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Abstract The preservation of stochastic orders under the formation of coherent systems is
a relevant topic in the reliability theory. Several properties have been obtained under the
assumption of identically distributed components. In this paper we obtain ordering preser-
vation results for generalized distorted distributions (GDD) which, in particular, can be
used to obtain preservation results for coherent systems with non-identically distributed
components. We consider both the cases of independent and dependent components.
The preservation results obtained here for GDD can also be applied to other statistical
concepts.
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1 Introduction

The distorted distributions were firstly introduced in the dual theory of choice under
risk (see Quiggin 1982 and Yaari 1987). Then they were applied to different eco-
nomic models, order statistics and coherent systems (see Wang 1996; Wang and
Young 1998; Belzunce et al. 2001; Hürlimann 2004; Khaledi and Shaked 2010;
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Sordo and Suarez-Llorens 2011; Navarro et al. 2013, 2014, 2015; Gupta and Kumar 2014).
The Distorted Distribution (DD) associated to a distribution function (DF) F and to a nonde-
creasing continuous distortion function q : [0, 1] → [0, 1] such that q(0) = 0 and q(1) = 1,
is defined by

Fq(t) = q(F (t)). (1.1)

If q is strictly increasing, then F and Fq have the same support. For the reliability
functions (RF) F = 1 − F , Fq = 1 − Fq , we have a similar expression

Fq(t) = q(F (t)), (1.2)

where q(u) = 1 − q(1 − u) is the dual distortion function, see Hürlimann (2004). The
function q is also a distortion function, that is, it satisfies the same properties as q.

The distorted distribution model is a very flexible model which can be used
to study different concepts in a unified way. Conditions for the preservation of
stochastic orders under the formation of distorted distributions were obtained in
Navarro et al. (2013) and Gupta and Kumar (2014). The preservation of stochas-
tic aging classes was studied in Navarro et al. (2014). There, the distorted distri-
butions were extended to the concept of Generalized Distorted Distributions (GDD)
which are univariate distribution functions obtained by distorting n distribution functions
(see next section).

In this paper, we extend the preservation results for stochastic orders given in Navarro
et al. (2013) to GDD (Section 2). These results are used to obtain preservation properties
for general coherent systems and order statistics (Section 3). Some conclusions are given
in Section 4 where we remark that the results obtained here can also be applied to other
statistical concepts.

Throughout the paper, increasing and decreasing mean nondecreasing and nonincreasing,
respectively.

2 Preservation Results for Generalized Distorted Distributions

The generalized distorted distribution (GDD) associated to n distribution functions (DF)
F1, . . . , Fn and to an increasing continuous multivariate distortion function (MDF) Q :
[0, 1]n → [0, 1] such that Q(0, . . . , 0) = 0 and Q(1, . . . , 1) = 1 is defined by

FQ(t) = Q(F1(t), . . . , Fn(t)). (2.1)

Obviously, the function FQ defined above is always a proper (univariate) distribution func-
tion (it is increasing, right-continuous and satisfies FQ(−∞) = Q(0, . . . , 0) = 0 and
FQ(∞) = Q(1, . . . , 1) = 1). Moreover, if Q is strictly increasing in each variable and
F1, . . . , Fn have the same support S, then FQ also has the same support S. We have a similar
expression for the respective reliability functions (RF)

FQ(t) = Q(F 1(t), . . . , F n(t)), (2.2)

where F i = 1 − Fi , FQ = 1 − FQ and where
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Q(u1, . . . , un) = 1 − Q(1 − u1, . . . , 1 − un)

is the multivariate dual distortion function. The function Q is also a multivariate distortion
function, that is, it satisfies the same properties as Q. Hence the function FQ defined above
is always a proper (univariate) reliability function. Note that Q determines Q and vice versa.
These two representations are equivalent but, sometimes, it is better to use Eq. 2.2 instead
of Eq. 2.1.

The concept of multivariate distortion function is related to the concepts of aggregation
function, triangular-norm and semi-copula. In the multivariate case, distortions of probabil-
ity measures can give rise to capacities and they are related to multi-attribute target-based
utility functions as can be seen in Fantozzi and Spizzichino (2015) and the references
therein.

Of course, if n = 1 (or if F1 = · · · = Fn), then we obtain the DD
defined in Eqs. 1.1 and 1.2. Note that representations in Eqs. 2.1 and 2.2 are sim-
ilar to copula representations for multivariate distributions. Actually the copulas are
valid distortion functions. However, note that representations in Eqs. 2.1 and 2.2
define univariate distribution and reliability functions, respectively, and that the dis-
tortion functions are not necessarily copulas. We will see some examples in the next
section.

