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Abstract The distribution of the number of trials until the first k consecutive successes in
a sequence of Bernoulli trials with success probability p is known as geometric distribution
of order k. Let Tk be a random variable that follows a geometric distribution of order k,
and Y1, Y2, . . . a sequence of independent and identically distributed discrete random vari-
ables which are independent of Tk . In the present article we develop some results on the
distribution of the compound random variable Sk = ∑Tk

t=1 Yt .

Keywords Compound distributions · Geometric distribution of order k · Phase-type
distribution · Runs
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1 Introduction

For a sequence ξ1, ξ2, · · · of binary trials each resulting in either a success “1” or a failure
“0”, the number of trials until the first k consecutive successes can be formally defined as

Tk = min (n : ξn−k+1 = . . . = ξn = 1) .
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If ξ1, ξ2, . . . are independent and identically distributed (iid) with p = P (ξi = 1), then the
distribution of the random variable Tk has been termed as geometric distribution of order k
(see, e.g. Balakrishnan and Koutras (2002)). Distributional properties of the random variable
Tk and several associated statistics (e.g. number of run occurrences, waiting times for the r -
th occurrence of fixed length runs etc) have been extensively studied in the literature under
the iid and Markov dependence assumption on the sequence of binary trials ξ1, ξ2, . . . . The
interested reader may consult, among others, Aki (1985), Aki and Hirano (1995), Koutras
et al. (1995), Koutras (1997), Koutras and Papastavridis (1993), Philippou et al. (1983),
Philippou and Makri (1986).

The geometric distribution of order k, besides its theoretical flavor, has been proved of
substantial interest in numerous practical applications, ranging from quality control and reli-
ability (a special reliability system named consecutive-k-out-of-n: F system is very closely
related to this distribution), to non-parametric statistics, psychology, finance, ecology etc,
Koutras and Alexandrou (1997), Eryilmaz (2010), Eryilmaz et al. (2011), Balakrishnan et al.
(2009), Papastavridis and Koutras (1992),

Let us consider the random variable

Sk =
Tk∑

t=1

Yt ,

where Y1, Y2, . . . is a sequence positive valued iid random variables, independent of Tk . The
compound random variable Sk is potentially useful for modeling the lifetime of a system
under a particular run shock model. Consider a system that is subject to a sequence of
shocks over time. Let Y1 denote the time when the first shock occurs; the magnitude of the
shock is also assumed as random and is described by a continuous random variable X1.
Moreover, denote by Yt the interarrival time between the (t − 1) − th and t − th shocks,
and by Xt the respective magnitude of the t − th shock, t ≥ 2. Assume that our system
fails if the magnitudes of the k consecutive shocks exceed a prespecified level c > 0. If
the magnitudes of the shocks are independent, then the random variable Tk has a geometric
distribution of order k with p = P (ξt = 1) = P (Xt ≥ c), and the compound random
variable Sk represents the total lifetime of the system. As far as the shocks magnitude Xt

are concerned they are usually modeled by phase-type distributions. For related reliability
shock models, see, e.g. Sumita and Shanthikumar (1985), Gut (1990), Mallor and Omey
(2001), Montoro-Cazorla et al. (2009).

The random variable Sk might also be useful in actuarial risk analysis. In this case the
random variables Xt and Yt respectively represent the claim size and the times between suc-
cessive claims in a certain portfolio. Thus Sk defines the random time until the occurrence
of k consecutive claims above a critical threshold.

It should be mentioned that, sums of independent random variables of the form

S =
N∑

t=1

Yt

where the number of terms in N is itself a random variable, have attracted substan-
tial research interest for many years. The most popular terminology for the distribution
generated by such a random sum is compound distribution, while the terms generalized
distributions and stopped sum distributions have also been in use at a smaller extend.
Feller (1968), in his classic book on discrete probability, considered the special case where
Y1, Y2, . . . is a sequence of integral-valued iid random variables, to illustrate the use of gen-
erating functions, while Charalambides (2005) presented a combinatorial approach to study
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the distribution of S. Both authors provided interesting applications of such random sums
in several areas including ecology (population expansion), molecular biology, operations
research (service times) etc. In these applications the random variable N is simply an enu-
merating variable (usually refers to the number of events in a specific time period); in our
set-up N denotes waiting time for observing k consecutive occurrences of a specific event.

In the present article, we study the distribution of the random variable Sk when Y ′
t s are

discrete. We obtain recursive and nonrecursive formulae for the computation of the proba-
bility mass function (pmf) of the random variable Sk . More specifically, taking advantage
of the fact that the distribution of the random variable Tk can be represented as a phase-type
distribution, our derivations for finding the pmf of Skare mainly based on the phase-type
modeling of the random variable Tk .

