemma 5 If a;; — f?m duzi(0) > 0, axn — f?m dui2(0) > 0, then system (1.3) is

asymptotically stable in distribution, i.e., there exists a unique probability measure v(-) such
that for any initial data ¢ € C([—y,0], ]Ri), the transition probability p(t, ¢, -) of z(t)
converges weakly to v(-) when t — +o0.

Proof We only need to show that for any initial data ¢ € C([—y, 0], ]R%_),
Iii?oo dpr(p(, ¢,),v()) =0. (2.84)

From Lemma 4 we observe that for ¢g = (c19, c0)T € C([—v, 0], ]R%_), where c1¢ and ¢y
are positive constants, {p (¢, ¢, -) : ¢ > 0} is cauchy in the metric space P([—y, 0], Rﬁ).
Therefore, there exists a probability measure v(-) such that

Jim dpr(p(t. ¢o. ). v()) = 0. (2.85)
By the triangle inequality, we have

dpr(p(t,¢,-),v() =dpr(p(t,¢,-), p(t, do.-)) +dpL(p(t. ¢o,), v(-)).  (2.86)
Based on Eqs. 2.78 and 2.79 we compute

dBL(p(ts ¢’ '), p(tv ¢07 ))

= sup f £ @)t b dz) — / £ o)) p(t. do. d2)

feBL|JR% R (2.87)
— sup [E[fG(: 6] —ELF0: g0l < sup ELLFG(E 8) — F(t: o))

feBL feBL

<E[lz(t; ) — 2(z; $o)II.

Hence the desired result follows from Lemma 3, Eqgs. 2.85, 2.86 and 2.87 . The proof is
complete. O
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Theorem 2 Let ay; —fo du(0) >0, axn —f?

—T21

du12(6) > 0. Denote

112

hT :20116122—0-/9,21 61#21(0)([2,12 dM12(9)—f?T21 dl;zl(f))) <”1 B ﬁ)
danian (12, dui@)=[2,, du2i©)) ’
an ([0, dn@+[°,,, dun®) (r o} )
4011022—(f£),12 du12(9)—f3121 du21(9))2 : A
tlzz(fijrl2 dﬂ12(9)+f£),2] dllzl(@)) <r B gi)
danan—(J°,,, dnn®-°,, dun®)’ b
+ fEtlz d#lz@)(fi,z dﬂ12(9)*f,0r21 d#21(9))*2a11a22 (rz L 122)
4t1116422—(f£)fl2 dﬂlz(t‘/’)—f_(),z] dM21(9))2 A

h =

21

(2.88)

0 0
Y*(H) = — anh? + ( / dpi2(0) — f dumw))hlhz—auh%

—T12 —121

02 02 0
+rn=L)an+|rn+t2 / du2(0) | h

2 2 -2

012 0 022
+(ln=-2 / dun (@) — | r2+ =) an | ha.

2 —T1 2

0
(bl/ d,u21(9)—b2a11) lny=h*>0, hy=h3>0> 0,

—T21

0 0 2
4ayiaxn — / du12(9) —/ du @ | >0,
—T12 —121

then the optimal harvesting strategy exists. Moreover, H* = (h¥, h;)T and

By If

(2.89)

MESY Y'(H")
= . 2.90
anan + [°. dun®) [0, dusn(6) (290)

712 1

(By) If one of the following conditions holds, then the optimal harvesting
strategy does not exist:
(€D bilpy=nr = 0;

0
€ (b1 2, dn21®) = baarn) lny =i, nsmi = 0
(C3) hf <0 or hy <0;

2
€9 danaz — ([0, dm2©) = [°,, duzn®) <.

712 1

Proof Let
0
U=1H=(hi,hy)" e R? | blf dpr1(0) —brayr >0, hy >0, hha >0¢. (291)

—T21
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On the one hand, from the definition of I/ (i.e. Eq. 2.91) and Theorem 1 (As) we observe
that for every H € U, equality system (2.2) holds. On the other hand, if the OHE H* exists,
then H* € U.

