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Abstract In the current paper, based on progressive type-II hybrid censored samples, the
maximum likelihood and Bayes estimates for the two parameter Burr XII distribution are
obtained. We propose the use of expectation-maximization (EM) algorithm to compute the
maximum likelihood estimates (MLEs) of model parameters. Further, we derive the asymp-
totic variance-covariance matrix of the MLEs by applying the missing information principle
and it can be utilized to construct asymptotic confidence intervals (CIs) for the parame-
ters. The Bayes estimates of the unknown parameters are obtained under the assumption of
gamma priors by using Lindley’s approximation and Markov chain Monte Carlo (MCMC)
technique. Also, MCMC samples are used to construct the highest posterior density (HPD)
credible intervals. Simulation study is conducted to investigate the accuracy of the estimates
and compare the performance of CIs obtained. Finally, one real data set is analyzed for
illustrative purposes.

Keywords Bayesian estimate · EM algorithm · Missing information principle · Lindley’s
approximation · Importance sampling · Progressive type-II hybrid censoring

Mathematics Subject Classification (2010) 62F10 · 62N01 · 62N02

1 Introduction

In reliability and lifetime experiments, censoring is considered in order to save time and
reduce the number of failed items. Two of the commonly used censoring schemes are type-I
and type-II censoring schemes. The hybrid censoring scheme which is a mixture of type-I
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and type-II censoring schemes was first introduced by Epstein (1954). These three conven-
tional censoring schemes remove the left units only at the terminal time and not at each
failure time. To overcome this problem, progressive hybrid censoring (PHC) scheme which
is a mixture of type-I and type-II progressive censoring schemes has been introduced. Under
type-I progressive hybrid censoring (type-I PHC) scheme, Kundu and Joarder (2006) have
discussedMLEs and Bayes estimates for an exponential distribution. Moreover, Childs et al.
(2008) proposed the type-II progressive hybrid censoring (type-II PHC) scheme and derived
the exact distribution of the MLEs for the mean of the exponential distribution. For other
related works see Banerjee and Kundu (2008), Lin and Huang (2011), Lin et al. (2011) and
Gurunlu Alma and Arabi Belaghi (2015).

The type-II PHC scheme overcomes the drawback of the type-I PHC scheme that the
maximum likelihood may not always exist. It can be described as follows: Consider n

identical items are placed simultaneously on test with the corresponding lifetimes being
independent and identically distributed (i.i.d) each with probability density function (p.d.f)
fX(x; θ) and cumulative distribution function (c.d.f) FX(x; θ), where θ denotes the vec-
tor of model parameters. R̃ = (R1, R2, ..., Rm), 1 ≤ m ≤ n, is prefixed progressive
type-II right censoring scheme with Rj > 0 and

∑m
j=1 Rj + m = n is specified. Under

the type-II PHC scheme, at the time of the first failure X1:m:n, R1 of the n − 1 surviv-
ing units are randomly withdrawn from the experiment, then at the time of the second
failure X2:m:n, R2 of the n − R1 − 2 surviving units are withdrawn, and so on. Finally
at the time of the mth failure Xm:m:n, all Rm = n − R1 − R2 − · · · − Rm−1 − m sur-
viving units are withdrawn from the life-test. Hence, X1:m:n < · · · < Xm:m:n denote the
progressively censored failure times. The type-II PHC scheme involves the termination of
the life-test at the time T ∗ = max{Xm:m:n, T }. Let D denote the number of failures that
occur up to time T . If Xm:m:n ≥ T , then experiment would terminate at the mth failure
with the withdrawal of units occurring after each failure according to the prefixed pro-
gressive censoring scheme (R1, R2, ..., Rm). However, if Xm:m:n < T , then instead of
terminating the experiment by removing all remaining Rm units after the mth failure, the
experiment would continue to observe failures without any further withdrawals up to time
T . Hence, Rm = Rm+1 = · · · = RD = 0. In this case the failure times are represented by
X1:m:n < · · · < Xm:m:n < Xm+1:n < · · · < Xd:n where the d is the observed value of D.
We denote these two cases as case I and case II, respectively.

Case I: {X1:m:n < X2:m:n < · · · < Xm:m:n}, if Xm:m:n ≥ T ;
Case II: {X1:m:n < · · · < Xm:m:n < Xm+1:n < · · · < XD:n}, if Xm:m:n < T .

Based on the observed type-II PHC data, the likelihood function can be written as
follows:

Case I : L(θ) = C1

m∏

i=1

fX(xi:m:n; θ)[1 − FX(xi:m:n; θ)]Ri , (1)

Case II :L(θ) = C2

m∏

i=1

fX(xi:m:n; θ)[1−FX(xi:m:n; θ)]Ri

D∏

i=m+1

fX(xi:n; θ)[1−FX(T ; θ)]R′
D , (2)

where C1 = n(n − R1 − 1) · · · (n − R1 − R2 − · · · − Rm−1 − m + 1), C2 = n(n − R1 −
1) · · · (n − R1 − R2 − · · · − Rm−1 − D + 1), D = m + 1, ..., n − ∑m−1

j=1 Rj , Rm = 0 if

D ≥ m and R′
D = n − D −∑m−1

j=1 Rj .
In this paper, we mainly consider the analysis of progressive type-II hybrid censored data

when the lifetime distribution of the individual item follows the Burr XII distribution.
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The two parameter Burr XII distribution has received the most attention in the statistical
literature. This distribution contains some well-known distributions, such as the Weibull,
normal, log-normal, logistic, gamma and extreme value distributions, among others. Due
to its flexibility and some desirable properties, applications have proved to be much wider.
Applications may be found in areas of quality control, economics, duration of failure time
modeling, insurance risk and reliability analysis. Some inference concerning the Burr XII
distribution have been discussed by many authors. Among others, see Ali Mousa and Jaheen
(2002), Soliman (2005), Abd-Elfattah et al. (2008), Ahmed et al. (2011) and Rastogi and
Tripathi (2013). Reviewing the literate shows that there is no work for the parameters esti-
mation of the Burr Model under progressive type II hybrid censored data, that’s motivate us
to consider this study.