A discrete phase-type distribution of order d is the distribution of the time T to absorp-
tion in a finite discrete time Markov chain with d transient states and one absorbing state,
say “0”. Let us denote by �0 the (d+1)×(d+1) transition probability matrix of the Markov
chain and by π0 = (π1, π2, . . . , πd , πd+1)

′ the respective initial probability (column) vec-
tor; from now on we assume that the absorption state of the Markov chain has been placed
as the last state of the chain, i.e. state d + 1. Then, the probability mass function (pmf) of
the discrete phase-type random variable T may be expressed in the form

P(T = t) = π ′�t−1u, t = 1, 2, . . . (1.1)

where � is the d × d substochastic matrix which includes the transition rates among the
d transient states, π = (π1, π2, . . . , πd)

′ is the initial transition probability vector with the
entry corresponding to the absorption state removed and u = (Id − �)1 is a column vector
including all transition probabilities from the transient states to the absorbing state (1 =
(1, 1, . . . , 1)′ while Id denotes the d × d identity matrix). For a discrete phase-type random
variable T with pmf given by (1.1) we shall say that T follows a phase-type distribution of
order d with parameters π, �, and we shall use the notation T ∼ PHd(π,�).

For a detailed discussion of phase-type distributions and their properties, we refer to
Neuts (1981) and He (2014).

The present paper is organized as follows. In Section 2, we provide some general results
for the compound geometric distribution of order k. Explicit formulae are given for the prob-
ability generating function and moments of Sk = ∑Tk

t=1 Yt as well as a recursive scheme
for the calculation of its probability mass function. A nonrecursive formula is also given
for the probability mass function of Sk = ∑Tk

t=1 Yt when the common distribution of the
random variables Y1, Y2, . . . is a phase-type distribution. In Section 3 we present several
results in the special case when Y1, Y2, . . . have a geometric or negative binomial distribu-
tion. Section 4 deals with a generalization of the compound geometric distribution of order
k, namely the compound negative binomial distribution of order k. In Section 5 we provide
some numerical results for the computational effort required when applying each of the pro-
posed approaches and a few comments on the shape of the probability mass function of the
compound geometric distribution of order k. Finally, Section 6 contains some concluding
remarks on the topic addressed in the present article.

2 General Results for the Compound Geometric Distribution of Order k

Let us start our study of the compound geometric distribution of order k by presenting some
results related to the probability generating function (pgf) and moments of Sk = ∑Tk

t=1 Yt .
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We shall be denoting by

PSk (z)=E(zSk )=
∞∑

t=1

fk(t)z
t =

∞∑

t=1

P(Sk = t)ztand PTk (z)=E(zTk ) =
∞∑

t=1

P(Tk = t)zt

the pgf’s of Tk and Sk respectively, and by

PY (z) = E(zYt ) =
∞∑

x=1

P(Yt = x)zx

the common pgf’s of all Y ′
t s, t = 1, 2 . . .. Applying the well known formula for the pgf of

a random sum of random variables (see e.g. Bowers et al. (1997) or Feller (1968)) we may
express the pgf of Sk = ∑Tk

t=1 Yt as follows

PSk (z) = Pk(PY (z)).

Making use of the following formula which gives the pgf of PTk (z) (see e.g. Balakrishnan
and Koutras (2002))

PTk (z) = E(zTk ) = (pz)k − (pz)k+1

1 − z + qpkzk+1

we readily deduce the next expression for the pgf of the compound geometric distribution
of order k

PSk (z) = E(zSk ) = (pPY (z))k − (pPY (z))k+1

1 − PY (z) + qpk(PY (z))k+1 . (2.1)

The mean and variance of the compound geometric distribution of order k are given by the
formulae

E(Sk) = 1 − pk

(1 − p)pk
E(Yt )

Var(Sk) = 1 − pk

(1 − p)pk
Var(Yt ) + (E(Yt ))

2 1 − (2k + 1)(1 − p)pk − p2k+1

(1 − p)2 p2k
.

This is an immediate consequence of the the well-known formulae for the mean and variance
of random sum of variables, namely

E(Sk) = E

⎛

⎝
Tk∑

t=1

Yt

⎞

⎠ = E(Tk)E(Yt ),

Var(Sk) = Var

⎛

⎝
Tk∑

t=1

Yt

⎞

⎠ = E(Tk)Var(Yt ) + (E(Yt ))
2 Var (Tk) .

and the following expressions for the mean and variance of the geometric distribution of
order k (see, e.g. Balakrishnan and Koutras (2002))

E(Tk) = 1 − pk

(1 − p)pk
, Var(Tk) = 1 − (2k + 1)(1 − p)pk − p2k+1

(1 − p)2 p2k
.

