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Abstract In this paper, we consider a new class of the GI/M/1 queue with single working
vacation and vacations. When the system become empty at the end of each regular service
period, the server first enters a working vacation during which the server continues to serve
the possible arriving customers with a slower rate, after that, the server may resume to the
regular service rate if there are customers left in the system, or enter a vacation during
which the server stops the service completely if the system is empty. Using matrix geometric
solution method, we derive the stationary distribution of the system size at arrival epochs.
The stochastic decompositions of system size and conditional system size given that the
server is in the regular service period are also obtained. Moreover, using the method of
semi-Markov process (SMP), we gain the stationary distribution of system size at arbitrary
epochs. We acquire the waiting time and sojourn time of an arbitrary customer by the first-
passage time analysis. Furthermore, we analyze the busy period by the theory of limiting
theorem of alternative renewal process. Finally, some numerical results are presented.

Keywords Working vacation · Vacation · Stochastic decomposition · Waiting time ·
Sojourn time · Busy period

Mathematics Subject Classification (2010) 60K25 · 68M20

1 Introduction

Queueing systems with server vacations have attracted considerable attentions over the
decades due to that they have a wide range of applications in various areas such as computer
networks, communication systems and manufacturing system and so forth. For more details
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related to vacation queues, we refer the readers to the surveys of Doshi (1986), Teghem
(1986), the monographs of Takagi (1991) and Tian and Zhang (2006).

The concept of working vacation was first introduced by Servi and Finn in 2002. Their
work is motivated by the analysis of a reconfigurable wavelength-division multiplexing
(WDM) optimal access network. Servi and Finn (2002) studied an M/M/1 queue with mul-
tiple working vacations, and obtained the transform formulae for the distributions of the
system size and the sojourn time of an arbitrary customer in steady state. Based on the anal-
ysis of Servi and Finn (2002), Liu et al. (2007) re-analyzed the M/M/1 queue with multiple
working vacations and obtained the concise expressions and stochastic decomposition struc-
tures for the stationary system size and sojourn time using the matrix-geometric solution
method. Subsequently, utilizing the same method, Tian and Zhao (2008) studied the M/M/1
queue with single working vacation and various performance measures in steady state were
derived. Extensions to M/G/1 type queue with working vacations are carried out by Wu
and Takagi (2006) (using Laplace-Stieltjes transform method), Kim et al. (2003) (using the
decomposition method) and Li et al. (2011) (using the matrix-analytic method). As for the
GI/M/1 type queue with working vacations, Baba (2005) first presented a GI/M/1 queue
with multiple working vacations using matrix analytic method and the GI/M/1 queue with
single working vacation was studied by Li and Tian (2011) (using matrix-analytic method)
and Chae et al. (2009) (using generating function transform method), Li et al. (2013) pro-
vided a study on a GI/M/1 queue with Bernouli-schedule-controlled vacation in which the
server may choose to enter working vacation or vacation under Bernouli schedule.

In light of the classical vacation queues and working vacation queues, we consider a
queue with single working vacation and vacations which is characterized by the following
features: Once the system becomes empty in regular service period, a working vacation with
a random period is taken, during which the possible arriving customers are served with a
lower rate. After that, if there are customers left in the system, the system will be resumed
to the regular service period, otherwise, the server will enter a vacation with a random
period, during which the service is not rendered to any of new arrivals. Another vacation
will be taken if there are still no customers in the system when the vacation ends, and so on.
The server will continue the vacations until there are new arrivals at a vacation completion
epoch, and then a regular service period will start again. Up to the present, no special work
focused on the model seems to have appeared in open literatures.

This vacation policy has potential application in the real life situation. In order to econo-
mize the operation operation cost, the escalators in some large supermarkets and metros are
always designed to operate to stay at a lower service rate period for a certain length when
system just become empty, after the low service period and there is still no customers, the
escalators will stop the service completely. Another example is provided in some machine
systems, after the valve is closed (press control), the pump will stay at Min Speed before
stopping. During the delay stop period, the pump can restart or stop immediately.

The rest of this paper is organized as follows. In Section 2, we describe the queueing
model with single working vacation and vacations in detail. The steady state distribution
of system size at the arrival epochs and its stochastic decomposition structure are given
in Section 3. Section 4 is devoted to obtain the steady state distribution of system size at
the arbitrary epochs. In Section 5, we analyze the waiting time and sojourn time of an
arbitrary customer by the first-passage time analysis. Section 6 gives the analysis of the busy
period. Some numerical examples are presented in Section 7. Section 8 is the conclusion.
The Appendix presents the transition probability analysis for the embedded Markov chain.
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2 Model Formulation and Embedded Markov Chain

We consider a GI/M/1 queue with single working vacation and vacations, this queueing
model is explicitly described as follows.

• The inter-arrival times {Tn, n ≥ 1} are assumed to be independent and identically
distributed with a general distribution function A(t) with a mean 1/λ and a Laplace-
Stieltjes transform (LST) a∗(s).

• The vacation policy we consider is characterized by the following features: Once the
system become empty during the regular service period with service rate μ, the server
takes a working vacation that follows an exponential distribution with parameter θw ,
during which the server continues serving the potential arriving customers with a lower
rate η (η < μ). At the completion epoch of the working vacation, if there are customers
left in the system, the server will resume to serve the customers with the regular service
rate μ, and another regular service period will start, otherwise, the system will enter
into a vacation that follows an exponential distribution with parameter θv during which
the server completely stops working. If there are customers in the system at the instant
of a vacation completion, the server will resume to a regular serving level with rate μ.
Otherwise, the server continues the vacations until there are arrivals in the system at the
vacation completion epochs, and a regular service period will start.

• Assume that inter-arrival times, service times, working vacation time and vacation times
are all mutually independent. In addition, the service discipline is First Come First
Served (FCFS).

Suppose τn be the arrival epoch of the n-th customer with τ0 = 0, and let L(t) be the
number of customers in the system at time t, we choose τn as the imbedded points, then
Ln = L(τn − 0) is regarded as the number of customers just before the n-th arrival epoch.
Note that an arrival may occur during a regular service period, working vacation period or
vacation period, so we define

Jn =

⎧
⎪⎨

⎪⎩

0, the n - th arrival occurs during the working vacation period,

1, the n - th arrival occurs during the vacation period,

2, the n - th arrival occurs during the regular service period.

Since the working vacation time, vacation times, the service times during the regu-
lar service period and the working vacation period are all exponentially distributed, then
process {(Ln, Jn) , n ≥ 1} is a two-dimensional embedded Markov chain with the state
space

Ω = {(k, 0), k ≥ 0} ∪ {(k, 1), k ≥ 0} ∪ {(k, 2), k ≥ 1}.

In order to express the transition matrix of (Ln, Jn), we introduce the probability
measure:

p(i,j),(k,l) = P {Ln+1 = k, Jn+1 = l| Ln = i, Jn = j .}
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Using the lexicographical ordering for the states, the transition probability matrix P̃ of
{(Ln, Jn) , n ≥ 1} can be written as the Block-Jacobi matrix

P̃ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0 A01 0 0 0 · · ·
B1 A1 A0 0 0 · · ·
B2 A2 A1 A0 0 · · ·
B3 A3 A2 A1 A0 · · ·
B4 A4 A3 A2 A1 · · ·
...

...
...

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

A01 =
(

c0 0 d0
0 ε e0

)

, A0 =
⎛

⎝
c0 0 d0

ε e0
b0

⎞

⎠ , Ak =
⎛

⎝
ck 0 dk

0 ek

bk

⎞

⎠ , k ≥ 1,

B0 =
(

c′
1 + d ′

1 1 − (c0 + d0) − (
c′
1 + d ′

1

)

e′
1 1 − ε − e0 − e′

1

)

,

Bk =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c′
k+1 + d ′

k+1 1 −
k∑

i=0
(ci + di) − (

c′
k+1 + d ′

k+1

)

e′
k+1 1 − ε − e′

k+1 −
k∑

i=0
ei

b′
k+1 1 − b′

k+1 −
k∑

i=0
ci

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, k ≥ 1.