Proof of (3;). Based on the first condition of Eq. 2.89 we obtain that I/ is not empty.
According to Lemma 5 we observe that there exists a unique invariant measure v(-) for
system (1.3). It then follows from Corollary 3.4.3 in Prato and Zabczyk (1996) that v(-) is
strong mixing. By Theorem 3.2.6 in Prato and Zabczyk (1996), we obtain that the measure
v(-) is ergodic. On the basis of Theorem 3.3.1 in Prato and Zabczyk (1996), for H =
(h1, h2)T € U, we have

1 t
lim — / Hz(s)ds = / H zv(d7). (2.92)
tJo R%

f—>+00

Let o(z) be the stationary probability density of system (1.3), then we get
Y(H) = lim Elhnx®)+hoy0)] = tim E[HT2(0)] = / H'20()dz.  (2.93)
t—+00 t—>+00 Ri

Note that the invariant measure of system (1.3) is unique and that there exists a one-to-one
correspondence between o(z) and its corresponding invariant measure, we deduce

/ H z0(z)dz = / Hzv(dz). (2.94)
RZ RZ

+ +

In the light of Egs. 2.92, 2.93, 2.94 and Theorem 1 (As), we have

1 t
Y(H)= lim - | H z(s)ds
t——4oo t 0

=h t—leoo %/le(s)ds + hy r—leoo %/Oly(s)ds

birax + by fi)m dpi2(9)
apjaxn + f?m du®) [, dua1(9) (2.95)
b f?m duz1(0) — baan

ajlaxn +fi),12 dl/«lz(g)fi) du21(0)
Y*(H)
dun®) [°

:hl

21

+ hy

21

ayaxn +f_0 du21(0)

112 21
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Based on the third equation of Eq. 2.88, we compute

aY*(H) 0 0
= —2anh + / dmz(@)—/ du21(0) | ha

dh —T12 -1

o2 o2 0
-2 )an+(rn+2 f dui2(0) |,
2 2 —T12

AY*(H 0 0
(H) = (/ du2(0) —/ dﬂ21(9)> hy —2a11hy

ahQ —T112 —121

(2.96)
A o2
+ - / dpn1(0) — {2+ —=|au |,
2 1 2
—_— = =20y, ————— = H12 - 21 ,
8h% 0h10hy —112 -7
— = - , ——— = —2ayi.
TRETH | dn Gk o 1
Note that
0 0 2
darjan > / dmz(@)—/ dun®)] , (2.97)
—T12 —721

we deduce that Y*(H) has a unique maximum, and the unique maximum value point of
Y*(H)is H* = (h}, h3)T. Hence (2.90) follows from Eq. 2.95.

Proof of (37). To begin with, from Theorem 1 (A;) and Theorem 1 (A7) one can obtain
that under condition (C;), the optimal harvesting strategy does not exist. Then, let us show
that the optimal harvesting strategy does not exist, provided that either (C») or (C3) holds.
The proof is by contradiction. Suppose that the OHE is H* = (l?f , hE)T Then H* € U. In

other words, we have

0 ~ ~
<b1 /421 dp21(8) — bzdn) =i, = > 0 hy >0, h3 > 0. (2.98)
~ ~ ~\T ~ ~\T
On the other hand, since H* = (hT, h;) € U is the OHE, then (hT, h;) must be the
unique solution to the following system:
aY*(H) _0 AY*(H)

=0, 0. (2.99)
dh oho
Note that H* = (h*,h;)T is the unique solution to system (2.99), we deduce that
~ ~A\T
(h*, h;)T = (h*f, h;) . Hence, Eq. 2.98 becomes
0
by / dp21(©) — baary | lny=ny, ny=ny > 0, hi =0, h3 =0, (2.100)
—121

which contradicts with both (C») and (C3).
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Now we are in the position to prove that if the following condition holds, then the optimal
harvesting strategy does not exist:

