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Abstract In reliability theory, many papers use a standard Gamma process to model the
evolution of the cumulative deterioration of a system over time. When the variance-to-mean
ratio of the system deterioration level varies over time, the standard Gamma process is not
convenient any more because it provides a constant ratio. A way to overcome this restric-
tion is to consider the extended version of a Gamma process proposed by Cinlar (J Appl
Probab 17:467–480, 1980). However, based on its technicality, the use of such a process for
applicative purpose requires the preliminary development of technical tools for simulating
its paths and for the numerical assessment of its distribution. This paper is devoted to these
two points.
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1 Introduction

Safety and dependability is a crucial issue in many industries, which has lead to the devel-
opment of a huge literature devoted to the so-called reliability theory. In the oldest literature,
the lifetimes of industrial systems or components were usually directly modeled through
random variables, see e.g. Barlow and Proschan (1965) for a pioneer work on the subject.
Based on the development of on-line monitoring which allows the effective measurement
of a system deterioration, numerous papers nowadays model the degradation in itself,
which often is considered to be accumulating over time. This is done through the use of
a non decreasing stochastic process (Xt )t≥0 (say), where the system lifetime τ typically
corresponds to the hitting time of a given failure threshold L:

τ = inf(t > 0 : Xt > L).

A major quantity of interest for such a system is its reliability function R(t), which
corresponds to the probability that, without any repair, the system is still in order at
time t :

R(t) = P(τ > t) = P(Xt ≤ L) = FXt (L) =
∫ L

0
fXt (s) ds,

where FXt and fXt stand for the cumulative distribution function (cdf) and probability den-
sity function (pdf) of Xt , respectively. Another important indicator for prediction purpose
is the system Mean Time Before Failure (MTBF), with

MT BF = E(τ ) =
∫ ∞

0
P(τ > t) dt =

∫ ∞

0
FXt (L) dt.

Most of other quantities of interest (Mean Residual Lifetime, cost/profit functions,
. . . ) may also be expressed with respect to the pdf or cdf of Xt , e.g. see Rausand and
Høyland (2004). Before being able to use a stochastic process (Xt )t≥0 for deterioration
modeling purpose and make prediction over the system future behavior, there hence is a
crucial need to develop tools for computing its pointwise pdf and cdf at time t and/or for sim-
ulating trajectories of (Xt )t≥0, which provides another way to compute the aimed quantities
through Monte-Carlo simulations.

Since seminal papers (Abdel-Hameed 1975) and (Çinlar et al. 1977), the most widely
used process to model the phenomena of cumulative degradation is the (standard) Gamma
process, see van Noortwijk (2009) for a comprehensive presentation and overview of appli-
cations of the Gamma process to reliability theory, including more than 100 references and
both scientific and empirical justification of its use. However, a notable restriction of a stan-
dard Gamma process is that its variance-to-mean ratio is constant over time, which may be
restrictive within an applicative context, see Guida et al. (2012) for a real data set consisting
of ”sliding wear data of four metal alloy specimens” and where there is ”empirical evidence
that the variance-to-mean ratio is not a constant but varies with [time]”. To overcome this
drawback, we propose to use an Extended Gamma Process (EGP), which was introduced
mostly simultaneously by Çinlar (1980) and Dykstra and Laud (1981). Note that EGPs are
also called weighted Gamma processes in the literature (Ishwaran and James 2004). An
EGP is a non decreasing process with independent increments, which can be constructed as
a stochastic integral with respect to a standard Gamma process. If the EGP has been used
for Bayesian modeling of the hazard function (Dykstra and Laud 1981; Ishwaran and James
2004; Laud et al. 1996), up to our knowledge, it has not been much studied for cumulative
degradation modeling, except in Guida et al. (2012) in a simplified setting.
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A standard Gamma process is characterized by a shape function and a constant scale
parameter. For an EGP, the scale parameter may vary over time. This allows for more flex-
ibility than its standard version, for modeling purpose. However, there is a cost and the use
of an EGP presents some technical difficulties. Firstly, except for specific cases, the exact
simulation of such a process is generally impossible. Secondly, there is no explicit formula
for the probability distribution of an EGP (which is not Gamma). These technical difficul-
ties have lead Guida et al. (2012) to use a discrete version of an EGP. We here propose to
deal with the original continuous time version.

The aim of the present paper is to develop technical tools necessary to the practical use
of an EGP for cumulative degradation modeling (or for any other purpose). More precisely,
we focus on the simulation of approximate sample paths and on the numerical assessment of
both its pdf and cdf. Our contribution is threefold. Firstly, the series representations provided
by Rosinski (2001) for standard Gamma processes are extended to EGPs. Such represen-
tations are used to generate approximate sample paths. The quality of the approximation
is studied and compared to the method proposed by Ishwaran and James (2004), which is
based on an alternate approximate representation of an EGP. Secondly, following the results
of Veillette and Taqqu (2011) for Laplace transform inversion through Post-Widder formu-
las, explicit asymptotic expressions are provided for both pdf and cdf of an EGP. Thirdly,
a discretization method is proposed, based on the approximation of a general EGP by a
specific EGP with a piecewise constant scale function, which is easy to deal with. The dis-
cretization method allows both to simulate approximate sample paths of a general EGP
and to compute approximations of its pdf and cdf. Convergence results are obtained for the
approximate discretized EGP towards the initial general EGP and the quality of the approx-
imation is studied. The method allows to compute the cdf of a general EGP at a known and
adjustable precision. Up to our knowledge, a similar result was not available in the previous
literature.

The paper is organized as follows. Section 2 gives an overview of the EGP. In Section 3,
the approximate representation of Ishwaran and James (2004) is presented as well as four
series representations of an EGP. Section 4 is devoted to the approximation of the pdf and
cdf through Laplace transform inversion. Section 5 introduces and studies the discretization
method. The different methods are illustrated through numerical experiments in Section 6.
Conclusions are formulated in Section 7.

