
Methodol Comput Appl Probab (2017) 19:445–485
DOI 10.1007/s11009-016-9490-y

Computing the Expected Markov Reward Rates
with Stationarity Detection and Relative Error Control

Vı́ctor Suñé1

Received: 13 March 2015 / Revised: 12 February 2016
Accepted: 17 February 2016 / Published online: 11 March 2016
© Springer Science+Business Media New York 2016

Abstract By combining in a novel way the randomization method with the stationary
detection technique, we develop two new algorithms for the computation of the expected
reward rates of finite, irreducible Markov reward models, with control of the relative error.
The first algorithm computes the expected transient reward rate and the second one com-
putes the expected averaged reward rate. The algorithms are numerically stable. Further,
it is argued that, from the point of view of run-time computational cost, for medium-sized
and large Markov reward models, we can expect the algorithms to be better than the only
variant of the randomization method that allows to control the relative error and better than
the approach that consists in employing iteratively the currently existing algorithms that use
the randomization method with stationarity detection but allow to control the absolute error.
The performance of the new algorithms is illustrated by means of examples, showing that
the algorithms can be not only faster but also more efficient than the alternatives in terms of
run-time computational cost in relation to accuracy.

Keywords Markov reward model · Markov chain · Expected reward rate · Relative error ·
Randomization · Stationarity detection

Mathematics Subject Classification (2010) 60J28 · 60J22 · 65C40

1 Introduction

Consider a finite Markov reward model (MRM) consisting of a finite, irreducible (time
homogeneous) continuous-time Markov chain (CTMC) X = {X(t) , t ≥ 0} with infinites-

� Vı́ctor Suñé
victor.sunye@upc.edu

1 Departament d’Enginyeria Electrònica, Universitat Politècnica de Catalunya, Colom, 1, 08222
Terrassa, Catalonia, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11009-016-9490-y&domain=pdf
mailto:victor.sunye@upc.edu

446 Methodol Comput Appl Probab (2017) 19:445–485

imal generator and a reward rate vector r = (ri) whose ith entry has the meaning of
“rate” at which reward is earned while X is in state i. In this paper, we will be con-
cerned with the computation of the expected transient reward rate at time t , t > 0,
ETRR(t) = E[rX(t)], and the expected averaged reward rate in the time interval [0, t], t > 0,
EARR(t) = E[(1/t)

∫ t

0 rX(τ) dτ]. To illustrate the usefulness of ETRR(t) and EARR(t),
consider a CTMC modeling a fault-tolerant system that can be up or down and assume that
a reward rate 1 is assigned to the states in which the system is up and a reward rate 0 is
assigned to the states in which the system is down. Then, ETRR(t) would be the availabil-
ity of the system at time t , i.e., the probability that the system is up at time t , and EARR(t)

would be the expected interval availability at time t , i.e., the expected fraction of the time
interval [0, t] in which the system is up.

We will assume that all reward rates are nonnegative and, to avoid trivialities, that at least
one of them is nonnull. Since X is irreducible, this implies that, for t > 0, both ETRR(t)

and EARR(t) are positive. The assumption that there are not negative reward rates is not a
true restriction as it can be easily circumvented (Carrasco 2004).

Both ETRR(t) and EARR(t) can be computed with well-controlled error using the ran-
domization method (also called uniformization) (Grassmann 1977; Gross and Miller 1984)
and variants (van Moorsel and Sanders 1994; Sericola 1999; Carrasco 2003a, 2004; Suñé
and Carrasco 2005; Sidje et al. 2007). Almost all these variants allow to compute ETRR(t)

and EARR(t) with control of the absolute error, which is not always satisfactory. The rea-
son is that if ETRR(t) and EARR(t) have to be computed with prescribed relative accuracy,
then one has to use those algorithms iteratively until the accuracy requirement is fulfilled.
To the best of the author’s knowledge, the only variants that allow to compute ETRR(t) and
EARR(t) with control of the relative error are the implementations of the randomization
method developed in Suñé and Carrasco (2005). However, like most randomization-based
methods, when the time t at which ETRR(t) and EARR(t) have to be computed is large,
those implementations tend to have high run-time computational cost. In the case of finite,
irreducible MRMs with infinitesimal generator, the run-time computational cost of the ran-
domization method can be reduced by using the so-called stationarity detection technique.
Broadly speaking, the technique consists in detecting when the underlying CTMC is close
enough to its stationarity regime so that the computations can be stopped and, therefore, can
result in significant reductions of the run-time computational cost when t is large. The sta-
tionarity detection technique has already been combined with the randomization method to
develop algorithms for the computation of ETRR(t) and EARR(t) (Sericola 1999) which
can be much faster than most randomization-based algorithms.1 But, those algorithms allow
to control the absolute error. Currently, then, to compute ETRR(t) and EARR(t) with pre-
scribed relative accuracy, one can use the implementations of the randomization method
developed in Suñé and Carrasco (2005), which, as previously commented, can be very slow
when the time t is large, or else can use iteratively the algorithms developed in Sericola
(1999), an approach that is not completely satisfactory either because unless a good esti-
mate for ETRR(t) and EARR(t) is available, it can be necessary to execute the algorithms
twice or more times, thus (partially) offsetting the reduction in run-time computational cost
brought up by the stationarity detection technique.

In this paper, by combining in a novel way the randomization method with the station-
arity detection technique proposed in Sericola (1999), we develop two new algorithms, one
for the computation of ETRR(t) and another for the computation of EARR(t), with control

1In Sericola (1999), ETRR(t) and EARR(t) are referred to as point performability and expected interval
perform ability, respectively.

Methodol Comput Appl Probab (2017) 19:445–485 447

of the relative error. The algorithms are numerically stable. Compared with the implementa-
tions of the randomization method developed in Suñé and Carrasco (2005) and the approach
that consists in using iteratively the algorithms developed in Sericola (1999), the algorithms
can be expected to have, for medium-sized and large MRMs, a lower run-time computa-
tional cost. Besides, when accuracy is taken into account, the algorithms can be substantially
more efficient in the sense of being able to achieve the same accuracy with a much lower
run-time computational cost. The rest of the paper is organized as follows. The algorithms
are developed in Sections 2 and 3. In Section 4, we discuss the numerical stability and the
run-time computational cost of the proposed algorithms. In Section 5, we illustrate the per-
formance of the algorithms and compare them with the alternatives. Finally, in Section 6
we present some conclusions. The Appendix collects the proofs of the theoretical results on
which the new algorithms are based.

2 Computation of ETRR(t)

First, we introduce some notations. We will denote by α the initial probability distribution
vector of X and by A = (ai,j) its infinitesimal generator. The probability of having j ≥ 0
arrivals in a Poisson distribution with parameter λ > 0 will be denoted Pj (λ) = e−λλj /j !.
In addition, we will denote by I the identity matrix, by �x� the largest integer nonlarger than
x, by T the transpose operator, by rmin the minimal reward rate mini ri , by rmax the maximal
reward rate maxi ri , by ε a positive relative error tolerance, and by δ a positive quantity � 1.

Let � ≥ maxi |ai,i | and B = I + (1/�)A and define, for k ≥ 0, c(k) = (c
(k)
i) =

Bk(r/rmax) and vk = αTc(k). Using the well-known randomization result (see, e.g., Kijima
1997, Theorem 4.19), we can write

ETRR(t) = αTeAtr

=
∞∑

j=0

αTBj e−�t (�t)j

j ! r

= rmax

∞∑

j=0

αTBj r
rmax

e−�t (�t)j

j !

= rmax

∞∑

j=0

αTc(j)Pj (�t)

= rmax

∞∑

j=0

vjPj (�t) . (1)

Let π denote the steady-state probability distribution vector of X. If � > maxi |ai,i |, as
k → ∞ each entry of the vector c(k) tends to its stationary value πTr/rmax (Sericola 1999).
Formally, for every state i of X,

lim
k→∞ c(k)

i = πTr/rmax . (2)

In Sericola (1999), the above limit was turned into a practical test for stationarity detection
by proving that, given the sequences {mk = mini c

(k)
i } and {Mk = maxi c

(k)
i }, we have

∣
∣
∣
∣vj − mk + Mk

2

∣
∣
∣
∣ ≤ Mk − mk

2
, j ≥ k ≥ 0 , (3)

448 Methodol Comput Appl Probab (2017) 19:445–485

and, therefore, given k ≥ 0, the approximation for ETRR(t) that results from replacing in
Eq. 1 all vj , j > k, by (mk + Mk)/2,

̂ETRR(t, k) = rmax

⎛

⎝
k∑

j=0

vjPj (�t) + mk + Mk

2

⎛

⎝1 −
k∑

j=0

Pj (�t)

⎞

⎠

⎞

⎠ , (4)

has well-controlled error

∣
∣
∣ETRR(t) − ̂ETRR(t, k)

∣
∣
∣ ≤ rmax

Mk − mk

2

⎛

⎝1 −
k∑

j=0

Pj (�t)

⎞

⎠ . (5)

The new algorithm is based on Eqs. 1 and 3. We start by noting that, since, as assumed,
X is irreducible and rmax > 0, we have

Mk > 0, k ≥ 0 , (6)

implying mk +Mk > 0, k ≥ 0. Therefore, by Eq. 4, we have ̂ETRR(t, k) > 0, t > 0, k ≥ 0,
and can then define the relative error incurred by approximating ETRR(t) by ̂ETRR(t, k),
t > 0, k ≥ 0, as

∣
∣
∣
∣
∣
ETRR(t) − ̂ETRR(t, k)

̂ETRR(t, k)

∣
∣
∣
∣
∣
= |ETRR(t) − ̂ETRR(t, k)|

̂ETRR(t, k)
.

Trivially, to make that relative error nonlarger than ε, the index k much be such that
|ETRR(t) − ̂ETRR(t, k)| ≤ ε̂ETRR(t, k). By Eq. 4 and Ineq. 5, to satisfy the previous
inequality it is sufficient that

Mk − mk ≤
(

2

∑k
j=0 vjPj (�t)

1 − ∑k
j=0 Pj (�t)

+ mk + Mk

)

ε . (7)

Since, by Eq. 2, limk→∞(Mk − mk) = 0, by Ineq. 6, Mk > 0, k ≥ 0, and ε > 0, there
exist infinitely many indices k satisfying Ineq. (7) and ETRR(t) could be computed with
relative error ≤ ε by using Eq. 4 with k set to the minimal of those indices. However, that
scheme would not be completely satisfactory because of the potential numerical cancella-
tions involved in the computation in Eq. 4 of the term 1 − ∑k

j=0 Pj (�t) (Ineq. (7) can be

easily rewritten to avoid the computation of that term) when the sum
∑k

j=0 Pj (�t) is close

to 1. To avoid those potential numerical cancellations, we will replace 1 − ∑k
j=0 Pj (�t)

by a lower bound that does not involve significant numerical cancellations and will tighten
Ineq. (7) to offset the additional error introduced by the bound.

The lower bound is
⎡

⎣1 −
k∑

j=0

Pj (�t)

⎤

⎦

lb

=
{

1 − ∑k
j=0 Pj (�t) if

∑k
j=0 Pj (�t) ≤ 0.9

∑R1
j=k+1 Pj (�t) otherwise

, (8)

where

R1 = min

⎧
⎨

⎩
r ≥ k + 1 :

1
r+3−�t

r+3
r+2

(
r + 2 + �t

r+3−�t

)
Pr+1(�t)

∑r
j=k+1 Pj (�t)

≤ δ

⎫
⎬

⎭
. (9)

Proposition 1 below shows that [1−∑k
j=0 Pj (�t)]lb bounds 1−∑k

j=0 Pj (�t) from below
with a relative error ≤ δ.

Methodol Comput Appl Probab (2017) 19:445–485 449

Proposition 1 Assume t > 0, k ≥ 0, and δ > 0. Then, the truncation parameter R1 given
by Eq. 9 is finite and [1 − ∑k

j=0 Pj (�t)]lb defined by Eq. 8 satisfies

0 ≤ 1 − ∑k
j=0 Pj (�t) − [1 − ∑k

j=0 Pj (�t)]lb

1 − ∑k
j=0 Pj (�t)

≤ δ . (10)

That the computation of the lower bound [1 − ∑k
j=0 Pj (�t)]lb will not involve sig-

nificant numerical cancellations can be shown as follows. If
∑k

j=0 Pj (�t) ≤ 0.9, then

[1 − ∑k
j=0 Pj (�t)]lb = 1 − ∑k

j=0 Pj (�t) ≥ 0.1, and, therefore, [1 − ∑k
j=0 Pj (�t)]lb

can be computed without significant numerical cancellations. If
∑k

j=0 Pj (�t) > 0.9, then

[1 − ∑k
j=0 Pj (�t)]lb = ∑R1

j=k+1 Pj (�t) and the only subtractions are the ones involved
in the computation of the term r + 3 − �t in Eq. 9. Those subtractions, however, will not
involve significant numerical cancellations because, using the fact that the median of a Pois-
son distribution with parameter �t is nonsmaller than �t − log 2 (Choi 1994), in Eq. 9 we
will have k ≥ �t − log 2, implying r + 3 − �t ≥ k + 4 − �t ≥ �t − log 2 + 4 − �t > 3.

If in Eq. 4 we now replace the term 1 − ∑k
j=0 Pj (�t) by the lower bound [1 −

∑k
j=0 Pj (�t)]lb, we obtain the new approximation

̂ETRR(t, k) = rmax

⎛

⎜
⎝

k∑

j=0

vjPj (�t) + mk + Mk

2

⎡

⎣1 −
k∑

j=0

Pj (�t)

⎤

⎦

lb
⎞

⎟
⎠ . (11)

Let

ε′ =
(

1 − δ

(

1 + 1

ε

))

ε = ε(1 − δ) − δ . (12)

To offset the additional error introduced by the lower bound [1 − ∑k
j=0 Pj (�t)]lb, we

require k in Eq. 11 to satisfy

Mk − mk ≤ 2

∑k
j=0 vjPj (�t)

1 − ∑k
j=0 Pj (�t)

ε + (mk + Mk)ε
′ (13)

instead of Ineq. 7. Then, defining

K1 = min {k ≥ 0 : Ineq. (13) holds} , (14)

we have the following result.

Proposition 2 Let t , t ′, 0 < t ′ ≤ t , and assume 0 < δ < 1, ε > δ/(1 − δ). Then, the
truncation parameter K1 given by Eq. 14 is finite and ̂ETRR(t ′, K1) given by Eq. 11 with t

replaced by t ′ and k replaced by K1 satisfies

∣
∣
∣
∣
∣
ETRR(t ′) − ̂ETRR(t ′, K1)

̂ETRR(t ′, K1)

∣
∣
∣
∣
∣
≤ ε .