0
<b1/ du21(9)—b2011> lny=ht>0, hy=h3>0> 0,

—T21

0 0 2
4ayiaxn — / dup(0) — / duz(0) ] <0O0.
—T12 —121

From the first inequality of Eq. 2.101 we observe that I/ is not empty. Hence both (2.95)
and Eq. 2.96 are true. —2a3; < 0 implies that the Hessian matrix is not positive semidef-
inite. The second inequality of Eq. 2.101 indicates that the Hessian matrix is not negative
semidefinite. Namely, the Hessian matrix is indefinite. Thus the third equation of Eq. 2.88
does not exist extreme point. So the OHE does not exist. The proof is complete. O

(2.101)

If w12(0) and o1 (0) are defined as follows:

—az1, —T1 <0 < —13,

—ap, —T12 <0 < -1, _
le(e)_{O, -7 <6 <0,

n12(0) = { 0. 7 <6 <0, (2.102)

then system (1.3) becomes the following stochastic predator-prey system with discrete time
delays:

dx(t) =x()[r1 — hy —anx®) —apy(t —)ldt + o1x(t)d B (1), (2.103)
dy(t) =y(t) [—r2 — hy + a2 x(t — ©2) —axny)]dt + o2y (t)d By (1). '

Remark 1 Theorem 1 contains Theorem 1 in Liu et al. (2013) as a special case.

Remark 2 Theorem 2 contains Theorem 1 in Liu (2015) as a special case.

3 An Example

By the method in Glasserman (2003), for a;; = 1.0, a2 = 0.5, 112 = In2, 151 = In2,
wi12(0) = 0.8¢7, 11 (8) = 1.5¢7, £(0) = 1.4e?, n(9) = 0.8¢?, 0 € [—In2, 0] and step size
At = %, we numerically simulate the solutions of the following system to support our
results:

0

dx(t) =x(t) |:r1 —hy —x(t) — 0.8/

y(t + e)e%re] dt + o1x(t)d B (1),
—In2

0

dy(t) =y(t) |:—r2 —ho + 1.5/

x(t +0)e’do — O.Sy(t):| dt + o2y(1)dBa (1),
—1In2

x(0) =£0) = 1.4¢%, y(6) = n(@®) =0.8¢%, 6 € [—~In2,0].

3.1)
O Forrp =2.0,r=1.0,h1 =0, h, =0,01 =2.5and 0 = 0.1, we have (Fig. 1a):
b1 =—1.125 < 0. 3.2)

By Theorem 1 (A;), both x(¢) and y () are extinctive a.s. From Theorem 2 (Cy),
the optimal harvesting strategy does not exist.
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a 3 T T T b 3 T T T
25¢ 4 25 1
2 1 2 1
1.5 4 15 1
1 1 1 1
0.5 4 0.5 1
0 0
0 20 40 60 80 100 0 50 100 150 200
Time Time
c 8 - - - - d 1 . . .
= X(t) Prey — (1) >
7 s y(t) Predator | | 0.9 g
— X (1)>
0.8 1
6 4
0.7 1
5 ] os 1
4 0.5 4
3 0.4 ]
0.3 ]
2
0.2 ]
! 0.1 ]
0 0 z
0 20 40 60 80 100 0 50 100 150 200
Time Time

X () Prey —x(t) Prey
s y/(t) Predator . s /(1) Predator H
s <X(1)> s <X(1)>
—<y()> —<y(t)> N
hy<x(®)>+ hy<y(t)>

J .M]I..m .d“ |

20 40 60 80 100
Time

Fig. 1 Solutions of system (3.1)

) Forry =2.0,rp =1.0,h; =0, h, =0, 01 =2.0and 0 = 0.1, we have (Fig. 1b):
by =0. (3.3)