2 Definition of an EGP and First Properties

Let a : R+ → R+ be a measurable, increasing and right-continuous function with a(0) = 0
and let b0 > 0. Recall that a standard (non homogeneous) Gamma process �0(a(t), b0)

with a(.) as shape function and b0 as (constant) scale parameter is a stochastic process with
independent, non-negative and Gamma distributed increments. Its pdf at a specified time
point t is given by

ft (x) = b
a(t)
0

�(a(t))
xa(t)−1 exp(−b0x),∀x ≥ 0,

e.g. see Abdel-Hameed (1975).
Now, let b : R∗+ → R

∗+ be a measurable positive function such that, for all t > 0:∫
(0,t]

da(s)

b(s)
< ∞. (1)
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Following (Çinlar 1980; Dykstra and Laud 1981), the process X = (Xt )t≥0 is said to be
an EGP with shape function a(.) and scale function b(.) (written X ∼ �(a(t), b(t)) in the
sequel) if it can be represented as a stochastic integral with respect to a standard Gamma
process (Yt )t≥0 ∼ �0(a(t), 1):

Xt =
∫

(0,t]
dYs

b(s)
, ∀t > 0 (2)

and X0 = 0.
If b(.) is constant and equal to b0, the EGP simply reduces to a standard Gamma process

�0(a(t), b0). An EGP can be proved to have independent increments and its distribution to
be infinitely divisible (Çinlar 1980). Also, an explicit formula is available for the Laplace
transform of an increment, with

LXt+h−Xt (λ) := E

(
e−λ(Xt+h−Xt )

)
= exp

(
−

∫
(t,t+h]

log

(
1 + λ

b(s)

)
da(s)

)
, (3)

for all t, λ ≥ 0 and h > 0.
Conversely, a stochastic process with independent increments and Laplace transform of

an increment provided by (3) can be proved to be an EGP ∼ �(a(t), b(t)).
Finally, the mean and variance of an EGP are given by

E(Xt ) =
∫

(0,t]
da(s)

b(s)
and V(Xt ) =

∫
(0,t]

da(s)

b(s)2
. (4)

Remark 1 Let X ∼ �(a(t), b(t)). So far, the shape function a was supposed to be right-
continuous. Then, following (Çinlar 1980), the function a can be written as a = ac + ad ,
where ac is the continuous part of a and ad its jump part. The EGP X is then the sum of
two independent EGPs Xc ∼ �(ac(t), b(t)) and Xd ∼ �(ad(t), b(t)). This second EGP
simply reduces, for each t ≥ 0, to a sum of independent Gamma variables, for which the
distribution is known in full form (see Section 5). This second EGP is hence easy to deal
with and can be omitted without loss of generality. Thus, the shape function a is assumed
to be continuous in the sequel.

For a better understanding of the possible evolution of an EGP over time, we now look
at its asymptotic behavior and we set

X∞ = lim
t→∞ Xt (≤ ∞),

which exists, due to the non decreasingness property of an EGP.

Proposition 1 Let X = (Xt )t≥0 be an EGP with X ∼ �(a(t), b(t)). We then have:∫
(0,∞)

log

(
1 + 1

b(s)

)
da(s) ≤ E(X∞) =

∫
(0,∞)

da(s)

b(s)
≤ ∞ (5)

and the following results:

1. If E(X∞) < ∞, then X∞ is almost surely finite.
2. If ∫

(0,∞)

log

(
1 + 1

b(s)

)
da(s) = ∞, (6)

then X∞ is almost surely infinite.
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Fig. 1 Sample paths (left) and ratio V(X
(1)
t )

E(X
(1)
t )

(right) as a function of time

Proof Inequation (5) and the first point are clear. For the second one, let us note that

E(e−X∞) = LX∞(1) = exp

(
−

∫
(0,∞)

log

(
1 + 1

b(s)

)
da(s)

)
.

Under assumption (6), we consequently have E(e−X∞) = 0. This implies that e−X∞ = 0
almost surely and the result.

Remark 2 In the case where∫
(0,∞)

log

(
1 + 1

b(s)

)
da(s) < ∞ =

∫
(0,∞)

da(s)

b(s)
, (7)

the dichotomy P (X∞ = ∞) ∈ {0, 1} is not valid any more and both P (X∞ = ∞) > 0 and
P (X∞ < ∞) > 0 are possible, as is illustrated in the following example (third case).

Example 1 The different types of behavior are illustrated in Figs. 1, 2 and 3 (left)
where a few sample paths are plotted for three different EGPs (using the discretized

rate method from Section 5): X(1) ∼ �(t, (t + 1)2), X(2) ∼ �
(
t, 1

(t+1)2

)
and X(3) ∼

�
(

1
2

(
1 − 1

(t+1)2

)
, 1

exp(1+t)−1

)
. The process X(1) (resp. X(2)) corresponds to the first (resp.

second) case of Proposition 1 whereas X(3) corresponds to case (7). As expected, all trajec-
tories of Fig. 1 are stabilizing whereas all trajectories of Fig. 2 are exploding. In Fig. 3, some

Fig. 2 Sample paths (left) and ratio V(X
(2)
t )

E(X
(2)
t )

(right) as a function of time



218 Methodol Comput Appl Probab (2017) 19:213–235

Fig. 3 Sample paths (left) and ratio V(X
(3)
t )

E(X
(3)
t )

(right) as a function of time

trajectories are exploding and others are stabilizing. For a better insight into their behavior,
the variance-to-mean ratios of the X(i)’s are also plotted in the same figures (right). These
figures illustrate the flexibility of EGPs for modeling purpose.

In all the following, X = (Xt )t≥0 stands for an EGP ∼ �(a(t), b(t)) and Y = (Yt )t≥0
stands for a standard Gamma process �0(a(t), 1), without any further notification. We recall
that the shape function a(t) is assumed to be continuous.

3 Simulation Techniques of an EGP

The goal of this section is to present methods for generating approximate sample paths of
an EGP on a given compact set [0, T ]. The section is divided into two parts. The first part
quickly recalls the method proposed by Ishwaran and James (2004). In the second part,
the series representations of a standard Gamma process provided in Rosinski (2001) are
extended to the case of an EGP. Algorithms based on these series representations are further
provided in Section 6 for approximate sample paths generation.

3.1 Ishwaran and James’s Method

The method proposed by Ishwaran and James (2004) roughly boils down to some discretiza-
tion of the stochastic integral (2) for t ∈ [0, T ], where T > 0. More specifically, for each
t ∈ [0; T ] and each K∗ ∈ N, they consider:

G
(K∗)
t =

K∗∑
k=1

1[0,t](Vk)
1

b(Vk)
W

(K∗)
k , (8)

where (Vk)k=1,...K∗ are i.i.d random variables (r.v.s) with distribution da(v)
a(T )

1[0,T ](v) and

(W
(K∗)
k )k=1,...K∗ are i.i.d r.v.s with Gamma distribution �0(

a(T )
K∗ , 1), independent from the

Vk’s.

Ishwaran and James (2004) proved that
(
G

(K∗)
t

)
t≥0

−→ (Xt )t≥0 weakly when K∗ → ∞
in the Skorokhod space D (0, ∞) of right-continuous functions with left-side limits. (To be
more specific, they show the weak convergence of the random measure with corresponding
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cumulative process defined by (8) towards a weighted gamma measure with shape measure
a(dt) and scale function b(t). The weak convergence of the cumulative process (8) towards
an EGP is then a consequence of (Daley DJ and Vere-Jones 2007, Lemma 11.1.XI)).