Formula (2.1) can be used, at least for some simple special cases, to get neat recurrence
schemes for the pmf fk(t) = P(Sk = t), t = 1, 2, . . . of Sk . As an illustration we mention
that, if k =2 and Y1, Y2, . . . have geometric distribution with pmf

P (Yi = y) = θ (1 − θ)y−1 , y = 1, 2, . . .
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then PY (z) = E(zYt ) = θ z/(1 − (1 − θ)z) and the pgf of the compound geometric
distribution of order k = 2 reduces to

PS2(z) = E(zS2) = (pθ z)2

1 − [2 − θ(1 + p)]z − [(1 + p)θ − p2θ2 − 1]z2
. (2.2)

Therefore, the pmf f2(t) = P(S2 = t), t = 1, 2, . . . obeys the next recursive scheme

f2(t) = [2 − θ(1 + p)] f2(t − 1) + [(1 + p)θ − p2θ2 − 1] f2(t − 2), t ≥ 3

with initial conditions
f2(2) = (pθ)2, f2(1) = 0.

It is noteworthy that, in cases where the pgf of the compound geometric distribution admits
a simple closed expression, as the one shown above the method of partial fraction expan-
sion can be used to derive an explicit formula for the pmf as well as an efficient asymptotic
expression for it. The definite reference for this method is the classical Feller’s (1968)
book, while a nice application of this approach to run-related models applied to sampling
inspection can be found in Shmueli and Cohen (2000).

For illustration purposes let us briefly present the application of the partial fraction
expansion method for the special case of the compound geometric distribution of order
k = 2 with Y1, Y2, . . . following the geometric distribution with parameter θ . To start with,
let us write (2.2) in the form

PS2(z) = E(zS2) = c + u1z + u0

v2z2 + v1z + v0
= c + U (z)

V (z)
(2.3)

where

v2 = −2 + θ(1 + p), v1 = −(1 + p)θ + p2θ2 + 1, v0 = 1,

c = p2θ2/v2,

u1 = −p2θ2v1/v2, u0 = −p2θ2v0/v2

and
U (z) = u1z + u0, V (z) = v2z

2 + v1z + v0.

It is not difficult to verify that, for p �= 1, the equation V (z) = 0 has 2 distinct real roots
z1, z2 given by the formulae

z1,2 = −2 + θ(1 + p) ± θ
√

(1 − p)(1 + 3p)

2[(1 + p)θ − p2θ2 − 1] .

Using the partial fraction expansion method for the ratio U (z)/V (z) and adequate infinite
geometric series, we can arrive at a power series expression of PS2(z) from which the next
simple formula arises for the pmf f2(t)

f2(t) = P(S2 = t) = ρ1

zt+1
1

+ ρ2

zt+1
2

, t > 0. (2.4)

The coefficients ρi , i = 1, 2 are given by the expression

ρi = − U (zi )

V ′(zi )
= − u1zi + u0

2v2zi + v1
, i = 1, 2.

Apparently, the evaluation of f2(t) by the aid of formula (2.4) is fairly easy for any t .
As stated in Feller (1968), in the general case the quantity V (z) is a high degree poly-

nomial and, although we can potentially develop an exact expression for the pmf, the labor
involved in calculating the roots of the equation V (z) = 0 is usually prohibitive; this makes
the method primarily of theoretical interest. Fortunately a simple and surprisingly good
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approximation can be derived for large t values by using only the root, say z1 which is
smaller in absolute value than all the other roots; more specifically, when t → ∞, the
following asymptotic formula holds true

f2(t) = P(S2 = t) ∼ ρ1

zt+1
1

(2.5)

where the sign ∼ indicates that the ratio of the two sides tends to 1 as t → ∞. In most cases
this formula provides surprisingly good approximations even for relatively small values of t .

We shall now proceed to the development of some new formulae that exploit the theory
of phase-type family of distributions. Eisele (2006) obtained recursive schemes for the pmf
of the random variable S = ∑T

t=1 Yt when Y1, Y2, . . . is a sequence of positive valued
iid random variables (discrete or continuous) with common pmf fY (t), and T is a discrete
random variable having a phase-type distribution of order d, say T ∼ PHd(π,�). The
recurrence schemes of Eisele (2006) are making use of two sets of coefficients that are
computed from the substochastic d × d matrix �. The first set b1, . . . , bd is simply the set
of coefficients of the characteristic polynomial of �, namely

det(x Id − �) = xd +
d∑

i=1

bi x
d−i .

The second sequence a1, . . . , ad is computed through b1, . . . , bd and P(T = t), t =
1, 2, . . . , d by the following formulae

a1 = P (T = 1) , at = P (T = t) +
t−1∑

i=1

bi P (T = t − i) for i = 2, . . . , d.

In order to apply Eisele’s (2006) result for the compound geometric distribution of order
k, we shall give first a Lemma providing the set of coefficients involved in his recursive
scheme for the case of interest.

Lemma 1 For the geometric distribution of order k we have,

bi = pi − pi−1, i = 1, . . . , k and ai =
{
pk, if i = k
0, otherwise.