The expressions for the entries of P̃ are shown in detail in the Appendix. Evidently, we
can find that P̃ is a stochastic matrix and its structure indicates that {(Ln, Jn) , n ≥ 1} is
irreducible and aperiodic. The limiting probabilities are defined below:

πn,j = lim
k→∞ P {Lk = n, Jk = j} , (n, j) ∈ Ω;

π0 = (
π0,0, π0,1

) ;
πn = (

πn,0, πn,1, πn,2
)
.

3 Steady-State Distribution of System Size at Arrival Epochs
and its Stochastic Decomposition Structure

In this section, we focus on the stationary distribution of {(Ln, Jn), n ≥ 1} by the matrix
geometric solution method. Clearly, we can observe that the transition probability matrix
P̃ is a GI/M/1-type matrix (see Neuts 1981), for such a model, it is necessary to seek the
matrix R, which is the minimal nonnegative solution of

R =
∞∑

k=0

RkAk. (1)

In order to obtain it, we first introduce the following Lemma:

Lemma 1 If ρ = λ/μ < 1, the equation z = a∗(μ(1 − z)) has a unique root in the range
0 < z < 1, denoted by ξ , and the equation z = a∗(θw + η(1 − z)) has a unique root in the
range 0 < z < 1, denoted by γ .
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Proof First, we consider the equation z = a∗(μ(1 − z)) and let ψ(z) = a∗(μ(1 − z)),
evidently, 0 < ψ(0) = a∗(μ) < ψ(1) = 1, and for 0 < z < 1, we have

ψ ′(z) = μ

∞∫

0

te−μ(1−z)t dA(t) > 0, ψ ′′(z) = μ2

∞∫

0

t2e−μ(1−z)t dA(t) > 0.

Meanwhile, it follows from ρ = λ/μ < 1 that ψ ′(1) = 1/ρ > 1. Thus the equation
z = ψ(z) has a unique root in the range 0 < z < 1, denoted by ξ , similarly, we set
Φ(z) = a∗ (θw + η(1 − z)), then

0 < Φ(0) = a∗(θw + η) < Φ(1) = a∗(θw) < 1,

and, for 0 < z < 1, we have

Φ ′(z) = η

∞∫

0

te−(θw+η(1−z))t dA(t) > 0, Φ ′′(z) = η2

∞∫

0

t2e−(θw+η(1−z))t dA(t) > 0.

Therefore, z = Φ(z) has a unique root in the range 0 < z < 1, denoted by γ , Then the
proof is completed.

Lemma 2 If ρ < 1, the matrix equation R =
∞∑

k=0
RkAk has the minimal non-negative

solution

R =
⎛

⎝
γ 0 α (ξ − γ )

ε β(ξ − ε)

ξ

⎞

⎠ , (2)

where

α = θw

θw − (μ − η)(1 − γ )
, ε = a∗ (θv) , β = θv

θv − μ (1 − a∗(θv))
.

Proof Because all Ak , for k ≥ 1, are upper triangular, we can assume that R has the same
structure as

R =
⎛

⎝
r11 r12 r13

r22 r23
r33

⎞

⎠ ,

then, for k ≥ 1, we have

Rk

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

rk
11 r12

k−1∑

i=0
ri
11r

k−1−i
22 r13

k−1∑

i=0
ri
11r

k−1−i
33 + r12r23

k−2∑

i=0
ri
11

k−2−i∑

j=0
r
j

22r
k−2−i−j

33

rk
22 r23

k−1∑

i=0
ri
22r

k−1−i
33

rk
33

⎞

⎟
⎟
⎟
⎟
⎟
⎠

where
−1∑

i=0
(...) = 0.
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Substituting Rk into Eq. 1 yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r11 =
∞∑

k=0

ckr
k
11 = a∗ (θw + η(1 − r11)) ,

r12 = 0,

r13 =
∞∑

k=0

dkr
k
11 +

∞∑

k=1

ekr12

k−1∑

i=0

ri
11r

k−1−i
22

+
∞∑

k=1

bk

⎛

⎝r13

k−1∑

i=0

ri
11r

k−1−i
33 + r12r23

k−2∑

i=0

ri
11

k−2−i∑

j=0

r
j

22r
k−2−i−j

33

⎞

⎠ ,

r22 = ε,

r23 =
∞∑

k=0

ekr
k
22 +

∞∑

k=1

bk

(

r23

k−1∑

i=0

ri
22r

k−1−i
33

)

,

r33 =
∞∑

k=0

bkr
k
33 = a∗ (μ(1 − r33)) ,

(3)

where a∗ (θv) is denoted by ε.
From Lemma 1, we observe that the first equation of Eq. 3 has the unique root r11 = γ

in interval (0,1) and the last equation has unique root r33 = ξ in interval (0,1). From the
third equation of Eq. 3, we can obtain

r13 =
∞∑

k=0

dkr
k
11

/(

1 −
∞∑

k=1

bk

k−1∑

i=0

ri
11r

k−1−i
33

)

. (4)

The numerator of Eq. 4 can be computed as follows:

∞∑

k=0

dkr
k
11 =

∞∑

k=0

γ k

⎛

⎝

∞∫

0

t∫

0

θwe−θwxe−ηxe−μ(t−x) 1

k! (ηx + μ(t − x))k dxdA(t)

⎞

⎠

=
∞∫

0

t∫

0

θwe−θwxe−ηxe−μ(t−x)e(ηx+μ(t−x))γ dxdA(t)

=
∞∫

0

θwe−μ(1−γ )t

t∫

0

e(ηγ−μγ−θw−η+μ)xdxdA (t)

= θw (a∗ (μ (1 − γ )) − γ )

θw − (μ − η)(1 − γ )
.
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The denominator of Eq. 4 can be simplified as follows:

1 −
∞∑

k=1

bk

k−1∑

i=0

ri
11r

k−1−i
33 = 1 − 1

γ − ξ

∞∑

k=0

bk(γ
k − ξk)

= 1 − a∗(μ(1 − γ )) − ξ

γ − ξ

= γ − a∗(μ − μγ )

γ − ξ
.

Thus r13 = α (ξ − γ ), where α = θw

/
(θw − (μ − η)(1 − γ )).

Inserting r33 = ξ and r22 = ε into the fifth equation of Eq. 3 gives

r23 =
∞∑

k=0

ekr
k
22

/(

1 −
∞∑

k=1

bk

k−1∑

i=0

ri
22r

k−1−i
33

)

. (5)

The numerator of Eq. 5 can be computed as follows:

∞∑

k=0

ekr
k
22 =

∞∑

k=0

εk

∞∫

0

t∫

0

θve
−θvx (μ(t − x))k

k! e−μ(t−x)dxdA (t)

=
∞∫

0

t∫

0

θve
−μ(1−ε)(t−x)−θvxdxdA (t)

= θv

θv − μ(1 − ε)

(
a∗ (μ(1 − ε)) − ε

)
.

The denominator of Eq. 5 can be simplified as follows:

1 −
∞∑

k=1

bk

k−1∑

j=0

ξj εk−1−j = 1 − 1

ξ − ε

∞∑

k=1

bk

(
ξk − εk

)

= 1 − 1

ξ − ε

(
a∗ (μ(1 − ξ)) − a∗ (μ(1 − ε))

)

= 1

ξ − ε

(
a∗ (μ (1 − ε)) − ε

)
.

Thus we can get r23 = β(ξ − ε), where β = θv

/
(θv − μ(1 − ε)). Then the proof is

completed.

Based on theorem 1.5.1 of Neuts (1981), the Markov chain is positive recurrent if and
only if the spectral radius of R, denoted by sp(R), is less than one, and B[R] has a positive
left invariant vector, where

B[R] =
⎛

⎝
B0 A01∞∑

k=1
Rk−1Bk

∞∑
k=1

Rk−1Ak
.