One can easily check that

E

[
G

(K∗)
t

]
= E[Xt ],

V

[
G

(K∗)
t

]
= V[Xt ] + 1

K∗
(
a(T )V[Xt ] − (E[Xt ])2

)

so that the approximation of Xt by G
(K∗)
t is unbiased. Also, the rate of convergence of the

variance is O
(

1
K∗

)
.

3.2 Series Representations

The following results extend those from (Rosinski 2001, Section 6) devoted to standard
Gamma processes, see Rosinski (2001) for more references and historical remarks.

Proposition 2 Let T > 0 and let (Un)n≥1 be the points of a homogeneous Poisson process
M with parameter a(T ). Let also (Vn)n≥1 be a sequence of i.i.d. r.v.s with distribution
H(dv) = da(v)

a(T )
1[0,T ](v), independent of M and let (Wn)n≥1 be a sequence of i.i.d r.v.s with

distribution PW (dw), independent of M and of the Vn’s. Then we have the four following

series representations of an EGP, where
D= means ”is identically distributed as”:

(1) Bondesson’s series representation (Bond):

Xt
D=

∑
n≥1

1

b(Vn)
exp(−Un) Wn1[0,t](Vn), for 0 ≤ t ≤ T , (9)

where {Wn}n≥1 is a sequence of i.i.d exponential r.v.s with mean 1,
(2) Rejection’s series representation (Rej):

Xt
D=

∑
n≥1

1

b(Vn)

1

exp(Un) − 1
1E (Un,Wn)1[0,t](Vn), for 0 ≤ t ≤ T , (10)

where E =
{
(u,w) ∈ R+ × [0, 1] | exp(u)

exp(u)−1 exp(−(exp(u) − 1)−1) ≥ w
}

and

where {Wn}n≥1 is a sequence of i.i.d uniform r.v.s on [0, 1],
(3) Thinning’s series representation (Thin):

Xt
D=

∑
n≥1

1

b(Vn)
Wn1(WnUn≤1)1[0,t](Vn), for 0 ≤ t ≤ T , (11)

where {Wn}n≥1 is a sequence of i.i.d exponential r.v.s with mean 1,
(4) Inversion of Lévy measure’s series representation (ILM):

Xt
D=

∑
n≥1

1

b(Vn)
E−1

1 (Un)1[0,t](Vn), for 0 ≤ t ≤ T , (12)

with E1(x) = ∫ ∞
x

u−1 exp(−u)du, the exponential integral function.
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Proof The four series representations can be written in the same manner:

Xt =
∑
n≥1

ft (Un, Vn, Wn) =
∑
n≥1

1

b(Vn)
H(Un,Wn)1[0,t](Vn), (13)

with ft (u, v, w) = 1
b(v)

H(u,w)1[0,t](v) and an appropriate choice for H : R2+ → R+.
As already mentioned in Section 2, (Xt )0≤t≤T is an EGP if its increments are independent
and the Laplace transform of an increment can be written as in (3). Let us first note that
(Un, Vn,Wn)n≥1 can be seen as the points of a Poisson random measure N on R

3+ with
intensity

μ(du, dv, dw) = du × da(v)1[0,T ](v) × PW (dw)

(see for example (Çınlar E 2011, Corollary 3.5, p. 265)).
Considering t1 < · · · < tn, we then have Xti+1−Xti = N(fti+1−fti ) for all 1 ≤ i ≤ n−1,

where fti+1 − fti takes range in R
+ × (ti , ti+1] × R

+. As the ranges of the fti+1 − fti are
non overlapping, the increments Xti+1 − Xti are independent.

Now, based on the Laplace functional theorem for a Poisson random measure (Çınlar E
2011, Theorem 2.9, p. 252) for the third line, we have for all t ∈ [0, T ] and all h, λ > 0:

LXt+h−Xt (λ)

= E[exp(−λ(Xt+h − Xt))]
= E[exp(−N(λ(ft+h − ft )))]
= exp

(
−

∫
R3

(
1 − e−(λ(ft+h−ft ))

))
dμ

= exp

(
−

∫
(t,t+h]

Q(λ, v)da(v)

)
(14)

where

Q(λ, v) =
∫
R2

(
1 − exp

(
−λ

1

b(v)
H(u,w)

))
du × PW (dw).

From (3) and (14), it then suffices to check that Q(λ, v) = log
(

1 + λ
b(v)

)
for each of

the four series representations.

1) Bondesson:
In this case, H(u,w) = exp(−u)w and PW (dw) = exp(−w)dw. Then

Q(λ, v) =
∫ ∞

0

(∫ ∞

0

(
1 − exp

(
− λ

b(v)
exp(−u)w

))
exp(−w)dw

)
du

=
∫ ∞

0

(
1 − b(v)

b(v) + λ exp(−u)

)
du

=
∫ ∞

0

(
λ exp(−u)

b(v) + λ exp(−u)

)
du

= log

(
1 + λ

b(v)

)
.
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2) Rejection:
Here, H(u,w) = 1

exp(u)−11(
exp(u)

exp(u)−1 exp(− 1
exp(u)−1 )≥w)

and PW (dw) = dw. Accordingly,

Q(λ, v) =
∫ ∞

0

(∫ exp(u)
exp(u)−1 exp(− 1

exp(u)−1 )

0

(
1 − exp

(
− λ

b(v)

1

exp(u) − 1

))
dw

)
du

=
∫ ∞

0

(
1 − exp

(
− λ

b(v)

1

exp(u) − 1

))
exp(u)

exp(u) − 1
exp

(
− 1

exp(u) − 1

)
du

=
∫ ∞

0

(
1 − exp

(
− λ

b(v)
z

))
exp(−z)

z
dz (15)

setting z = 1
exp(u)−1 in the last line.

Equation (15) is a Frullani’s integral, which can classically be computed by differ-

entiating with respect of λ: Setting o(λ, v, z) =
(

1 − exp
(
− λ

b(v)
z
))

exp(−z)
z

, we get

by dominated convergence that

∂Q(λ, v)

∂λ
=

∫ ∞

0

∂o(λ, v, z)

∂λ
dz = 1

b(v) + λ
,

which provides the result.
3) Thinning:

H(u,w) = w1(uw≤1) and PW (dw) = exp(−w)dw.

Q(λ, v) =
∫ ∞

0

(∫ 1
w

0

(
1 − exp

(
− λ

b(v)
w

))
exp(−w)du

)
dw

=
∫ ∞

0

(
1 − exp

(
− λ

b(v)
w

))
exp(−w)

w
dw.