We are going to study two kinds of preservation results. The first ones are for GDD based
on the same baseline DF F1, . . . , Fn and on different MDF Q1 and Q2, that is, we study
conditions on Q1 and Q2 to get

FQ1 ≤ORD FQ2

for a given stochastic order ORD and for any DF F1, . . . , Fn. The second ones are for GDD
based on the same MDF Q and different (ordered) baseline DF F1, . . . , Fn and G1, . . . , Gn,
that is, we study conditions on Q to get

FQ ≤ORD GQ,

where FQ is defined by Eq. 2.1 and GQ(t) = Q(G1(t), . . . , Gn(t)), for a given stochas-
tic order ORD and for any DF F1, . . . , Fn,G1, . . . , Gn such that Fi ≤ORD Gi for
i = 1, . . . , n. Of course, these two kinds of results can be combined to study ordering
properties for GDD based on different MDF and different baseline DF.

We shall study the following stochastic orders. Their basic properties can be seen in
Shaked and Shanthikumar (2007). Let F and G be the DF of two random variables X and
Y with respective reliability functions F = 1 − F and G = 1 − G. Then:

(i) F is said to be smaller than G in the usual stochastic order (denoted by F ≤ST G or
by X ≤ST Y ) if F(t) ≤ G(t) for all t.

(ii) F is said to be smaller than G in the hazard rate order (denoted by F ≤HR G or by
X ≤HR Y ) if G(t)/F (t) is increasing in t .

(iii) F is said to be smaller than G in the reversed hazard rate order (denoted by F ≤RHR

G or by X ≤RHR Y ) if G(t)/F (t) is increasing in t .
(iv) If F and G are absolutely continuous with respective probability density functions

(PDF) f and g, then F is said to be smaller than G in the likelihood ratio order
(denoted by F ≤LR G or by X ≤LR Y ) if g(t)/f (t) is increasing in t in the union of
their supports.
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If F and G are absolutely continuous distributions, then F ≤HR G is equivalent to
the ordering of their respective hazard (or failure) rate (HR) functions hF ≥ hG, where
hF = f/F and hG = g/G. Analogously, F ≤RHR G is equivalent to the ordering of
their respective reversed hazard rate (RHR) functions hF ≤ hG, where hF = f/F and
hG = g/G. These functions are used to define the following aging classes. A DF F is
said to be IHR or IFR (DHR or DFR) if hF is increasing (decreasing). A DF F is said to
be IRHR (DRHR) if hF is increasing (decreasing). The stochastic orders defined above are
related as follows:

X ≤LR Y ⇒ X ≤HR Y

⇓ ⇓
X ≤RHR Y ⇒ X ≤ST Y.

(2.3)

Now we are ready to obtain the new properties. First we need the following lemma.
Throughout the paper we use the notation

Di�(x1, . . . , xn) = ∂

∂xi

�(x1, . . . , xn)

for the partial derivative of any differentiable function � : S ⊆ R
n → R. Also we define

the associated functions

α�
i (u1, . . . , un) = uiDi�(u1, . . . , un)

�(u1, . . . , un)
(2.4)

for i = 1, . . . , n and the following class of distortion functions:

D1 = {� : α�
i (u1, . . . , un) is decreasing in (0, 1)n, i = 1, . . . , n}.

Lemma 2.1 Let FQ be a GDD based on a differentiable MDF Q and on absolutely
continuous distribution functions F1, . . . , Fn with PDF f1, . . . , fn. Then:

(i) FQ is absolutely continuous with PDF fQ given by

fQ(t) =
n∑

i=1

fi(t)DiQ(F1(t), . . . , Fn(t)) =
n∑

i=1

fi(t)DiQ(F 1(t), . . . , F n(t)).

(2.5)
(ii) The hazard rate function hQ of FQ is given by

hQ(t) =
n∑

i=1

hi(t)α
Q
i (F 1(t), . . . , F n(t)), (2.6)

where hi = fi/F i is the hazard rate of Fi for i = 1, . . . , n.
(iii) The reversed hazard rate function hQ = fQ/FQ of FQ is given by

hQ(t) =
n∑

i=1

hi(t)α
Q
i (F1(t), . . . , Fn(t)), (2.7)

where hi = fi/Fi is the reversed hazard rate of Fi for i = 1, . . . , n.