In view of Theorem 1 (Aj3), x(f) is nonpersistent in mean a.s. Based on Theorem
2 (C1), the optimal harvesting strategy does not exist.
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dmm Forr; =2.0,r, =1.0,h; =0, hy =0,0; = 1.0 and 0» = 0.6, we have (Fig. 1c):

0
b =15>0, b1/ du1(0) — baayp = —0.055 < 0. 3.4

—T21

According to Theorem 1 (A3), x(¢) is persistent in mean while y(z) is extinctive
a.s. In line with Theorem 2 (C;), the optimal harvesting strategy does not exist.
aV) Forri =2.0,r, =1.0,h; =0, h, =0, 01 = 1.0 and 0 = 0.5, we have (Fig. 1d):

0
by / dp21(0) — bray; = 0. (3.5)

—T21

In the light of Theorem 1 (Ay4), y(¢) is nonpersistent in mean a.s. On the basis of
Theorem 2 (C5), the optimal harvesting strategy does not exist.
(V) Forr; =2.0,r,=1.0,h; =0, hy =0,07; = 0.5 and 0» = 0.3, we have (Fig. le):

0
by / du1(0) — brayr = 0.36125 > 0. (3.6)
-1

Based on Theorem 1 (As), both x(¢) and y(¢) are persistent in mean a.s.

h, 0 o h

1

Fig. 2 Y (H) of system (3.1) for r; = 2.5, r, = 0.2, 0y = 0.5 and 0 = 0.3. Then the maxima is H* =
(1.0829893475, 0.5786018642)T and the maximum is ¥ (H*) = 1.4256624501
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(VI) Forry =2.5,r, =0.2,01 = 0.5 and 0, = 0.3, we have (Figs. 1f and 2):

0 0
arg —/ duz1(0) =0.25 >0, ax —/ duip(0) =0.1 >0,

—T21 -T2

T =1.0829893475 > 0, h} = 0.5786018642 > 0,

2
0 0
dayaxn — (/ du12(0) —/ du21(9)> = 1.8775 > 0,

—T12 -T2

o 3.7
by / dp21(0) — bray = 0.1454061252 > 0,

—721

Y*(H) = —0.5h% — 0.35h1hy — h2 + 1.2855h + 1.53625h;,
0 0
aran + / dun®) | dps©) = 0.8.
—T12 —121

From Theorem 2 (3)), the optimal harvesting strategy exists. Moreover, the OHE H* =
(1.0829893475, 0.5786018642)T and MESY = 1.4256624501.

4 Conclusions and Outlook

This paper is devoted to studying the optimal harvesting problem of a stochastic predator-
prey model with S-type distributed time delays (which contain both discrete time delays
and continuously distributed time delays). By combining stochastic analytical techniques
with the ergodic method proposed in Zou et al. (2013), sufficient and necessary conditions
for the existence of optimal harvesting strategy are obtained. Moreover, both the OHE and
MESY are given. Some existing results are generalized. Our analytical results reveal that
the existence of optimal harvesting strategy has close relationships with both time delays
and stochastic noise.

Some interesting topics deserve further investigations. First, it is interesting to investigate
more realistic and complex systems in lieu of the considered system, for example, stochastic
time-delay predator-prey model with Markovian switching (see e.g. Zou and Wang 2014,
Bao et al. 2009) and Lévy noise (see e.g. Zou and Wang 2014, Liu and Bai 2016b, Liu and
Wang 2014). Next, it is of interest to investigate the optimal harvesting problem of other
stochastic population systems with S-type distributed time delays, for instance, competitive
systems and cooperative systems. Finally, motivated by the works in Liu and Bai (2014)
and Liu and Bai (2016a), we may also study the optimal harvesting of stochastic food-chain
model with S-type distributed time delays and Lévy noise. We leave these investigations for
future work.