The probability density function (pdf) and the cumulative distribution function (cdf)
of the Burr XII distribution with two shape parameters, α and β are given, respectively,
by

fX(x; α, β) = αβxβ−1(1 + xβ)−α−1, x > 0, α > 0, β > 0, (3)

FX(x; α, β) = 1 − (1 + xβ)−α, x > 0. (4)

The objective of this paper is two-fold. In the first part, we obtain the maximum likelihood
estimates (MLEs) of the unknown parameters. The Eqs. 1 and 2 are maximized numerically
to obtain maximum likelihood estimates for parameters α and β. The iterative method such
as the Newton-Raphson (NR) can be utilized to perform maximization. However, the MLEs
via the NR method are very sensitive to their initial parameter estimation value. Moreover,
in dealing with censored data, the parameter estimates of MLEs via the NR algorithm are
significantly biased. In this article, we propose using the EM algorithm for computing the
MLEs. The EM algorithm always converges. It has a stable global convergence because
of its robustness against the initial value. The EM algorithm is also stable in numerical
computation because each of its iterations increases the likelihood value; this algorithm
characteristic is useful in providing valuable statistical information. This information makes
it easy to monitor convergence and programming errors (Wang and Cheng 2010). From the
proposed EM algorithm, the observed information matrix based on the missing value prin-
ciple is computed, which can be used to construct the asymptotic confidence intervals (CIs).
In the second part, we consider a Bayesian approach to estimate the parameters α and β

under squared error loss (SEL) and LINEX loss functions. It is observed that the Bayes
estimates cannot be obtained in nice closed form. Thus, we adopt Lindley’s approximation
to obtain the Bayes estimates. Since the Lindley approximation method fails to construct
HPD credible intervals, we made use of the importance sampling procedure to obtain point
estimates and HPD credible intervals of the parameters. We also conduct some simulation
experiments to investigate the accuracy of the estimates and compare the performance of
CIs obtained. The remainder of this paper is structured as follows: In Section 2 we provide
the maximum likelihood estimates (MLEs) of the unknown parameters by using EM algo-
rithm. The Fisher information matrix is also evaluated in this Section. The Bayes estimates
of the unknown parameters are obtained in Section 3 using Lindely’s approximation and
importance sampling methods. Section 4 is devoted to the simulation study. One real data
set is analyzed for illustration in Section 5. Finally, some concluding remarks are given in
Section 6.
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2 Maximum Likelihood Estimation

In this section, we obtain the MLEs of the parameters θ = (α, β) using EM algorithm and
derive their asymptotic variance-covariance.

2.1 The EM Algorithm

The Expectation-Maximization (EM) algorithm (Dempster et al. 1977) is a widely appli-
cable technique for maximum likelihood estimation with incomplete data. This algorithm
enables the computationally efficient determination of the MLEs when iterative procedures
are required. On each iteration of the EM algorithm, there are two steps:

E-step In E-step the missing data are replaced by their expected values when a level of
parameter vector is presumed. When the likelihood function of censored data is replaced
with the expected likelihood function of missing data, the pseudo-likelihood function is
derived. The E-step finds the following expectation:

Q(θ(s+1), θ (s)) = E[lc(W; θ)|X = x, θ(s)], (5)

where θ(s) is the current parameter vector and is used to evaluate the expectation.

M-step The M-step consist in finding θ(s+1), the value of θ that maximize Q:

θ(s+1) = argmaxQ(θ, θ(s)), ∀θ ∈ � (6)

The optimized parameter vector θ(s+1) from Eq. 6 is used as the current parameter vector
for Eq. 5. Each step of the EM increases the log-likelihood. In particular, if a unique finite
maximum likelihood estimate of θ exists, the algorithm finds it. For a detailed discussion
on the EM algorithm and its applications, the reader is referred to a book by McLachlan and
Krishnan (1997).

The analysis with the data from type-II PHC scheme can be treated as an incomplete
data problem and the EM algorithm can be used quite effectively to compute the MLEs by
solving a two-dimensional optimization problem at each iteration. In case I, suppose that
X = (X1:m:n,X2:m:n, · · · , Xm:m:n) and Z = (Zi1, Zi2, ..., ZiRi

) represent the observed and
the censored data, respectively. Here for a given m, Zi = (Z11, ..., Z1Ri

, ..., Zm1, ..., ZmRi
)

are not observed. The censored data vector Zi can be thought of as missing data.
Based on W = (X,Zi )

T, the complete data likelihood function will be in the
form

Lc(W; θ) =
m∏

i=1

fX(xi:m:n; θ)

m∏

i=1

Ri∏

j=1

fX(zij ; θ). (7)

Then, the log-likelihood for the complete lifetimes of n items from the two parameter Burr
XII distribution is given as follows:

lc(W; α, β) = n logα + n logβ + (β − 1)
m∑

i=1

log xi:m:n − (α + 1)
m∑

i=1

log(1 + x
β
i:m:n) + (β − 1)

m∑

i=1

Ri∑

j=1

log zij

−(α + 1)
m∑

i=1

Ri∑

j=1

log(1 + z
β
ij ). (8)
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The E-step of the EM algorithm involves the computation of the conditional expectation
E(lc(W; α, β)|X) which is equal to the pseudo log-likelihood function l∗c (W; α, β) defined
as

l∗c (W;α, β) = n logα + n logβ + (β − 1)
m∑

i=1

log xi:m:n − (α + 1)
m∑

i=1

log(1 + x
β
i:m:n)

+(β − 1)
m∑

i=1

Ri∑

j=1

E[logZij |Zij > xi:m:n] − (α + 1)
m∑

i=1

Ri∑

j=1

E[log(1 + Z
β
ij )|Zij > xi:m:n].(9)

The required expected values of a truncated Burr XII from the left at c for EM algorithm
are, respectively, given by