We recognize (15), which allows to conclude.
4) Inversion of Lévy measure:

H(u,w) = E−1
1 (u) is independent on w. Then

Q(λ, v) =
∫ ∞

0

(
1 − exp

(
− λ

b(v)
E−1

1 (u)

))
du

=
∫ ∞

0

(
1 − exp

(
− λ

b(v)
z

))
exp(−z)

z
dz

setting z = E−1
1 (u). We recognize (15) again, which allows to conclude.

Approximate simulation of (Xt )0≤t≤T is done by truncating the infinite series. As is
classically done in the Lévy case, we retain only the points of the Poisson process M which
belong to a compact set [0, B], where B > 0:

X
(B)
t =

∑
n≥1

1

b(Vn)
H(Un,Wn)1[0,t](Vn)1[0,B](Un)
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for all t ∈ [0, T ], where we use the notations of (13). This allows to better control the
truncation error than simply retaining a fixed number of terms in the series, see e.g. Imai
and Kawai (2013) for further details in the Lévy case. We also set

X̃
(B)
t = Xt − X

(B)
t =

∑
n≥1

1

b(Vn)
H(Un,Wn)1[0,t](Vn)1(B,∞)(Un) (16)

for all t ∈ [0, T ], to be the remainder of the truncated series. By construction, both(
X̃

(B)
t

)
t∈[0,T ] and

(
X

(B)
t

)
t∈[0,T ] have independent increments. The moments of X̃

(B)
t are

given in the following proposition.

Proposition 3 Recall that X̃(B)
t is the remainder of the truncated series (16). We have

(1) Bondesson’s series representation:

X̃
(B)
t ∼ �

(
a(t),

b(t)
exp(−B)

)
;

E[X̃(B)
t ] = exp(−B)E[Xt ];

V[X̃(B)
t ] = exp(−2B)V[Xt ],

(2) Rejection’s series representation:

E[X̃(B)
t ] = E[Xt ]

[
1 − exp

(
− 1

exp(B)−1

)]
;

V[X̃(B)
t ] = V [Xt ]

[
1 −

(
1 + 1

exp(B)−1

)
exp

(
− 1

exp(B)−1

)]
,

(3) Thinning’s series representation:

E[X̃(B)
t ] = E[Xt ]

[
1 − B + B exp

(
− 1

B

)]
;

V[X̃(B)
t ] = V[Xt ]

[
1 + exp

(
− 1

B

)
+ 2B exp

(
− 1

B

)
− 2B

]
,

(4) Inversion of Lévy measure’s series representation:

E[X̃(B)
t ] = E[Xt ](1 − E1(B));

V[X̃(B)
t ] = V[Xt ](1 − exp(−E1(B)) − E1(B) exp(−E1(B))).

Proof Starting from (16), the Laplace transform of X̃
(B)
t is computed using the Laplace

functional theorem for Poisson random measures. In the Bondesson case, we recognize the

Laplace transform of an EGP ∼ �
(
a(t),

b(t)
exp(−B)

)
. For the three other representations, the

mean and variance are obtained through the first and second order derivatives of the Laplace
transform at λ = 0.

Proposition 3 allows to determine the minimal value of B which ensures a given relative
precision on both mean and variance of Xt for all t ∈ [0, T ] (analytically for Bondesson’s
series representation and numerically for the three other procedures). Asymptotic equiva-
lents of the series remainders are provided in Table 1 when B tends to infinity, which are
obtained through Taylor expansions.
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Table 1 Asymptotic equivalents

of E
(
X̃

(B)
t

)
/E(Xt ) and

V

(
X̃

(B)
t

)
/V(Xt ) when B → ∞

Method E

(
X̃

(B)
t

)
/E(Xt ) V

(
X̃

(B)
t

)
/V(Xt )

Bondesson exp(−B) exp(−2B)

Rejection exp(−B)
exp(−2B)

2

Thinning 1
2B

1
6B2

Inversion of Lévy E1(B)
E1(B)2

2

measure

From Table 1, we can note that the Inversion of Lévy measure’s method converges very
fast (E1(B) = o (exp(−B)) when B → ∞). However, the computing time of the Inversion
of Lévy measure’s method may be long because of the numerical computation of the inverse
of the exponential integral function, for which no explicit formula is available. As far as
the Thinning’s method is concerned, it clearly converges more slowly than the others. Thus,
Rejection’s and Bondesson’s methods seem to be the most suitable ones among the four
series representations to approximate the paths of an EGP.

4 Post-Widder Formulas

As already noted in Section 2, the distribution of an EGP is infinitely divisible and its
Laplace transform is available in full form (see (3)). This allows to use the method from
Veillette and Taqqu (2011) to compute the pdf and cdf of an EGP, by inverting its Laplace
transform through the Post-Widder method. We use the following formulas from (Masol
and Teugels 2010, Section 4) for the pdf and cdf (see also Veillette and Taqqu (2011) for the
cdf): for all x ≥ 0,

FXt (x) = lim
H→∞

H∑
k=0

(
−H

x

)k 1

k! L
(k)
Xt

(
H

x

)
, (17)

fXt (x) = lim
H→∞ − 1

H !
(

−H

x

)H+1

L(H)
Xt

(
H

x

)
, (18)

where L(k)
Xt

denotes the k-th derivative of the Laplace transform LXt for k ≥ 1 and L(0)
Xt

=
LXt .

Let φt be the Laplace exponent of Xt , with

φt (λ) = − ln
(
LXt (λ)

)
, ∀λ ≥ 0.

Following Veillette and Taqqu (2011), Leibniz’s formula provides:

L(k+1)
Xt

(λ) = −
k∑

j=0

(
k

j

)
L(j)

Xt
(λ)φ

(k+1−j)
t (λ), ∀λ, t, k ≥ 0, (19)

with φ
(j)
t the j -th derivative of φt . An expression of φ

(j)
t is given in the following Lemma

in the case of an EGP.

Lemma 1 Let λ ≥ 0, j ≥ 1 and let X ∼ �(a(t), b(t)) .
Then

φ
(j)
t (λ) = (−1)j−1(j − 1)! m

(j)
t (λ)
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where

m
(j)
t (λ) =

∫ t

0

da(s)

(b(s) + λ)j
.