The proof is straightforward. Throughout the paper, every time we use fQ, hQ or hQ, we
shall assume that F1, . . . , Fn are absolutely continuous and that Q is differentiable.

Let us start with the conditions for the preservation properties for GDD based on the same
baseline DF. These properties generalize the results obtained in Theorem 2.4 of Navarro
et al. (2013).



Methodol Comput Appl Probab (2016) 18:529–545 533

Proposition 2.2 Let FQ1 = Q1(F1, . . . , Fn) and FQ2 = Q2(F1, . . . , Fn) be two GDD
based on F1, . . . , Fn. Then:

(i) FQ1 ≤ST FQ2 for all F1, . . . , Fn if and only if Q1 ≥ Q2 in (0, 1)n.
(ii) FQ1 ≤HR FQ2 for all F1, . . . , Fn if and only if Q2/Q1 is decreasing in (0, 1)n.

(iii) FQ1 ≤HR FQ2 for all F1, . . . , Fn if αQ1
i ≥ α

Q2
i in (0, 1)n for i = 1, . . . , n.

(iv) FQ1 ≤RHR FQ2 for all F1, . . . , Fn if and only if Q2/Q1 is increasing in (0, 1)n.

(v) FQ1 ≤RHR FQ2 for all F1, . . . , Fn if αQ1
i ≤ α

Q2
i in (0, 1)n for i = 1, . . . , n.

The proofs are straightforward from Eqs. 2.1, 2.2, 2.4, 2.6 and 2.7. Next we obtain preser-
vation properties for GDD based on the same MDF and on different (ordered) baseline DF.
These properties generalize the results obtained in Theorem 2.6 of Navarro et al. (2013).

Proposition 2.3 Let FQ = Q(F1, . . . , Fn) and GQ = Q(G1, . . . , Gn) be two GDD based
on the same MDF Q and on the DF F1, . . . , Fn and G1, . . . , Gn, respectively.

(i) If Fi ≤ST Gi for i = 1, . . . , n, then FQ ≤ST GQ for all MDF Q.
(ii) If Fi ≤HR Gi for i = 1, . . . , n, then FQ ≤HR GQ for all MDF Q ∈ D1.

(iii) If Fi ≤RHR Gi for i = 1, . . . , n, then FQ ≤RHR GQ for all MDF Q ∈ D1.

The proofs are straightforward from Eqs. 2.1, 2.3, 2.6 and 2.7. Note that the ST order
is always preserved but that we need some (quite strong) conditions for the preserva-
tion of the HR and RHR orders. Moreover, note that if we just want to compare FQ =
Q(F1, F2, . . . , Fn) and GQ = Q(G1, F2, . . . , Fn) in the HR order, then we just need

F1 ≤HR G1 and that α
Q
i is decreasing in u1 in the set (0, 1)n for i = 1, . . . , n. A simi-

lar property holds if we just change the distribution in the position j or the distributions in
some specific positions.

The conditions for the LR order are more complicated. They are stated in the following
proposition. Also similar properties are obtained for the HR and RHR orders. First, we
introduce some notation. If � : S ⊆ R

n → R is a differentiable function, then we define
the associated functions

β�(u1, . . . , un, v1, . . . , vn) = �(u1v1, . . . , unvn)

�(u1, . . . , un)
(2.8)

and

γ �(u1, . . . , un, v1, . . . , vn, w1, . . . , wn, z1, . . . , zn)

= w1z1u1D1�(u1v1, . . . , unvn) + . . . + wnznunDn�(u1v1, . . . , unvn)

z1u1D1�(u1, . . . , un) + . . . + znunDn�(u1, . . . , un)
. (2.9)

Moreover we define the following classes of distortion functions:

D2 = {� : β�(u1, . . . , un, v1, . . . , vn) is decreasing for ui ∈ (0, 1) and vi ∈ (1,∞), i = 1, . . . , n}
and

D3 = {� : β�(u1, . . . , un, v1, . . . , vn) is increasing for ui ∈ (0, 1) and vi ∈ (0, 1), i = 1, . . . , n}.

Proposition 2.4 Let FQ = Q(F1, . . . , Fn) and GQ = Q(G1, . . . , Gn) be two GDD based
on the MDF Q and on the DF F1, . . . , Fn and G1, . . . , Gn, respectively.