Proof As Tank and Eryilmaz (2014) have proved, the Geometric distribution of order k
belongs to the family of phase-type distributions. More specifically, Tk ∼ PHk(π, �) with
π = (1, 0, . . . , 0)′ = e1 and

� =

⎡

⎢
⎢
⎢
⎣

1 − p p 0 . . . 0
1 − p 0 p · · · 0
...

...
...

...

1 − p 0 0 · · · 0

⎤

⎥
⎥
⎥
⎦

. (2.6)

It is not difficult to verify that, the characteristic polynomial of � is given by

det(x Ik −�) = xk +(p−1)xk−1 + . . .+(pk−1 − pk−2)x+(pk − pk−1) = xk +
k∑

i=1

bi x
k−i .
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Thus bi = pi − pi−1, i = 1, . . . , k and taking into account that

P(Tk = i) =
{

0 for i = 1, 2, . . . , k − 1
pk for i = k,

we can easily verify that

ak = pk and ai = 0 for i = 1, 2, .., k − 1.

We are now ready to establish an efficient set of recurrence relations for the compound
geometric distribution of order k.

Proposition 1 Assume that the support of the random variables Y1, Y2, . . . is {y0,
y0 + 1, ....} and denote by f ∗ j

Y (t) the j − th convolution of Yi , Y2, . . . , Y j , i.e.

f ∗ j
Y (t) = P

⎛

⎝
j∑

i=1

Yi = t

⎞

⎠ , j = 1, 2, ... . (2.7)

Then the pmf fk(t) = P(Sk = t), t = 1, 2, ... of the respective compound geometric
distribution of order k obeys the following recurrence scheme

fk(t) = pk f ∗k
Y (t) −

k∑

j=1

(p j − p j−1)

(
t−1∑

u=1

fk(u) f ∗ j
Y (t − u)

)

for t > y0k

with initial conditions

fk(t) = 0 for t < y0k, fk(y0k) = [pP(Y = y0)]k .

Proof Eisele (2006) obtained the next recursion for the pmf of the random variable S =∑T
t=1 Yt when T has a discrete phase-type distribution of order d and Y1, Y2, . . . is a

sequence of positive valued iid random variables, independent of T :

P (S = t) =
min(d,t)∑

j=1

a j f
∗ j
Y (t)−

min(d,t−1)∑

j=1

b j

(
t−1∑

u=1

P (S = u) f ∗ j
Y (t − u)

)

, for t ≥ 1.

The result follows immediately by replacing the coefficients a j , b j by the expressions
obtained in Lemma 1.

It is of interest to note that, when the random variables Y1, Y2, . . . follow a phase-type
distribution, one can evaluate the pmf fk(t) = P(Sk = t), t = 1, 2, . . . of the respec-
tive compound geometric distribution of order k by the aid of an exact formula similar to
expression (1.1). This can be achieved by the following result.

Proposition 2 Assume that the random variables Y1, Y2, . . . follow a phase-type distribu-
tion PHc(ρ, M) of order c. Then the pmf fk(t) = P(Sk = t), t = 1, 2, . . . of the respective
compound geometric distribution of order k is given by

fk(t) = P(Sk = t) = σ ′�t−1(Ick − �)1, t = 1, 2, . . . (2.8)

where
σ = ρ ⊗ e1 (Ik − a�)−1

� = M ⊗ Ik + uρ′ ⊗ (Ik − a�)−1 �,
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� is the k × k transition probability matrix (2.6), u = (Ic − M)1 and a = 1 − ρ′1.
The notation A ⊗ Brepresents the Kronecker product of two matrices A and B i.e. if A =
(ai j )n1×n2 then

A ⊗ B =

⎡

⎢
⎢
⎢
⎣

a11B a12B . . . a1n2 B
a21B a22B . . . a2n2 B
...

...
...

an11B an12B . . . an1n2 B

⎤

⎥
⎥
⎥
⎦

.

Proof Conditioning on the random variable Tk we get

P (Sk = t) = P

⎛

⎝
Tk∑

i=1

Yi = t

⎞

⎠ =
∞∑

j=1

P

⎛

⎝
Tk∑

i=1

Yi = t |Tk = j

⎞

⎠ P (Tk = j)

=
∞∑

j=1

P

⎛

⎝
j∑

i=1

Yi = t |Tk = j

⎞

⎠ P (Tk = j)

and making use of the independence between Tk and Y ′
i s we may express the pmf of Sk as

follows

P (Sk = t) =
∞∑

j=1

P

⎛

⎝
j∑

i=1

Yi = t

⎞

⎠ P (Tk = j) =
∞∑

j=1

f ∗ j
Y (t) fTk ( j).