⎞

⎠ (6)
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Under the condition ρ < 1, we have obtained R from Lemma 2. By the structure of R,
we can note that R is an upper triangular matrix and sp(R) = max {γ, ε, ξ} < 1. After
tedious calculation, we obtain

B[R] =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

c′
1 + d ′

1 1 − (c0 + d0) − (
c′
1 + d ′

1

)
c0 0 d0

e′
1 1 − ε − e0 − e′

1 0 ε e0

H31 H32 1 − c0
γ

0 αb0(ξ−γ )
ξγ

− d0
γ

H41 H42 0 0 βb0(ξ−ε)
ξε

− e0
ε

H51 H52 0 0 1 − b0
ξ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (7)

where

H31 = a∗ (θw) − γ

γ (1 − γ )

(

1 − μ

η
α

)

+ α

ξ

μ (ξ − a∗ (θw))

θw − μ (1 − ξ)
− c′

1 + d ′
1

γ
+ αb′

1
(γ − ξ)

ξγ
,

H32 = −H31 + c0 + d0

γ
− αb0

ξ − γ

γ ξ
,

H41 = μβ (a∗ (θw) − ε)

ε (θw − θv)
+ βμ

ξ

ξ − a∗ (θw)

θw − μ (1 − ξ)
− e′

1

ε
− βb′

1

ξ
+ βb′

1

ε
,

H42 = 1 − H41 − βb0 (ξ − ε)

ξε
+ e0

ε
,

H51 = μ (ξ − a∗ (θw))

ξ (θw − μ (1 − ξ))
− b′

1

ξ
,

H52 = b0

ξ
− H51.

We can verify that B[R] is a stochastic matrix and has the left invariant vector

K ′ (1, p, γ, pε, α (ξ − γ ) + pβ (ξ − ε)) , (8)

where K ′ is a constant and

p =
1 − a∗(θw)−γ

1−γ

(
1 − μ

η
α
)

− αμ(ξ−a∗(θw))
θw−μ(1−ξ)

μβ(a∗(θw)−ε)
θw−θv

+ β
μ(ξ−a∗(θw))
θw−μ(1−ξ)

. (9)

Then the Markov chain is positive recurrent if and only if sp(R) < 1. Based on it, the
joint stationary probability distribution of system size at arrival epochs is obtained in the
following Theorem.

Theorem 1 If ρ < 1, the joint stationary probability distribution of the Markov process
{(Ln, Jn) , n ≥ 1} is

⎧
⎪⎪⎨

⎪⎪⎩

πk,0 = Kγ k, k ≥ 0,

πk,1 = Kpεk, k ≥ 0,

πk,2 = K
(
α
(
ξk − γ k

)
+ pβ

(
ξk − εk

))
, k ≥ 1,

(10)

where

K = (1 − γ ) (1 − ε) (1 − ξ)

(1 − ξ + α (ξ − γ )) (1 − ε) + p (1 − ξ + β (ξ − ε)) (1 − γ )
.
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Proof Using Theorem 1.5.1 of Neuts (1981), the invariant probability vector π of the
Markov process is given by

πk = π1R
k−1, k ≥ 1, (11)

and (π00, π01, π10, π11, π12) is the positive left invariant vector of B[R]. It means that
it has the type as K (1, p, γ, ε, α (ξ − γ ) + pβ (ξ − ε)), in which the constant K is
determined by the normalization condition

π0,0 + π0,1 + (
π1,0, π1,1, π1,2

)
(I − R)−1 e = 1, (12)

where e denotes 3 dimensional column vector with all elements being equal to 1.
Noting

(I − R)−1 =
⎛

⎜
⎝

1
1−γ

0 α(ξ−γ )
(1−γ )(1−ξ)

1
1−ε

β(ξ−ε)
(1−ε)(1−ξ)

1
1−ξ

⎞

⎟
⎠ , (13)

and substituting (I − R)−1 into Eq. 12, we obtain

K = (1 − γ ) (1 − ε) (1 − ξ)

(1 − ξ + α (ξ − γ )) (1 − ε) + p (1 − ξ + β (ξ − ε)) (1 − γ )
. (14)

Note that

Rk =
⎛

⎝
γ k 0 α

(
ξk − γ k

)

εk β
(
ξk − εk

)

ξk

⎞

⎠ , (15)

substituting Rk−1 into Eq. 11, we can get Eq. 10, then the proof is completed.

Special case 1 If θw → θv and η → 0, it means there is no service in the working vacation
and the working vacation reduces to the vacation, then our model becomes the standard
GI/M/1 queue with multiple vacations. To verify that, let θw → θv and η → 0, then γ → ε,
α → β, the distribution of stationary system size becomes

⎧
⎪⎪⎨

⎪⎪⎩

πk,0 = Kεk, k ≥ 0,

πk,1 = Kpεk, k ≥ 0,

πk,2 = K (β + pβ)
(
ξk − εk

)
, k ≥ 1,

(16)

where

p =
(

1 − βμ (ξ − a∗ (θv))

θv − μ (1 − ξ)

)/(

βμδ + βμ (ξ − a∗ (θv))

θv − μ (1 − ξ)

)

, (17)

δ = d

ds
a∗ (s)

∣
∣
∣
∣
s=θv

, K = (1 − ε) (1 − ξ)

(1 − ξ + β (ξ − ε)) (1 + p)
. (18)

Note here that states (k, 0) and (k, 1), for k ≥ 0, both represent the system in vacation
period. In fact, (k, 0) means that the system stays in the first vacation after the regular ser-
vice period. So the probability that there are k customers in the system and the server stays
in vacation period is πk,0 + πk,1. Therefore, we can find that the distribution of stationary
system size coincides with that of Theorem 2 in Tian et al. (1989).
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Special case 2 If θv → ∞, it means there is no vacation period, then the vacation period
reduces to the idle period, so, our model becomes the standard GI/M/1 queue with single
working vacation. To verify that, let θv → ∞, then ε → 0 and β → 1, the distribution of
stationary system size becomes

⎧
⎪⎪⎨

⎪⎪⎩

πk,0 = Kγ k, k ≥ 0,

π0,1 = Kp, k ≥ 0,

πk,2 = K
(
α
(
ξk − γ k

)
+ pξk

)
, k ≥ 1,

(19)

where π01 represents that the server is in the idle period and

p =
(

1 − a∗ (θw) − γ

1 − γ

(

1 − μ

η
α

)

− αμ (ξ − a∗ (θw))

θw − μ (1 − ξ)

)/
μ (ξ − a∗ (θw))

θw − μ (1 − ξ)
, (20)

K = (1 − γ ) (1 − ξ)

(1 − ξ + α (ξ − γ )) + p (1 − γ )
. (21)

We can find that the stationary distribution of system size coincides with that of
Theorem 2 in Li and Tian (2011) and Lemma 2 in Chae et al. (2009).