450 Methodol Comput Appl Probab (2017) 19:445–485

We are now in a position to describe the proposed algorithm for the computation of
ETRR(t) for a set of n, n ≥ 1, time points 0 < t1 < · · · < tn. First, we obtain the truncation
parameter K1 using Eq. 14 with t set to the largest time point tn. To avoid the numerical
cancellations potentially involved in the computation of the term 1 −∑k

j=0 Pj (�t) in Ineq.
(13), that inequality is used in its equivalent form

Mk

⎛

⎝1 + ε′
k∑

j=0

Pj (�t)

⎞

⎠ + mk(1 + ε′)
k∑

j=0

Pj (�t) ≤ Mk

⎛

⎝
k∑

j=0

Pj (�t) + ε′
⎞

⎠

+mk(1 + ε′) + 2ε

k∑

j=0

vjPj (�t) .

(15)

By Proposition 2, the truncation of parameter K1 thus obtained is such that

∣
∣
∣
∣
∣
ETRR(ti) − ̂ETRR(ti , K1)

̂ETRR(ti , K1)

∣
∣
∣
∣
∣
≤ ε

for all ti , 0 < ti ≤ tn. Therefore, once K1 is known, we compute ̂ETRR(ti , K1), 1 ≤
i ≤ n, using Eqs. 8, 9 and 11 with t replaced by ti and k replaced by K1. Finally, since
ETRR(∞) = πTr and (Sericola 1999)

mk ≤ πTr/rmax ≤ Mk, k ≥ 0 , (16)

we also compute the bounds rmaxmK1 ≤ ETRR(∞) ≤ rmaxMK1 . A detailed description of
the algorithm is given on the following page.

Since the parameter δ in Algorithm 1 must be positive and the larger it is, making ε′
smaller, the larger K1 can be, in practice one will use the algorithm with δ set to a positive
quantity � 1, e.g., some multiple of the machine epsilon.

To conclude this section, we note that the bounds rmaxmK1 and rmaxMK1 computed

by the proposed algorithm can be used to approximate ETRR(∞) by ̂ETRR(∞,K1) =
rmax(mK1 +MK1)/2. Since Sericola (1999) |ETRR(∞)− rmax(mk +Mk)/2| ≤ rmax(Mk −
mk)/2, k ≥ 0, the incurred relative error will satisfy

∣
∣
∣
∣
∣
ETRR(∞) − ̂ETRR(∞,K1)

̂ETRR(∞,K1)

∣
∣
∣
∣
∣
≤ MK1 − mK1

MK1 + mK1

. (17)

For large enough �tn, we can expect that error to be close to ε. Indeed, it is easy to check
that, for a fixed value of k, the function (

∑k
j=0 vjPj (�t))/(1 − ∑k

j=0 Pj (�t)) decreases
to 0 as �t → ∞. Therefore, by Ineq. 13 and Eq. 14, for large enough �tn, the parameter
K1 will be almost independent of �tn, satisfying MK1 − mK1 ≈ (mK1 + MK1)ε

′ and,
consequently, by Ineq. 17 we will have

∣
∣
∣
∣
∣
ETRR(∞) − ̂ETRR(∞,K1)

̂ETRR(∞,K1)

∣
∣
∣
∣
∣
≤ MK1 − mK1

MK1 + mK1

≈ ε′ < ε .

Methodol Comput Appl Probab (2017) 19:445–485 451

Algorithm 1 Computation of ETRR(t) with control of the relative error using the random-
ization method with stationarity detection

input : r, α, B, �, δ, 0 < δ < 1, ε, ε > δ/(1 − δ), n, n ≥ 1, 0 < t1 < · · · < tn
output : ETRR(ti), 1 ≤ i ≤ n; bounds for ETRR(∞)

1 rmin := mini ri ;
2 rmax := maxi ri ;
3 c(0) := r/rmax;
4 m0 := rmin/rmax;
5 M0 := 1;
6 v0 := αTc(0);
7 ε′ := ε(1 − δ) − δ;
8 k := 0;
9 while Ineq. (15) with t replaced by tn does not hold do

10 k := k + 1;
11 c(k) := Bc(k−1);
12 mk := mini c

(k)
i ;

13 Mk := maxi c
(k)
i ;

14 vk := αTc(k);
15 end
16 K1 := k;
17 i := n;
18 while i ≥ 1 do
19 Approximate ETRR(ti) by ̂ETRR(ti , K1) computed using Eqs. (8), (9) and (11) with t

replaced by ti and k replaced by K1;
20 i := i − 1;
21 end
22 rmaxmK1 ≤ ETRR(∞) ≤ rmaxMK1 ;

3 Computation of EARR(t)

Using EARR(t) = (1/t)
∫ t

0 ETRR(τ) dτ , Eq. 1, and
∫ t

0 Pl(�τ) dτ = (1/�)
∑∞

j=l+1
Pj (�t), we obtain the well-known result

EARR(t) = 1

t

∫ t

0
ETRR(τ) dτ

= rmax

∞∑

l=0

1

t

∫ t

0
vlPl(�τ) dτ

= rmax

∞∑

l=0

vl

1

�t

∞∑

j=l+1

Pj (�t)

= rmax

∞∑

l=0

vl

∞∑

j=l

1

j + 1
Pj (�t)

452 Methodol Comput Appl Probab (2017) 19:445–485

= rmax

∞∑

j=0

1

j + 1

j∑

l=0

vlPj (�t)

= rmax

∞∑

j=0

wjPj (�t) , (18)

where

wj = 1

j + 1

j∑

l=0

vl . (19)

Again, as in Sericola (1999), given some k, k ≥ 0, we will replace all vj , j > k, in Eq. 18
by (mk + Mk)/2, obtaining the approximation for EARR(t),

̂EARR(t, k) = rmax

⎛

⎝
k∑

j=0

wjPj (�t)+
∞∑

j=k+1

1

j + 1

⎛

⎝
k∑

l=0

vl+
j∑

l=k+1

mk + Mk

2

⎞

⎠Pj (�t)

⎞

⎠ .

(20)
Since, by Ineq. 6, mk + Mk > 0, k ≥ 0, we have ̂EARR(t, k) > 0, t > 0, k ≥ 0, and can
then define the relative error incurred by approximating EARR(t) by ̂EARR(t, k) as

∣
∣
∣
∣
∣
EARR(t) − ̂EARR(t, k)

̂EARR(t, k)

∣
∣
∣
∣
∣
= |EARR(t) − ̂EARR(t, k)|

̂EARR(t, k)
.

For that relative error to be nonlarger than ε, the index k must be such that

|EARR(t) − ̂EARR(t, k)| ≤ ε ̂EARR(t, k) . (21)

For that inequality to be useful, we need computable expressions for ̂EARR(t, k) and
|EARR(t) − ̂EARR(t, k)|. Let us start with ̂EARR(t, k). By combining Eqs. 19, 20, and

∞∑

j=k+1

j − k

j + 1
Pj (�t) =

∞∑

j=k+1

j + 1 − (k + 1)

j + 1
Pj (�t)

=
∞∑

j=k+1

Pj (�t) − k + 1

�t

∞∑

j=k+2

Pj (�t)

= Pk+1(�t) + �t − (k + 1)

�t

⎛

⎝1 −
k+1∑

j=0

Pj (�t)

⎞

⎠ , (22)

we obtain

̂EARR(t, k) = rmax

⎛

⎝
k∑

j=0

wjPj (�t) +
∞∑

j=k+1

(
k + 1

j + 1
wk + j − k

j + 1

mk + Mk

2

)

Pj (�t)

⎞

⎠

= rmax

⎛

⎝
k∑

j=0

wjPj (�t) + k + 1

�t
wk

∞∑

j=k+2

Pj (�t) + mk + Mk

2

∞∑

j=k+1

j − k

j + 1
Pj (�t)

⎞

⎠

= rmax

⎛

⎝
k∑

j=0

wjPj (�t) + k + 1

�t
wk

⎛

⎝1 −
k+1∑

j=0

Pj (�t)

⎞

⎠ + mk + Mk

2
(Pk+1(�t)

Methodol Comput Appl Probab (2017) 19:445–485 453

+�t − (k + 1)

�t

⎛

⎝1 −
k+1∑

j=0

Pj (�t)

⎞

⎠

⎞

⎠ . (23)

With regard to |EARR(t) − ̂EARR(t, k)|, using Ineq. 3 and Eqs. 18, 19, 20, and 22, we get

∣
∣
∣EARR(t) − ̂EARR(t, k)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣
rmax

⎛

⎝
k∑

j=0

wj Pj (�t) +
∞∑

j=k+1

1

j + 1

⎛

⎝
k∑

l=0

vl +
j∑

l=k+1

vl

⎞

⎠Pj (�t)

⎞

⎠

−rmax

⎛

⎝
k∑

j=0

wj Pj (�t) +
∞∑

j=k+1

1

j + 1

⎛

⎝
k∑

l=0

vl +
j∑

l=k+1

mk + Mk

2

⎞

⎠Pj (�t)

⎞

⎠

∣
∣
∣
∣
∣
∣

= rmax

∣
∣
∣
∣
∣
∣

∞∑

j=k+1

1

j + 1

j∑

l=k+1

(

vl − mk + Mk

2

)

Pj (�t)

∣
∣
∣
∣
∣
∣

≤ rmax

∞∑

j=k+1

1

j + 1

j∑

l=k+1

∣
∣
∣
∣vl − mk + Mk

2

∣
∣
∣
∣Pj (�t)

≤ rmax

∞∑

j=k+1

1

j + 1

j∑

l=k+1

Mk − mk

2
Pj (�t)

= rmax
Mk − mk

2

∞∑

j=k+1

j − k

j + 1
Pj (�t)

= rmax
Mk − mk

2

⎛

⎝Pk+1(�t) + �t − (k + 1)

�t

⎛

⎝1 −
k+1∑

j=0

Pj (�t)

⎞

⎠

⎞

⎠ . (24)

Then, using Eqs. 23 and 24, it is easily seen that Ineq. (21) holds for any index k satisfying

Mk − mk ≤
⎛

⎝2

∑k
j=0 wjPj (�t) + k+1

�t
wk

(
1 − ∑k+1

j=0 Pj (�t)
)

Pk+1(�t) + �t−(k+1)
�t

(
1 − ∑k+1

j=0 Pj (�t)
) + mk + Mk

⎞

⎠ ε . (25)

However, in order to obtain a simpler algorithm, we will consider the inequality

Mk − mk ≤
⎛

⎝2

∑k
j=0 wjPj (�t)

Pk+1(�t) + �t−(k+1)
�t

(
1 − ∑k+1

j=0 Pj (�t)
) + mk + Mk

⎞

⎠ ε , (26)

which, since 1 − ∑k+1
j=0 Pj (�t) > 0, is more restrictive than Ineq. 25.

Since, by Eq. 2, limk→∞(Mk − mk) = 0, by Ineq. 6, Mk > 0, and ε > 0, there are
infinitely many indices k satisfying Ineq. 26 and EARR(t) could be computed with relative
error ≤ ε by using Eq. 23 with k set to the minimal of those indices. This, however, could be
problematic because of the numerical cancellations potentially involved in the computation
of the terms 1 −∑k+1

j=0 Pj (�t) and Pk+1(�t) + ((�t − (k + 1))/(�t))(1 −∑k+1
j=0 Pj (�t))

(Ineq. (26) can be easily rewritten to avoid the computation of the latter term). To avoid those
potential numerical cancellations, we will replace those terms by appropriate lower bounds
not involving significant numerical cancellations and will modify Ineq. (26) appropriately.

454 Methodol Comput Appl Probab (2017) 19:445–485

The term 1 − ∑k+1
j=0 Pj (�t) will be replaced by

⎡

⎣1 −
k+1∑

j=0

Pj (�t)

⎤

⎦

lb

=
{

1 − ∑k+1
j=0 Pj (�t) if

∑k+1
j=0 Pj (�t) ≤ 0.9

∑R2
j=k+2 Pj (�t) otherwise

, (27)

where

R2 = min

⎧
⎨

⎩
r ≥ k + 2 :

1
r+3−�t

r+3
r+2

(
r + 2 + �t

r+3−�t

)
Pr+1(�t)

∑r
j=k+2 Pj (�t)

≤ δ

⎫
⎬

⎭
, (28)

and, recalling Eq. 22, the term Pk+1(�t) + ((�t − (k + 1))/(�t))(1 − ∑k+1
j=0 Pj (�t)) =

∑∞
j=k+1((j − k)/(j + 1))Pj (�t) will be replaced by

⎡

⎣
∞∑

j=k+1

j − k

j + 1
Pj (�t)

⎤

⎦

lb

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Pk+1(�t)

+ �t − (k + 1)

�t

⎛

⎝1 −
k+1∑

j=0

Pj (�t)

⎞

⎠

if k+1 ≤ �t or else 1−
0.9 �t

k+1−�t
Pk+1(�t) ≤

∑k+1
j=0 Pj (�t) ≤ 0.9

∑R3
j=k+1

j−k
j+1 Pj (�t) otherwise

,

(29)

where

R3 = min

⎧
⎨

⎩
r ≥ k + 1 :

1
r+3−�t

r+3
r+2

(
r + 1 − k + �t

r+3−�t

)
Pr+1(�t)

∑r
j=k+1

j−k
j+1Pj (�t)

≤ δ

⎫
⎬

⎭
. (30)

The factor �t − (k + 1) in Eq. 29 will be computed accurately by casting it as the dot
product (�, k + 1)(t, −1) and computing that dot product using Algorithm 5.3 in Ogita
et al. (2005). By Proposition 3 below, [1 − ∑k+1

j=0 Pj (�t)]lb bounds 1 − ∑k+1
j=0 Pj (�t)

from below with a relative error ≤ δ and [∑∞
j=k+1((j − k)/(j + 1))Pj (�t)]lb bounds

Pk+1(�t)+((�t −(k+1))/(�t))(1−∑k+1
j=0 Pj (�t)) from below with a relative error ≤ δ.