The result can now be easily obtained by resorting to the next proposition given by Neuts
(1981): If { fN (ν)}and { fX (t)} are the pmf’s of two discrete PH-distributionsPHd(π , �),
PHc(ρ, M) of orders d and c respectively then the mixture

∞∑

v=0

fN (ν) f ∗ν
X (t)

follows a phase type distribution PHcd(σ , �) of order cd, with parameters

σ = ρ ⊗ π (Id − α�)−1 , � = M ⊗ Id + uρ′ ⊗ (Id − α�)−1 �,

where a = 1 − ρ′1 and u = (Ic − M)1.
Since Tk ∼ PHd(π , �) with d = k,π = e1 and � as given in expression (2.6), the

proof is complete.
As an illustration of the application of Theorem 1, let us consider the case where the

random variables Y1, Y2, . . . follow a negative binomial distribution with parameters r = 2
and θ , i.e.

fY (y) = P (Yi = y) = (y − 1)θ2 (1 − θ)y−2 , y = 2, 3, . . . .

The negative binomial distribution can be viewed as a phase type distribution PHc(ρ, M)

of order c = 2 with ρ = (1, 0)′ and

M =
[

1 − θ θ

0 1 − θ

]

.

Hence a = 1 − ρ′1 = 0 and the rest quantities needed to apply Theorem 1 are easily
computed as

σ = ρ ⊗ e1 = (1, 0, 0, ..., 0)′1×(2k), u = (I2 − M)1 = (0, θ)′
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� = M ⊗ Ik + uρ′ ⊗ � =
[

1 − θ θ

0 1 − θ

]

⊗ Ik +
[

1 0
θ 0

]

⊗ � =
[

(1 − θ)Ik θ Ik
R (1 − θ)Ik

]

where

R =

⎡

⎢
⎢
⎢
⎣

θ(1 − p) θp 0 . . . 0
θ(1 − p) 0 θp · · · 0

...
...

...
...

θ(1 − p) 0 0 · · · 0

⎤

⎥
⎥
⎥
⎦

.

Note now that (I2k − �)1 = (0, 0, ..., θp)′2k×1 = θpτ ′ where τ ′ = (0, 0, ..., 1) is a unit
vector of R2k and replace all the above quantities in formula (2.7) to gain the following
matrix representation for the pmf of the compound geometric distribution of order k

fk(t)= P(Sk = t)=σ ′�t−1(I2k−�)1=(θp)σ ′
[

(1 − θ)Ik θ Ik
R (1 − θ)Ik

]t−1

τ ′, t = 1, 2, ....

On closing the present section we present a result pertaining to the stochastic behavior of
the random variable Skwith respect to k.

Proposition 3 Let Y1, Y2, . . . and Y ∗
1 , Y ∗

2 , . . . be two sequences of independent random
variable such that the terms of the first sequence are stochastically smaller than the respec-
tive terms of the second, i.e. Yt ≤st Y ∗

t , t = 1, 2, . . .. If k1 ≤ k2 then for the compound
random variables

Sk1 =
Tk1∑

t=1

Yt and Sk2 =
Tk2∑

t=1

Y ∗
t

we have Sk1 ≤st Sk2 .

Proof If Lndenotes the length of the longest run of successes (1’s) in a sequence of iid
binary trials ξ1, ξ2, . . . , ξn , then we haveP (Tk ≥ n) = P (Ln ≤ k). Thus for k1 ≤ k2, we
may state

P
(
Tk1 ≥ n

) = P (Ln ≤ k1) ≤ P (Ln ≤ k2) = P
(
Tk2 ≥ n

)

which implies that Tk1 ≤st Tk2 . The proof now follows by applying Theorem 1.A.4 of
Shaked and Shanthikumar (1994).

3 The Compound Geometric Distribution of Order k for Geometric
and Negative Binomial Y ’s

In the present section we shall apply the results established in Section 2 in the special
case when Y1, Y2, . . . have a negative binomial or geometric distribution. In Section 1 we
presented an example from the reliability literature that motivated our research, where the
random variables Y1, Y2, . . . described the interarrival times between successive shocks. It
si quite plausible to assume that the geometric and negative binomial distributions are suit-
able models for the interarrival times when we use discrete unit times (e.g. hours, days,
weeks etc.). For example, if we assume that at each time unit, say day, a shock occurs with
probability θ , then the number of days Y1 until the first shock occurs will follow a geomet-
ric distribution with parameter θ ; the same holds true for the interarrival times Y2, Y3, . . .

between the subsequent successive shocks. By a similar argument, we can substantiate the
use of the negative binomial distribution for modeling the interarrival times if we assume
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that only after the occurrence of r ≥ 1 shocks there is a positive probability that the shock
magnitudes exceeds a prespecified level c > 0.

Let us now assume that Y1, Y2, . . . follow a negative binomial distribution with pmf

fY (y) = P (Yi = y) =
(
y − 1
r − 1

)

θr (1 − θ)y−r , y = r, r + 1, . . . .