The state probabilities of the server in steady state are shown as

P0 = P {J = 0} = K
1

1 − γ
, (22)

P1 = P {J = 1} = Kp
1

1 − ε
, (23)

P2 = P {J = 2} = K

(

α
ξ − γ

(1 − ξ) (1 − γ )
+ pβ

ξ − ε

(1 − ξ) (1 − ε)

)

. (24)

Theorem 2 If ρ < 1 and μ > η, the stationary system size L can be decomposed into the
sum of two independent random variables: L = L0 + Ld , in which L0 is the stationary sys-
tem size of a classical GI/M/1 queue without vacation, and follows a geometric distribution
with parameter 1 − ξ , and the additional queue length Ld has the distribution

P {Ld = 0} = K∗ (1 − γ ) (1 − ε) (1 + p), (25)

P {Ld = k} =K∗ (1 − ε) (α − 1) (ξ − γ ) (1 − γ ) γ k−1

+ K∗p (1 − γ ) (β − 1) (ξ − ε) (1 − ε) εk−1, k ≥ 1, (26)

where K∗ = ((1 − ξ + α (ξ − γ )) (1 − ε) + p (1 − ξ + β (ξ − ε)) (1 − γ ))−1.
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Proof From Eq. 10, the PGF of L can be shown as follows:

L (z) =
∞∑

k=0

πk0z
k +

∞∑

k=0

πk1z
k +

∞∑

k=1

πk1z
k

= 1 − ξ

1 − ξz
K∗ (1 − γ ) (1−ε)

(
1 − ξz

1 − γ z
+ p (1 − ξz)

1 − εz
+ α

z (ξ − γ )

1 − γ z
+ pβ

z (ξ − ε)

1 − εz

)

= 1 − ξ

1 − ξz
K∗ (1−γ ) (1 − ε)

( ∞∑

k=0

(γ z)k+ (α (ξ − γ ) − ξ)

∞∑

k=1

zkγ k−1 + p

∞∑

k=0

(εz)k

+p (α (ξ − ε) − ξ)

∞∑

k=1

zkεk−1

)

= 1 − ξ

1 − ξz
K∗ (1 − γ ) (1 − ε)

(

1 + p + (α − 1) (ξ − γ )

∞∑

k=1

zkγ k−1

+p (β − 1) (ξ − ε)

∞∑

k=1

zkεk−1

)

.

(27)
From the above expression, we obtain the Theorem 2 directly.

Remark 1 From Theorem 2, the stationary additional queue length Ld has the special
probability explanation that it is the mixture of three random variables. That is

Ld = K∗ (1 − γ ) (1 − ε) (1 + p)X0 + K∗ (1 − ε) (α − 1) (ξ − γ ) X1

+K∗p (1 − γ ) (β − 1) (ξ − ε) X2,
(28)

where X0 equals to 0, X1 follows a geometric distribution with parameter 1 − γ and X2
follows a geometric distribution with parameter 1 − ε.

Remark 2 From the distributions of L0 and Ld , we can know that the system size at the
arrival epochs follows a PH-distribution with representation (α1, T1), where

α1 = (
ξ, (1 − ξ)K∗ (1 − ε) (α − 1) (ξ − γ ) , (1 − ξ)K∗p (1 − γ ) (β − 1) (ξ − ε)

)
,

T1 =
⎛

⎝
ξ (1 − ξ)K∗ (1 − ε) (α − 1) (ξ − γ ) (1 − ξ)K∗p (1 − γ ) (β − 1) (ξ − ε)

0 γ 0
0 0 ε

⎞

⎠ .

LetQ(0),Q(1) andQ(2) be the conditional system size just before a new customer arrives,
given that the arrival occurs during working vacation, vacation and regular service period,
respectively. We can get the distributions of Q(0), Q(1) and Q(2) in the following Corollary.

Corollary 1 If ρ < 1, the random variables Q(0) and Q(1) follow geometric distribu-
tions with parameter γ , ε, respectively. The random variable Q(2) can be decomposed into
the sum of two independent random variables: Q(2) = L0 + L

(1)
d , in which L0 follows a
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geometric distribution with parameter 1 − ξ , and the additional queue length L
(1)
d has the

distribution

P
{
L

(1)
d = k

}
= δ (1 − γ ) γ k−1 + (1 − δ) (1 − ε) εk−1, k ≥ 1, (29)

where

δ = α (ξ − γ ) (1 − ε)

α (ξ − γ ) (1 − ε) + pβ (ξ − ε) (1 − γ )
. (30)

Proof The distributions of Q(0) and Q(1) can be obtained by direct computation as follows:

P
{
Q(0) = k

}
= πk0

/
P0 = (1 − γ ) γ k, k ≥ 0, (31)

P
{
Q(1) = k

}
= πk1

/
P1 = (1 − ε) εk, k ≥ 0. (32)

For k ≥ 1,

P
{
Q(2) = k

}
= πk2

/
P2

= (1−ξ) (1−γ ) (1−ε)

α (ξ−γ ) (1−ε) + pβ (ξ−ε) (1−γ )

(

α (ξ − γ )

k−1∑

i=0

ξ iγ k−i +pβ (ξ−ε)

k−1∑

j=0

ξj εk−j

⎞

⎠ .

(33)
Multiplying both sides of the above expression by zk and summing over k = 1, 2, . . . ,

we get

Q(2) (z) = 1 − ξ

1 − ξz

(
α (ξ − γ ) (1 − ε)

α (ξ − γ ) (1 − ε) + pβ (ξ − ε) (1 − γ )

(1 − γ ) z

1 − γ z

+ pβ (ξ − ε) (1 − γ )

α (ξ − γ ) (1 − ε) + pβ (ξ − ε) (1 − γ )

(1 − ε) z

1 − εz

)

.

(34)

Then we can obtain Eq. 29 from the above expression, then the proof is completed.

Remark 3 From Corollary 1, we know that random variable Q(2) follows a PH-distribution
with representation (α2, T2), where

α2 = (
ξ, (1 − ξ) σ, (1 − ξ) (1 − σ)

)
,

T1 =
⎛

⎝
ξ (1 − ξ) σ (1 − ξ) (1 − σ)

0 γ 0
0 0 ε

⎞

⎠ .

From Theorem 2 and Corollary 1, we can get

E (Ld) = K∗ (1 − ε)
μ − η

θw

α (ξ − γ ) + K∗ (1 − γ ) p
μ

θv

β (ξ − ε) , (35)

E (L) = ξ

1 − ξ
+ K∗ (1 − ε)

μ − η

θw

α (ξ − γ ) + K∗ (1 − γ ) p
μ

θv

β (ξ − ε) , (36)

E
(
Q(2)

)
= ξ

1 − ξ
+ δ

γ

1 − γ
+ (1 − δ)

ε

1 − ε
. (37)
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We can verify that

P {L = 0} = P {L0 = 0} P {Ld = 0} , (38)

P {L = k} =
k∑

i=0

P {L0 = i} P {Ld = k − i}, k ≥ 1. (39)

4 The Steady-State Distribution of System Size at Arbitrary Epochs

In this section, we are concerned on deriving the limiting distribution of continuous-
parameter process {L (t) , t ≥ 0} by the method of semi-Markov process (SMP). To this
end, we let Nτ (t) be the number of customers in the system at the most recent arrival and
Jτ (t) be the state of server at time when the most recent arrival occurs, if this new customer
arrives at the system in working vacation, vacation or regular service period, then Jτ (t) is
corresponding to 0, 1 or 2, respectively. Clearly, {(Nτ (t) , Jτ (t)) , t ≥ 0} is a SMP that
has {(Ln, Jn) , n ≥ 1} for its basic embedded Markov chain.

Theorem 3 If ρ < 1 and θw, θv > 0, the limiting distribution of continuous parameter
process exists. If we denote pk = lim

t→∞ P {L (t) = k}, for k ≥ 0, then we have

⎧
⎪⎪⎨

⎪⎪⎩

p0 = 1 − K

(

(α + pβ)
λ

μ (1 − ξ)
+ λ (1 − α)

θw + η (1 − γ )
+ p

λ

θv

(1 − β)

)

,

pk =K (α+pβ)
λ

μ
ξk−1+K

λ (1 − α) (1 − γ )

θw+η (1−γ )
γ k−1+Kp

λ

θv

(1−β) (1−ε) εk−1, k ≥ 1.