Proposition 3 Let t > 0, k ≥ 0, and δ > 0. Then, the truncation parameters R2 and R3
given by, respectively, Eqs. 28 and 30 are finite, [1 − ∑k+1

j=0 Pj (�t)]lb defined by Eq. 27
satisfies

0 ≤ 1 − ∑k+1
j=0 Pj (�t) − [1 − ∑k+1

j=0 Pj (�t)]lb

1 − ∑k+1
j=0 Pj (�t)

≤ δ , (31)

and [∑∞
j=k+1((j − k)/(j + 1))Pj (�t)]lb defined by Eq. 29 satisfies

0 ≤
Pk+1(�t) + �t − (k + 1)

�t

(
1 − ∑k+1

j=0 Pj (�t)
)

−
[
∑∞

j=k+1
j − k

j + 1
Pj (�t)

]lb

Pk+1(�t) + �t − (k + 1)

�t

(
1 − ∑k+1

j=0 Pj (�t)
) ≤ δ . (32)

That the computation of the lower bound [1−∑k+1
j=0 Pj (�t)]lb will not involve significant

numerical cancellations can be shown similarly as it has been done for the computation of
the lower bound [1 − ∑k

j=0 Pj (�t)]lb defined by Eq. 8. To show that the computation of

the lower bound [∑∞
j=k+1((j −k)/(j +1))Pj (�t)]lb will not involve significant numerical

cancellations, we will consider three cases separately: a) k + 1 ≤ �t ; b) k + 1 > �t ,
1 − (0.9�t/(k + 1 − �t))Pk+1(�t) ≤ ∑k+1

j=0 Pj (�t) ≤ 0.9; and c) otherwise, i.e., k +

Methodol Comput Appl Probab (2017) 19:445–485 455

1 > �t , and 1 − (0.9�t/(k + 1 − �t))Pk+1(�t) >
∑k+1

j=0 Pj (�t) or
∑k+1

j=0 Pj (�t) >

0.9. In case a), which can only happen if �t ≥ 1, the only possible source of numerical
cancellations is the computation of the term 1−∑k+1

j=0 Pj (�t) in Eq. 29. (We recall that the
factor �t −(k+1) will be computed accurately.) Using the fact that the median of a Poisson
distribution with parameter �t is nonsmaller than �t − log 2 (Choi 1994) and noting that,
trivially, ��t� − 1 < ��t� − log 2 ≤ �t − log 2, we will have

∑��t�−1
j=0 Pj (�t) < 0.5 and,

therefore, for k + 1 ≤ �t , or, equivalently, k + 1 ≤ ��t�,

1 −
k+1∑

j=0

Pj (�t) ≥ 1 −
��t�∑

j=0

Pj (�t) = 1 −
��t�−1∑

j=0

Pj (�t) − P��t�(�t) > 0.5 − P��t�(�t) . (33)

Now, since �t ≥ 1, either ��t� = 1 or ��t� ≥ 2. If ��t�=1, P��t�(�t)=P1(�t) = �t e−�t ,
which reaches its maximum at �t = 1 and is therefore nonlarger than P1(1) = e−1 < 0.4,
implying, by Ineq. 33, 1 − ∑k+1

j=0 Pj (�t) > 0.5 − 0.4 = 0.1. If ��t� ≥ 2, we
have (Glynn 1987) P��t�(�t) ≤ 1/

√
2π��t�, which, for ��t� ≥ 2, is < 0.3, imply-

ing, by Ineq. 33, 1 − ∑k+1
j=0 Pj (�t) > 0.5 − 0.3 = 0.2. This shows that, in case

a), the term 1 − ∑k+1
j=0 Pj (�t) and, therefore, the lower bound [∑∞

j=k+1((j − k)/(j +
1))Pj (�t)]lb, can be computed without significant numerical cancellations. In case b),
in which k + 1 > �t , 1 − (0.9�t/(k + 1 − �t))Pk+1(�t) ≤ ∑k+1

j=0 Pj (�t), and
∑k+1

j=0 Pj (�t) ≤ 0.9, we will have 1 − ∑k+1
j=0 Pj (�t) ≥ 0.1. This implies that the only

possible source of significant numerical cancellations lies in the subtraction of the quan-
tity ((k + 1 − �t)/(�t))(1 − ∑k+1

j=0 Pj (�t)) from the probability Pk+1(�t) in Eq. 29.

But, it can be seen that 1 − (0.9�t/(k + 1 − �t))Pk+1(�t) ≤ ∑k+1
j=0 Pj (�t) implies

Pk+1(�t) + ((�t − (k + 1))/(�t))(1 − ∑k+1
j=0 Pj (�t) ≥ 0.1Pk+1(�t). Consequently,

in case b), the lower bound [∑∞
j=k+1((j − k)/(j + 1))Pj (�t)]lb can also be computed

without significant numerical cancellations. It remains to discuss case c). In that case,
[∑∞

j=k+1((j −k)/(j +1))Pj (�t)]lb = ∑R3
j=k+1((j −k)/(j +1))Pj (�t) and the only pos-

sible source of significant numerical cancellations lies in the subtractions involved in the
computation of the term r + 3 − �t in Eq. 30. (The term r + 1 − k involves only integers
and can be computed exactly.) But, those subtractions will not involve significant numerical
cancellations because we will have r + 3 − �t ≥ k + 1 + 3 − �t > 3. This concludes the
justification that the computation of the lower bound [∑∞

j=k+1((j − k)/(j + 1))Pj (�t)]lb

will not involve significant numerical cancellations.
Having defined the bounds, in Eq. 23 we replace 1 − ∑k+1

j=0 Pj (�t) by [1 −
∑k+1

j=0 Pj (�t)]lb and Pk+1(�t) + ((�t − (k + 1))/(�t))(1 − ∑k+1
j=0 Pj (�t)) by

[∑∞
j=k+1((j − k)/(j + 1))Pj (�t)]lb, obtaining the new approximation

̂EARR(t, k) = rmax

k∑

j=0

wjPj (�t) + rmax
k + 1

�t
wk

⎡

⎣1 −
k+1∑

j=0

Pj (�t)

⎤

⎦

lb

+rmax
mk + Mk

2

⎡

⎣
∞∑

j=k+1

j − k

j + 1
Pj (�t)

⎤

⎦

lb

, (34)

and, to offset the additional errors introduced by the bounds, require k to satisfy

Mk − mk ≤ 2

∑k
j=0 wjPj (�t)

Pk+1(�t) + �t−(k+1)
�t

(
1 − ∑k+1

j=0 Pj (�t)
)ε + (mk + Mk)ε

′ (35)

456 Methodol Comput Appl Probab (2017) 19:445–485

instead of Ineq. 26, where ε′ is given by Eq. 12. Then, defining

K2 = min {k ≥ 0 : Inequality (35) holds} , (36)

we have the following result.

Proposition 4 Let 0 < t ′ ≤ t and assume 0 < δ < 1, ε > δ/(1 − δ). Then, the truncation
parameter K2 given by Eq. 36 is finite and ̂EARR(t ′,K2) given by Eq. 34 with t replaced
by t ′ and k replaced by K2 satisfies

∣
∣
∣
∣
∣
EARR(t ′) − ̂EARR(t ′,K2)

̂EARR(t ′,K2)

∣
∣
∣
∣
∣
≤ ε .

We are now in a position to describe the proposed algorithm for the computation of
EARR(t) for a set of n, n ≥ 1, time points 0 < t1 < · · · < tn. First, we obtain the
truncation parameter K2 using Eq. 36 with t set to the largest time point tn, where the
weights wk , k ≥ 0, are computed using w0 = v0 and wk = (1/(k + 1))(kwk−1 + vk),
k ≥ 1. To avoid the numerical cancellations potentially involved in the computation of the
term Pk+1(�t) + ((�t − (k + 1))/(�t))(1 − ∑k+1

j=0 Pj (�t)) in Ineq. 35, that inequality is
used in its equivalent form

Mk

⎛

⎝Pk+1(�t) + 1 + k + 1

�t

⎛

⎝
k+1∑

j=0

Pj (�t) + ε′
⎞

⎠ + ε′
k+1∑

j=0

Pj (�t)

⎞

⎠

+mk

⎛

⎝
k+1∑

j=0

Pj (�t) + k + 1

�t

⎞

⎠ (1 + ε′)

≤ Mk

⎛

⎝
k+1∑

j=0

Pj (�t) + k + 1

�t
+ ε′

⎛

⎝Pk+1(�t) + 1 + k + 1

�t

k+1∑

j=0

Pj (�t)

⎞

⎠

⎞

⎠

+mk

⎛

⎝1 + Pk+1(�t) + k + 1

�t

k+1∑

j=0

Pj (�t)

⎞

⎠ (1 + ε′) + 2
k∑

j=0

wjPj (�t) ε . (37)

By Proposition 4, the truncation parameter K2 thus obtained is such that
∣
∣
∣
∣
∣
EARR(ti) − ̂EARR(ti , K2)

̂EARR(ti , K2)

∣
∣
∣
∣
∣
≤ ε

for all ti , 0 < ti ≤ tn. Therefore, once K2 is known, we compute ̂EARR(ti , K2), 1 ≤ i ≤ n,
using Eqs. 27, 28, 29, 30, and 34 with t replaced by ti and k replaced by K2. Finally, since
EARR(∞) = πTr and Eq. 16, we also compute the bounds rmaxmK2 ≤ EARR(∞) ≤
rmaxMK2 . A detailed description of the algorithm is given on the next page.

In practice, Algorithm 2 will be used with δ set to a positive quantity � 1, e.g., some
multiple of the machine epsilon.

To conclude this section, we note that the bounds rmaxmK2 and rmaxMK2 computed by

Algorithm 2 can be used to approximate EARR(∞) by ̂EARR(∞,K2) = rmax(mK2 +
MK2)/2. Since EARR(∞) = ETRR(∞), ̂EARR(∞,K2) = ̂ETRR(∞,K2), and Ineq. 17,
the relative error incurred by that approximation will satisfy

∣
∣
∣
∣
∣
EARR(∞) − ̂EARR(∞,K2)

̂EARR(∞,K2)

∣
∣
∣
∣
∣
≤ MK2 − mK2

MK2 + mK2

. (38)

Methodol Comput Appl Probab (2017) 19:445–485 457

Algorithm 2 Computation of EARR(t) with control of the relative error using the
randomization method with stationarity detection

input : r, α, B, �, δ, 0 < δ < 1, ε, ε > δ/(1 − δ), n, n ≥ 1, 0 < t1 < · · · < tn
output : EARR(ti), 1 ≤ i ≤ n; bounds for EARR(∞)

1 rmin := mini ri ;
2 rmax := maxi ri ;
3 c(0) := r/rmax;
4 m0 := rmin/rmax;
5 M0 := 1;
6 v0 := αTc(0);
7 w0 := v0;
8 ε′ := ε(1 − δ) − δ;
9 k := 0;
10 while Ineq. (37) with t replaced by tn does not hold do
11 k := k + 1;
12 c(k) := Bc(k−1);
13 mk := mini c

(k)
i ;

14 Mk := maxi c
(k)
i ;

15 vk := αTc(k);
16 wk := (k/(k + 1))wk−1 + (1/(k + 1))vk;
17 end
18 K2 := k;
19 i := n;
20 while i ≥ 1 do
21 Approximate EARR(ti) by ̂EARR(ti , K2) computed using Eqs. (27), (28), (29), (30),

and (34) with t replaced by ti and k replaced by K2, where, if
∑K2+1

j=0 Pj (�ti) > 0.9
and K2 + 1 > �ti , the truncation parameters R2 and R3 are computed simultane-
ously to save Poisson probabilities;

22 i := i − 1;
23 end
24 rmaxmk ≤ EARR(∞) ≤ rmaxMk;

For large enough �tn, we can expect that error to be close to ε. Indeed, by Eq. 22 we have

∑k
j=0 wjPj (�t)

Pk+1(�t) + �t−(k+1)
�t

(
1 − ∑k+1

j=0 Pj (�t)
) =

∑k
j=0 wjPj (�t)

∑∞
j=k+1

j−k
j+1Pj (�t)

,

a function that decreases to 0 as �t → ∞. Therefore, by Ineq. 35 and Eq. 36, for large
enough �tn, the parameter K2 will be almost independent of �tn, satisfying MK2 −mK2 ≈
(mK2 + MK2)ε

′ and, then, by Ineq. 38, we will have

∣
∣
∣
∣
∣
EARR(∞) − ̂EARR(∞,K2)

̂EARR(∞,K2)

∣
∣
∣
∣
∣
≤ MK2 − mK2

MK2 + mK2

≈ ε′ < ε .

458 Methodol Comput Appl Probab (2017) 19:445–485

4 Numerical Stability and Run-Time Computational Cost

In this section, we will analyze the numerical stability and run-time computational cost of
the proposed algorithms. We will also argue that, for medium-sized and large MRMs, we
can expect the run-time computational cost of the proposed algorithms to be lower than
that of the implementations of the randomization method developed in Suñé and Carrasco
(2005) and lower than the run-time computational cost of the approach that consists in using
iteratively the algorithms developed in Sericola (1999).

Not involving more subtractions than those required for the computation of the lower
bounds defined by Eqs. 8, 27, and 29, which, as argued in Sections 2 and 3, should not
result in significant numerical cancellations, and assuming that the involved Poisson prob-
abilities are computed using a method with good numerical properties such as the one
described in (Knüsel 1986, pp. 1028–1029) (see also Abramowitz and Stegun 1964), or,
for sums of the form

∑n
j=0 Pj (�t), the method described in Bowerman et al. (1990), the

proposed algorithms are numerically stable.
For medium-sized and large MRMs, we can expect the run-time computational cost of

the proposed algorithms to be dominated by the matrix-vector multiplies (MVMs) with
matrix B. For Algorithm 1, the number of such MVMs will be equal to the value of the
truncation parameter K1 defined by Eq. 14 with t replaced by tn and, for Algorithm 2, it
will be equal to the value of the truncation parameter K2 defined by Eq. 36 with t replaced
by tn. However, in general it seems difficult to anticipate the values of K1 or K2.

The implementation of the randomization method developed in Suñé and Carrasco
(2005) for the computation of ETRR(t), which will be referred to as Algorithm SC1, allows
to compute ETRR(t) for a set of time points t1 < · · · < tn and will involve a number of
MVMs with matrix B equal to

K ′
1 = min

{

k ≥ 0 : 1 − ∑k
j=0 Pj (�tn)

∑k
j=0 vjPj (�tn)

≤ ε

4

}

. (39)

The implementation of the randomization method developed in Suñé and Carrasco (2005)
for the computation of EARR(t), which will be referred to as Algorithm SC2, allows to
compute EARR(t) for a set of time points t1 < · · · < tn and will involve a number of
MVMs with matrix B equal to

K ′
2 = min

{

k ≥ 0 : 1 − ∑k
j=0 Pj (�tn)

∑k
j=0 wjPj (�tn)

≤ ε

4

}

. (40)

For medium-sized and large MRMs, we can expect those MVMs to dominate the run-time
computational cost of Algorithms SC1 and SC2. But, by Ineq. 13 and Eq. 14, using that, as
assumed, ε > δ/(1 − δ), the truncation parameter K1 of Algorithm 1 will satisfy

K1 = min

{

k ≥ 0 : (Mk − mk)
1 − ∑k

j=0 Pj (�tn)
∑k

j=0 vjPj (�tn)
≤ ε1

}

with

ε1 =
(

2 + (mk + Mk)
1 − ∑k

j=0 Pj (�tn)
∑k

j=0 vjPj (�tn)
(1 − δ(1 + 1/ε))

)

ε > 2ε ,

and, by Eq. 22, Ineq. 35, and Eq. 36, the truncation parameter K2 of Algorithm 2 will satisfy

K2 = min

{

k ≥ 0 : (Mk − mk)
1 − ∑k

j=0 Pj (�tn)
∑k

j=0 wjPj (�tn)
≤ ε2

}

Methodol Comput Appl Probab (2017) 19:445–485 459

with

ε2 =
(

2 + (mk + Mk)

∑∞
j=k+1

j−k
j+1Pj (�tn)

∑k
j=0 wjPj (�tn)

(1 − δ(1 + 1/ε)) + Mk − mk

ε

k + 1

�t

×1 − ∑k+1
j=0 Pj (�tn)

∑k
j=0 wjPj (�tn)

)

ε > 2ε .