(i) If Fi ≤HR Gi for i = 1, . . . , n, then FQ ≤HR GQ for all MDF Q ∈ D2.
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(ii) If Fi ≤RHR Gi for i = 1, . . . , n, then FQ ≤RHR GQ for all MDF Q ∈ D3.
(iii) If Fi ≤LR Gi and Fi is IHR (DHR) for i = 1, . . . , n, then FQ ≤LR GQ for all

MDF Q such that γ Q defined in Eq. 2.9 is decreasing in u1, . . . , un, is increasing in
v1, . . . , vn, w1, . . . , wn and is increasing (decreasing) in zi for i = 1, . . . , n in the
set (0, 1)n × (1, ∞)n × (0, ∞)2n.

(iv) If Fi ≤LR Gi and Gi is IHR (DHR) for i = 1, . . . , n, then FQ ≤LR GQ for all MDF

Q such that γ Q defined in Eq. 2.9 is increasing in u1, . . . , un, v1, . . . , vn, w1, . . . , wn

and is decreasing (increasing) in zi for i = 1, . . . , n in the set (0, 1)2n × (0, ∞)2n.
(v) If Fi ≤LR Gi and Fi is DRHR for i = 1, . . . , n, then FQ ≤LR GQ for all MDF Q

such that γ Q defined in Eq. 2.9 is increasing in u1, . . . , un, v1, . . . , vn, w1, . . . , wn

and is decreasing in zi for i = 1, . . . , n in the set (0, 1)2n × (0, ∞)2n.

Proof To prove (i) note that if Fi ≤HR Gi , then Gi/F i is increasing for i = 1, . . . , n.
Then Gi/F i ≥ 1 for i = 1, . . . , n. Therefore, from Eq. 2.8, we have

GQ(t)

FQ(t)
= βQ

(
F 1(t), . . . , F n(t),

G1(t)

F 1(t)
, . . . ,

Gn(t)

F n(t)

)

and, as F i is decreasing and Q ∈ D2, then GQ/FQ is increasing and FQ ≤HR GQ holds.
Note that Gi/Fi ≤ 1 for i = 1, . . . , n.

To prove (ii) note that if Fi ≤RHR Gi , then Gi/Fi is increasing for i = 1, . . . , n. Then
Gi/Fi ≤ 1 for i = 1, . . . , n. Therefore, from Eq. 2.8, we have

GQ(t)

FQ(t)
= βQ

(
F1(t), . . . , Fn(t),

G1(t)

F1(t)
, . . . ,

Gn(t)

Fn(t)

)

and, as Fi is increasing and Q ∈ D3, then GQ/FQ is increasing and FQ ≤RHR GQ holds.
Finally, to prove (iii) note that if Fi ≤LR Gi , then gi/fi and Gi/F i are increasing for

i = 1, . . . , n. Then Gi/F i ≥ 1 for i = 1, . . . , n. Therefore, from Eqs. 2.5 and 2.9, we have

gQ(t)

fQ(t)
= γ Q

(
F 1(t), . . . , F n(t),

G1(t)

F 1(t)
, . . . ,

Gn(t)

F n(t)
,
g1(t)

f1(t)
, . . . ,

gn(t)

fn(t)
, hF

1 (t), . . . , hF
n (t)

)

and, as F i is decreasing and hF
i = fi/F i is increasing (decreasing) for i = 1, . . . , n, then

gQ/fQ is increasing and FQ ≤LR GQ holds.
The proofs of (iv) and (v) are similar to that of (iii).

Remark 2.5 Note that in (i) it is enough to have the property stated in D2 for ui ∈ (0, 1/vi)

and vi ∈ (1,∞). Note that the assumptions about aging classes IHR, DHR and DRHR
in (iii)-(v) are crucial for the preservation of the LR order since the hazard rate func-
tions appear in the representation of the ratio gQ/fQ in term of the gamma functions
(as variables z1, . . . , zn). So, if F1, . . . , Fn are exponential distributions, then we do not
need the conditions about z1, . . . , zn for the preservation of the LR order (since the
hazard rate functions are constant). These facts will be used to obtain Propositions 3.1
and 3.2.

Finally, we obtain specific conditions to compare GDD when we only change one of the
baseline distributions. Without loss of generality, we can assume that we change the first
ones. Some applications of these results are given in the next section. Again we need some
previous notation. If � : S ⊆ R

n → R is a differentiable function, then we define the
associated functions
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δ�(u1, v1, . . . , vn) = �(u1v1, u1v2, . . . , u1vn)

�(u1, u1v2, . . . , u1vn)
(2.10)

and

λ�(u1, v1, . . . , vn, w1, . . . , wn)

= w1D1�(u1v1, . . . , u1vn) + . . . + wnDn�(u1v1, . . . , u1vn)

D1�(u1, u1v2, . . . , u1vn) + · · · + wnDn�(u1, u1v2, . . . , u1vn)
. (2.11)

Proposition 2.6 Let FQ = Q(F1, F2, . . . , Fn) andGQ = Q(G1, F2, . . . , Fn) be two GDD
based on the MDF Q and on the DF F1, F2, . . . , Fn and G1, F2, . . . , Fn, respectively.