(40)

Proof Based on theory of the SMP (see Gross and Harris 1985), if the Markov chain
{(Ln, Jn) , n ≥ 0} is irreducible, aperiodic and positive recurrent, then the limiting distribu-
tion of the {(Nτ (t) , Jτ (t)) , t ≥ 0} exists. Let mk,j be the time the SMP is in state (k, j),
for (k, j) ∈ Ω . By definition, we know that P

{
mk,j � t

} = A (t), E
(
mk,j

) = λ−1, for
all (k, j) ∈ Ω . Let

vk, j = lim
t→∞ P {Nτ (t) = k, Jτ (t) = j} , (41)

then

vk, j = πk, jE
(
mk,j

)

∑
(h,i)∈Ω πh, iE

(
mh, i

) (42)

where πk,j is the limiting distribution of basic MC {(Ln, Jn) , n ≥ 0} shown in (10). But,
because all E

(
mk,j

) = λ−1, we have vk, j = πk, j , for (k, j) ∈ Ω . Thus, the SMP and its
basic MC have an identical limiting distribution. Then we have

pk =
∑

(j,i)∈Ω
vj, i

2∑

l=0

∞∫

0

P

{
requried changes in t to bring

state from (j, i) to (k, l)

}

λ (1 − A (t)) dt. (43)
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Now, for k ≥ 1,

pk =
∞∑

i=k−1

πi,2

∞∫

0

(μt)i+1−k

(i + 1 − k)!e
−μtλ (1 − A (t))dt

+
∞∑

i=k−1

πi,0

∞∫

0

e−θwt (ηt)i+1−k

(i + 1 − k)!e
−ηtλ (1 − A (t))dt

+
∞∑

i=k−1

πi,0

i+1−k∑

j=0

∞∫

0

t∫

0

θwe−θwx (ηx)j

j ! e−ηx (μ (t−x))i+1−k−j

(i+1−k−j)! e−μ(t−x)λ (1−A(t)) dxdt

+
∞∑

i=k−1

πi,1

∞∫

0

t∫

0

θve
−θvx (μ (t − x))i−k+1

(i − k + 1)! e−μ(t−x)λ (1 − A (t)) dxdt

+πk−1,1

∞∫

0

eθvtλ (1 − A (t))dxdt,

substituting Eq. 10 in above equation, we can obtain that

pk =K

∞∑

i=k−1

(
α
(
ξ i − γ i

)
+ pβ

(
ξ i − εi

))
∞∫

0

(μt)i+1−k

(i + 1 − k)!e
−μtλ (1 − A (t))dt

+K

∞∑

i=k−1

γ i

∞∫

0

e−θwt (ηt)i+1−k

(i + 1 − k)!e
−ηtλ (1 − A (t))dt

+K

∞∑

i=k−1

γ i
i+1−k∑

j=0

∞∫

0

t∫

0

θwe−θwx (ηx)j

j ! e−ηx (μ (t−x))i+1−k−j

(i+1−!k−j)! e−μ(t−x)λ (1−A(t)) dxdt

+Kp

∞∑

i=k−1

εi

∞∫

0

t∫

0

θve
−θvx (μ (t − x))i−k+1

(i − k + 1)! e−μ(t−x)λ (1 − A (t)) dxdt

+Kpεk−1

∞∫

0

eθvtλ (1 − A (t))dxdt

(44)
We now compute each part of the above equation.
Firstly,

∞∑

i=k−1

ξ i

∞∫

0

(μt)i−k+1

(i − k + 1)!e
−μtλ (1 − A (t)) dt = ξk−1

∞∫

0

e−μ(1−ξ)t λ (1 − A (t)) dt

= λξk−1 1

μ (1 − ξ)

(
1 − a∗ (μ (1 − ξ))

) = λξk−1

μ
.

, (45)
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Secondly,

∞∑

i=k−1

γ i

∞∫

0

(μt)i−k+1

(i − k + 1)!e
−μtλ (1 − A (t)) dt = γ k−1

∞∫

0

e−μ(1−γ )tλ (1 − A (t)) dt

= λγ k−1 1

μ (1 − γ )

(
1 − a∗ (μ (1 − γ ))

)
,

(46)

∞∑

i=k−1

εi

∞∫

0

(μt)i−k+1

(i − k + 1)!e
−μtλ (1 − A (t)) dt = εk−1

∞∫

0

e−μ(1−ε)tλ (1 − A (t)) dt

= λεk−1 1

μ (1 − ε)

(
1 − a∗ (μ (1 − ε))

)
.

. (47)

Thirdly,

∞∑

i=k−1

γ i

∞∫

0

e−θwt (ηt)i+1−k

(i + 1 − k)!e
−ηtλ (1 − A (t))dt =γ k−1

∞∫

0

e−(θw+η(1−γ ))tλ (1−A (t)) dt

= λγ k−1 1 − a∗ (θw + η (1 − γ ))

θw + η (1 − γ )
= λγ k−1 (1 − γ )

θw + η (1 − γ )
.

(48)
Fourthly, we get

∞∑

i=k−1

γ i
i+1−k∑

j=0

∞∫

0

t∫

0

θwe−θwx (ηx)j

j ! e−ηx (μ (t − x))i+1−k−j

(i + 1 − k − j)! e−μ(t−x)λ (1 − A (t)) dxdt

= γ k−1
∞∑

i=k−1

γ i−k+1
i+1−k∑

j=0

∞∫

0

t∫

0

θwe−θwx (ηx)j

j ! e−ηx (μ (t−x))i+1−k−j

(i+1−k−j)!

×e−μ(t−x)λ (1−A (t)) dxdt

= γ k−1

∞∫

0

t∫

0

θwe−θwxeηγ xe−ηxeμ(t−x)γ e−μ(t−x)λ (1 − A (t)) dxdt

= λαγ k−1

∞∫

0

(
e−μ(1−γ )t − e−(θw+η(1−γ ))t

)
(1 − A (t)) dt

= λαγ k−1
(
1 − a∗ (μ (1 − γ ))

μ(1 − γ )
− 1 − γ

θw + η (1 − γ )

)

.

(49)
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Fifthly,

∞∑

i=k−1

εi

∞∫

0

t∫

0

θve
−θvx (μ (t − x))i−k+1

(i − k + 1)! e−μ(t−x)λ (1 − A (t)) dxdt

= εk−1

∞∫

0

t∫

0

θve
−θvxe−μ(1−γ )(t−x)λ (1 − A (t)) dxdt

= λβεk−1

∞∫

0

(
e−μ(1−ε)t − e−θvt

)
(1 − A (t)) dt

= λβεk−1
(
1 − a∗ (μ (1 − ε))

μ (1 − ε)
− 1

θv

(1 − ε)

)

.

(50)

Finally,
∞∫

0

e−θvtλ (1 − A (t))dt = λ

θv

(1 − ε) . (51)

Substituting Eqs. 45–51 into Eq. 44, we can get

pk = K (α + pβ)
λ

μ
ξk−1+K

λ (1 − α) (1 − γ )

θw + η (1 − γ )
γ k−1+Kp

λ

θv

(1 − β) (1 − ε) εk−1, k ≥ 1,

and the p0 can be determined by the normalization condition. Then the proof is completed.

Let La denote the steady state system size at arbitrary epochs. From Theorem 3, we can
obtain

E (La) =
∞∑

k=0

kpk =K (α + pβ)
λ

μ

1

(1 − ξ)2
+ K

λ (1 − α)

θw + η (1 − γ )

1

(1 − γ )
+ Kp

λ

θv

1 − β

1 − ε
.

(52)

5 Waiting Time and Sojourn Time

In this section, we analyze the waiting time(the time a customer spends in the queue) and
sojourn time (the time a customer spends in the system) by the first passage time analysis.

Let H0, H1 and H2 be the probabilities that the new arrival need to wait for its service,
given that server is in working vacation, vacation and regular service period, respectively,
when the new arrival comes. We can easily get

H0 =
∞∑

k=1

πk,0 =K

∞∑

k=1

γ k =K
γ

1 − γ
, (53)

H1 =
∞∑

k=0

πk,1 =K

∞∑

k=0

εk =Kp
1

1 − ε
, (54)

H2 =
∞∑

k=1

πk,2 =K

(

α
ξ − γ

(1 − ξ) (1 − γ )
+ pβ

ξ − ε

(1 − ξ) (1 − ε)

)

, (55)
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Let W and W ∗ (s) be the waiting time of a tagged customer and its corresponding LST,
S and S∗(s) be the sojourn time of a tagged customer and its corresponding LST. To find
the distributions of W and S, an absorbing Markov process is introduced to describe the
change of position of a tagged customer in the queue. The transition rate matrix Q1 for the
absorbing Markov chain is given by

Q1 =

0
1
2
3
4
...