Also, since 0 ≤ 1−rmin/rmax = M0−m0 ≤ 1 and the sequences {Mk} and {mk} are, respec-
tively, nonincreasing and nondecreasing (Sericola 1999), it follows that 0 ≤ Mk − mk ≤ 1,
k ≥ 0. Therefore, we will always have K1 ≤ K ′

1 and K2 ≤ K ′
2. Further, for large enough

�tn, we will have
∑K ′

1
j=0 vjPj (�tn) ≈ ETRR(∞) and

∑K ′
2

j=0 wjPj (�tn) ≈ EARR(∞).
Thus, for large enough �tn, both K ′

1 defined by Eq. 39 and K ′
2 defined by Eq. 40 will

depend, essentially, on the course of 1 − ∑k
j=0 Pj (�tn). But, for �tn → ∞, a Poisson

distribution with parameter �tn has an asymptotic normal distribution with mean and vari-
ance �tn. Then, for large enough �tn and ε � 1, the parameters K ′

1 and K ′
2 will be of the

order of �tn. On the other hand, as already argued at the end of Sections 2 and 3, for large
enough �tn, the parameters K1 and K2 will be almost independent of �tn. Therefore, for
large enough �tn, the differences K ′

1 − K1 and K ′
2 − K2 will increase with �tn. In sum-

mary, for medium-sized and large MRMs, we can expect the run-time computational cost of
Algorithm 1 to be lower than that of Algorithm SC1, can expect the run-time computational
cost of Algorithm 2 to be lower than that of Algorithm SC2, and the larger �tn, the larger
we can expect to be the difference in run-time computational cost between Algorithms 1
and SC1 and between Algorithms 2 and SC2.

Let us now describe reasonable schemes to compute ETRR(ti) and EARR(ti), 1 ≤ i ≤ n,
with control of the relative error based on using iteratively the two algorithms developed
in Sericola (1999). The first such algorithm computes ETRR(ti), 1 ≤ i ≤ n, with control
of the absolute error and the second one computes EARR(ti), 1 ≤ i ≤ n, with control
of the absolute error. Therefore, ETRR(ti), 1 ≤ i ≤ n, can be computed by invoking
the first algorithm with an absolute error tolerance ν(1) = ε (rmin + rmax)/2, say, and,

next, if ν(1)/ min1≤i≤n
̂ETRR

(1)
(ti) > ε, where ̂ETRR

(j)
(ti) denotes the approximation for

ETRR(ti) computed by the algorithm in the course of invocation j with the convention
̂ETRR

(0)
(ti) = (rmin +rmax)/2, continue invoking iteratively the algorithm with an absolute

error tolerance

ν(j) = ν(j−1) min

⎧
⎨

⎩
min1≤i≤n

̂ETRR
(j−1)

(ti)

min1≤i≤n
̂ETRR

(j−2)
(ti)

, 0.95

⎫
⎬

⎭

for invocation j , j > 1, until ν(j)/ min1≤i≤n
̂ETRR

(j)
(ti) ≤ ε. (The 0.95 is a security

factor to help ensure convergence.) Similarly, in the iterative scheme for the computa-
tion of EARR(ti), 1 ≤ i ≤ n, we can start by invoking the second algorithm developed
in Sericola (1999) with an absolute error tolerance ν(1) = ε (rmin + rmax)/2 and, next,

if ν(1)/ min1≤i≤n
̂EARR

(1)
(ti) > ε, where ̂EARR

(j)
(ti) denotes the approximation for

EARR(ti) computed by the algorithm in the course of invocation j with the convention
̂EARR

(0)
(ti) = (rmin+rmax)/2, continue invoking iteratively the algorithm with an absolute

error tolerance

ν(j) = ν(j−1) min

⎧
⎨

⎩
min1≤i≤n

̂EARR
(j−1)

(ti)

min1≤i≤n
̂EARR

(j−2)
(ti)

, 0.95

⎫
⎬

⎭

460 Methodol Comput Appl Probab (2017) 19:445–485

for invocation j , j > 1, until ν(j)/ min1≤i≤n
̂EARR

(j)
(ti) ≤ ε. For the sake of conciseness,

the iterative schemes for the computation of ETRR(t) and EARR(t) just described will be
referred to as Algorithm SE1 and Algorithm SE2, respectively. Let S1 denote the number
of times that the first algorithm developed in Sericola (1999) is invoked in Algorithm SE1.
Invocation j , 1 ≤ j ≤ S1, of that algorithm will involve a number of MVMs with matrix B
equal to min{N(j),K(j)}, where

N(j) = min

⎧
⎨

⎩
n ≥ 0 : rmax

⎛

⎝1 −
n∑

j=0

Pj (�tn)

⎞

⎠ ≤ ν(j)

⎫
⎬

⎭
, (41)

K(j) = min
{
k ≥ 0 : rmax(Mk − mk) ≤ ν(j)/2

}
. (42)

Therefore, Algorithm SE1 will involve
∑S1

i=1 min{N(i), K(i)} MVMs with matrix B and the
integer S1 will satisfy

rmax min
{

1 − ∑N(S1)

j=0 Pj (�tn), 2(MK(S1) − mK(S1))
}

min1≤i≤n
̂ETRR

(S1)
(ti)

≤ ε .

For medium-sized and large MRMs, we can expect those MVMs to dominate the run-time
computational cost of Algorithm SE1. However, by Eq. 11, Ineq. 13, and Eq. 14, assuming
̂ETRR

(S1)
(tn) ≈ ̂ETRR(tn,K1), the truncation parameter K1 of Algorithm 1 will satisfy

rmax(MK1 − mK1)
(

1 − ∑K1
j=0 Pj (�tn)

)

̂ETRR
(S1)

(tn)

≈
rmax(MK1 − mK1)

(
1 − ∑K1

j=0 Pj (�tn)
)

̂ETRR(tn,K1)

≤
(MK1 − mK1)

(
1 − ∑K1

j=0 Pj (�tn)
)

∑K1
j=0 vjPj (�tn)

≤ 2ε + (mK1 + MK1)
1 − ∑K1

j=0 Pj (�tn)
∑K1

j=0 vjPj (�tn)
ε′ ,

which is > 2ε. Therefore, taking into account that

(Mk − mk)

⎛

⎝1 −
k∑

j=0

Pj (�tn)

⎞

⎠ ≤ min

⎧
⎨

⎩

⎛

⎝1 −
k∑

j=0

Pj (�tn)

⎞

⎠ ,Mk − mk)

⎫
⎬

⎭
,

that the left-hand side of the above inequality is decreasing on k, and that

1/ min1≤i≤n
̂ETRR

(S1)
(ti) ≥ 1/̂ETRR

(S1)
(tn), we can expect K1 ≤ min{N(S1), K(S1)} ≤

∑S1
i=1 min{N(i),K(i)}. In addition, given the way Algorithm SE1 works, we can expect

S1 = 1 if min1≤i≤n ETRR(ti) is not smaller than (rmin + rmax)/2 and otherwise can expect
S1 ≥ 2. Therefore, for medium-sized and large MRMs, we can expect the run-time com-
putational cost of Algorithm 1 to be lower than that of Algorithm SE1, and the smaller
min1≤i≤n ETRR(ti) than (rmin+rmax)/2, the larger we can expect the difference in run-time
computational cost to be.

Let S2 denote the number of times the second algorithm developed in Sericola (1999) is
invoked in Algorithm SE2. Invocation j , 1 ≤ j ≤ S2, of that algorithm involves a num-
ber of MVMs with matrix B equal to min{N(j),K(j)}, where N(j) and K(j) are given by,

Methodol Comput Appl Probab (2017) 19:445–485 461

respectively, Eqs. 41 and 42. Therefore, Algorithm SE2 will involve
∑S2

j=1 min{N(j),K(j)}
MVMs with matrix B and the integer S2 will satisfy

rmax min
{

1 − ∑N(S2)

j=0 Pj (�tn), 2(MK(S2) − mK(S2))
}

min1≤i≤n
̂EARR

(S2)
(ti)

≤ ε .

For medium-sized and large MRMs, we can expect those MVMs to dominate the run-
time computational cost of Algorithm SE2. On the other hand, by Eq. 34, Ineq. 35, and

Eqs. 36 and 22, assuming ̂EARR
(S2)

(tn) ≈ ̂EARR(ti , K2), the truncation parameter K2 in
Algorithm 2 will satisfy

rmax(MK2 − mK2)
(
PK2+1(�t) + �t−(K2+1)

�t
(1−∑K2+1

j=0 Pj (�tn))
)

̂EARR
(S2)

(tn)

≈
rmax(MK2 − mK2)

(
PK2+1(�t) + �t−(K2+1)

�t
(1−∑K2+1

j=0 Pj (�tn))
)

̂EARR(tn,K2)

≤
rmax(MK2 − mK2)

(
PK2+1(�t) + �t−(K2+1)

�t
(1−∑K2+1

j=0 Pj (�tn))
)

rmax
∑K2

j=0 wjPj (�tn)

≤ 2ε + PK2+1(�t) + �t−(K2+1)
�t

(1−∑K2+1
j=0 Pj (�tn))

∑K2
j=0 wjPj (�tn)

(mK2 +MK2)ε
′

= 2ε +
∑∞

j=K2+1
j−K2
j+1 Pj (�t)

∑K2
j=0 wjPj (�tn)

(mK2 + MK2)ε
′ .

which is > 2ε. Therefore, taking into account that, by Eq. 22,

(Mk − mk)

⎛

⎝Pk+1(�t) + �t − (k + 1)

�t

⎛

⎝1 −
k+1∑

j=0

Pj (�t)

⎞

⎠

⎞

⎠

= (Mk − mk)

⎛

⎝1 −
k∑

j=0

Pj (�tn) − k + 1

�tn

⎛

⎝1 −
k+1∑

j=0

Pj (�tn)

⎞

⎠

⎞

⎠

≤ (Mk − mk)

⎛

⎝1 −
k∑

j=0

Pj (�tn)

⎞

⎠

≤ min

⎧
⎨

⎩

⎛

⎝1 −
k∑

j=0

Pj (�tn)

⎞

⎠ , Mk − mk)

⎫
⎬

⎭
,

that, again by Eq. 22, the left-hand side of the above inequality is decreasing on k, and that

1/ min1≤i≤n
̂EARR

(S2)
(ti) ≥ 1/̂EARR

(S2)
(tn), we can expect K2 ≤ min{N(S2), K(S2)} ≤

∑S2
j=1 min{N(j),K(j)}. Further, given the way Algorithm SE2 works, we can expect S2 = 1

if min1≤i≤n EARR(ti) is not smaller than (rmin + rmax)/2 and otherwise can expect S2 ≥ 2.
Therefore, we also conclude that, for medium-sized and large MRMs, we can expect the
run-time computational cost of Algorithm 2 to be lower than that of Algorithm SE2 and that
the smaller min1≤i≤n EARR(ti) than (rmin+rmax)/2, the larger we can expect the difference
in run-time computational cost to be.

462 Methodol Comput Appl Probab (2017) 19:445–485

5 Numerical Experiments

In this section, we will illustrate the performances of Algorithms 1 and 2. We will also
compare the performance of Algorithm 1 with the performances of Algorithms SC1 and
SE1 and will compare the performance of Algorithm 2 with the performances of Algorithms
SC2 and SE2.

5.1 Examples

We will use two MRMs. The first one is taken from Carrasco (2003b) and corresponds to a
RAID 5 storage system (Chen et al. 1994) with the architecture shown in Fig. 1. The system
comprises 40×5 disks, 5 controllers, 3 hot spare disks, and 1 hot spare controller. The disks
are organized into 40 parity groups with 5 disks each. Each controller controls a string of
40 disks. A disk is said to be unavailable if it has failed, or the controller of the string the
disk belongs to has failed, or the data in the disk is out of date. The system is in a failed
state if there is any parity group in which two or more disks are unavailable. The data of
a non-failed disk becomes out of date if it is a disk that has just replaced a failed one or it
belongs to a string of disks whose controller was failed and has just been replaced. Out-of-
date disks become up-to-date after a reconstruction process that proceeds at a rate of 1 h−1.
That process has a success probability 0.999 and can take place only when the system is
in a non-failed state. All disks of a parity group involved in a reconstruction process fail
at a rate of 2 × 10−5 h−1. Disks not involved in a reconstruction process fail at a rate of
1 × 10−5 h−1. Controllers fail at a rate of 5 × 10−5 h−1. There is one repair person that, if
hot spares are available, replaces failed disks and controllers at a rate of 4 h−1, with priority
given to controllers. There is an unlimited number of repair persons that replace used hot
spares and failed disks and controllers when no hot spares are available at a rate of 0.25 h−1.
When the system is in a failed state, no components fail or are repaired and the only repair
action is one that brings the system to its fully operational state, with all disks in the parity
groups available and all hot spares available, at a rate of 0.25 h−1. The initial probability
is one for the fully operational state and is zero for the remaining states. As in Carrasco
(2003b), we assume that if unavailable disks do not belong to the same string, when one
of them becomes available the remaining unavailable disks still belong to different strings
whenever their number is ≥ 2. The CTMC has 14081 states and 94405 transition rates. The
reward rates are ri = 1 for the nonfailed states and ri = 0 for the failed states. With those
reward rates, ETRR(t) is the availability of the system at time t (probability that the system

Fig. 1 Architecture of the RAID 5 storage system

Methodol Comput Appl Probab (2017) 19:445–485 463

is not failed at time t) and EARR(t) is the expected interval availability of the system in the
time interval [0, t] (expected fraction of the time interval in which the system is not failed).
In addition, rmin = 0x , and rmax = 1.

The second MRM, adapted from Carrasco (2015), corresponds to two FIFO queues
working in tandem. Each queue has a buffer with capacity for N = 100 tasks. Tasks arrive
on the first queue with rate λ = 2 h−1. When a task of the first queue is served, it is deliv-
ered to the second queue unless it is full, in which case the task is blocked until there is
room for it in the second queue. The service rates are μF = 2.2 h−1 for the first queue and
μS = 2.5 h−1 for the second one. The initial probability is one for the state in which there
are no tasks in the system and is zero for the remaining states. The CTMC has 10301 states
and 30499 transition rates. Its state transition diagram is shown in Fig. 2, where the states in
which there are i tasks in the first queue and j tasks in the second one and no task is blocked
are labeled “i, j”, and the states in which there are i tasks in the first queue, N tasks in the
second queue, and a task of the first queue is blocked are labeled “i’,N”. The reward rates
are the number of tasks in the system. With those reward rates, ETRR(t) is the expected
number of tasks in the system at time t and EARR(t) is the expected average number of
tasks in the system in the time interval [0, t]. Besides, rmin = 0x , and rmax = 200.