A(c, α, β) = E[logZij |Zij > c] and B(c, α, β) = E[log(1 + Z
β
ij )|Zij > c], (10)

and they are presented in Rastogi and Tripathi (2013).
The M-step in a EM iteration is maximizing the log-likelihood based on complete sample

over �; with the missing values replaced by their conditional expectations. Suppose at the
sth stage, the estimators of (α, β) are (α(s), β(s)), then (α(s+1), β(s+1)) can be obtained by
maximizing

λ(α, β) = n logα + n logβ + (β − 1)
m∑

i=1

log xi:m:n − (α + 1)
m∑

i=1

log(1 + x
β
i:m:n)

+(β−1)
m∑

i=1

RiA(xi:m:n, α(s),β(s))−(α + 1)
m∑

i=1

RiB(xi:m:n, α(s),β(s)),(11)

with respect to α and β respectively. Note that the maximization of the Eq. 11 can be
obtained quite effectively by the similar method proposed by Gupta and Kundu (2001).
First, β(s+1) can be obtain by solving a fixed-point type equation

ϕ(β) = β

The function ϕ(β) = β is defined as

ϕ(β) =
[

(1 + α̂(β))

n

m∑

i=1

(
x

β
i:m:n log xi:m:n
1 + x

β
i:m:n

)

−
∑m

i=1 RiA(xi:m:n, α(s), β(s))

n
−
∑m

i=1 log xi:m:n
n

]−1

,

and
α̂(β) = n

∑m
i=1 log(1 + x

β
i:m:n) +∑m

i=1 RiB(xi:m:n, α(s), β(s))
.

One can follow iteration method. Once β(s+1) is obtained , α(s+1) is obtained as α(s+1) =
α̂(β(s+1)).

Now, in case II, suppose that X = (X1:m:n, X2:m:n, · · · , Xm:m:n,Xm+1:n, ..., XD:n)
represents the observed and Zi = (Z11, ..., Z1Ri

, ..., Zm1, ..., ZmRi
) and Z′ =

(Z′
1, Z

′
2, ..., Z

′
R′

D

) the censored data, respectively. The censored data Zi and Z′ can be

thought of as missing data. The combination of W = (T ;Zi ,Z′)T forms the compelet data
set. Based on (T ;Zi ,Z′)T the camplete data likelihood function will be in the form

Lc(W; θ) =
m∏

i=1

⎡

⎣fX(xi:m:n; θ)

Ri∏

j=1

fX(zij ; θ)

⎤

⎦
D∏

i=m+1

⎡

⎣fX(xi:n; θ)

R′
D∏

r=1

fX(z′
r ; θ)

⎤

⎦ .(12)
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For complete lifetime of n items from Burr XII distribution, the Eq. 12 is obtained as

lc(W;α, β) = n logα + n logβ + (β − 1)
m∑

i=1

log xi:m:n − (α + 1)
m∑

i=1

log(1 + x
β
i:m:n) + (β − 1)

D∑

i=m+1

log xi:n

−(α + 1)
D∑

i=m+1

log(1 + x
β
i:n) + (β − 1)

m−1∑

i=1

Ri∑

j=1

log zij − (α + 1)
m−1∑

i=1

Ri∑

j=1

log(1 + z
β
ij )

+(β − 1)

R′
D∑

r=1

log z′
r − (α + 1)

R′
D∑

r=1

log(1 + z′β
r ). (13)

In E-step of the EM algorithm one requires to compute the pseudo-likelihood function as
follows:

l∗c (W; α, β) = n logα + n logβ + (β − 1)
m∑

i=1

log xi:m:n − (α + 1)
m∑

i=1

log(1 + x
β
i:m:n) + (β − 1)

D∑

i=m+1

log xi:n

−(α + 1)
D∑

i=m+1

log(1 + x
β
i:n) + (β − 1)

m−1∑

i=1

RiE[logZi |Zi > xi:m:n] + (β − 1)

R′
D∑

r=1

E[logZ′
r |Z′

r > T ]

−(α + 1)
m−1∑

i=1

RiE[log(1 + Z
β
i )|Zi > xi:m:n] − (α + 1)

R′
D∑

r=1

E[log(1 + Z′β
r )|Z′

r > T ]. (14)

In M-step of the sth iteration of EM algorithm, by substituting (10) into E(lc(W; α, β)|X),
we obtain

λ(α, β) = n logα + n logβ + (β − 1)
m∑

i=1

log xi:m:n − (α + 1)
m∑

i=1

log(1 + x
β
i:m:n) + (β − 1)

D∑

i=m+1

log xi:n

−(α + 1)
D∑

i=m+1

log(1 + x
β
i:n) + (β − 1)

m−1∑

i=1

RiA(xi:m:n, α(s), β(s)) + (β − 1)R′
DA(T , α(s), β(s))

−(α + 1)
m−1∑

i=1

RiB(xi:m:n, α(s), β(s)) − (α + 1)R′
DB(T , α(s), β(s)). (15)

For maximizing Eq. 15, first we find β(s+1) by solving the fixed-point type equation

ϕ(β) = β

The function ϕ(β) = β is defined as

ϕ(β) =
⎡

⎣1 + α̂(β)

n

⎧
⎨

⎩

m∑

i=1

x
β
i:m:n log xi:m:n
1 + x

β
i:m:n

+
D∑

i=m+1

x
β
i:n log xi:n
1 + x

β
i:n

⎫
⎬

⎭
− 1

n

m∑

i=1

log xi:m:n

−1

n

m−1∑

i=1

RiA(xi:m:n, α(s), β(s)) − 1

n

D∑

i=m+1

log xi:n − 1

n
R′

DA(T , α(s), β(s))

⎤

⎦

−1

,

and

α̂(β) = n
∑m

i=1 log(1 + x
β
i:m:n) +∑m−1

i=1 RiB(xi:m:n, α(s), β(s)) +∑D
i=m+1 log(1 + x

β
i:n) + R′

DB(T , α(s), β(s))
.