Proof Based on (3) and (15) and setting u = z/b(s) in the third line we have:

φt (λ) =
∫

(0,t]
log

(
1 + λ

b(s)

)
da(s)

=
∫

(0,t]

(∫ ∞

0

(
1 − exp

(
− λ

b(s)
z

))
exp(−z)

z
dz

)
da(s)

=
∫ ∞

0

(
1 − e−λu

)
μt(du)

where

μt(du) = 1

u

(∫
(0,t]

e−b(s)uda(s)

)
du

is a measure on R+ such that
∫
R+(1 ∧ x)μt (dx) < ∞. From Veillette and Taqqu (2011),

φ
(j)
t (λ) is directly calculated by

φ
(j)
t (λ) = (−1)j+1

∫ ∞

0
xj e−λxμt (dx) (20)

for all j ≥ 1. This provides:

φ
(j)
t (λ) = (−1)j+1

∫ t

0

(∫ ∞

0
xj−1e−(b(s)+λ)xdx

)
da(s)

= (−1)j+1
∫ t

0

�(j)

(b(s) + λ)j
da(s),

renormalizing the pdf of �0(j, b(s) + λ) to get the last line.

Based on (19) and Lemma 1, L(k)
Xt

(λ) can be recursively computed through

L(k+1)
Xt

(λ) = −k!
k∑

j=0

L(j)
Xt

(λ)
(−1)k−j

j ! m
(k+1−j)
t (λ) .

This allows to compute an approximation of the pdf and cdf of an EGP through (17–18),
taking H large enough.

5 Discretized Rate Function Method

In case of a piecewise constant scale function b(.), the process (Xt )t≥0 can easily be con-
structed from standard Gamma processes. The simulation of its paths is hence immediate
(see e.g. van Noortwijk (2009)). Also, the random variable Xt simply is the sum of stan-
dard Gamma variables, and different tools are available in the literature to compute both its
pdf and cdf (see Nadarajah (2008) for a review). Based on this, the aim of this section is to
propose an approximation of an EGP with a general scale function by another EGP with a
piecewise constant scale function.
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5.1 Construction of the Approximate Process X(ε)

Let T > 0. The following assumption is considered:

b(.) is continuous on (0, T ] and ∃m > 0 such that ∀t ∈ (0, T ], b(t) ≥ m. (21)

Let ε > 0. The following piecewise constant approximation of 1
b(.)

on (0, T ], denoted by
1

b(ε)(.)
, is considered:

∀t ∈ (0, T ], 1

b(ε)(t)
=

n(ε)∑
i=0

1

bi

1[li ,li+1)(t) (22)

where n(ε) is such that ln(ε) ≤ T < ln(ε)+1, l0 = 0, and the li’s, for i = 1, . . . , n(ε) + 1,
are recursively defined by:

li+1 = sup

{
l ∈ (li , T ] : ∀l′ ∈ [li , l],

∣∣∣∣ 1

b(li)
− 1

b(l′)

∣∣∣∣ < ε

}
. (23)

Note that assumption (21) insures that n(ε) is finite.
The constants bi, i = 0, . . . , n(ε) are next defined by:

∀i = 0, . . . , n(ε) − 1,
1

bi

= 1

li+1 − li

∫ li+1

li

1

b(s)
ds, (24)

and
1

bn(ε)

= 1

T − ln(ε)

∫ T

ln(ε)

1

b(s)
ds. (25)

Now that b(ε)(.) is constructed, we set

X
(ε)
t =

∫
(0,t]

dYs

b(ε)(s)
, ∀t ∈ [0, T ], (26)

where (Yt )t≥0 is the same standard Gamma process �0(a(t), 1) as in Equation (2) defining

X. Then
(
X

(ε)
t

)
t∈[0,T ] is the restriction to [0, T ] of an EGP ∼ �

(
a(t), b(ε)(t)

)
with the

same shape function a(.) as X and with b(ε)(.) as scale function.

Remark 3 Based of the definition (2) of an EGP, we prefer to construct an approximation
of 1

b(.)
instead of b (.). Also, by construction, for all t in (0, T ],

∣∣∣∣ 1

b(t)
− 1

b(ε)(t)

∣∣∣∣ ≤ ε. (27)

5.2 Quality of the Approximation of X by X(ε)

We first look at the moments of the residual part in the approximation of Xt by X
(ε)
t , for

t ∈ [0, T ].

Proposition 4 Let

X̃
(ε)
t = Xt − X

(ε)
t =

∫
(0,t]

(
1

b(s)
− 1

b(ε)(s)

)
dYs, ∀t ∈ [0, T ]. (28)
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Then:

E[|X̃(ε)
t |] ≤ ε a(t), (29)

V[X̃(ε)
t ] ≤ ε2 a(t) (30)

for all t ∈ [0, T ].

Proof Setting b̃(ε)(s) = (
1/b(s) − 1/b(ε)(s)

)−1
if b(s) = b(ε)(s) and b(ε)(s) = ∞

otherwise, we have

X̃
(ε)
t =

∫ t

0

1

b̃(ε)(s)
dYs

where 1∣∣∣b̃(ε)(s)

∣∣∣ ≤ ε, based on (27).

We easily derive that

|X̃(ε)
t |≤

∫ t

0

1∣∣∣b̃(ε)(s)

∣∣∣
dYs ≤ ε Yt (31)

from where we derive (29).
Also, one can check that (4) is still valid for X̃

(ε)
t with b(t) substituted by b̃(ε), so that

V[X̃(ε)
t ] =

∫
(0,t]

1(
b̃(ε)(s)

)2
da(s) ≤ ε2 a(t).

We now provide some convergence results.

Proposition 5 Let X ∼ �(a(t), b(t)), (εn)n≥1 be a sequence of positive real numbers and
let (X(εn))n≥1 be a sequence of EGPs with shape function a(.) and scale function b(εn)(.).
Suppose that assumption (21) is satisfied.

1) If
∑

n≥1
√

εn < ∞, then supt∈[0,T ] |X(εn)
t − Xt | −−−→

n→∞ 0 almost surely.

2) If εn −−−→
n→∞ 0, then supt∈[0,T ] |X(εn)

t − Xt | −−−→
n→∞ 0 in quadratic mean.

Proof 1) According to (31), we have:

P

(
sup

t∈[0,T ]
|X(εn)

t − Xt | >
√

εn

)
≤ P

(
εn sup

t∈[0,T ]
Yt >

√
εn

)

= P

(
YT >

1√
εn

)

≤ E (YT )
√

εn,

based on Markov inequality for the last line. We derive that

∑
n≥1

P

(
sup

t∈[0,T ]
|X(εn)

t − Xt | >
√

εn

)
< ∞,
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which concludes the first point, based on e.g. (Çınlar E 2011, Proposition 2.7, p. 98).
2) In the same way, we have:

E

⎡
⎣

(
sup

t∈[0,T ]
|X(εn)

t − Xt |
)2

⎤
⎦ ≤ E

⎡
⎣

(
εn sup

t∈[0,T ]
Yt

)2
⎤
⎦ = ε2

n E

[
Y 2

T

]
,

which allows to conclude.