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 · · ·
D′

1 D0 · · ·
D1 D0 · · ·

D1 D0 · · ·
D1 D0 · · ·

. . .
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (56)

where {0, 1, 2, 3, ...} represents position of a tagged customer in queue.

D′
1 =

⎛

⎝
η

0
μ

⎞

⎠ ,D0 =
⎛

⎝
− (θw + η) 0 θw

−θv θv

−μ

⎞

⎠ ,D1 =
⎛

⎝
η

0
μ

⎞

⎠ . (57)

Note that the stationary distribution of system size just before the new customer arrivals
is given by Eq. 10 which is also the stationary distribution of system size as seen by the
tagged customer at its arrival epoch. Then we can obtain the following two theorems.

Theorem 4 The LST of the waiting time of an arbitrary customer is given by

W ∗ (s) = H̄ + H0

{

q0
θw + η (1 − γ )

s + θw + η (1 − γ )
+ (1−q0)

θw + η (1 − γ )

s + θw + η (1 − γ )

μ (1 − γ )

s + μ (1 − γ )

}

+H1
(s + μ) (1 − ε)

s + μ (1 − ε)

θv

s + θv

+ H2

{

q1
(s + μ) (1 − ξ)

s + μ (1 − ξ)

μ (1 − γ )

s + μ (1 − γ )

+ (1 − q1)
(s + μ) (1 − ξ)

s + μ (1 − ξ)

μ (1 − ε)

s + μ (1 − ε)

}

,

(58)
where H0, H1 and H2 are given by Eqs. 53–55, H̄ = 1 − H0 − H1 − H2 and

q0 = η (1 − γ )

θw + η (1 − γ )
, q1 = α (ξ − γ ) (1 − ε)

α (ξ − γ ) (1 − ε) + pβ (ξ − ε) (1 − γ )
. (59)

Proof According to the equation (3.9.5) in chapter 3.9 of Neuts (1981), we can get the
following LST of the waiting time

W ∗ (s) = π00 + π01
θv

s + θv

+
∞∑

k=1

(πk0, πk1, πk2)
(
(sI − D0)

−1 D1

)k

e, (60)

where e denotes a column vector with appropriate dimension, whose elements are all equal
to one.
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By direct computation, we can obtain

(sI − D0)
−1 D1 =

⎛

⎜
⎝

1
s+θw+η

0 θw

(s+μ)(s+θw+η)
1

s+θv

θv

(s+μ)(s+θv)
1

s+μ

⎞

⎟
⎠

⎛

⎝
η

0
μ

⎞

⎠

=
⎛

⎜
⎝

η
s+θw+η

0 θwμ
(s+μ)(s+θw+η)

0 θvμ
(s+μ)(s+θv)

μ
s+μ

⎞

⎟
⎠ .

For convenience of the following calculations, we denote η
s+θw+η

, θwμ
(s+μ)(s+θw+η)

,
θvμ

(s+μ)(s+θv)
, μ

s+μ
by r ′

11, r
′
13, r

′
23, r

′
33, respectively, that is

(sI − D0)
−1 D1 =

⎛

⎝
r ′
11 0 r ′

13
0 r ′

23
r ′
33

⎞

⎠ . (61)

Then we have

W ∗ (s) = π00 + π01
θv

s + θv

+
∞∑

k=1

(πk0, πk1, πk2)
(
(sI − D1)

−1 D2

)k

e

= K + Kp
θv

s + θv

1

1 − r ′
33ε

+ K
r ′
11γ

1 − r ′
11γ

+ Kr ′
13γ

1

1 − r ′
11γ

1

1 − r ′
33γ

+Kα

(
1

1 − r ′
33ξ

− 1

1 − r ′
33γ

)

+ Kpβ

(
1

1 − r ′
33ξ

− 1

1 − r ′
33ε

)

= K + Kp
θv

s + θv

s + μ

s + μ (1 − ε)
+ K

γη

s + θw + η (1 − γ )

+K
θw

s+θw+η (1−γ )

μγ

s+μ (1 − γ )
+ Kα (s + μ)

μ (ξ − γ )

(s + μ (1 − ξ)) (s + μ (1 − γ ))

+Kpβ (s + μ)
μ (ξ − ε)

(s + μ (1 − ξ)) (s + μ (1 − ε))
.

(62)
By routine calculation, Eq. 62 can be transformed to

W ∗ (s) = H̄ + H0

{

q0
θw + η (1 − γ )

s+θw + η (1 − γ )
+ (1 − q0)

θw + η (1 − γ )

s + θw + η (1 − γ )

μ (1 − γ )

s + μ (1 − γ )

}

+H1
(s + μ) (1 − ε)

s + μ (1 − ε)

θv

s + θv

+ H2

{

q1
(s + μ) (1 − ξ)

s + μ (1 − ξ)

μ (1 − γ )

s + μ (1 − γ )

+ (1 − q1)
(s + μ) (1 − ξ)

s + μ (1 − ξ)

μ (1 − ε)

s + μ (1 − ε)

}

(63)
where H0, H1 and H2 are given by Eqs. 53–55, H̄ = 1 − H0 − H1 − H2 , q0 and q1 are
given by Eq. 59.
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Theorem 5 If ρ < 1, and θw, θv > 0, the LST of the steady-state sojourn time is given by

S∗ (s) = P0

(

q0
θw + η (1 − γ )

s + θw + η (1 − γ )
+ (1 − q0)

θw + η (1 − γ )

s + θw + η (1 − γ )

μ (1 − γ )

s + μ (1 − γ )

)

+P1

(
θv

s + θv

μ (1 − ε)

s + μ (1 − ε)

)

+ P2

(

q1
μ (1 − ξ)

s + μ (1 − ξ)

μ (1 − γ )

s + μ (1 − γ )

+ (1 − q1)
μ (1 − ξ)

s + μ (1 − ξ)

μ (1 − ε)

s + μ (1 − ε)

)

,

(64)
where P0, P1 and are given by Eqs. 22–24, q0 and q1 are given by Eq. 58.

Proof On the basis of Q1, we can obtain LST of sojourn time of an arbitrary customer

S∗ (s) = (π00, π01, 0) (sI − D1)
−1 D2e +

∞∑

k=1

(πk0, πk1, πk2)
(
(sI − D1)

−1 D2

)k+1
e

(65)
The following procedure is similar to that of Theorem 5, we omit it.

Remark 4 From Theorem 4, we know that the steady-state waiting time of an arbitrary cus-
tomer has the following probability explanation, that is, with probability H̄ , the waiting
time equals to zero; with probability H0q0, it equals to an exponential random variable with
parameter θw + η (1 − γ ); with probability H0 (1 − q0), it equals to sum of one exponen-
tial random variable with parameter θw + η (1 − γ ) plus one exponential random variable
with parameterμ (1 − γ ); with probability H1, it equals to the sum of one modified expo-
nential variable with parameter μ (1 − ε) plus an exponential random variable with the
parameter θv ; with probability H2q1, it equals sum of one modified exponential variable
with parameter μ (1 − ξ) plus an exponential random variable with parameter μ (1 − γ );
with probability H2 (1 − q1), it equals to sum of one modified exponential variable with
parameter μ (1 − ξ) plus an exponential random variable with the rate μ (1 − ε) .

Remark 5 From Theorem 5, we know that the steady-state sojourn time of an arbitrary cus-
tomer has the following probability explanation, that is, with probability P0q0, it equals to
an exponential random variable with parameter θw+η (1 − γ ); with probability P0 (1 − q0),
it equals to sum of one exponential random variable with parameter θw + η (1 − γ ) plus
one exponential random variable with parameter μ (1 − γ ); with probability P1, it equals to
the sum of one modified exponential variable with parameter μ (1 − ε) plus an exponential
random variable with parameter θv ; with probability P2q1, it equals sum of one modi-
fied exponential variable with parameter μ (1 − ξ) plus an exponential random variable
with parameter μ (1 − γ ); with probability P2 (1 − q1), it equals to sum of one modified
exponential variable with parameter μ (1 − ξ) plus an exponential random variable with
parameter μ (1 − ε) .