Then, α(s+1) is obtained as α(s+1) = α̂(β(s+1)).
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2.2 Asymptotic Variances and Covariance of the MLEs

In this subsection, we describe the use of the missing information to compute the variance-
covariance matrix of the MLEs under type-II PHCS. The idea of the missing information
principle of Louis (1982) can be expressed as follows

Observed information = Complete information - Missing information

For θ = (α, β)′, we define X,Z and W to be the observed, missing and complete data, and
IX(θ), IW|X(θ) and IW(θ) to be the corresponding Fisher information matrix, respectively.
The complete information matrix IW(θ) is given by

IW(θ) = −Eθ

[
∂2lc(W; θ)

∂θ2

]

, (16)

Based on the conditional distribution, the Fisher information matrix in the ith observation
which is censored can be computed as

I
(i)
Z|X(θ) = −E

[
∂2

∂θ2
log(f (zi |xi:m:n, θ))

]

. (17)

Hence, the expected missing information can then be easily obtained as

IZ|X(θ) =
m∑

i=1

RiI
(i)
Z|X(θ). (18)

Thus, by the missing information principle, the observed information matrix can be obtained
as

IX(θ) = IW(θ) − IZ|X(θ). (19)

Finally, the asymptotic variance-covariance matrix of the MLE of θ can be obtained by
inverting the observed information matrix IX(θ̂). As the dimension of θ is 2, IW(θ) and
IW|X(θ) are both of the order 2× 2. The elements of matrix IW(θ) for complete data set are
presented in (Rastogi and Tripathi 2013). We report IW(θ) which have been evaluated by
them here as:

IW(θ) =
[

a11 a12
a21 a22

]

where

a11(α, β) = n

α2
, a12(α, β) = n

β2
+ nα(α + 1)β

∫ ∞

0

x2β−1(ln x)2

(1 + xβ)α+3
dx,

a12(α, β) = a21(α, β) = nαβ

∫ ∞

0

x2β−1 ln x

(1 + xβ)α+2
dx. (20)

The conditional distribution required for the calculation of the missing information matrix
is given by (see Ng et al. (2012))

fZi
(zi |Zi > xi:m:n) = fX(zi)

[1 − FX(xi:m:n)] , zi > xi:m:n (21)

Using Eq. 21, the logarithm of the pdf of the truncated Burr XII distribution for case I is

log fZi
(zi |Zi > xi:m:n) = logα + logβ + (β − 1) log zi − (α + 1) log(1 + z

β
i ) + α log(1 + x

β
i:m:n). (22)
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Thus, the second partial derivatives of Eq. 22 with respect to α and β yields

∂2 log fzi

∂α2
= − 1

α2
,

∂2 log fzi

∂β2
= − 1

β2
− (α + 1)

z
β
i (log zi)

2

(1 + z
β
i )2

+ α
x

β
i:m:n(log xi:m:n)2

(1 + x
β
i:m:n)2

,

∂2 log fzi

∂α∂β
= −z

β
i log zi

1 + z
β
i

+ x
β
i:m:n log xi:m:n
1 + x

β
i:m:n

.

The negative of the expected value of these three second partial derivatives are obtained as
follows

E(
∂2 log fzi

∂α2
) = 1

α2
, E(

∂2 log fzi

∂β2
)= 1

β2
+(α+1)B∗(xi:m:n, α,β)−α

x
β
i:m:n(log xi:m:n)2

(1 + x
β
i:m:n)2

,

E(
∂2 log fzi

∂α∂β
) = A∗(xi:m:n, α, β) − x

β
i:m:n log xi:m:n
1 + x

β
i:m:n

,

where

A∗(c, α, β) = E(Z
β
i logZi/(1+Z

β
i )|Zi > c) and B∗(c, α, β) = E(Z

β
i (logZi)

2/(1+Z
β
j )2|Zi > c), (23)

and they are given in Rastogi and Tripathi (2013). Using these expectations, the expected
missing information matrix IZ|X(θ) computed as in Eq. 17, and then the observed infor-
mation matrix can be obtained from Eq. 19. Finally, by inverting IX(θ̂) the asymptotic
variance-covariance matrix of the MLEs can be obtained.

Theorem 2.1 (For case II). Given X1:m:n = x1:m:n, X2:m:n = x2:m:n, · · · , Xi:m:n = xi:m:n,
andXm+1:n =xm+1:n,Xm+2:n =xm+2:n · · · ,XD:n =xD:n, the conditional distribution of Zij

and Z′
r is

fZi ,Z′ |X,T (zjk, z
′
r |x1:m:n, x2:m:n, · · · , xi:m:n, xm+1:n, · · · , xD:n, T ) = fX(zij )fX(z′

r )

[1 − FX(xi:m:n)][1 − FX(T )] .

Proof See Gurunlu Alma and Arabi Belaghi (Gurunlu Alma and Arabi Belaghi 2015).

By using theorem (2.1), the logarithm of the left truncated Burr XII pdf for case II is

log fzi ,z
′
r
(zi , z

′
p |X, T ) = 2 logα + 2 logβ + (β − 1)[log zi + log z′

r ] − (α + 1)[log(1 + z
β
i ) + log(1 + z′

r
β )]

+α[log(1 + x
β
i:m:n) + log(1 + T β)].

The second partial derivatives with respect to α and β are obtained by

∂2 log fzi ,z
′
r

∂β2
= − 2

β2
− (α + 1)

z
β
i (log zi )

2

(1 + z
β
i )2

+ α
x

β
i:m:n(log xi:m:n)2

(1 + x
β
i:m:n)2

− (α + 1)
z′
r
β (log z′

r )
2

(1 + z′
r
β )2

+ α
T β(log T )2

(1 + T β)2
,

∂2 log fzj ,z′
r

∂α∂β
= x

β
i:m:n log xi:m:n
1 + x

β
i:m:n

− z
β
i log zi

1 + z
β
i

− z′
r
β log z′

r

1 + z′
r
β

+ T β log T

1 + T β
,

∂2 log fzi ,z
′
r

∂α2
= − 2

α2
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Using the expectations in Eq. 23, the Fisher information matrix based observations which
are truncated at the time xi:m:n and T can be computed by straightforward replacing and
the following expectations can be obtained

E(
∂2 log fzi ,z

′
r

∂β2
) = 2

β2
+ (α + 1)B∗(xi:m:n, α, β) − α

x
β
i:m:n(log xi:m:n)2

(1 + x
β
i:m:n)2

+ (α + 1)B∗(T , α, β) − α
T β(log T )2

(1 + T β)2
,

E(
∂2 log fzi ,z

′
r

∂α∂β
) = − x

β
i:m:n log xi:m:n
1 + x

β
i:m:n

− T β log T

1 + T β
+ A∗(xj :m:n, α, β) + A∗(T , α, β),

E(
∂2 log fzi ,z

′
r

∂α2
) = 2

α2
.