Since the j − th convolution of Yi , Y2, ..., Y j follows a negative binomial distribution with
parameters r j and θ , i.e.

f ∗ j
Y (y) = P

⎛

⎝
j∑

i=1

Yi = y

⎞

⎠ =
(
y − 1
r j − 1

)

θr j (1 − θ)y−r j , y = r j, r j + 1, . . . , 2, . . .

a direct application of Proposition 1 yields the following recursive scheme for the pmf
fk(t) = P(Sk = t), t = 1, 2, ... of the compound geometric distribution of order k.

fk(t) =
(
t − 1
rk − 1

)

(θr p)k(1 − θ)t−rk

−
k∑

j=1

(p j − p j−1)

⎛

⎝
t−r j∑

u=1

fk(u)

(
t − u − 1
r j − 1

)

θr j (1 − θ)t−u−r j

⎞

⎠

for t > rk.

The necessary initial conditions in order to launch the above scheme are

fk(rk) = (θr p)k and fk(t) = 0 for t < rk.

The pgf of the compound geometric distribution of order k with negative binomial
compounding distribution can be easily deduced by replacing

PY (z) =
(

θ z

1 − (1 − θ)z

)r

in formula (2.1). More specifically we get

PSk (z) = E(zSk ) = pk(θ z)rk[(1 − (1 − θ)z)r − p(θ z)r ]
(1 − (1 − θ)z)r(k+1) − (θ z)r (1 − (1 − θ)z)rk + qpk(θ z)r(k+1)

.

Let us next assume that Y1, Y2, . . . follow a geometric distribution with pmf

fY (y) = P (Yi = y) = θ (1 − θ)y−1 , y = 1, 2, . . . .

Then one can get a recursive scheme and the pgf of the respective compound geometric
distribution of order k by replacing r = 1 in the above formulae.

In this case, we can also develop a simple matrix expression for the direct evaluation of
the pmf fk(t) = P(Sk = t), t = 1, 2, ... of the compound geometric distribution of order k.
More spesifically, we have the following result.

Proposition 4 If P (Yi = y) = θ (1 − θ)y−1 , y = 1, 2, . . . then the pmf of the compound
geometric distribution of order k is given by the formula

fk(t) = P(Sk = t) = (θp)e′
1�

t−1ek, t = k, k + 1, k + 2, ...
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where ei , i = 1, 2, ..., k denote the unit vectors of Rk and

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 − θ + θ(1 − p) θp 0 0 . . . 0 0
θ(1 − p) 1 − θ θp 0 . . . 0 0
...

...
...

. . .
...

...

θ(1 − p) 0 0 0 1 − θ θp
θ(1 − p) 0 0 0 . . . 0 1 − θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Proof The distribution of Y1, Y2, . . . can be considered as a phase-type distribution
PHc(ρ, M) of order c = 1 with ρ = (1)1×1, M = (1−θ)1×1. Using these quantities, in the
formulae appearing in Proposition 2 we get a = 1 −ρ′1 = 0, u = (I1 − M)1 = (θ)1×1 and

σ = ρ ⊗ e1 (Ik − a�)−1 = ρ ⊗ e1 = (1)1×1,

� = M ⊗ Ik + uρ′ ⊗ (Ik − a�)−1 � = (1 − θ)Ik + θ�.

Replacing the k × k transition probability matrix � by formula (2.6) it is not difficult to
verify that

� = (1 − θ)Ik + θ� =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 − θ + θ(1 − p) θp 0 0 . . . 0 0
θ(1 − p) 1 − θ θp 0 . . . 0 0
...

...
...

. . .
...

...

θ(1 − p) 0 0 0 1 − θ θp
θ(1 − p) 0 0 0 . . . 0 1 − θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

and (Ik − �)1 = (θ Ik − θ�)1 = (θp)ek . The result follows immediately by applying
formula (2.8).

Since the compound geometric distribution of order k with geometric compounding dis-
tributions can be regarded as a phase-type distribution PHk(e′

1, �) we can also use the
following formula to compute its m − th factorial moments (see Neuts (1981))

nm = E[(Sk)m ] = E[Sk(Sk −1) · · · (Sk −m+1)] = m!e1�
m−1(I −�)−m1, m = 1, 2, .... (3.1)

For example, in the special case k = 2, the m − th factorial moments can be computed by

nm = E[(S2)m] = m!(1, 0)

[
1 − θp θp

θ(1 − p) 1 − θ

]m−1 [
θp −θp

−θ(1 − p) θ

]−m [
1
1

]

.

One could also manipulate in expression (3.1) to get a formula for the generating function
of the factorial moments

M(z) =
∞∑

m=1

nm
zm

m! ,

as follows

M(z) =
∞∑

m=1

(m!e1�
m−1(I − �)−m1)

zm

m! = e1

( ∞∑

m=1

�m−1(I − �)−m)zm
)

1 =

= ze1

( ∞∑

m=1

(z�(I − �)−1)m−1

)

(I − �)−11

= ze1

(
I − z�(I − �)−1

)−1
(I − �)−11.
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Therefore

M(z) =
∞∑

m=1

nm
zm

m! = ze1

(
(I − �) − z(I − �)�(I − �)−1

)−1
1.