Appendix

Proof of Lemma 2 Since the coefficients of system (1.3) are locally Lipschitz continu-
ous, from Mao (1994) (Theorem 3.2.2) and Wei and Wang (2007) we observe that for
any initial data (£(9), n@eNT e c(-y, 01, Ri), system (1.3) has a unique local solution
z2(t) = (x@), y®)T ont € [—y, 1.), where 7, is the explosion time. We need to prove
T, = 400 a.s. For this purpose, let kg > 0 be sufficiently large that both £(0) and n(0) lie
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in [le)’ ko]. For every integer k > ko, define stopping times as follows:

T = inf{r €l0,7,): x(t) ¢ (%,k) or y(t) ¢ (%,k)}. (A1)

Set 700 = limk— 400 Tk, Whence 7o < 7, a.s. Hence, we only need to show 1o, = +00 a.s.
If this deduction is false, then there exist 7 > 0 and € € (0, 1) such that P(toc < T) > €.
Thus, there exists an integer k1 > kg such that

Pty <T)>¢€, k>ky. (A2)
For (x, y)T € RZ, define
Vik)=x—1—Inx, Vb(y) =y—1—1Iny. (A.3)

By It&’s formula, we have

dVi(x) =L[Vi(x)]ldt +o1(x — dB (1), (Ad)
dVa(y) =L[Va(y)]dt + o2(y — Dd B (1), '
where
o2 0
LIVi(x)] 271 +G& =1 |r—h —anx —/ Yy +0)dpui200) |,
; . e (A5)
o
LIV2(y)] 272 +G-0D [—72 —ha +f x(t+0)dp2(0) — azz}’} .
—1721
For any positive integer n, applying Lemma 1 to Eq. A.5 gives
o2 n2 [0
cvicon =T - —m+ 5 [ dun)
2 2 —T12
2 1 o,
+ (r1 —hpDx +ajx —anx to2 Yt +0)duia9),
) 2 (A.6)
o
LIV2(»)] 572 + (r2 + h2) — (r2 + o)y + any — any®
2 10 0
Yy n 2
+ 7/ du (0) + */ x“(t +0)du21(09).
n —12] —121
Define
1 0 t
Vox, y, 1) =a | Vi(x) + =— / / y(s)dsdi12(6)
2n —112 Jt+6
(A7)
R N
+B (Vz(y) + 5/ / x (S)dsdum(@)) ,
—Tp1 Jt40
where « and § are positive constants satisfying:
n [0
—ajo+ 5/ dun (@) <0,
o (A8)

1[0 10
W/ du(@)a + (—a22 + — duzl(é)) B <0.

—T12 2n —121
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Then from It&’s formula, Eqs. A.6, A.7 and A.8, we obtain that for sufficiently large n, there
exists IC > 0 such that

d[Vo(x, y, )] < Kdt + o1a(x — 1)dB;(¢) + 028(y — 1)dBa(2). (A9)
Integrating both sides of Eq. A.9 from O to 74z A T and then taking the expectations yield
ElaVi(x(te AT)) + V2 (y(te A T))]
SEVox(zx AT), y(te AT), e AT)])

wAT (A.10)
<E[Vo(x(0), y(0), 0)] + E / Kds
0

<Vo(x(0), y(0), 0) + KT.

Let Q; = {tx < T}. In view of Eq. A.2, we have P(2;) > €. Note that for every w € 2,
one of the following equalities holds:

(e 0) = 1, x(t, 0) =k, y(t, 0) =1, v, w) =k (A.11)
Hence, based on Eqs. A.3 and A.11 we get
aVi (x(tk, 0) + BV2 (¥ (7, @)

Zmin{a,ﬂ}min{«/lg—l—lnﬁ,ﬁ—l—i—lnﬁ}.