Thus, the expected information for conditional distribution of Z given X can be obtained
using IZ|X(θ) and hence IX(θ). Inverting IX(θ) yields the variance-covariance matrix of
θ̂ = (α, β)′.

The asymptotic normality of the MLE can be utilized to construct the approximate
confidence intervals for the parameters α and β become, respectively,

α̂ ± Zγ
2

√
σ̂ 2

α and β̂ ± Zγ
2

√
σ̂ 2

β ,

where Zγ/2 is the upper γ /2 quantile of the standard normal distribution.

3 Bayesian Estimation

In this section, we deal with the problem of estimating the parameters α and β under square
error loss (SEL) and LINEX loss functions. These loss functions for a parameter δ are as
follows, respectively,

L1(δ, δ̂) = (δ̂ − δ)2, (24)

L2(�) ∝ ew� − w� − 1, w 
= 0. (25)

where � = (δ − δ̂) denote the scalar estimation error in using δ̂ to estimate δ. The sign of
w represents the direction and its magnitude represents the degree of symmetry. This has
been proposed by Varian (1975) and its proporties have been studied by Zellner (1986).
For w = 1, the LINEX loss function is quite asymmetric about zero with overestimation
being more costly than underestimation. If w < 0, L2(�) rises exponentially when � < 0
(underestimation) and almost linearly when � > w (overestimation). For w closed to zero,
the LINEX is approximately SEL and therefore almost symmetric (see Zellner (1986)).

For a Bayes estimation, we need to assume some prior distributions for the unknown
parameters. We assume that α has a gamma prior, GA(a1, b1) with pdf given by

π1(α) = b
a1
1

�(a1)
αa1−1e−b1α, (26)

where a1 > 0 and b1 > 0; and the prior of β, π2(β), has the support on (0, ∞), and it
is independent of the prior of α. By applying then the joint prior distribution α and β, we
obtain the joint density function of α, β and x for the two cases as follows:

Case I:

�(α, β, x) ∝ αm+a1−1βmπ2(β)e−b1α
m∏

i=1

x
β−1
i:m:n(1 + x

β
i:m:n)

−(α(Ri+1)+1), (27)

where x = (x1:m:n, x2:m:n, · · · , xm:m:n).
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Case II:

�(α, β, x) ∝ αa1+D−1βDπ2(β)e−b1α
m∏

i=1

x
β−1
i:m:n(1 + x

β
i:m:n)

−(α(Ri+1)+1)

×
D∏

i=m+1

x
β−1
i:n (1 + x

β
i:n)

−α−1(1 + T β)−αR′
D .

where x = (x1:m:n, x2:m:n, · · · , xm:m:n, xm+1:n, · · · , xD:n).
Based on �(α, β, x), the joint posterior density function of α and β, is given by

π(α, β|x) = �(α, β, x)
∫∞
0

∫∞
0 �(α, β, x)dαdβ

. (28)

It is clear that Eq. 28 cannot be obtained analytically even when π2(β) is known. Therefore,
we adopt Lindley’s approximation (Lindley 1980) and the MCMC technique to compute
Bayes estimates.

3.1 Lindley’s Approximation

In this section, we compute the Bayes estimates of α and β by using Lindley’s approxima-
tion method. Based on Lindley’s approximation, the expectation of any function of α and β

in the form

φ̂(α, β) = Eα,β|x[φ(α, β)]

=
∫∞
0

∫∞
0 φ(α, β)�(α, β, x)dαdβ
∫∞
0

∫∞
0 �(α, β, x)dαdβ

, (29)

can be evaluated as

φ̂ = φ(α̂, β̂) + 1

2
[A + L30B12 + L03B21 + L21C12 + L12C21] + ρ1A12 + ρ2A21, (30)

where

A =
2∑

i=1

2∑

j=1

φij σij , Lij = ∂i+jL(α, β)

∂αi∂βj
, i, j = 0, 1, 2, 3, i + j = 3,

ρ1 = ∂ log �

∂α
, ρ2 = ∂ log �

∂β
, � = logπ(α, β),

φ1 = ∂φ(α, β)

∂α
, φ2 = ∂φ(α, β)

∂β
,

φ11 = ∂2φ(α, β)

∂α2
, φ12 = ∂2φ(α, β)

∂α∂β
, φ22 = ∂2φ(α, β)

∂β2
,

Aij = φiσii + φjσji, Bij =(φiσii + φjσij )σii , Cij = 3φiσiiσij + φj (σiiσjj + 2σ 2
ij ),

where L(.) is the log-likelihood function of the observed data, σij is the (i, j)-th elements
of the inverse of the Fisher information matrix, π(α, β) is the joint prior density function of
(α, β), α̂ and β̂ are the MLEs of α and β, respectively and all the quantities are evaluated
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at (α̂, β̂). In case I, with the specification β ∼ GA(a2, b2), the log-likelihood function is
given by

logL(α, β) = const. + m logα + m logβ + (β − 1)
m∑

i=1

log xi:m:n −
m∑

i=1

[α(Ri + 1) + 1] log(1 + x
β
i:m:n).

To apply Lindley’s approximation in Eq. 30, we obtain

L11 = −
m∑

i=1

(1 +Ri)
x

β̂
i:m:n log xi:m:n
(1 + x

β̂
i:m:n)

, L12 = −
m∑

i=1

(Ri +1)
x

β̂
i:m:n(log xi:m:n)2

(1 + x
β̂
i:m:n)2

, L21= 0,

L20 = − m

α̂2
, L02 = − m

β̂2
−

m∑

i=1

[α(1 + Ri) + 1]x
β̂
i:m:n(log xi:m:n)2

(1 + x
β̂
i:m:n)2

, L30 = 2m

α̂3
,

L03 = 2m

β̂3
−

m∑

i=1

(α(1 + Ri) + 1)
x

β̂
i:m:n(log xi:m:n)3(1 − x

β̂
i:m:n)

(1 + x
β̂
i:m:n)3

.