5.2 Results

All algorithms were implemented using the C programming language, with all floating-
point computations performed using the IEEE754-1985 (IEEE754 1985) double format,
and were compiled using the standard GNU compiler collection C-compiler (Stallman et al.
2012) with the O2 optimization option. The input parameter δ of the proposed algorithms
was set to 103 × 2−52. In all cases, Poisson probabilities were computed using the method
described in (Knüsel 1986, pp. 1028–1029) (see also Abramowitz and Stegun 1964) and �

was set to � = θ × maxi∈S |ai,i | with θ = 1.001 > 1 to ensure that Eq. 2 holds. This latter
setting resulted in � ≈ 43.80 h−1 for the RAID 5 storage system MRM and � ≈ 6.707 h−1

Fig. 2 State transition diagram
of the queueing MRM

464 Methodol Comput Appl Probab (2017) 19:445–485

Fig. 3 ETRR(t) and EARR(t) for the RAID 5 storage system MRM

for the queueing MRM. All results were obtained on a workstation equipped with a four-
core Intel i7-2630QM 2.00 GHz processor with 4 GB of RAM memory, using only one
core.

In Figs. 3 and 4, we plot ETRR(t) and EARR(t) for the RAID 5 storage system MRM
and the queueing MRM, respectively, obtained executing the proposed algorithms for 300
time points equally spaced in a logarithmic scale with a relative error tolerance ε = 10−10.
We can observe that, for the first example, ETRR(t) “reaches” the stationary value very
soon, at about t = 100 h, that EARR(t) “reaches” the stationary value somewhat later, and
that both ETRR(t) and EARR(t) are larger than (rmin + rmax)/2 = 0.5. For the queueing

Fig. 4 ETRR(t) and EARR(t) for the queueing MRM

Methodol Comput Appl Probab (2017) 19:445–485 465

MRM, we observe, both ETRR(t) and EARR(t) “reach” the stationary value later, between
t = 1000 h and t = 10000 h, and are significantly smaller than (rmin + rmax)/2 = 100.

We will compare the proposed algorithms with the alternatives from a triple per-
spective: run-time computational cost measured in terms of CPU time, relative accu-
racy, and run-time computational cost in relation to relative accuracy. To carry out
those comparisons, we executed each algorithm for both MRMs with n = 1,
tn = 5 h, 10 h, . . . , 105 h, and ε = 10−4, 10−5, . . . , 10−12. The reference values
for ETRR(t) and EARR(t), t = 5 h, 10 h, . . . , 105 h, with which to compute the
algorithms’ accuracy were obtained using the implementation of the randomization
method described in (Suñé and Carrasco 2005, Section 1), computing Poisson prob-
abilities using a variant of the algorithm described in Fox and Glynn (1988), which
is numerically very stable, and performing all floating-point computations using the
IEEE 754-2008 binary128 format (IEEE754-2008 2008) emulated with the MPFR
library (Fousse et al. 2007). (The binary128 format gives around 34 decimal digits precision
as opposed to the approximately 16 decimal digits precision given by the double format.)

The numbers of MVMs with matrix B required by the proposed algorithms were always
smaller than the numbers of MVMs with matrix B required by the alternatives and, conse-
quently, the CPU times of the proposed algorithms were almost always lower than those of
the alternatives. In addition, the larger tn, the larger were the differences in terms of CPU
time between Algorithm 1 and Algorithm SC1 and between Algorithm 2 and Algorithm
SC2. As an illustration, in Tables 1, 2, 3 and 4 we give the number of MVMs with matrix B
and the CPU time for each of the algorithms, for ε = 10−6, 10−10.

The tables also illustrate the fact that, as commented in Section 4, how the run-time com-
putational cost of Algorithm 1 compares with that of Algorithm SE1 depends on whether
min1≤i≤n ETRR(ti) ≥ (rmin + rmax)/2, and how the run-time computational cost of Algo-
rithm 2 compares with that of Algorithm SE2 depends on whether min1≤i≤n EARR(ti) ≥

Table 1 RAID 5 storage system MRM: numbers of MVMs with matrix B (top) and CPU times in seconds
(bottom) required by Algorithms 1, SC1, and SE1 to compute ETRR(tn), n = 1

ε = 10−6 ε = 10−10

tn (h) Alg. 1 Alg. SC1 Alg. SE1 Alg. 1 Alg. SC1 Alg. SE1

5 285 (359) 297 295 313 (377) 323 321

4.80 × 10−2 5.20 × 10−2 4.80 × 10−2 5.20 × 10−2 5.60 × 10−2 5.20 × 10−2

10 523 (628) 547 544 563 (651) 582 580

8.40 × 10−2 9.20 × 10−2 8.80 × 10−2 8.80 × 10−2 1.00 × 10−1 9.60 × 10−2

100 2293 (NC) 4712 2656 3902 (NC) 4817 4265

3.72 × 10−1 8.12 × 10−1 4.32 × 10−1 6.36 × 10−1 8.28 × 10−1 6.92 × 10−1

1000 2293 (NC) 44810 2656 3902 (NC) 45136 4265

3.68 × 10−1 7.74 4.32 × 10−1 6.36 × 10−1 7.77 6.96 × 10−1

10000 2293 (NC) 440871 2656 3902 (NC) 441895 4265

3.72 × 10−1 7.55 × 101 4.44 × 10−1 6.32 × 10−1 7.63 × 101 7.04 × 10−1

100000 2293 (NC) 4385937 2656 3902 (NC) 4389171 4265

3.76 × 10−1 7.57 × 102 5.24 × 10−1 6.28 × 10−1 7.52 × 102 7.88 × 10−1

(For Algorithm 1, next to the number of MVMs we give between parenthesis the value of the truncation
parameter R1, with “NC” standing for “not computed”)

466 Methodol Comput Appl Probab (2017) 19:445–485

Table 2 RAID 5 storage system MRM: numbers of MVMs with matrix B (top) and CPU times in seconds
(bottom) required by Algorithms 2, SC2, and SE2 to compute EARR(tn), n = 1

ε = 10−6 ε = 10−10

tn (h) Alg. 2 Alg. SC2 Alg. SE2 Alg. 2 Alg. SC2 Alg. SE2

5 269 (352, 357) 297 295 300 (369, 374) 323 321

4.40 × 10−2 5.20 × 10−2 4.80 × 10−2 5.20 × 10−2 5.60 × 10−2 5.20 × 10−2

10 498 (617, 624) 547 544 544 (640, 647) 582 580

8.00 × 10−2 9.20 × 10−2 8.80 × 10−2 8.80 × 10−2 1.00 × 10−1 9.60 × 10−2

100 2293 (NC, NC) 4712 2656 3902 (NC, NC) 4817 4265

3.72 × 10−1 8.08 × 10−1 4.32 × 10−1 6.36 × 10−1 8.32 × 10−1 6.92 × 10−1

1000 2293 (NC, NC) 44810 2656 3902 (NC, NC) 45136 4265

3.68 × 10−1 7.80 4.36 × 10−1 6.36 × 10−1 7.71 6.96 × 10−1

10000 2293 (NC, NC) 440871 2656 3902 (NC, NC) 441895 4265

3.72 × 10−1 7.66 × 101 4.44 × 10−1 6.32 × 10−1 7.60 × 101 7.04 × 10−1

100000 2293 (NC, NC) 4385937 2656 3902 (NC, NC) 4389171 4265

3.72 × 10−1 7.56 × 102 5.24 × 10−1 6.28 × 10−1 7.58 × 102 7.88 × 10−1

(For Algorithm 2, next to the number of MVMs we give between parenthesis the value of the truncation
parameters R2 and R3, with “NC” standing for “not computed”)

(rmin + rmax)/2. Thus, for the first MRM, for which both ETRR(tn) and EARR(tn),
tn = 5 h, 10 h, . . . , 105 h, are larger than (rmin + rmax)/2 = 0.5, Algorithms SE1 and
SE2 always terminated in one iteration and, as a consequence, Algorithm 1 was only
slightly faster than Algorithm SE1 and Algorithm 2 was only slightly faster than Algo-
rithm SE2. On the contrary, for the second MRM, for which both ETRR(tn) and EARR(tn),

Table 3 Queueing MRM: numbers of MVMs with matrix B (top) and CPU times in seconds (bottom)
required by Algorithms 1, SC1, and SE1 to compute ETRR(tn), n = 1

ε = 10−6 ε = 10−10

tn (h) Alg. 1 Alg. SC1 Alg. SE1 Alg. 1 Alg. SC1 Alg. SE1

5 69 (100) 72 135 80 (108) 82 158

4.00 × 10−3 4.00 × 10−3 8.00 × 10−3 8.00 × 10−3 4.00 × 10−3 8.00 × 10−3

10 115 (156) 118 227 130 (167) 133 257

8.00 × 10−3 8.00 × 10−3 1.60 × 10−2 8.00 × 10−3 1.20 × 10−2 2.00 × 10−2

100 806 (920) 818 1613 848 (947) 858 1699

5.60 × 10−2 5.60 × 10−2 1.12 × 10−1 6.00 × 10−2 6.00 × 10−2 1.20 × 10−1

1000 7009 (7404) 7156 14253 7166 (7490) 7277 14511

4.92 × 10−1 5.00 × 10−1 1.01 5.08 × 10−1 5.04 × 10−1 1.02

10000 15912 (NC) 68432 49949 25001 (NC) 68808 77212

1.12 4.78 3.52 1.77 4.81 5.43

100000 15912 (NC) 674519 49949 25001 (NC) 675702 77212

1.13 4.66 × 101 3.57 1.76 4.72 × 101 5.50

(For Algorithm 1, next to the number of MVMs we give between parenthesis the value of the truncation
parameter R1, with “NC” standing for “not computed”)

Methodol Comput Appl Probab (2017) 19:445–485 467

Table 4 Queueing MRM: numbers of MVMs with matrix B (top) and CPU times in seconds (bottom)
required by Algorithms 2, SC2, and SE2 to compute EARR(tn), n = 1

ε = 10−6 ε = 10−10

tn (h) Alg. 2 Alg. SC2 Alg. SE2 Alg. 2 Alg. SC2 Alg. SE2

5 64 (98, 99) 72 135 76 (106, 108) 83 158

4.00 × 10−3 4.00 × 10−3 1.20 × 10−2 4.00 × 10−3 4.00 × 10−3 1.20 × 10−2

10 108 (152, 155) 119 228 124 (163, 165) 133 257

8.00 × 10−3 8.00 × 10−3 1.60 × 10−2 1.20 × 10−2 8.00 × 10−3 2.00 × 10−2

100 780 (906, 915) 819 1614 827 (934, 942) 859 1700

5.60 × 10−2 6.00 × 10−2 1.12 × 10−1 6.00 × 10−2 6.00 × 10−2 1.20 × 10−1

1000 6872 (7351, 7379) 7157 14254 7072 (7437, 7465) 7278 14511

4.88 × 10−1 5.00 × 10−1 1.01 4.96 × 10−1 5.04 × 10−1 1.02

10000 15912 (NC, NC) 68432 49958 25001 (NC, NC) 68809 77221

1.12 4.73 3.55 1.76 4.77 5.48

100000 15912 (NC, NC) 674519 49950 25001 (NC, NC) 675702 77212

1.12 4.65 × 101 3.56 1.77 4.70 × 101 5.52

(For Algorithm 2, next to the number of MVMs we give between parenthesis the value of the truncation
parameters R2 and R3, with “NC” standing for “not computed”)

tn = 5 h, 10 h, . . . , 105 h, are much smaller than (rmin+rmax)/2 = 100, Algorithms SE1 and
SE2 always required between two and three iterations and were therefore noticeably slower
than, respectively, Algorithms 1 and 2. Also given in the tables are the values taken by the
truncation parameters R1, R2, and R3. As we can see, for the RAID 5 storage system MRM,
the parameters were computed only for tn = 5, 10 h and their values are larger than the
numbers of MVMs with matrix B required by the alternatives, and for the queueing MRM,
the parameters were computed for tn = 5, 10, 100, 1 000 h and their values are moderately
larger than the numbers of MVMs with matrix B required by Algorithms SC1 and SC2 and
smaller than the numbers of MVMs with matrix B required by Algorithms SE1 and SE2.
However, computing the truncation parameter R1 defined by Eq. 8 essentially amounts to
obtaining R1 +1−K1 additional Poisson probabilities and computing the truncation param-
eters R2 and R3 defined by, respectively, Eqs. 28 and 30, essentially amounts to obtaining
max{R2, R3 + 1} − K2 additional Poisson probabilities. Therefore, for medium-sized and
large MRMs, assuming, quite reasonably, that the run-time computational cost of perform-
ing one MVM with matrix B will be substantially higher than the run-time computational
cost of computing one Poisson probability, we expect the computation of those parameters
to have a very small impact on the run-time computational cost of the proposed algorithms.
That this is certainly the case for the two MRMs we are considering can be easily realized
by comparing the CPU times required by the proposed algorithms with those required by
Algorithms SC1 and SC2 in the cases in which the truncation parameters were computed.

Since the proposed algorithms and the alternatives all control the approximation error
relative to the computed estimate, we cannot expect Algorithms 1, SC1, and SE1 to yield
the same approximation for ETRR(t) within the relative error tolerance nor can expect
Algorithms 2, SC2, and SE2 to yield the same approximation for EARR(t) within the rel-
ative error tolerance. Instead, what must happen is that the error of each estimate relative
to the estimate itself is nonlarger than ε. To compare, in terms of relative accuracy, Algo-
rithm 1 with Algorithms SC1 and SE1, and Algorithm 2 with Algorithms SC2 and SE2,

468 Methodol Comput Appl Probab (2017) 19:445–485

Fig. 5 RAID 5 storage system MRM: maximum over tn = 5 h, 10 h, . . . , 105 h of the actual relative error in
Algorithms 1, SC1, and SE1, as a function of ε

we computed the maximum over tn = 5 h, 10 h, . . . , 105 h of the actual error relative to the
computed estimate for each algorithm and each ε = 10−4, 10−5, . . . , 10−12. The results are
shown in Figs. 5, 6 for the RAID 5 storage system MRM and in Figs. 7, 8 for the queueing
MRM. As we can see, the control of the error in the proposed algorithms is very tight in the
sense that the actual relative error is always very close to (but smaller than) the tolerance ε.
We also see that, in almost all cases, the proposed algorithms are less accurate than the
alternatives.