From Theorem 4 ,Theorem 5 and the Remark 4 and Remark 5, we can easily get the
means of waiting time and sojourn time of an arbitrary customer.

E (W) = H0
θw + μ (1 − γ )

(θw + η (1 − γ )) (μ (1 − γ ))
+ H1

(
ε

μ (1 − ε)
+ 1

θv

)

+H2

(
ξ

μ (1 − ξ)
+ q1

μ (1 − γ )
+ 1 − q1

μ (1 − ε)

)

,

(66)
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E (S) = P0

(
1

θw + η (1 − γ )
+ (1 − q0)

1

μ (1 − γ )

)

+ P1

(
1

θv

+ 1

μ (1 − ε)

)

+P2

(
1

μ (1 − ξ)
+ q1

1

μ (1 − γ )
+ (1 − q1)

1

μ (1 − ε)

)

.

(67)

We can verify that E (S) is equivalent to the following equation

E (S) = K (α + pβ)
1

μ (1 − ξ)2
+ K

1 − α

(θw + η (1 − γ )) (1 − γ )
+ Kp

1 − β

θv (1 − ε)
. (68)

Comparing the Eqs. 52 and 68, we can verify the Little’s formula:

E (La) = λE (S) . (69)

6 Busy Period Analysis

In this section, we consider the busy period by the theory of limiting theorem of alternative
renewal process.

The duration in which a server works at a rate of μ continuously is called regular busy
period, denoted by B, Also, the continuous durations that the server is in working vacation
and vacation are denoted by Vw , Vv , respectively. A regular busy period can start at the
instant when a working vacation or a vacation finishes, then a busy cycle C is composed of
a working vacation Vw , several vacations Vv(if exists) and subsequent regular busy period
B. Note that there is just a working vacation in a busy cycle C, and E (Vw) = θ−1

w . Using
the theory of limiting theorem of alternative renewal process and Eq. 22, we have

K
1

1 − γ
= P {J = 0} = E (Vw)

E (C)
. (70)

Thus the expected busy cycle is

E (C) = 1 − γ

Kθw

. (71)

Table 1 Steady-state probabilities in the D/M/1 queue with single working vacation and vacations

k πk0 πk1 πk2 πk pk

0 0.1647 0.0905 0 0.2552 0.1148

1 0.0294 0.0356 0.2062 0.2711 0.2816

2 0.0052 0.0140 0.1715 0.1907 0.2321

3 9.3429e-004 0.0055 0.1128 0.1193 0.1532

4 1.6663e-004 0.0022 0.0684 0.0708 0.0932

5 2.9720e-005 8.5106e-004 0.0399 0.0408 0.0545
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

14 5.4275e-012 1.9138e-007 1.9722e-004 1.9741e-004 2.7101e-004

15 9.6802e-013 7.5257e-008 1.0782e-004 1.0790e-004 1.4818e-004

16 1.7265e-013 2.9594e-008 5.8914e-005 5.8943e-005 8.0971e-005

Sum 0.2004 0.1492 0.6503 0.9999 0.9999
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Fig. 1 The mean system size at the arrival epochs for changing η

Similarly, using the alternative renewal theorem and Eqs. 23 and 24, we have

E (Vv) = P {J = 1} E (C) = p (1 − γ )

θw (1 − ε)
, (72)

E (B) = P {J = 2} E (C) = 1 − γ

θw

(

α
ξ − γ

(1 − ξ) (1 − γ )
+ pβ

ξ − ε

(1 − ξ) (1 − ε)

)

. (73)
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Fig. 2 The mean system size at the arbitrary epochs for changing η
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Fig. 3 mean waiting time for changing η

7 Numerical Examples

The results of some numerical examples are depicted in this section. We consider two types
of inter-arrival time distributions: deterministic and Erlang distributions.

For the D/M/1 queue with single working vacation and vacations, we assume that λ =
0.75, μ = 1, θw = 0.8, θv = 0.7 and η = 0.6, and use Table 1 to present the steady-state
probabilities πk0, πk1 ,πk2 and pk under the condition that the parameters are fixed. From
Table 1, we can observe that when k =16, πk and pk become so smaller that the probabilities
even can be omitted. The sums of πk and pk from 0 to 16 also verify this result.
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Fig. 4 mean sojourn time for changing η
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Fig. 5 The effects of θw on mean system size at arrival epochs

For the E2/M/1 queue with single working vacation and vacations, we focus on the
effects of service rate in the working vacation η on the performance measures of interest
such as mean system size at arrival epochs and arbitrary epochs, the mean waiting time and
mean sojourn time. To this end we assume that regular service rate μ = 1, θw = 0.3 and
θv = 0.6 are fixed, and choose λ as 0.3, 0.5 and 0.8 to represent light, medium and high
traffic intensities, that is, ρ = λ/μ = 0.3, 0.5 and 0.8, respectively. In Figs. 1, 2, 3, and 4,
we plot the change trends of various performance measures as η increase from 0 to 1 under
the corresponding traffic intensities. It is obvious that, if η is fixed, the higher ρ is, the larger
the mean system size at the arrival epochs, mean system size at the arbitrary epochs, mean
waiting time and mean sojourn time become. We also observe that increased η leads to the
smaller of these performance measures.
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Fig. 6 The effects of θv on mean sojourn time
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Fig. 7 The effects of θw on mean sojourn time

Assuming that λ = 0.8, μ = 1, η = 0.6, θv = 0.6, Figs. 5 and 6 display the
expected system size at arrival epochs and expected sojourn time as θw varies. We can find
that the expected system size at the arrival epochs and expected waiting time increase and
both converge to fixed constants as θw increases, as we expect.

In Figs. 7 and 8, we assume thatλ = 0.8, μ = 1, η = 0.6, θw = 0.6, and plot the mean
system size at arrival epochs and the mean sojourn time of an arbitrary, with θv varying. A
similar property as the Figs. 5 and 6 can be found that the mean system size at arrival epochs
and mean waiting time both decrease and converge to fixed constants as θv increases, as we
expect.
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Fig. 8 The effects of θv on mean sojourn time
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8 Conclusion

In this paper, we analyze GI/M/1 queue with single working vacation and vacations and
have done works in several aspects:

1. Using matrix geometric solution method, we derive the stationary distribution of
the system size of our model at arrival epochs and its corresponding stochastic
decomposition.

2. Using the method of semi-Markov process (SMP), we gain the stationary distribution
of system size of our model at arbitrary epochs.

3. By the first-passage time analysis, we acquire the waiting time and sojourn time of an
arbitrary customer.

4. Some numerical examples are performed to study the effect of some parameters on
performance measure of interest

Appendix

In this appendix, we construct the transition matrix P̃ explicitly and the expressions of the
entries in P̃ are also shown here.

Case 1 Consider the transition from state (i, 2) to state (j, 2), for 1 � j � i + 1. Define

bk =
∞∫

0

(μt)k

k! e−μtdA (t), k ≥ 0, (74)

then bk (k ≥ 0) represent the probabilities that there are k customers served completely
during an inter-arrival time in the regular service period. Therefore,

p(i, 2),(j, 2) = bi−j+1. (75)

Case 2 Consider the transition from state (i, 2) to state (0, 0). Define

b′
k =

∞∫

0

t∫

0

μ (μx)k−1

i! e−μxe−θw(t−x)dxdA (t), for k ≥ 1, (76)

then b′
k represents the probability that k customers are served in regular period, then the

server enters the working vacation period and the working vacation has not ended before
the next arrival. So

P(i,2),(0,0) = b′
i+1. (77)
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Case 3 Consider transition from state from (i, 2) to (0, 1), that may occur when i+1 cus-
tomers are served in the regular period, then the server enters into the working vacation and
subsequently into the vacation period before the next arrival. Hence

p(i,2)(0,1) =
∞∫

0

t∫

0

μ (μx)i

i!
(
1 − e−θw(t−x)

)
dxdA (t)

=
∞∫

0

t∫

0

μ (μx)i

i! dxdA (t) −
∞∫

0

t∫

0

μ (μx)i

i! e−θw(t−x)dxdA (t)

=
∞∫

0

(

1 −
i∑

k=0

(μt)i

i! e−μt

)

dA (t) −
∞∫

0

t∫

0

μ (μx)i

i! e−θw(t−x)dxdA (t)

= 1 −
i∑

k=0

bk − b′
i+1.