Furthermore, we have

ρ1 = ∂ logπ(α, β)

∂α
= a1 − 1

α̂
− b1, ρ2 = ∂ logπ(α, β)

∂β
= a2 − 1

β̂
− b2.

The log-likelihood function in case II is given by

logL(α, β) = const. + D logα + D logβ −
m∑

i=1

[α(Ri + 1) + 1] log(1 + x
β
i:m:n)

+(β − 1)

⎡

⎣
m∑

i=1

log xi:m:n +
D∑

i=m+1

log xi:n

⎤

⎦ (α + 1)
D∑

i=m+1

log(1 + x
β
i:n) − αR′

D log(1 + T β). (31)

From Eq. 31, we obtain

L11 = −
m∑

i=1

(Ri + 1)
x

β̂
i:m:n log xi:m:n
1 + x

β̂
i:m:n

−
D∑

i=m+1

x
β̂
i:n log xi:n
1 + x

β̂
i:n

− R′
D

T β̂ log T

1 + T β̂
,

L12 = −
m∑

i=1

(Ri + 1)
x

β̂
i:m:n(log xi:m:n)2

(1 + x
β̂
i:m:n)2

−
D∑

i=m+1

x
β̂
i:n(log xi:n)2

(1 + x
β̂
i:n)2

− R′
D

T β̂ (log T )2

(1 + T β̂ )2
,

L02 = − D

β̂2
−

m∑

i=1

[α(1 + Ri) + 1] x
β̂
i:m:n(log xi:m:n)2

(1 + x
β̂
i:m:n)2

− (α + 1)
D∑

i=m+1

x
β̂
i:n(log xi:n)2

(1 + x
β̂
i:n)2

− αR′
D

T β̂ (log T )2

(1 + T β̂ )2
,

L03 = 2D

β̂3
−

m∑

i=1

[α(1 + Ri) + 1] x
β̂
i:m:n(log xi:m:n)3(1 − x

β̂
i:m:n)

(1 + x
β̂
i:m:n)3

− (α + 1)
D∑

i=m+1

x
β̂
i:n(log xi:n)3(1 − x

β̂
i:n)

(1 + x
β̂
i:n)3

−αR′
D

T β̂ (log T )3(1 − T β̂ )

(1 + T β̂ )3
,

L21 = 0, L20 = − D

α̂2
, L30 = 2D

α̂3
.

The approximate Bayes estimates of α and β under SEL function are given by

α̂SEL = α̂ + (ρ1σ̂11 + ρ2σ̂12) + 1

2
[σ̂ 2

11L30 + σ̂21σ̂22L03 + σ̂11σ̂22L12 + 2σ̂ 2
21L12],

β̂SEL = β̂ + (ρ1σ̂21 + ρ2σ̂22) + 1

2
[σ̂11σ̂12L30 + σ̂ 2

22L03 + 3σ̂21σ̂22L12]. (32)
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Also, the Bayes estimates of α and β under the LINEX loss function are, respectively, given
by

α̂LL = − 1

w
log[E(e−wα̂ |x)]

= − 1

w
log

{

e−wα̂ − we−wα̂(ρ̂1σ̂11 + ρ̂2σ̂12) + 1

2

[
w2e−wα̂σ̂11 − we−wα̂

(
σ̂ 2
11L30 + σ̂21σ̂22L03

+σ̂11σ̂22L12 + 2σ̂ 2
21L12

)]}
, (33)

and

β̂LL = − 1

w
log[E(e−wβ̂ |x)]

= − 1

w
log

{

e−wβ̂ − we−wβ̂ (ρ̂1σ̂12 + ρ̂2σ̂22) + 1

2

[
w2e−wβ̂ σ̂22 − we−wβ̂

(
σ̂11σ̂12L30

+σ̂ 2
22L03 + 3σ̂21σ̂22L12

)]}
. (34)

3.2 MCMC method

In this subsection, we apply the importance sampling method to compute the Bayes esti-
mates and the HPD credible intervals of the unknown parameters. Based on the independent
gamma priors α ∼ GA(a1, b1) and β ∼ GA(a2, b2), the posterior pdfs of α and β are given by

Case I:

π1(α, β|x) ∝ fGA(α|β;m + a1, ξ1)fGA(β;m + a2, ξ2)h1(α, β), (35)

where ξ1 = b1 +∑m
i=1(Ri + 1) log(1 + x

β
i:m:n), ξ2 = b2 −∑m

i=1 log xi:m:n and

h1(α, β) = exp(−∑m
i=1 log(1 + x

β
i:m:n))

[
b1 +∑m

i=1(Ri + 1) log(1 + x
β
i:m:n)

]m+a1
. (36)

Case II:

π2(α, β|x) ∝ fGA(α|β;D + a1, ξ
′
1)fGA(β;D + a2, ξ

′
2)h2(α, β), (37)

where ξ ′
1 = ξ1 +∑D

i=m+1 log(1 + x
β
i:n) + R′

D log(1 + T β), ξ ′
2 = ξ2 −∑D

i=m+1 log xi:n and

h2(α, β) =
exp

{
−
(∑m

i=1 log(1 + x
β
i:m:n) +∑D

i=m+1 log(1 + x
β
i:n)
)}

[
ξ1 +∑D

i=m+1 log(1 + x
β
i:n) + R′

D log(1 + T β)
]D+a1

, (38)

and fGA(.; a, b) is a gamma density with shape and scale parameters a and b, respectively.
Analoguesly as in Kundu and Pradhan (2009), we use the following algorithm to compute

Bayes estimates of φ(α, β), say φ̂(α, β), and to construct its HPD credible intervals.