Finally, we note that, for ε = 10−11, 10−12, Algorithms SC1 and SC2 were unable to
fulfill the accuracy requirement for the queueing MRM. We conjecture that this anomalous
behavior is due to the cumulative effect of round-off errors.

Fig. 6 RAID 5 storage system MRM: maximum over tn = 5 h, 10 h, . . . , 105 h of the actual relative error in
Algorithms 2, SC2, and SE2, as a function of ε

Methodol Comput Appl Probab (2017) 19:445–485 469

Fig. 7 Queueing MRM: maximum over tn = 5 h, 10 h, . . . , 105 h of the actual relative error in Algorithms
1, SC1, and SE1, as a function of ε

The fact that the alternatives are more accurate than the proposed algorithms comes at
the price of a higher run-time computational cost. Therefore, it would be fairer to compare
the proposed algorithms with the alternatives from the perspective of relative accuracy in
relation to run-time computational cost. To that end, in Figs. 9, 10, 11 and 12 we show
the work-precision curves of the six algorithms. In each of these curves, the abscissa of
the ith point, i = 1, 2, . . . , 9, starting from the left, corresponds to the maximum over
tn = 5 h, 10 h, . . . , 105 h of the actual relative error when the algorithm was executed with
a relative error tolerance ε = 10−(3+i), and the ordinate corresponds to the cumulative
CPU time required by the algorithm for tn = 5 h, 10 h, . . . , 105 h. We can now see that,

Fig. 8 Queueing MRM: maximum over tn = 5 h, 10 h, . . . , 105 h of the actual relative error in Algorithms
2, SC2, and SE2, as a function of ε

470 Methodol Comput Appl Probab (2017) 19:445–485

Fig. 9 RAID 5 storage system MRM: cumulative CPU time in seconds required to compute ETRR(tn),
tn = 5 h, 10 h, . . . , 105 h, as a function of the maximum over tn of the actual relative error in Algorithms 1,
SC1, and SE1 (In each case, the left-most symbol corresponds to ε = 10−4)

in all cases, Algorithms 1 and 2 are much more efficient than Algorithms SC1 and SC2,
respectively, in the sense of requiring a much smaller CPU time to achieve the same relative
error, that Algorithm 1 is slightly more efficient than Algorithm SE1 for the RAID 5 storage
system MRM and quite more efficient for the queueing MRM, and that, compared with
Algorithm SE2, Algorithm 2 is slightly more efficient for the RAID 5 storage system MRM
and quite more so for the queueing MRM.

Fig. 10 RAID 5 storage system MRM: cumulative CPU time in seconds required to compute EARR(tn),
tn = 5 h, 10 h, . . . , 105 h, as a function of the maximum over tn of the actual relative error in Algorithms 2,
SC2, and SE2 (In each case, the left-most symbol corresponds to ε = 10−4)

Methodol Comput Appl Probab (2017) 19:445–485 471

Fig. 11 Queueing MRM: cumulative CPU time in seconds required to compute ETRR(tn), tn =
5 h, 10 h, . . . , 105 h, as a function of the maximum over t of the actual relative error in Algorithms 1, SC1,
and SE1 (In each case, the left-most symbol corresponds to ε = 10−4)

Fig. 12 Queueing MRM: cumulative CPU time in seconds required to compute EARR(tn), tn =
5 h, 10 h, . . . , 105 h, as a function of the maximum over tn of the actual relative error in Algorithms 2, SC2,
and SE2 (In each case, the left-most symbol corresponds to ε = 10−4)

6 Conclusions

In this paper, by combining in a novel way the randomization method with the stationarity
detection technique proposed in Sericola (1999), we have developed two new algorithms
for the computation of the expected reward rates of finite, irreducible MRMs, with control
of the relative error. The first algorithm computes the expected transient reward rate and

472 Methodol Comput Appl Probab (2017) 19:445–485

the second one computes the expected averaged reward rate. We have argued that the algo-
rithms are numerically stable and that, for medium-sized and large MRMs, we can expect
the run-time computational cost of the new algorithms to be lower than that of the variants
of the randomization method developed in Suñé and Carrasco (2005), which allow to com-
pute the expected reward rates with control of the relative error, and lower than the run-time
computational cost of the approach that consists in using iteratively the algorithms devel-
oped in Sericola (1999), which allow to compute the expected reward rates with control
of the absolute error. The performance of the algorithms has been illustrated numerically,
showing that the algorithms can be not only faster but also substantially more efficient than
the alternatives in the sense of being able to achieve the same accuracy with a much lower
run-time computational cost.

Acknowledgments The author is indebted to Juan A. Carrasco for inspiring this investigation and to the
referees, whose comments and suggestions have helped greatly to improve the paper.

Appendix A: Proofs

We will make use of Lemmas 1 and 2 given next.

Lemma 1 Let 0 < λ′ ≤ λ, l, m, n, 0 ≤ l ≤ m ≤ n, and f (k), g(k) ≥ 0, with g(k)

uniformly upper bounded and strictly positive for some k, k ≥ n. Then,
∑m

k=l f (k)Pk(λ)
∑∞

k=n g(k)Pk(λ)
≤

∑m
k=l f (k)Pk(λ

′)
∑∞

k=n g(k)Pk(λ′)
.

Proof Using Lemma 1 in Suñé and Carrasco (2005) with w(k) = f (k), i = l, j = m,
λ1 = λ, λ2 = λ′, and x = λ/λ′,

(
λ′

λ

)m

e(λ−λ′)
m∑

k=l

f (k)Pk(λ) ≤
m∑

k=l

f (k)Pk(λ
′) . (43)

Using again the lemma, now with w(k) = g(k), i = n, j = ∞, λ1 = λ, λ2 = λ′, and
x = λ/λ′,

∞∑

k=n

g(k)Pk(λ
′) ≤

(
λ′

λ

)n

e(λ−λ′)
∞∑

k=n

g(k)Pk(λ) . (44)

Combining Ineqs. 43, 44, recalling that, by assumption, g(k) > 0 for some k, k ≥ n, and
noting that, for n ≥ m, (λ′/λ)n−m ≤ 1,

∑m
k=l f (k)Pk(λ)

∑∞
k=n g(k)Pk(λ)

≤
∑n

k=l f (k)Pk(λ
′)

(
λ′
λ

)m

e(λ−λ′)

(
λ′
λ

)n

e(λ−λ′)

∑∞
k=n g(k)Pk(λ′)

=
(

λ′

λ

)n−m ∑m
k=l f (k)Pk(λ

′)
∑∞

k=n+1 g(k)Pk(λ′)

≤
∑m

k=l f (k)Pk(λ
′)

∑∞
k=n+1 g(k)Pk(λ′)

.

Methodol Comput Appl Probab (2017) 19:445–485 473

Lemma 2 Assume λ > 0, n ≥ 0, and r ≥ n. If r > λ − 2, m ≥ 1, and m′ ≥ 1, then

∞∑

j=r

(

1 − n

j + 1

)

Pj (λ) ≤
(

1 −
(

λ

r + 2

)m)−1
⎛

⎝
r+m−1∑

j=r

(

1 − n

j + 1

)

Pj (λ)

+
(

λ

r + 2

)m
m
λ

(

1 −
(

λ

r + 2

)m′)−1 r+m′
∑

j=r+1

Pj (λ)

⎞

⎠ .

Proof Using that, for j ≥ r ,

Pj+m+1(λ) = λm+1 j !
(j + m + 1)!Pj (λ) = λm+1 1

j + 1

m+1∏

i=2

1

j + i
Pj (λ)

≤ λm+1 1

j + 1

(
1

r + 2

)m

Pj (λ) ,

we can write

∞∑

j=r

(

1 − n

j + 1

)

Pj (λ) =
r+m−1∑

j=r

(

1 − n

j + 1

)

Pj (λ) +
∞∑

j=r+m

(

1 − n

j + 1

)

Pj (λ)

=
r+m−1∑

j=r

(

1 − n

j + 1

)

Pj (λ) + 1

λ

∞∑

j=r+m

(j + 1 − n)Pj+1(λ)

=
r+m−1∑

j=r

(

1 − n

j + 1

)

Pj (λ) + 1

λ

∞∑

j=r

(j + m + 1 − n)Pj+m+1(λ)

≤
r+m−1∑

j=r

(

1− n

j + 1

)

Pj (λ)+ 1

λ

∞∑

j=r

(j + m+1−n)λm+1 1

j + 1

(
1

r + 2

)m

Pj (λ)

=
r+m−1∑

j=r

(

1 − n

j + 1

)

Pj (λ) +
(

λ

r + 2

)m ∞∑

j=r

(

1 − n

j + 1

)

Pj (λ)

+
(

λ

r + 2

)m ∞∑

j=r

m

j + 1
Pj (λ)

=
r+m−1∑

j=r

(

1 − n

j + 1

)

Pj (λ) +
(

λ

r + 2

)m ∞∑

j=r

(

1 − n

j + 1

)

Pj (λ)

+
(

λ

r + 2

)m
m

λ

∞∑

j=r+1

Pj (λ) .

Since r > λ− 2, we can invoke Proposition 1 in Glynn (1987) with n replaced by r + 1 and
m replaced by m′ to bound

∑∞
j=r+1 Pj (λ) from above, obtaining

∞∑

j=r+1

Pj (λ) ≤
(

1 −
(

λ

r + 2

)m′)−1 r+m′
∑

j=r+1

Pj (λ) .

474 Methodol Comput Appl Probab (2017) 19:445–485

Therefore,
∞∑

j=r

(

1 − n

j + 1

)

Pj (λ) ≤∑r+m−1
j=r

(

1 − n

j + 1

)

Pj (λ) +
(

λ

r + 2

)m ∞∑

j=r

(

1 − n

j + 1

)

Pj (λ)

+
(

λ

r + 2

)m
m
λ

(

1 −
(

λ

r + 2

)m′)−1 r+m′
∑

j=r+1

Pj (λ) ,

and the result follows by solving for
∑∞

j=r (1 − n/(j + 1))Pj (λ).

Proof of Proposition 1 That the truncation parameter R1 given by Eq. 9 is finite follows
from

lim
r→∞

1
r+3−�t

r+3
r+2

(
r + 2 + �t

r+3−�t

)
Pr+1(�t)

∑r
j=k+1 Pj (�t)

= 0

and the fact that, as assumed, δ > 0. With regard to Ineq. (10), it trivially holds in the case∑k
j=0 Pj (�t) ≤ 0.9. In the case

∑k
j=0 Pj (�t) > 0.9, we clearly have, by Eq. 8,

0 ≤
∑∞

j=k+1 Pj (�t) − ∑R1
j=k+1 Pj (�t)

∑∞
j=k+1 Pj (�t)

= 1 − ∑k
j=0 Pj (�t) − [1 − ∑k

j=0 Pj (�t)]lb

1 − ∑k
j=0 Pj (�t)

.

Besides, since the median of a Poisson distribution with parameter �t is nonsmaller than
�t − log 2 (Choi 1994), we also have k ≥ �t − log 2 > �t − 2. Therefore, by Eq. 9,
we have R1 ≥ k + 1 > �t − 1, which implies R1 + 1 > �t − 2, and can then bound∑∞

j=R1+1 Pj (�t) from above by invoking Lemma 2 with r = R1 + 1, n = 0, λ = �t ,
m = 1, and m′ = 1. The result is:

∞∑

j=R1+1

Pj (�t) ≤
(

1 − �t

R1 + 3

)−1
(

PR1+1(�t) + �t

R1 + 3

1

�t

(

1 − �t

R1 + 3

)−1

PR1+2(�t)

)

.

(45)
Using then Eq. 8, Ineq. 45, PR1+2(�t) = (�t/(R1 + 2))PR1+1(�t), and Eq. 9,

1−∑k
j=0 Pj (�t) − [1 − ∑k

j=0 Pj (�t)]lb

1 − ∑k
j=0 Pj (�t)

=
∑∞

j=k+1 Pj (�t) − ∑R1
j=k+1 Pj (�t)

∑∞
j=k+1 Pj (�t)

=
∑∞

j=R1+1 Pj (�t)
∑∞

j=k+1 Pj (�t)

<

∑∞
j=R1+1 Pj (�t)

∑R1
j=k+1 Pj (�t)

≤

(

1− �t

R1 + 3

)−1
(

PR1+1(�t)+ �t
R1+3

1

�t

(

1− �t

R1 + 3

)−1

PR1+2(�t)

)

∑R1
j=k+1 Pj (�t)

=
1

R1 + 3 − �t

R1 + 3

R1 + 2

(

R1 + 2 + �t

R1 + 3 − �t

)

PR1+1(�t)

∑R1
j=k+1 Pj (�t)

≤ δ ,

Methodol Comput Appl Probab (2017) 19:445–485 475

which proves Ineq. (10) in the case
∑k

j=0 Pj (�t) > 0.9 and concludes the proof of
Proposition 1.

Proof of Proposition 2 From Ineq. 13, and Eqs. 14, and 12, the definition of the truncation
parameter K1 is seen to be equivalent to

K1 = min

{

k ≥ 0 : Mk − mk ≤ 2

∑k
j=0 vjPj (�t)

1 − ∑k
j=0 Pj (�t)

ε + (mk + Mk)(ε(1 − δ) − δ)

}

.

(46)
Then, since, by Ineq. 6, Mk > 0, k ≥ 0, and, as assumed, δ < 1 and ε > δ/(1 − δ), we have
(mk + Mk)(ε(1 − δ) − δ) > 0, k ≥ 0, which combined with, by Eq. 2,

lim
k→∞(Mk − mk) = lim

k→∞

(

max
i

c
(k)
i − min

i
c
(k)
i

)

= 0 , (47)

implies that K1 is finite.
It remains to prove the inequality

∣
∣
∣
∣
∣
ETRR(t ′) − ̂ETRR(t ′,K1))

̂ETRR(t ′, K1)

∣
∣
∣
∣
∣
≤ ε .