Remark 4 Note that a consequence of point 2 is that, under the same assumptions,(
X

(ε)
t

)
t∈[0,T ]

−→ (Xt )t∈[0,T ] weakly in the Skorokhod space D([0, T ]).

5.3 Approximation of the pdf and cdf of X
(ε)
t (and of Xt )

As previously mentioned, X(ε) is an EGP with a piecewise constant scale function. For
each t , X

(ε)
t can be written as a sum of independent Gamma distributed random variables

with different scale parameters. Several methods are available in the literature to evalu-
ate the pdf of such a sum, see Nadarajah (2008). In Guida et al. (2012), the authors use
the method from Moschopoulos (1985) to evaluate the pdf of their discrete time EGP.
After performing some numerical comparisons (not provided here), we finally chose to
use the method from (Peppas 2011, Sub. 4.2), which provides an expression of both pdf
and cdf of X

(ε)
t in terms of an infinite integral. For all t in [0, T ] and all x ≥ 0, this

writes:

f
X

(ε)
t

(x) = lim
K→∞ f

(K)

X
(ε)
t

(x) and F
X

(ε)
t

(x) = lim
K→∞ F

(K)

X
(ε)
t

(x),

where

f
(K)

X
(ε)
t

(x) = 1

π

∫ K

0

cos(
∑P

p=0 αp arctan(u/bp) − xu)∏P
p=0(1 + (u/bp)2)αp/2

du, (32)

F
(K)

X
(ε)
t

(x) = 1

2
− 1

π

∫ K

0

sin(
∑P

p=0 αp arctan(u/bp) − xu)

u
∏P

p=0(1 + (u/bp)2)αp/2
du (33)

with P = P(ε, t) the single integer such that lP < t ≤ lP+1, αp = a(lp+1) − a(lp) for
p = 0, . . . , P − 1 and αP = a(t) − a(lP ).

Taking K large enough, (32-33) provide approximations for the pdf and cdf of X
(ε)
t , and

consequently of Xt .
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Using that | sin(.)| ≤ 1 and that (1 + (u/bp)2)αp/2 ≥ (u/bp)αp , we easily get an upper
bound for the approximation error, with:

E
(K)

X
(ε)
t

(x) = |F
X

(ε)
t

(x) − F
(K)

X
(ε)
t

(x)|

≤ 1

π

∫ ∞

K

1

u
∏P

p=0(u/bp)αp
du

≤
∏P

p=0 b
αp
p

π

∫ ∞

K

1

ua(t)+1
du

≤
∏P

p=0 b
αp
p

π a(t)Ka(t)
(34)

for all K ∈ N, due to
P∑

p=0

αp = a(t) for the second-to-last line.

5.4 Bounds for the cdf of Xt

Consider two other piecewise constant approximations of 1
b(t)

defined by

1

b(ε,−)(t)
=

n(ε)∑
i=0

1

b−
i

1[li ,li+1)(t) and
1

b(ε,+)(t)
=

n(ε)∑
i=0

1

b+
i

1[li ,li+1)(t)

for all t ∈ (0, T ], where

1

b−
i

= inf

{
1

b(l)
, l ∈ [li , min{li+1, T })

}
and

1

b+
i

= sup

{
1

b(l)
, l ∈ [li , min{li+1, T })

}
.

The following bounds are obtained:

1

b(ε,−)(t)
≤ 1

b(t)
≤ 1

b(ε,+)(t)
, for all t ≤ T . (35)

The induced EGPs are denoted by X(ε,−) and X(ε,+), respectively. They satisfy

X
(ε,−)
t ≤ Xt ≤ X

(ε,+)
t , for all t ≤ T

so that

F
X

(ε,+)
t

(x) ≤ FXt (x) ≤ F
X

(ε,−)
t

(x), ∀t ≤ T ,∀x ≥ 0. (36)

Theorem 1 Using the notations of Subsection 5.3 substitutingX(ε) byX(ε,−) and byX(ε,+),

we set:

mt(x, ε,K) = F
(K)

X
(ε,+)
t

(x) − E
(K)

X
(ε,+)
t

(x),

Mt (x, ε,K) = F
(K)

X
(ε,−)
t

(x) + E
(K)

X
(ε,−)
t

(x)

for all K ∈ N
∗ and all ε > 0. Then,

mt(x, ε, K) ≤ FXt (x) ≤ Mt(x, ε, K) (37)
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and ∣∣∣∣FXt (x) − mt(x, ε, K) + Mt(x, ε, K)

2

∣∣∣∣ ≤ Mt(x, ε,K) − mt(x, ε, K)

2
. (38)

Proof The bounds (37) are easily obtained starting from Equation (36) and using that

F
X

(ε,−)
t

(x) ≤ F
(K)

X
(ε,−)
t

(x) + E
(K)

X
(ε,−)
t

(x) = Mt(x, ε, K)

for the upper bound, and similar arguments for the lower one. Inequality (38) is a direct
consequence of (37).

The previous theorem provides computable bounds for the cdf FXt of an EGP. These
bounds can be made as tight as necessary, taking ε small enough and K large enough. This
method hence provides a way to numerically assess the cdf FXt at a known precision. This
is used in Section 6 to get numerical reference results. Remark also that the two piece-
wise constant approximations b(ε,−)(.) and b(ε,+)(.) satisfy (27). The theoretical results of
Subsection 5.2 are then still valid for X(ε,−) and X(ε,+).

Finally, remark that for any fixed s > 0, the increment process (Xt+s − Xs)t≥0 still is
an EGP ∼ �(a(t + s) − a(s), b(t + s)) (based on its independent increments and on its
pointwise Laplace transform provided by (3)). Thus, all the results of the paper can be used
to compute both pdf and cdf of an EGP increment, or to simulate it. (For simulation purpose,
one can also only retain the terms for which Vn ∈ (s, s + t] in the series representations
from Proposition 2).

5.5 When Assumption (21) is not Satisfied

Assumption (21) allows to construct the piecewise constant function b(ε)(.) specified in
Subsection 5.1. When this assumption is not satisfied, alternatives for the construction of
b(ε)(.) have to be considered.

• An interesting case is when function b(.) satisfies lim
t→0+ b(t) = 0. If the following

assumption is checked,

∃η > 0 such as
∫ η

0

ds

b(s)
< ∞,

then the piecewise constant approximation can be constructed from l0 = 0, l1 such that:

∫ l1

0

ds

b(s)
≤ ε and

∫ l1

0

da(s)

b(s)
≤ ε,

and the li’s, for i = 2, . . . , n(ε) + 1, recursively defined according to (23). Note that in
this case, inequality (27) is not satisfied any more.