Step 1: Generate β1 ∼ GA(β;m + a2, ξ2).
Step 2: Given β1 generated in step 1, generate α1 from GA(α|β;m + a1, ξ1).
Step 3: Repeat Steps 1-2 M times to obtain the importance sample

(α1, β1), (α2, β2), · · · , (αM, βM).
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The approximate Bayes estimates of φ(α, β) under squared error as well as LINEX loss
functions can be obtained as

φ̂SEL(α, β) =
∑M

i=1 φ(αi , βi )h1(αi , βi )
∑M

i=1 h1(αi , βi )
,

φ̂LL(α, β) = − 1

w
log

[∑M
i=1 e−wφ(αi ,βi )h1(αi , βi )
∑M

i=1 h1(αi , βi )

]

. (39)

respectively. Similarly, the above algorithm can be written for case II.
Now, we obtain HPD credible intervals of α and β using the generated importance

sample. In this work we mainly adopted the method proposed by Chen and Shao (1999).
Suppose that π(θ |x) and �(θ |x) are the posterior density and posterior distribution

functions of θ , respectively. Further, let θp be the pth quantile of θ as

θp = inf{θ : �(θ |x) ≥ p}; 0 < p < 1.

For a given θ∗, we have

�(θ∗|x) = E(1θ≤θ∗ |x),

where 1θ≤θ∗ is the indicator function defined as

1θ≤θ∗ =
{
1 θ ≤ θ∗

0 θ > θ∗

Then a simulation consist estimator of �(θ∗|x) can be obtained as

�(θ∗|x) =
∑M

i=1 1θ≤θ∗hj (αi , βi )
∑M

i=1 hj (αi , βi )
, j = 1, 2.

Let θ(i); i = 1, · · · ,M denote the ordered values of θi , and

wi = hj (αi , βi )
∑M

i=1 hj (αi , βi )

be the associated weight then

�(θ∗|x) =

⎧
⎪⎨

⎪⎩

0 θ∗ < θ(1)
∑i

k=1 wk θ(i) ≤ θ∗ < θ(i+1)

1 θ(M) ≤ θ∗.

Thus, the approximate of θp can be obtained as

θp =
{

θ(1) p = 0

θi

∑i−1
k=1 wk < p ≤ ∑i

k=1 wk.

Now, let Rk(M) = (θ̂ (k/M), θ̂ ((k+[(1−p)M])/M) and [x] denote the greatest integer less than or equal
to x. Therefore, the HPD credible interval for θ can be obtained by choosing Rk(M) among
all intervals such that it has the smallest width.

4 Simulation Study

In this section, we present some simulation results to compare the performance of the
various estimates and confidence intervals of the unknown parameters of the Burr XII dis-
tribution. We mainly compare the performances of the MLEs obtained by EM algorithm
and Bayes estimates obtained by Lindley’s approximation as well as the MCMC technique
in terms of root mean square error (RMSE) values. We also construct the %95 confidence
intervals for the parameters using the estimated asymptotic variances of the MLEs obtained
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Table 3 Approximate CIs and HPD credible intervals when α = 1.5, β = 0.5

T = 5

%95 Approximate CIs %95 HPD credible intervals

n m Schems α β α β

25 15 (10, 0∗14) [0.66948,2.54903] [0.30462,1.32721] [0.50075,2.41446] [0.35614,0.86146]

(0, 0, 0, 10, 0∗11) [1.12173,2.27208] [0.42264,0.97770] [0.65474,2.41154] [0.36644,0.79128]

20 (5, 0∗19) [0.71257,1.84159] [0.34927,0.85184] [0.40412,2.43356] [0.36469,0.86929]

(0, 0, 0, 5, 0∗16) [0.64868,1.98198] [0.34076,0.84000] [0.50737,2.38473] [0.36920,0.84505]

30 20 (10, 0∗19) [1.04008,1.88366] [0.53695,0.86327] [0.49009,2.37607] [0.36911,0.89228]

(0, 0, 0, 10, 0∗16) [0.84650,2.44158] [0.46542,0.86941] [0.66436,2.51651] [0.38183,0.79391]

50 25 (25, 0∗24) [0.78380,2.85944] [0.25956,1.25987] [0.53296,2.23561] [0.37834,0.83598]

(0, 0, 0, 25, 0∗21) [0.95587,2.51282] [0.53123,0.93251] [0.78007,2.25830] [0.39137,0.73459]

30 (20, 0∗29) [0.93080,2.16090] [0.51876,0.89801] [0.43619,2.21129] [0.38493,0.80538]

(0, 0, 0, 20, 0∗26) [0.91129,2.38233] [0.51747,0.84555] [0.71324,2.21000] [0.39848,0.79045]

T = 10

25 15 (10, 0∗14) [0.64348,2.38040] [0.31824,1.18967] [0.36186,2.27693] [0.36416,0.87782]

(0, 0, 0, 10, 0∗11) [1.06399,2.14498] [0.42677,0.86696] [0.75777,2.20681] [0.37024,0.77147]

20 (5, 0∗19) [0.71257,1.84159] [0.34927,0.85184] [0.28425,2.25624] [0.37455,0.90772]

(0, 0, 0, 5, 0∗16) [0.64868,1.98198] [0.34076,0.84000] [0.58714,2.17685] [0.37479,0.83369]

30 20 (10, 0∗19) [1.04008,1.88366] [0.53695,0.86327] [0.38900,2.23940] [0.36969,0.85005]

(0, 0, 0, 10, 0∗16) [0.85623,2.45124] [0.46483,0.84569] [0.68836,2.22666] [0.37892,0.77564]

50 25 (25, 0∗24) [1.08395,1.69960] [0.64976,1.05176] [0.43519,2.20755] [0.38353,0.84397]

(0, 0, 0, 25, 0∗21) [1.00237,2.21684] [0.49780,0.92923] [0.85552,2.19568] [0.39484,0.74872]

30 (20, 0∗29) [0.93250,2.52409] [0.49114,0.92518] [0.55701,2.17919] [0.38817,0.89778]

(0, 0, 0, 20, 0∗26) [0.85638,2.17810] [0.47310,0.81942] [0.82404,2.18204] [0.39277,0.78099]

by the missing information principle. For comparison purpose we also consider the %95

HPD credible intervals based on 1000 MCMC samples. We consider two different sampling
scheme as follows:

• Scheme 1 : R1 = n − m and R2 = R3 = · · · = Rm = 0;
• Scheme 2 : R1 = R2 = R3 = 0, R4 = n − m and R5 = ... = Rm = 0.