To that end, we will start by bounding |̂ETRR(t ′, K1)| from below. Using Eq. 11, that, by
Ineq. 10, [1 − ∑K1

j=0 Pj (�t ′)]lb ≥ (1 − δ)(1 − ∑K1
j=0 Pj (�t ′)), that, as assumed, δ < 1,

and that, by Ineq. 6, MK1 > 0, k ≥ 0, we obtain

∣
∣
∣̂ETRR(t ′, K1)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣
∣
rmax

⎛

⎜
⎝

K1∑

j=0

vjPj (�t ′) + mK1 + MK1

2

⎡

⎣1 −
K1∑

j=0

Pj (�t ′)

⎤

⎦

lb
⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

= rmax

⎛

⎜
⎝

K1∑

j=0

vjPj (�t ′) + mK1 + MK1

2

⎡

⎣1 −
K1∑

j=0

Pj (�t ′)

⎤

⎦

lb
⎞

⎟
⎠

≥ rmax

⎛

⎝
K1∑

j=0

vjPj (�t ′) + mK1 + MK1

2
(1 − δ)

⎛

⎝1 −
K1∑

j=0

Pj (�t ′)

⎞

⎠

⎞

⎠

> 0. (48)

Now, by Lemma 1 with l = 0, m = K1, f (k) = vk , λ = �t , n = K1 + 1, g(k) = 1, and
λ′ = �t ′,

∑K1
j=0 vjPj (�t)

1 − ∑K1
j=0 Pj (�t)

=
∑K1

j=0 vjPj (�t)
∑∞

j=K1+1 Pj (�t)
≤

∑K1
j=0 vjPj (�t ′)

∑∞
j=K1+1 Pj (�t ′)

=
∑K1

j=0 vjPj (�t ′)

1 − ∑K1
j=0 Pj (�t ′)

. (49)

476 Methodol Comput Appl Probab (2017) 19:445–485

Then, using Eqs. 1, 11 and Ineq. 3, all with k = K1, using that, by Ineq. 10, 1−∑K1
j=0 Pj (�t ′)−

[1 − ∑K1
j=0 Pj (�t ′)]lb ≤ δ(1 − ∑K1

j=0 Pj (�t ′)), and using Eq. 46 and Ineq. 49,

∣
∣
∣ETRR(t ′) − ̂ETRR(t ′, K1)

∣
∣
∣

rmax
=

∣
∣
∣
∣
∣
∣
∣

∞∑

j=K1+1

v(j)Pj (�t ′)− mK1 + MK1

2

⎡

⎣1−
K1∑

j=0

Pj (�t ′)

⎤

⎦

lb
∣
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∞∑

j=K1+1

v(j)Pj (�t ′) − mK1 + MK1

2

⎛

⎝1 −
K1∑

j=0

Pj (�t ′)

⎞

⎠

+mK1 + MK1

2

⎛

⎜
⎝1−

K1∑

j=0

Pj (�t ′)−
⎡

⎣1−
K1∑

j=0

Pj (�t ′)

⎤

⎦

lb
⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∞∑

j=K1+1

v(j)Pj (�t ′) − mK1 + MK1

2

∞∑

j=K1+1

Pj (�t ′)

+mK1 + MK1

2

⎛

⎜
⎝1 −

K1∑

j=0

Pj (�t ′) −
⎡

⎣1−
K1∑

j=0

Pj (�t ′)

⎤

⎦

lb
⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∞∑

j=K1+1

(

v(j) − mK1 + MK1

2

)

Pj (�t ′)

+mK1 + MK1

2

⎛

⎜
⎝1−

K1∑

j=0

Pj (�t ′)−
⎡

⎣1−
K1∑

j=0

Pj (�t ′)

⎤

⎦

lb
⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

≤
∞∑

j=K1+1

∣
∣
∣
∣v

(j) − mK1 + MK1

2

∣
∣
∣
∣Pj (�t ′)

+mK1 + MK1

2

⎛

⎜
⎝1−

K1∑

j=0

Pj (�t ′)−
⎡

⎣1−
K1∑

j=0

Pj (�t ′)

⎤

⎦

lb
⎞

⎟
⎠

≤ MK1 − mK1

2

∞∑

j=K1+1

Pj (�t ′)+mK1 + MK1

2
δ

⎛

⎝1−
K1∑

j=0

Pj (�t ′)

⎞

⎠

=
(

MK1 − mK1

2
+ δ

mK1 + MK1

2

)
⎛

⎝1 −
K1∑

j=0

Pj (�t ′)

⎞

⎠

≤
(∑K1

j=0 vjPj (�t)

1 − ∑K1
j=0 Pj (�t)

ε + mK1 + MK1

2
(ε(1 − δ) − δ)

+δ
mK1 + MK1

2

)
⎛

⎝1 −
K1∑

j=0

Pj (�t ′)

⎞

⎠

Methodol Comput Appl Probab (2017) 19:445–485 477

=
(∑K1

j=0 vjPj (�t)

1 − ∑K1
j=0 Pj (�t)

ε + mK1 + MK1

2
ε(1 − δ)

)⎛

⎝1 −
K1∑

j=0

Pj (�t ′)

⎞

⎠

≤
(∑K1

j=0 vjPj (�t ′)

1 − ∑K1
j=0 Pj (�t ′)

ε + mK1 + MK1

2
ε(1 − δ)

)⎛

⎝1 −
K1∑

j=0

Pj (�t ′)

⎞

⎠

=
K1∑

j=0

vjPj (�t ′) ε + mK1 + MK1

2
ε(1 − δ)

⎛

⎝1 −
K1∑

j=0

Pj (�t ′)

⎞

⎠ . (50)

Finally, combining Ineqs. 48, 50,

∣
∣
∣
∣
∣
ETRR(t ′)− ̂ETRR(t ′, K1))

̂ETRR(t ′, K1)

∣
∣
∣
∣
∣
≤

∑K1
j=0 vjPj (�t ′) ε + mK1 +MK1

2
ε(1− δ)

(
1−∑K1

j=0 Pj (�t ′)
)

∑K1
j=0 vjPj (�t ′) + mK1 +MK1

2 (1 − δ)
(
1− ∑K1

j=0 Pj (�t ′)
)

= ε .

This completes the proof of Proposition 2.

Proof of Proposition 3 That the truncation parameter R2 given by Eq. 28 is finite follows
from

lim
r→∞

1
r+3−�t

r+3
r+2

(
r + 2 + �t

r+3−�t

)
Pr+1(�t)

∑r
j=k+2 Pj (�t)

= 0

and the fact that, as assumed, δ > 0. Similarly, that the truncation parameter R3 given by
Eq. 30 is finite follows from

lim
r→∞

1
r+3−�t

r+3
r+2

(
r + 1 − k + �t

r+3−�t

)
Pr+1(�t)

∑r
j=k+1

j−k
j+1Pj (�t)

= 0

and the fact that δ > 0.
In the case

∑k+1
j=0 Pj (�t) ≤ 0.9, Ineq. (31) is trivially true. In the case

∑k+1
j=0 Pj (�t) >

0.9, we have, by Eq. 27,

0 ≤
∑∞

j=k+2 Pj (�t) − ∑R2
j=k+2 Pj (�t)

∑∞
j=k+2 Pj (�t)

= 1 − ∑k+1
j=0 Pj (�t) − [1 − ∑k+1

j=0 Pj (�t)]lb

1 − ∑k+1
j=0 Pj (�t)

.

Besides, we necessarily have k+1 ≥ �t−log 2 because the median of a Poisson distribution
with parameter �t is nonsmaller than �t − log 2 (Choi 1994). Therefore, by Eq. 28, we
also have R2 ≥ k + 2 ≥ �t − log 2 + 1 > �t , which implies R2 + 1 > �t − 2, and can
then bound

∑∞
j=R2+1 Pj (�t) from above by invoking Lemma 2 with r = R2 + 1, n = 0,

λ = �t , m = 1, and m′ = 1. The result is:

∞∑

j=R2+1

Pj (�t) ≤
(

1 − �t

R2 + 3

)−1
(

PR2+1(�t) + �t

R2 + 3

1

�t

(

1 − �t

R2 + 3

)−1

PR2+2(�t)

)

.

(51)

478 Methodol Comput Appl Probab (2017) 19:445–485

Then, using Eq. 27, Ineq. 51, PR2+2(�t) = (�t/(R2 + 2))PR2+1(�t), and Eq. 28,

1 − ∑k+1
j=0 Pj (�t) − [1 − ∑k+1

j=0 Pj (�t)]lb

1 − ∑k+1
j=0 Pj (�t)

=
∑∞

j=k+2 Pj (�t) − ∑R2
j=k+2 Pj (�t)

∑∞
j=k+2 Pj (�t)

=
∑∞

j=R2+1 Pj (�t)
∑∞

j=k+2 Pj (�t)

<

∑∞
j=R2+1 Pj (�t)

∑R2
j=k+2 Pj (�t)

≤

(
1 − �t

R2+3

)−1
(

PR2+1(�t) + �t
R2+3

1
�t

(
1 − �t

R2+3

)−1
PR2+2(�t)

)

∑R2
j=k+2 Pj (�t)

=
1

R2+3−�t
R2+3
R2+2

(
R2 + 2 + �t

R2+3−�t

)
PR2+1(�t)

∑R2
j=k+2 Pj (�t)

≤ δ ,

showing Ineq. (31) in the case
∑k+1

j=0 Pj (�t) > 0.9.
It remains to prove Ineq. (32). If k + 1 ≤ �t , or k + 1 > �t and 1 − (0.9�t/(k + 1 −

�t))Pk+1(�t) ≤ ∑k+1
j=0 Pj (�t) ≤ 0.9, the inequality is trivially true. Otherwise, i.e., if

k + 1 > �t , and 1 − (0.9�t/(k + 1 − �t))Pk+1(�t) >
∑k+1

j=0 or
∑k+1

j=0 Pj (�t) > 0.9, we
clearly have, by Eqs. 22, 29,

0 ≤
∑∞

j=k+1
j−k
j+1Pj (�t) − ∑R3

j=k+1
j−k
j+1Pj (�t)

∑∞
j=k+1

j−k
j+1Pj (�t)

=
Pk+1(�t) + �t−(k+1)

�t

(
1 − ∑k+1

j=0 Pj (�t)
)

−
[∑∞

j=k+1
j−k
j+1Pj (�t)

]lb

Pk+1(�t) + �t−(k+1)
�t

(
1 − ∑k+1

j=0 Pj (�t)
) .

Besides, since, by Eq. 30, R3 ≥ k + 1 > �t , implying R3 + 1 > �t − 2, we can invoke
Lemma 2 with r = R3 + 1, n = k + 1, λ = �t , m = 1, and m′ = 1, obtaining

∞∑

j=R3+1

(

1 − k + 1

j + 1

)

Pj (�t) ≤
(

1 − �t

R3 + 3

)−1 ((

1 − k + 1

R3 + 2

)

PR3+1(�t)

+ �t

R3 + 3

1

�t

(

1− �t

R3 + 3

)−1

PR3+2(�t)

)

. (52)

Then, using Eq. 22, 29, and Ineq. 52, PR3+2(�t) = (�t/(R3 + 2))PR3+1(�t), and Eq. 30,

Methodol Comput Appl Probab (2017) 19:445–485 479

Pk+1(�t) + �t−(k+1)
�t

(
1 − ∑k+1

j=0 Pj (�t)
)

−
[∑∞

j=k+1
j−k
j+1Pj (�t)

]lb

Pk+1(�t) + �t−(k+1)
�t

(
1 − ∑k+1

j=0 Pj (�t)
)

=
∑∞

j=k+1
j−k
j+1Pj (�t) − ∑R3

j=k+1
j−k
j+1Pj (�t)

∑∞
j=k+1

j−k
j+1Pj (�t)

=
∑∞

j=R3+1
j − k

j + 1
Pj (�t)

∑∞
j=k+1

j − k

j + 1
Pj (�t)

<

∑∞
j=R3+1

j − k

j + 1
Pj (�t)

∑R3
j=k+1

j−k
j+1Pj (�t)

=
∑∞

j=R3+1

(

1 − k + 1

j + 1

)

Pj (�t)

∑R3
j=k+1

j − k

j + 1
Pj (�t)

≤

(

1− �t

R3 + 3

)−1
((

1− k+1

R3+2

)

PR3+1(�t)+ �t

R3 + 3

1

�t

(

1− �t

R3+3

)−1

PR3+2(�t)

)

∑R3
j=k+1

j − k

j + 1
Pj (�t)

≤
1

R3 + 3 − �t

R3 + 3

R3 + 2

(

R3 + 1 − k + �t

R3 + 3 − �t

)

PR3+1(�t)

∑R3
j=k+1

j − k

j + 1
Pj (�t)

≤ δ ,

which proves Ineq. (32) in the case k + 1 > �t , and 1 − (0.9�t/(k + 1 − �t))Pk+1(�t) >∑k+1
j=0 or

∑k+1
j=0 Pj (�t) > 0.9 and concludes the proof of Proposition 3.

Proof of Proposition 4 From Ineq. 35 and Eqs. 36, 12, the definition of the truncation point
K2 is readily seen to be equivalent to

K2 = min

⎧
⎨

⎩
k ≥ 0 : Mk − mk ≤ 2

∑k
j=0 wjPj (�t)

Pk+1(�t) + �t−(k+1)
�t

(
1 − ∑k+1

j=0 Pj (�t)
)ε

+(mk + Mk) (ε(1 − δ) − δ)

}

.

Then, since, by Ineq. 6, Mk > 0, k ≥ 0, and, as assumed, δ < 1 and ε > δ/(1 − δ), we have
(mk+Mk)(ε(1−δ)−δ) > 0, k ≥ 0, which combined with by, Eq. 47, limk→∞(Mk−mk) = 0,
implies that K2 is finite.

To show the inequality
∣
∣
∣
∣
∣
EARR(t ′) − ̂EARR(t ′,K2)

̂EARR(t ′, K2)

∣
∣
∣
∣
∣
≤ ε ,

480 Methodol Comput Appl Probab (2017) 19:445–485

we will start by obtaining a suitable lower bound for |̂EARR(t ′,K2)|/rmax. We have, by
Ineq. 31,

⎡

⎣1 −
K2+1∑

j=0

Pj (�t ′)

⎤

⎦

lb

≥ (1 − δ)

⎛

⎝1 −
K2+1∑

j=0

Pj (�t ′)

⎞

⎠

and, by Eq. 22 and Ineq. 32,
⎡

⎣
∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′)

⎤

⎦

lb

≥ (1 − δ)

⎛

⎝
∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′)

⎞

⎠ .

Then, using Eq. 34 and the fact that, as assumed, δ < 1,

∣
∣
∣
∣
∣

̂EARR(t ′,K2)

rmax

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

K2∑

j=0

wjPj (�t ′) + wK2

K2 + 1

�t ′

⎡

⎣1 −
K2+1∑

j=0

Pj (�t ′)

⎤

⎦

lb

+mK2 + MK2

2

⎡

⎣
∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′)

⎤

⎦

lb
∣
∣
∣
∣
∣
∣
∣

=
K2∑

j=0

wjPj (�t ′) + wK2

K2 + 1

�t ′

⎡

⎣1 −
K2+1∑

j=0

Pj (�t ′)

⎤

⎦

lb

+mK2 + MK2

2

⎡

⎣
∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′)

⎤

⎦

lb

≥
K2∑

j=0

wjPj (�t ′) + wK2

K2 + 1

�t ′
(1 − δ)

⎛

⎝1 −
K2+1∑

j=0

Pj (�t ′)

⎞

⎠

+mK2 + MK2

2
(1 − δ)

∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′)

� f (t ′,K2) (53)

> 0 .