As an illustration, applying the last formula in the special case k = 2, we readily get

M(z) =
∞∑

m=1

nm
zm

m! = (1 + p)θ z + [(1 + p)θ − 1]z2

p2θ2 + θ(2p2θ − p − 1)z + [p2θ2 − (1 + p)θ + 1]z2

from which the next fast recursive scheme arises for the computation of the factorial
moments of the geometric distribution of order k with geometric compounding distributions

p2θ2nm + θ(2p2θ − p − 1)nm−1 + [p2θ2 − (1 + p)θ + 1]nm−2 = 0 for m ≥ 3.

4 A Generalization: Compound Negative Binomial Distribution
of Order k

For a sequence ξ1, ξ2, . . . of binary trials, let Tr,k denote the number of trials until the r −
th appearance of a success run of length k. If ξ1, ξ2, . . . are independent and identically
distributed with p = P (ξi = 1), then the distribution of the random variable Tr,k has been
termed as type I negative binomial distribution of order k, see Balakrishnan and Koutras
(2002).

In a similar fashion as before, if Y1, Y2, . . . is a sequence of positive valued iid ran-
dom variables independent of Tr,k , we may name the distribution of the compound random
variable

Sr,k =
Tr,k∑

t=1

Yt

as compound negative binomial distribution of order k. This is apparently a generalization

of the compound geometric distribution of order k (S1,k
d= Sk).

Since Y1, Y2, . . . are iid random variables, Tr,k can be represented as a sum of r inde-
pendent random variables following a geometric distribution of order k; therefore Sr,k can
be considered as an r -fold convolution of the compound geometric distribution of order k,
namely

Sr,k
d= S(1)

k + . . . + S(r)
k ,

where S(1)
k , . . . , S(r)

k are independent random variables each following a compound geomet-
ric distribution of order k.

If the random variables Y1, Y2, . . . belong to the phase-type family, we can readily
conclude that the distribution of Sr,k is a phase-type random variable as well. This conclu-
sion arises immediately by the fact that, in this case, S(1)

k , . . . , S(r)
k belong to the class of

phase-type distributions and, as Neuts (1981) has proved, this family is closed under the
convolution operator.

The distribution of the sum of two independent phase-type random variables has been
established in Proposition 1.3.2 of He (2014). Using that result, we can proceed to the
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computation of the distribution of Sr,k by an exact matrix-based formula as described in the
following proposition.

Proposition 5 Let S(1)
k , . . . , S(r)

k be independent random variables each having a com-
pound geometric distribution of order k, with pmf of the form (2.8). Then the tail probability
of the compound negative binomial distribution of order k can be expressed as

P
(
Sr,k > t

) = π′
r�

t
r1,

where πr = (1, 0, . . . , 0)′ is a unit column vector with dimension rk, and �r is a rk × rk
matrix obtained recursively as follows

�1 = �, �r =
[

� ((Ick − �)1)π′
r−1

0 �r−1

]

, for r = 2, 3, ....

As an illustration let us consider again the case where Y1, Y2, . . . have a geometric
distribution with pmf

P (Yi = y) = θ(1 − θ)y−1, y = 1, 2, . . .

and k = 2. Then, from Proposition 4, we have

� =
[

1 − θp θp
θ(1 − p) 1 − θ

]

,

and (Ick − �)1 = (I2 − �)1 = (θp)e2. For i = 1, 2, 3 we now deduce

�1 = � =
[

1 − θp θp
θ(1 − p) 1 − θ

]

,

�2 =
[

� (θp)e2π′
1

0 �1

]

=

⎡

⎢
⎢
⎣

1 − θp θp 0 0
θ(1 − p) 1 − θ θp 0
0 0 1 − θp θp
0 0 θ(1 − p) 1 − θ

⎤

⎥
⎥
⎦ ,

L3 =
[

� (θp)e2π′
2

0 �2

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − θp θp 0 0 0 0
θ(1 − p) 1 − θ θp 0 0 0

0 0 1 − θp θp 0 0
0 0 θ(1 − p) 1 − θ θp 0
0 0 0 0 1 − θp θp
0 0 0 0 θ(1 − p) 1 − θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and the tail probability of the compound negative binomial distribution of order k = 2 can
be evaluated by the formula

P
(
S3,2 > t

) = π′
3�

t
3u

where π3 = (1, 0, 0, 0, 0, 0)′ and u = (1, 1, 1, 1, 1, 1)′.