(A.12)

Thus it follows from Egs. A.10 and A.12 that
Vo(x(0), y(0),0) + KT
>E [Ig, (@) [aVi (x(tk, ) + BV2 (v(w, 0))]] (A.13)
>emin{a,,3}min{\/%— 1 —ln«/lz, ﬁ —1 —l—ln\/E} ,
where Ig, is the indicator function of €. Letting k — 00 leads to the contradiction
F00 > Vo(x(0), y(0),0) + KT > +o0.
Now, we are in the position to prove (2.1). On the one hand, for any p > 0, by Itd’s
formula we obtain
dle'x”] =L[e'x"1dt + pore'xPd B (1), (A.14)
where

E[t P1 _at P p(p—Do} 0
ex’l=ex’ 114+ —5—"++p|rn—h —anx—

—T12

y+ G)dmz(@)} }

C1ys2
<e' {[1 + p(r — hy) + M} xP — pa11xp+1} < Ki(p)e'.

(A.15)
In other words, we have
dle'xP] < Ki(p)e'dt + poie'xPd By (t). (A.16)
Integrating both sides of Eq. A.16 from O to ¢ and then taking the expectations lead to
Ele'x? (1)] — £7(0) < Ki(p)(e' — 1). (A.I7)
According to Eq. A.17 we derive
E[x”(1)] < K1(p) + e [§7(0) — K1(p)]. (A.18)
On the other hand, applying Itd’s formula to €’ y” (¢) yields
dle' yP1 =L[e' y?1dt + pore’ yPd By (1). (A.19)
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For sufficiently large positive integer n, on the basis of Lemma 1 we obtain
(p—Do3
Lle'y’] =e' {[1 — p(ra+ha) + W} yP — payny?t!
0
+P/ x(t +0)yP (t)dp21 (0)

—121

—1o?2
<et H:l _ p(l’z +h2) + %} yp _ pa22yp+1

0 p yp+l np+l "
+ + xPTH e +0) | d 0
p/_ ES (t +0) | dpar(0) (4.20)
—1o?
—¢! i|:1 _ p(r2 +hy) + p(pz)zi| yl’

_ﬂ;r' 0
—p G / diin ) |y
[ p + 1 —121

p + e / xP +0)d,u21(9)] .

Define é(t) as follows:

O(t) =™ p Q(t) Q@) = / / e xP T (s)dsd a1 (0). (A21)
—121 Jt+6
Compute
do 0 0
gt() :/ e'xP(1)dpa (0) —/ Xt + 0)dun (0)
—121 —121
0 0 (A.22)
5/ dus (0)e' xPH(r) —e ™ / e xPH(t + 0)d ) (0).
—T21 —121]
In the light of 1t6’s formula, Egs. A.20, A.21 and A.22 we deduce
~ p(p— 1oy
L[y + 0] <¢' {1 = pora+hy) + ———5—2 | y”
= b +1
—p|ax— nor du2i(9) | y? (A.23)
p + 1 —121

p+1 0
+e™! ];n+1/ du21(9)xp+1(t)]-

—121

Define Q*(x, y, t) as follows:

0
Q*(x,y,1) = C*'x? + ('Y + 0(), C* =a;/e™n?t! / du2i(0).  (A24)

—T21
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In view of It6’s formula, Eqs. A.15, A.23 and A.24, we observe that there exists K2(p) > 0
such that

p(p — o}
L e yP

L[Q*(x.y.0] <" {1 = plra+h) + 5

p e [0
—plax - P / dpz1 () | yP™!
P+ —1

(A.25)
p(p — Do} Ny

+C* |1+ p(r1 —hy) + 5

2
21 p
p+1

According to Egs. A.24 and A.25, we get
Efe'y?(1)] <E[Q*(x,y, )] <E[Q"(£(0), n(0),0)] + Ka(p) (¢ = 1).  (A.26)
In other words, we have
E[y" ()] < Ka(p) +e™' [Q*(£(0), n(0), 0) — K2(p)] . (A.27)

Consequently, Eq. 2.1 follows from taking superior limits on both sides of Eqs. A.18 and
A.27. The proof is complete.

0
an/ dpa1(0)xPT1 Y < Ka(p)e'.
—121
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