(78)

Case 4 Consider the transition from state (i, 0) to (j, 0), for i � 1, 1 ≤ j � i +1. Define

ck =
∞∫

0

e−θwt (ηt)k

k! e−ηt dA(t)), (79)

then ck (k � 0) represents the probability that the residual working vacation is longer than
an inter-arrival time and k services are completed during the inter-arrival time. Hence

p(i, 0),(j, 0) = ci−j+1. (80)

Case 5 Consider the transition from state (i, 0) to (j, 2), for i � 1, 1 � j ≤ i +1. Define

dk =
∞∫

0

t∫

0

θwe−θwx
k∑

j=0

(ηx)j

j ! e−ηx × (μ(t − x))k−j

(k − j)! e−μ(t−x)dxdA(t), (81)

then dk (k � 0) represents the probability that an inter-arrival time is longer than the resid-
ual working vacation, and the server resumes to the regular service period and k customers
are served in the inter-arrival time. Hence

p(i, 0),(j, 2) = di−j+1. (82)
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Case 6 Consider the transition from state (i, 0) to (0, 0) , and we would like to point
out that there are two possible ways to cause the transition from (i, 0) to (0, 0). One is
that if the residual working vacation is longer than an inter-arrival time, and more than
i + 1 customers can be served during the inter-arrival time, the other is that if the ongoing
working vacation ends during an inter-arrival time but before there are i + 1 service com-
pletions, and the (i + 1)st service completion occurs during a regular service period, and a
newly started working vacation does not complete during the remaining inter-arrival time.
Therefore,

p(i,0),(0,0) =
∞∫

0

e−θwt

t∫

0

η (ηx)i

i! e−ηxdxdA (t)

+
i∑

k=0

∞∫

0

t∫

0

θwe−θwx (ηx)k

k! e−ηx

t∫

x

μ(μ (y − x))i−k

(i − k)! e−μ(y−x)e−θw(t−y)dydxdA(t)

= c′
i+1 + d ′

i+1,

(83)
where

c′
i =

∞∫

0

e−θwt

t∫

0

η (ηx)i−1

(i − 1)! e−ηxdxdA (t) , (84)

d ′
i =

i−1∑

k=0

∞∫

0

t∫

0

θwe−θwx (ηx)k

k! e−ηx

t∫

x

μ(μ (y − x))i−1−k

(i − 1 − k)! e−μ(y−x)e−θw(t−y)dydxdA(t).

(85)
From the definition, we can find that ck (k = 0, 1, 2...) and c′

i (i = 0, 1, 2...) satisfy the
following relationship:

i∑

k=0

ck + c′
i+1 = P

{
V ′

w � A
} = a∗ (θw) , (86)

where V ′
w is the residual working vacation and A stands for the limit of Tn as n → ∞.

Case 7 Consider the transition from state (i, 0) to (0, 1). Note that there are also two
possible situations that may cause (i, 0) to (0, 1). One is that if the residual working vaca-
tion is longer than an inter-arrival time, more than i + 1 customers can be served during
the working vacation, the other is that there are k (k < i + 1) customers served during the
working vacation and the residual customers are served in the regular busy period, the
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system enters another working vacation during which no one comes, and the next arrival
occur in the vacation period.

p(i,0),(0,1) =
∞∫

0

t∫

0

θwe−θwx

x∫

0

η (ηx)i

i! e−ηxdxdA (t)

+
∞∫

0

t∫

0

θwe−θwx

i∑

k=0

(ηx)k

k! e−ηx

t∫

x

μ (μ (y−x))i−k

(i − k)! e−μ(y−x)
(
1− e−θw(t−y)

)
dydxdA (t)

=
∞∫

0

t∫

0

θwe−θwx

(

1 −
i∑

k=0

(ηx)k

k! e−ηx

)

dxdA (t)

+
∞∫

0

t∫

0

θwe−θwx
i∑

k=0

(ηx)k

k! e−ηx

⎛

⎝1 −
i−k∑

j=0

(μ (t − x))j

j ! e−μ(t−x)

⎞

⎠dxdA (t)

−
∞∫

0

t∫

0

θwe−θwx
i∑

k=0

(ηx)k

k! e−ηx

t∫

x

μ (μ (y − x))i−k

(i − k)! e−μ(y−x)e−θw(t−y)dydxdA (t)

= 1 − a∗ (θw) −
i∑

k=0

di − d ′
i+1

= 1 −
i∑

k=0

ci − c′
i+1 −

i∑

k=0

di − d ′
i+1.

(87)
In the above equation, we use the following equalities:

i∑

k=0

di =
∞∫

0

t∫

0

θwe−θwx
i∑

k=0

(ηx)k

k! e−ηx
i−k∑

j=0

(μ (t − x))j

j ! e−μ(t−x)dxdA (t) ,

a∗ (θw) =
i∑

k=0

ck + c′
i+1.

Case 8 Consider transition from state (i, 1) to state (i + 1, 1), for i ≥ 0 , which can occur
if and only if the residual vacation time is longer than an arrival time. Therefore, we have

P {A < Vv} =
∞∫

0

e−θvt dA (t) = a∗ (θv) . (88)

where Vv stands for the residual vacation time. For convenience, we denote a∗ (θv) by
ε.Thus,

p(i,1),(i+1,1) = ε. (89)
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Case 9 Consider transition from state (i, 1) to state (j, 2), for i ≥ 1, 1 ≤ j ≤ i + 1.
It can occur if that the inter-arrival time is longer than the residual vacation time, then the
server enters into regular service period, and there are i-j+1 customers served with the rate
μ and then the next customer arrives. This gives

p(i,1),(j,2) =
∞∫

0

t∫

0

θve
−θvx (μ(t − x))i−j+1

(i − j + 1)! e−μ(t−x)dxdA(t) = ei−j+1. (90)

Case 10 Consider transition from state (i, 1) to state (0, 0) which can occur if the residual
vacation time is shorter than an inter-arrival time, after the vacation, the server will enter
the regular service during which i+1 customers are served with rate μ , and the next arrival
occurs in the subsequent partial close-down time. Therefore

p(i,1),(0,0) =
∞∫

0

t∫

0

θve
−θvx

t∫

x

μ (μ (y − x))i

i! e−μ(y−x)e−θw(t−y)dydxdA(t) = e′
i+1 (91)

Case 11 Consider the situation from state (i, 1) to state (0, 1) which may occur if an inter-
arrival time is greater than the residual vacation, i + 1 service times, and the subsequent
working vacation, and the next arrival will occur in the vacation period. Hence

P(i,1)(0,1) =
∞∫

0

θve
−θvx

t∫

x

μ (μ (y − x))i

i! e−μ(y−x)
(
1 − e−θw(t−y)

)
dydxdA (t)

=
∞∫

0

θve
−θvx

(

1 −
i∑

k=0

(μ (t − x))k

k! e−μ(t−x)

)

dxdA (t)

−
∞∫

0

θve
−θvx

t∫

x

μ (μ (y − x))i

i! e−μ(y−x)e−θw(t−y)dydxdA (t)

= 1 − ε −
i∑

k=0

ei − e′
i+1.

(92)
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