• If function b(.) is not continuous on (0, T ] but only piecewise continuous, the procedure
described in Subsection 5.1 can be applied on each continuous section and inequality
(27) is still valid.
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6 Numerical Experiments

6.1 Summary and Algorithms

To sum up the above sections, three main methods are considered to simulate an EGP:

• Method 1: Discretization of stochastic integral (DSI) from Subsection 3.1,
• Method 2: Series representations from Subsection 3.2 : ILM, Bond, Thin, Rej,
• Method 3 : Discretized rate function (DRF) from Subsection 5.1.

Furthermore, two approaches to approximate the pdf and cdf of an EGP are proposed:

• Approach 1: Post-Widder formula from Section 4,
• Approach 2: DRF method + approximation of the cdf and pdf through the infinite

integral formulas from Subsection 5.3. This method is referred to as DRFI in the sequel.

For the DRFI method, the cdf of Xt is approximated by F
(K)

X
(ε)
t

as provided by (33), where

we recall that X
(ε)
t is defined by (26). There hence are two parameters to define (ε and K).

All these approaches are investigated in this section. We set X ∼ �(a(t), b(t)) to be an
EGP, where a(t) is assumed to be one-to-one. We first state the algorithms resulting from the
three methods previously mentioned to simulate N approximate sample paths of (Xt )t∈[0,T ].
Note that for Method 2, only Bondesson’s series representation algorithm is given.

Algorithm 1 Method 1: Ishwaran and James’s approach

1. Fix K∗.
For i in 1 : N , repeat the following steps :

2. Simulate K∗ realizations Z1, . . . , ZK∗ according to the uniform distribution on
[0, 1].

3. Compute Vj = a−1(Zja(T )) for j = 1, . . . , K∗ (inverse transform sampling).

4. Simulate K∗ realizations W
(K∗)
1 , . . . , W

(K∗)
K∗ according to the Gamma distribution

�0

(
a(T )
K∗ , 1

)
.

5. Compute G
(K∗)
t,i = ∑K∗

j=1 1[0,t](Vj )
1

b(Vj )
W

(K∗)
j .

Algorithm 2 Method 2: Bondesson’s series representation

1. Fix B.
For i in 1 : N , repeat the following steps :

2. Simulate the total number of jumps NB according to the Poisson distribution
P(a(T )B).

3. Simulate NB realizations U1, . . . , UNB
according to the uniform distribution on

[0, B].
4. Simulate NB realizations W1, . . . , WNB

according to the exponential distribution
with parameter 1.

5. SimulateNB realizationsZ1, ..., ZNB
according to the uniform distribution on [0, 1].

6. Compute Vj = a−1(Zja(T )) for j = 1, ..., NB .
7. Compute X

(B)
t,i = ∑NB

j=1
1

b(Vj )
exp(−Uj )Wj 1[0,t](Vj ).
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Algorithm 3 Method 3: Discretized rate method

1. Fix ε.
2. Construct the sequence (lj )j=1,...,n(ε)+1 using (23).
3. Approximate the rate function using (22).
For i in 1 : N , repeat the following steps :

4. Simulate Yj according to the Gamma distribution �0
(
a(lj+1) − a(lj ), b

(ε)(lj )
)

for j = 0, . . . , n(ε) − 1 and Yn(ε) according to the distribution
�0

(
a(T ) − a(n(ε)), b(ε)(n(ε))

)
.

5. Compute X
(ε)
t,i = ∑n(ε)

j=1 Yj 1{t≤lj+1}.

6.2 Comparison of the Simulation Methods

The different approaches for the sample paths generation of an EGP are compared. For each
method, N = 105 approximate sample paths are generated and the relative errors between
the theoretical and empirical mean, variance and Laplace transform are computed. Let us
recall that the Laplace transform of Xt fully characterizes its distribution. In order to scan
a good part of this distribution, we introduce λj = L−1

Xt
(0.01 ∗ j), j = 1, . . . , 100 and we

define the relative error on the Laplace transform by:

EL(t) = 1

100

100∑
j=1

|LXt (λj ) − L̄
X

(ε)
t

(λj )|
LXt (λj )

, (39)

where L̄
X

(ε)
t

(λj ) is the empirical Laplace transform of X
(ε)
t at point λj . The previous sim-

ulation is repeated 500 times and for each method, we compute the mean and the standard
deviations of the tree relative errors (mean, variance and Laplace transform) based on these
500 sets of N = 105 approximate sample paths.

As a first step, the four series representations of Method 2 are compared and the results
provided in Table 2. As expected from Table 1, the thinning method seems less accurate than
the others. Moreover, the computing time for the inverse Lévy measure method is thrice the
computing time of Bondesson and Rejection methods for a similar precision. Thus, only
Bondesson and Rejection approaches are maintained to continue the comparison.

Tables 3, 4 and 5 provide the results for the DSI method from Subsection 3.1, the two
selected series representations (Bondesson and Rejection) and for the proposed approach
of the discretized rate function for different shape and rate functions (see the legends of
the tables). The parameters of the four methods were adjusted to have similar computing

Table 2 Mean (standard deviation) of the relative errors for the four series representations of Method 2 for
a(t) = t , b(t) = (t + 1)2 and t = 1

ILM Bond Thin Rej

simulation parameter B = 10 B = 10 B = 10 B = 10

cpu time (s) 3 1 1 1

mean 0.0027 (0.0022) 0.0028 (0.0020) 0.0246 (0.0033) 0.0026 (0.0021)

variance 0.0087 (0.0066) 0.0089 (0.0064) 0.0084 (0.0064) 0.0086 (0.0062)

Laplace transform 0.0017 (0.0011) 0.0021 (0.0008) 0.0511 (0.0022) 0.0021 (0.0010)
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Table 3 Mean (standard deviation) of the relative errors for the different methods of simulation of Xt for
a(t) = t , b(t) = (t + 1)2 and t = 1

DSI Bond Rej DRF

simulation parameters K∗ = 20 B = 10 B = 10 ε = 0.035

cpu time (s) 1 1 1 1

mean 0.0026 (0.0020) 0.0028 (0.0020) 0.0026 (0.0021) 0.0028 (0.0022)

variance 0.0108 (0.0077) 0.0089 (0.0064) 0.0086 (0.0062) 0.0088 (0.0070)

Laplace transform 0.0020 (0.0013) 0.0021 (0.0008) 0.0021 (0.0010) 0.0017 (0.0011)

times. The results for the discretized rate function are quite similar to the series representa-
tions methods, while the DSI method is sometimes less accurate for the variance or for the
Laplace transform (see Table 4). The discretized rate method hence seems to behave as well
as Bondesson’s and Rejection methods for simulation purpose, whereas the DSI method
seems a little below.