Now, we will derive an upper bound for |EARR(t ′) − ̂EARR(t ′,K2)|/rmax. To that end, we
note that, given k ≥ 0 and j ≥ k + 1, from Eq. 19 we obtain

wj = 1

j + 1

⎛

⎝
k∑

l=0

vl +
j∑

l=k+1

vl

⎞

⎠

= 1

j + 1

⎛

⎝
k∑

l=0

vl + ((j + 1) − (k + 1))
mk + Mk

2
+

j∑

l=k+1

(

vl − mk + Mk

2

)
⎞

⎠

= k + 1

j + 1
wk + mk + Mk

2
− k + 1

j + 1

mk + Mk

2
+ 1

j + 1

j∑

l=k+1

(

vl − mk + Mk

2

)

. (54)

Methodol Comput Appl Probab (2017) 19:445–485 481

Then, using Eqs. 18, 34, 54, 22, and Ineq. 3,

|EARR(t ′) − ̂EARR(t ′, k)|
rmax

=

∣
∣
∣
∣
∣
∣
∣

∞∑

j=k+1

wjPj (�t ′) − k + 1

�t ′
wk

⎡

⎣1 −
k+1∑

j=0

Pj (�t ′)

⎤

⎦

lb

−mk + Mk

2

⎡

⎣
∞∑

j=k+1

j − k

j + 1
Pj (�t ′)

⎤

⎦

lb
∣
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∞∑

j=k+1

k + 1

j + 1
wkPj (�t ′) + mk + Mk

2

∞∑

j=k+1

Pj (�t ′)

−
∞∑

j=k+1

k + 1

j + 1

mk + Mk

2
Pj (�t ′)

+
∞∑

j=k+1

1

j + 1

⎛

⎝
j∑

l=k+1

(

vl − mk + Mk

2

)
⎞

⎠Pj (�t ′)

−k + 1

�t ′
wk

⎡

⎣1−
k+1∑

j=0

Pj (�t ′)

⎤

⎦

lb

−mk + Mk

2

⎡

⎣
∞∑

j=k+1

j − k

j + 1
Pj (�t ′)

⎤

⎦

lb
∣
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

k + 1

�t ′
wk

∞∑

j=k+2

Pj (�t ′) + mk + Mk

2

∞∑

j=k+1

Pj (�t ′)

−k + 1

�t ′
mk + Mk

2

∞∑

j=k+2

Pj (�t ′)

+
∞∑

j=k+1

1

j + 1

⎛

⎝
j∑

l=k+1

(

vl − mk + Mk

2

)
⎞

⎠Pj (�t ′)

−k + 1

�t ′
wk

⎡

⎣1−
k+1∑

j=0

Pj (�t ′)

⎤

⎦

lb

−mk + Mk

2

⎡

⎣
∞∑

j=k+1

j − k

j + 1
Pj (�t ′)

⎤

⎦

lb
∣
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

k + 1

�t ′
wk

⎛

⎝1−
k+1∑

j=0

Pj (�t ′)

⎞

⎠ + mk + Mk

2

⎛

⎝1−
k∑

j=0

Pj (�t ′)

⎞

⎠

−k + 1

�t ′
mk + Mk

2

⎛

⎝1 −
k+1∑

j=0

Pj (�t ′)

⎞

⎠

+
∞∑

j=k+1

1

j + 1

⎛

⎝
j∑

l=k+1

(

vl − mk + Mk

2

)
⎞

⎠Pj (�t ′)

−k + 1

�t ′
wk

⎡

⎣1−
k+1∑

j=0

Pj (�t ′)

⎤

⎦

lb

−mk + Mk

2

⎡

⎣
∞∑

j=k+1

j − k

j + 1
Pj (�t ′)

⎤

⎦

lb
∣
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

k + 1

�t ′
wk

⎛

⎝1 −
k+1∑

j=0

Pj (�t ′)

⎞

⎠ + mk + Mk

2

∞∑

j=k+1

j − k

j + 1
Pj (�t ′)

482 Methodol Comput Appl Probab (2017) 19:445–485

+
∞∑

j=k+1

1

j + 1

⎛

⎝
j∑

l=k+1

(

vl − mk + Mk

2

)
⎞

⎠Pj (�t ′)

−k + 1

�t ′
wk

⎡

⎣1 −
k+1∑

j=0

Pj (�t ′)

⎤

⎦

lb

− mk + Mk

2

⎡

⎣
∞∑

j=k+1

j − k

j + 1
Pj (�t ′)

⎤

⎦

lb
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

k + 1

�t ′
wk

⎛

⎜
⎝1 −

k+1∑

j=0

Pj (�t ′) −
⎡

⎣1 −
k+1∑

j=0

Pj (�t ′)

⎤

⎦

lb
⎞

⎟
⎠

+mk + Mk

2

⎛

⎜
⎝

∞∑

j=k+1

j − k

j + 1
Pj (�t ′) −

⎡

⎣
∞∑

j=k+1

j − k

j + 1
Pj (�t ′)

⎤

⎦

lb
⎞

⎟
⎠

+
∞∑

j=k+1

1

j + 1

⎛

⎝
j∑

l=k+1

(

vl − mk + Mk

2

)
⎞

⎠Pj (�t ′)

∣
∣
∣
∣
∣
∣

≤ k + 1

�t ′
wk

⎛

⎜
⎝1 −

k+1∑

j=0

Pj (�t ′) −
⎡

⎣1 −
k+1∑

j=0

Pj (�t ′)

⎤

⎦

lb
⎞

⎟
⎠

+mk + Mk

2

⎛

⎜
⎝

∞∑

j=k+1

j − k

j + 1
Pj (�t ′) −

⎡

⎣
∞∑

j=k+1

j − k

j + 1
Pj (�t ′)

⎤

⎦

lb
⎞

⎟
⎠

+
∞∑

j=k+1

1

j + 1

⎛

⎝
j∑

l=k+1

∣
∣
∣
∣vl − mk + Mk

2

∣
∣
∣
∣

⎞

⎠Pj (�t ′)

≤ k + 1

�t ′
wk

⎛

⎜
⎝1 −

k+1∑

j=0

Pj (�t ′) −
⎡

⎣1 −
k+1∑

j=0

Pj (�t ′)

⎤

⎦

lb
⎞

⎟
⎠

+mk + Mk

2

⎛

⎜
⎝

∞∑

j=k+1

j − k

j + 1
Pj (�t ′) −

⎡

⎣
∞∑

j=k+1

j − k

j + 1
Pj (�t ′)

⎤

⎦

lb
⎞

⎟
⎠

+Mk − mk

2

∞∑

j=k+1

j − k

j + 1
Pj (�t ′) .

Now, replacing k by K2 in the above inequality and using that, by Ineq. 31,

1 −
K2+1∑

j=0

Pj (�t ′) −
⎡

⎣1 −
K2+1∑

j=0

Pj (�t ′)

⎤

⎦

lb

≤ δ

⎛

⎝1 −
K2+1∑

j=0

Pj (�t ′)

⎞

⎠ ,

that, by Ineq. 32 and Eq. 22,

∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′) −

⎡

⎣
∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′)

⎤

⎦

lb

≤ δ

∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′) ,

Methodol Comput Appl Probab (2017) 19:445–485 483

Ineq. (3) with k replaced by K2, that, from Ineq. 35, and Eqs. 36, 22, and 12,

MK2 − mK2 ≤ 2

∑K2
j=0 wjPj (�t)

∑∞
j=K2+1

j−K2
j+1 Pj (�t)

ε + (mk + Mk) (ε(1 − δ) − δ) ,

and that, as assumed, δ < ε(1 − δ), gives

|EARR(t ′) − ̂EARR(t ′,K2)|
rmax

≤ K2 + 1

�t ′
wK2

⎛

⎜
⎝1−

K2+1∑

j=0

Pj (�t ′) −
⎡

⎣1−
K2+1∑

j=0

Pj (�t ′)

⎤

⎦

lb
⎞

⎟
⎠

+mK2 +MK2

2

⎛

⎜
⎝

∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′)−

⎡

⎣
∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′)

⎤

⎦

lb
⎞

⎟
⎠

MK2 − mK2

2

∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′)

≤ K2 + 1

�t ′
wK2δ

⎛

⎝1−
K2+1∑

j=0

Pj (�t ′)

⎞

⎠+mK2 + MK2

2
δ

∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′)

+mK2 − MK2

2

∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′)

≤ K2 + 1

�t ′
wK2 δ

⎛

⎝1−
K2+1∑

j=0

Pj (�t ′)

⎞

⎠+mK2 + MK2

2
δ

∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′)

+
∑K2

j=0 wjPj (�t)
∑∞

j=K2+1
j−K2
j+1 Pj (�t)

∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′) ε

+mK2 + MK2

2
(ε(1 − δ) − δ)

∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′)

= K2 + 1

�t ′
wK2δ

⎛

⎝1 −
K2+1∑

j=0

Pj (�t ′)

⎞

⎠

+
∑K2

j=0 wjPj (�t)
∑∞

j=K2+1
j−K2
j+1 Pj (�t)

∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′) ε

+mK2 + MK2

2
(1 − δ)

∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′) ε

≤ K2 + 1

�t ′
wK2ε(1 − δ)

⎛

⎝1−
K2+1∑

j=0

Pj (�t ′)

⎞

⎠

+
∑K2

j=0 wjPj (�t)
∑∞

j=K2+1
j−K2
j+1 Pj (�t)

∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′) ε

+mK2 + MK2

2
(1 − δ)

∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′) ε . (55)

484 Methodol Comput Appl Probab (2017) 19:445–485

Now, by Lemma 1 with l = 0, m = K2, f (k) = wk , λ = �t , n = K2 + 1, g(k) =
(k − K2)/(k + 1), and λ′ = �t ′,

∑K2
j=0 wjPj (�t)

∑∞
j=K2+1

j−K2
j+1 Pj (�t)

≤
∑K2

j=0 wjPj (�t ′)
∑∞

j=K2+1
j − K2

j + 1
Pj (�t ′)

. (56)

Therefore, by Ineqs. 55 and 56, recalling Ineq. 53,

|EARR(t ′) − ̂EARR(t ′,K2)|
rmax

≤ K2 + 1

�t ′
wK2ε(1 − δ)

⎛

⎝1 −
K2+1∑

j=0

Pj (�t ′)

⎞

⎠

+
∑K2

j=0 wjPj (�t ′)
∑∞

j=K2+1
j−K2
j+1 Pj (�t ′)

∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′) ε

+mK2 + MK2

2
(1 − δ)

∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′) ε

= K2 + 1

�t ′
wK2ε(1 − δ)

⎛

⎝1 −
K2+1∑

j=0

Pj (�t ′)

⎞

⎠ +
K2∑

j=0

wjPj (�t ′) ε

+mK2 + MK2

2
(1 − δ)

∞∑

j=K2+1

j − K2

j + 1
Pj (�t ′) ε

= ε f (t ′,K2) . (57)

Combined with Eq. 53, Ineq. 57 gives
∣
∣
∣
∣
∣
EARR(t ′) − ̂EARR(t ′,K2)

̂EARR(t ′,K2)

∣
∣
∣
∣
∣
≤ ε f (t ′,K2)

f (t ′,K2)
= ε .

This concludes the proof of Proposition 4.

References

Abramowitz M, Stegun IA (1964) Handbook of mathematical functions: with formulas, graphs, and
mathematical tables. Number 55 in Applied Mathematics Series. Courier Corporation. 10th printing
(December 1972), with corrections

Bowerman PN, Nolty RG, Scheuer EM (1990) Calculation of the Poisson cumulative distribution function.
IEEE Trans Reliab 39(2):158–161

Carrasco JA (2003a) Solving dependability/performability irreducible Markov models using regenerative
randomization. IEEE Trans Reliab 52(3):319–329

Carrasco JA (2003b) Transient analysis of rewarded continuous time Markov models by regenerative
randomization with Laplace transform inversion. Comput J 46(1):84–99

Carrasco JA (2004) Transient analysis of some rewarded Markov models using randomization with
quasistationarity detection. IEEE Trans Comput 53(9):1106–1120

Carrasco JA (2015) Numerically stable methods for the computation of exit rates in Markov chains. Methodol
Comput Appl Probab. To appear

Chen PM, Lee EK, Gibson GA, Katz RH, Patterson DA (1994) RAID: high-performance, reliable secondary
storage. ACM Comput Surv 26(2):145–185

Choi KP (1994) On the median of gamma distributions and an equation of Ramanujan. Proc Am Math Soc
121:245–251

Fousse L, Hanrot G, Lefèvre V, Pélissier P, Zimmermann P (2007) MPFR: a multiple-precision binary
floating-point library with correct rounding. ACM Trans Math Softw 33(2):13:1–13:15

Methodol Comput Appl Probab (2017) 19:445–485 485

Fox BL, Glynn PW (1988) Computing Poisson probabilities. Commun ACM 31(4):440–445
Glynn P (1987) Upper bounds on Poisson tail probabilities. Oper Res Lett 6(1):9–14
Grassmann WK (1977) Transient solutions in Markovian queueing systems. Comput Oper Res 4(1):47–53
Gross D, Miller DR (1984) The randomization technique as a modeling tool and solution procedure for

transient Markov processes. Oper Res 32(2):343–361
IEEE754 (1985) IEEE standard for binary floating-point arithmetic. ANSI/IEEE Std 754-1985
IEEE754-2008 (2008) IEEE standard for floating-point arithmetic - redline. IEEE Std 754-2008 (Revision

of IEEE Std 754-1985) - Redline
Kijima M (1997) Markov processes for stochastic modeling. Chapman & Hall, London
Knüsel L (1986) Computation of the chi-square and Poisson distribution. SIAM J Sci Stat Comput 7(3):1022–

1036
Ogita T, Rump SM, Oishi S (2005) Accurate sum and dot product. SIAM J Sci Comput 26(6):1955–1988
Sericola B (1999) Availability analysis of repairable computer systems and stationarity detection. IEEE Trans

Comput 48(11):1166–1172
Sidje RB, Burrage K, MacNamara S (2007) Inexact uniformization method for computing transient

distributions of Markov chains. SIAM J Sci Comput 29(6):2562–2580
Stallman RM et al. (2012) Using the GNU compiler collection. For GCC version 4.7.2. Free Software

Foundation
Suñé V, Carrasco JA (2005) Efficient implementations of the randomization method with control of the

relative error. Comput Oper Res 32:1089–1114
van Moorsel APA, Sanders WH (1994) Adaptive uniformization. Stoch Model 10(3):619–647

	Computing the Expected Markov Reward Rates with Stationarity Detection and Relative Error Control
	Abstract
	Introduction
	Computation of `39`42`"613A``45`47`"603AETRR(t)
	Computation of `39`42`"613A``45`47`"603AEARR(t)
	Numerical Stability and Run-Time Computational Cost
	Numerical Experiments
	Examples
	Results

	Conclusions
	Acknowledgments
	Appendix: A: Proofs
	References