Table 4 Different progressive type-II hybrid censored data sets

(T ,m, n) Censoring scheme type-II PHCS data

(0.1, 20, 12) R̃1 = (8, 0∗11) 0.529,0.665,0.683,0.698,0.788,0.866,0.879,0.881,

0.917,1.050,1.110,1.138

R̃2 = (0, 2, 0, 3, 3, 0∗7) 0.529,0.554,0.653,0.665,0.683,0.698,0.828,0.829,

0.866,0.881,0.917,1.050
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Using the algorithm presented in (Gurunlu Alma and Arabi Belaghi 2015), we generate the
type-II progressively hybrid censored samples from the Burr XII distribution for a given
set n,m,R1, ..., Rm and T . We notice that risk expression of none of these estimates can be
evaluated in closed form. So, we performed simulation to evaluate RMSE values of all esti-
mates. Without loss of generality, we take α = 1.5 and β = 0.5 and we simulate the whole
process N = 1000 times in each case. For computing the Bayes estimates under squared
error and LINEX loss functions, it has been assumed that α and β have priors GA(a1, b1)

and GA(a2, b2), respectively. Moreover we use the non-informative priors of both α and β.
This corresponds to the case when hyperparameters take values of a1 = a2 = b1 = b2 = 0.
The average estimates, the RMSEs of the MLEs and Bayes estimates under different loss
functions are presented in Tables 1 and 2. The %95 approximate confidence intervals of the
parameters based on MLEs are included in Table 3. Apart from these, the corresponding
HPD credible intervals are also presented in the table. The results of the Monte Carlo sim-
ulation study are presented in Tables 1–3. From these tables the following conclusions are
made:

1. For fixed m and T as sample size (n) increases the average estimates and the RMSEs
decreases.

2. For fixed n and m as T increases, the average estimates and the RMSEs decreases.
Similar trend is observed when n and T are kept fixed and m is allowed to increase.

3. Average length of approximate confidence/HPD credible intervals decrease when n or
T increases. Also, as the m increases, the average length of approximate CIs increases
while the average length of HPD credible intervals are narrow down. Overall, it is
clear from the tabulated interval estimates that HPD intervals are superior to the
corresponding approximate confidence intervals.

4. Bayes estimates are very good in respect of RMSE. The MCMC technique is better
than the Lindley approximation procedure in respect of RMSE. Its is observed that
MCMC estimates derived under the squared error loss function shows steady behavior
for all tabulated combinations of n, m and T . Moreover, Bayes estimates under LINEX
loss function based on MCMC method are better choice among all its rivals and for all
values of n, m and T .

Table 5 The MLE and Bayes estimates of the parameters for the real data set

Censoring scheme R̃1 R̃2

αML 3.0693 4.1640

βML 5.1195 5.9963

αSEL 2.9200 4.1444

αMCSEL 2.7869 2.7997

αLL 2.7577 3.9355

αMCLL 2.7166 2.7281

βSEL 5.8925 6.0070

βMCSEL 6.3660 6.0354

βLL 5.9120 5.8694

βMCLL 6.2184 5.9189
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Table 6 Different CIs of α and β parameters for the real data set

%95 Approximate CIs %95 HPD credible intervals

(T ,m, n) Censoring schems α β α β

(0.1,20,12) R̃1 = (8, 0∗11) [0.6917,6.8301] [1.5612,11.8004] [2.0225,4.1789] [5.4047,7.7698]

R̃2 = (0, 2, 0, 3, 3, 0∗7) [0.3227,8.0052] [0.5836,11.4095] [2.0727,4.2516] [5.3832,7.2688]

5. In general, as the sample proportion m/n increases performance of all estimates
improves in terms of RMSEs. In studying the effect of different censoring schemes, we
observed that the RMSE in Scheme 2 is smaller than Scheme 1.

5 Real Data Analysis

For illustrative purpose, in this section we have analyzed one data set from Wingo (1993).
The data were originally collected from a clinical trial designed to access the effectiveness
of an antibiotic ointment in relieving pain. The data set are listed as follows:
0.828,0.881,1.138,0.879,0.554,0.653,0.698,0.566,0.665,0.917,

0.529,0.786,1.110,0.866,1.037,0.788,1.050,0.899,0.683,0.829.
Here, we have n = 20. We generate two progressive type-II hybrid censored samples from
the above data set using two different censoring schemes from the above progressive type-
II hybrid censored sample with m = 12 and T = 0.1. The different censoring schemes and
the corresponding progressive type-II hybrid censored samples are presented in the second
and third columns of Table 4, respectively. In all the two cases we calculate the ML and
Bayes estimates of the parameters. In Bayes estimation we use non-informative priors as
we have no prior information about the parameters. For importance sampling procedure, we
take M = 1000. The estimates are listed in Table 5. Further, the %95 approximate confidence
intervals and HPD intervals are provided in Table 6.

6 Concluding Remarks

In this paper, the Bayes and classical estimates have been obtained for a two parameter
Burr XII distribution when samples are available from type-II progressive hybrid censoring
scheme. By EM algorithm iteration and asymptotic normality theory, we have derived the
MLEs and approximate confidence intervals of the unknown parameters. We have also pro-
posed a Bayesian approach to estimate the model parameters. Bayes estimates are obtained
using the Lindley approximation method. Since the Lindley approximation method fails to
construct HPD credible intervals, we made use of the importance sampling procedure to
obtain point estimates and HPD credible intervals of the parameters. Further, we carried out
a simulation study to evaluate the performance of all the methods of estimation and it was
observed that the Bayes estimates overall perform better than MLEs in the sense of RMSE.
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