6.3 Comparison of the Approximation Methods for the cdf and pdf

We here compare the quality of the numerical assessment of the cdf/pdf of an EGP through
both Post-Widder’s formula and the DRFI method. We begin with the cdf, for which we
recall that we are able to get reference results, with an exact control of the error (see
Subsection 5.4).

An EGP X ∼ �(a(t), b(t)) is considered with a(t) = t and b(t) = (t + 1)2. Ref-
erence results are first computed for FXt (x) with x ∈ [0.01 : 0.1 : 4] and t = 2, up to
a precision lower than 3.10−6, obtained for K = 800 and ε = 10−6. The results are
provided in Table 6 for the mean absolute error on FXt (x) with respect to the reference
results for x ∈ [0.01 : 0.1 : 4] and both Post-Widder’s and DRFI methods. For H � 100 in
Post-Widder’s method and

(
ε = 10−2,K = 12

)
for the DRFI approximation, both methods

provide similar results with similar computation times. However, the DRFI method easily
yields more accurate results by decreasing ε and increasing K whereas the highest preci-
sion by Post-Widder’s method is obtained for H � 100 in the present example, with a
clearly lower precision for H = 200. This problem of poor convergence when H → ∞ for
Post-Widder’s method has already been observed in (Masol and Teugels 2010).

Table 4 Mean (standard deviation) of the relative errors for the different methods of simulation of Xt for
a(t) = 2t , b(t) = 1

(t+1)2 and t = 2

DSI Bond Rej DRF

simulation parameters K∗ = 30 B = 10 B = 10 ε = 0.25

cpu time (s) 1 1 1 1

mean 0.0014 (0.0011) 0.0014 (0.0011) 0.0014 (0.0011) 0.0015 (0.0011)

variance 0.0301 (0.0070) 0.0056 (0.0040) 0.0056 (0.0041) 0.0055 (0.0041)

Laplace transform 0.0038 (0.0012) 0.0010 (0.0007) 0.0011 (0.0007) 0.0011 (0.0007)
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Table 5 Mean (standard deviation) of the relative errors for the different methods of simulation of Xt for
a(t) = 1 − exp(−t), b(t) = 1 − exp(−t − 1) and t = 1

DSI Bond Rej DRF

simulation parameters K∗ = 20 B = 30 B = 30 ε = 0.021

cpu time (s) 1 1 1 1

mean 0.0030 (0.0024) 0.0032 (0.0024) 0.0031 (0.0025) 0.0030 (0.0023)

variance 0.0085 (0.0066) 0.0092 (0.0070) 0.0086 (0.0065) 0.0088 (0.0066)

Laplace transform 0.0019 (0.0012) 0.0019 (0.0011) 0.0019 (0.0013) 0.0019 (0.0011)

Table 6 Mean absolute error on FXt (x) for a(t) = t, b(t) = (t + 1)2, t = 2 and x ∈ [0.01 : 0.1 : 4]
Method Mean absolute error cpu time

Post-Widder (H = 50) 0.0033 2

Post-Widder (H = 100) 0.0015 4

Post-Widder (H = 110) 0.0016 4

Post-Widder (H = 200) 0.0645 7

DRFI (ε = 10−2,K = 12) 0.0014 3

DRFI (ε = 10−2,K = 200) 2.10−5 15

DRFI (ε = 10−2,K = 800) 2.10−5 15

DRFI (ε = 10−3,K = 800) < precision 30

Fig. 4 The cdf of Xt as a function of x for a(t) = t, b(t) = (t + 1)2 and t = 10
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Fig. 5 The pdf of Xt as a function of x for a(t) = t, b(t) = (t + 1)2 and t = 10

Keeping the same a(t) and b(t), three approximations of the cdf of X10 are next plotted
in Fig. 4: a non-parametric estimation obtained from a sample of size 105 generated by
Rejection method, Post-Widder’s estimation (H = 100) and the DRFI approximation (ε =
0.001 and K = 100). We observe the good superposition of the DRFI approximation and
of the non-parametric estimation. These results are in concordance with the convergence
results obtained in Subsection 5.2, which imply the convergence of the cdf F

(ε)
X10

at each
continuity point of FX10 . In the zoomed part of Fig. 4 (right), one can observe that Post-
Widder’s method seems a little less accurate than the proposed DRFI approximation.

Figure 5 represents the corresponding approximations for the pdf of X10. Even if there
is no theoretical convergence result for the DRFI approximation, the closeness of the new
approach with the non-parametric one gives us good reason to believe that our approxima-
tion is efficient, keeping in mind, however, that the non-parametric estimation is obtained
from approximate realizations of Xt . Note that, here again, the zoomed part of Fig. 5 (right)
shows that Post-Widder’s method seems a little less accurate than the DRFI approximation.

7 Conclusion

Different tools based on some discretization of the rate function of an EGP have been
presented here, firstly, for the approximate simulation of an EGP, and secondly, for the
numerical assessment of the cdf/pdf of an EGP. Three discretization schemes have been
proposed: one provides the best approximation among the three (b(ε) (t)) and the other two
(b(ε,+) (t), b(ε,−) (t)) provide bounds for Xt and for its cdf FXt .

As far as simulation procedures are concerned, it seems that our approximate simulation
scheme behaves as well as two of the most usual ones (Bondesson’s and rejection methods),
previously developed in the context of subordinators. Also, our simulation scheme seems to
behave better than the one proposed by Ishwaran and James (2004), specifically developed
for the simulation of an EGP.

As for the numerical assessment of the cdf of an EGP, we could not find in the litera-
ture any available procedure with a similar control on the precision (except from Veillette
and Taqqu (2011), which provides a refinement of the Post-Widder’s method as well as
some asymptotic bounds for the error when H → ∞). Beyond this control on the preci-
sion, the results provided by the proposed method have been compared to those obtained
by Post-Widder’s formula, at the advantage of our method. Even if we do not have any
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similar control on the precision for the pdf, a good behavior of the proposed approx-
imation has been numerically observed, here again at its advantage when compared to
Post-Widder.

To sum up, the discretized rate function method seems to behave well, both for simulating
approximate paths and for the numerical assessment of the cdf/pdf of an EGP.

Before being able to use the proposed tools in an applied situation (for e.g. deterio-
ration modelling in an industrial reliability context), another important issue that requires
further study concerns the development of statistical estimation procedures for an EGP. In
his seminal paper, Çinlar (1980) proposes an iterative procedure that seems difficult to use
in practice (since it needs notably a test for deciding whether a sample path comes from an
ordinary Gamma process), whereas Guida et al. (2012), in a parametric context, apply an
approximate maximum likelihood method. The study of estimation procedures for an EGP
is in progress and will be the subject of a future paper.
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