5 Numerical Results

Since in the present MS we have discussed more than one techniques for the evaluation of
the probability mass function fk(t) = P(Sk = t), it is plausible to address the question
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Table 1 CPU times (in seconds) by the recursive scheme and the matrix-based nonrecursive formula

k t Recursive method Relative difference Nonrecursive method Relative difference

2 5 0.003154 0.000117

10 0.004658 0.476855 0.000118 0.008547

20 0.010542 2.342422 0.000118 0.008547

30 0.020530 5.509195 0.000118 0.008547

50 0.052462 15.633481 0.000120 0.025641

100 0.206116 64.350666 0.000120 0.025641

3 5 0.003169 0.000119

10 0.005380 0.697696 0.000119 0.000000

20 0.014761 3.657936 0.000120 0.008403

30 0.031114 8.818239 0.000122 0.025210

50 0.084530 25.674030 0.000122 0.025210

100 0.343953 107.536762 0.000122 0.025210

10 20 0.026238 0.000131

30 0.082149 2.130917 0.000136 0.038168

50 0.272169 9.373085 0.000138 0.053435

100 1.237378 47159767.275021 0.000141 0.076336

300 16.36470 62370225.389207 0.000142 0.083969

which one is more efficient. In Table 1, we provide the CPU times needed for the com-
putation of fk(t) by the aid of the recursive and the matrix-based nonrecursive schemes.
The results refer to the special case of the compound geometric distribution of order kwith
p = 0.5 when the random variables Y1, Y2, . . . have geometric distribution with parame-
ter θ = 0.8. The computation was carried out for several values of k and t’s ranging from
small to sufficiently large values. The computer programs for both approaches were run in
the MATLAB software on an Intel i7 (3.40 GHz) processor with 8GB of RAM. As easily
conveyed from Table 1, there is a considerable difference in the CPU times between the two
methods. For fixed k, the CPU time when working with the nonrecursive method is not sub-
stantially affected by the value of t ; however, when working with the recursive scheme, for
large values of t the CPU time increases significantly as compared to the small ones. This
is more clear in columns 4 and 6 where have tabulated the relative change in CPU time with
respect to time needed for the smallest t value (t = 5 for the first two blocks and t = 20 for
the third one).
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Fig. 1 Compound geometric distributions of order k =2
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Fig. 2 Compound geometric distributions of order k =3

Should one be interested in the survival probability P(Sk > t), the CPU times will
become larger since, in this case, all P(Sk = i), i = 1, . . . , t should be computed in order to
compute P(Sk > t) = 1 − P(Sk ≤ t). Although one might think that the recursive method
would be more effective for this task (since all the values P(Sk = i), i = 1, 2, . . . , t − 1
have already been evaluated in order to get P(Sk = t)), this is not quite so because by the
matrix (nonrecursive) approach the survival probability can be directly computed by the aid
of Proposition 5.

The overall conclusion is that, the matrix-based formula seems to be more efficient if
the random variables Y1, Y2, . . . have phase-type distribution, for both pmf and survival
probability computations.

Needless to say, in simple cases where the partial fraction expansion method can be used
for deriving the pmf from its probability generating function (see Section 2), the computa-
tions are by far faster than then ones compared above. Moreover, should one be interested
in very large values of t , the corresponding asymptotic formula (2.5) is an excellent tool for
a very fast and accurate computation of the pmf of the compound geometric distribution of
order k.

In closing the present Paragraph we provide Figs. 1 and 2 where we have plotted the
pmf of the compound geometric distribution of order k for k =2 and k =3 respectively
in the special case when Y1, Y2, . . . have geometric distribution with pmf P(Yi = y) =
θ(1 − θ)y−1, y = 1, 2, . . . .

Three different sets of values have been used for the parameters p and θ , namely (p, θ) =
(0.5, 0.5), (0.5, 0.8), (0.7, 0.5). As made clear, the compound geometric distribution of
order kis unimodal in all the graphs provided, and the tail of the distribution decays faster
as p or θ increases while the reverse is observed when k increases. The analytical study
of the behavior of the compound geometric distribution of order kas well as examination
of statistical inference problems (e.g. parameter estimation and hypothesis testing based on
independent samples from the distribution) will be the subject of a future work.

6 Conclusions

In this paper, we studied the distribution of the random sum

Sk =
Tk∑

t=1

Yt

when Tk follows a geometric distribution of order k and Y1, Y2, . . . is a sequence of pos-
itive valued iid random variables, independent of Tk . This distribution has been termed as
compound geometric distribution of order k.
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We have obtained recursive and nonrecursive formulae for the evaluation of the proba-
bility mass function of Sk . The recursive equation given in Proposition 1 can be used for
arbitrarily distributed discrete compounding variables while the nonrecursive matrix-based
formula stated in Proposition 2, can only be used whenever the compounding variables
follow a discrete phase-type distribution.

A numerical experimentation has also been carried out in order to illustrate the computa-
tional efficiency of the available alternative techniques for the evaluation of the probability
mass function of the compound distribution.
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