(i) If F1 ≤HR G1 and F1 ≥HR Fi (resp. ≤HR) for i = 2, . . . , n, then FQ ≤HR GQ for

all MDF Q such that δQ is decreasing in u1 and is decreasing (resp. increasing) in
vi for i = 2, . . . , n in the set (0, 1) × (1, ∞) × (0, 1)n−1 (resp. (0, 1) × (1,∞)n).

(ii) If F1 ≤RHR G1 and F1 ≤RHR Fi (resp. ≥RHR) for i = 2, . . . , n, then FQ ≤RHR

GQ for all MDF Q such that δQ is increasing in u1 and is increasing (resp.
decreasing) in vi for i = 2, . . . , n in the set (0, 1)n+1 (resp. (0, 1)2 × (1, ∞)n−1).

(iii) If F1 ≤LR G1 and F1 ≤LR Fi (resp. ≥LR) for i = 2, . . . , n, then FQ ≤LR GQ for

all MDF Q such that λQ is decreasing in u1, is increasing in v1 and is increasing
(resp. decreasing) in vi and wi for i = 2, . . . , n in the set (0, 1)× (1,∞)n × (0, ∞)n

(resp. (0, 1) × (1, ∞) × (0, 1)n−1 × (0, ∞)n).
(iv) If F1 ≤LR G1 and F1 ≤LR Fi (resp. ≥LR) for i = 2, . . . , n, then FQ ≤LR GQ for all

MDFQ such that λQ is increasing in u1 and v1 and is increasing (resp. decreasing) in
vi and wi for i = 2, . . . , n in the set (0, 1)n+1 ×(0, ∞)n (resp. (0, 1)2 ×(1, ∞)n−1 ×
(0, ∞)n).

Proof To prove (i) we first note that

GQ(t)

FQ(t)
= δQ

(
F 1(t),

G1(t)

F 1(t)
,
F 2(t)

F 1(t)
, . . . ,

F n(t)

F 1(t)

)
.

Also note that δQ(u1, v1, . . . , vn) is increasing in v1. Hence, as F1 ≤HR G1 implies that
G1/F 1 is increasing, then δQ(u1,G1(t)/F 1(t), . . . , vn) is increasing in t .

Analogously, if we assume that F1 ≥HR Fi (≤HR) and that δQ(u1, v1, . . . , vn) is
decreasing (increasing) in vi for a fixed i ∈ {2, . . . , n}, then F i/F 1 is decreasing
(increasing) and δQ(u1, v1, . . . , vi−1, F i(t)/F 1(t), vi+1, . . . , vn) is increasing in t . This
last property is true for all i = 2, . . . , n.

Finally, if δQ(u1, v1, . . . , vn) is decreasing in u1, then δQ(F 1(t), v1, . . . , vn) is increas-
ing in t . From this last property and the preceding ones, it follows that GQ/FQ increasing
in t , that is, FQ ≤HR GQ.

The proof of (ii) is similar to that of (i).
To prove (iii) we first note that, from Eqs. 2.5 and 2.11, we have

gQ(t)

fQ(t)
= λQ

(
F 1(t),

G1(t)

F 1(t)
,
F 2(t)

F 1(t)
, . . . ,

F n(t)

F 1(t)
,
g1(t)

f1(t)
,
f2(t)

f1(t)
, . . . ,

fn(t)

f1(t)

)
.

Then, if λQ(u1, v1, . . . , vn, w1, . . . , wn) is decreasing in u1, then

λQ(F 1(t), v1, . . . , vn, w1, . . . , wn)
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is increasing in t . Also note that if F1 ≤LR G1, then g1/f1 and G1/F 1 are increasing, then

λQ

(
u1,

G1(t)

F 1(t)
, v2, . . . , vn,

g1(t)

f1(t)
, w2, . . . , wn

)

is increasing in t whenever λQ is increasing in v1 (λQ is always increasing in w1).
Analogously, if F1 ≤LR Fi (≥LR) for a fixed i ∈ {2, . . . , n}, then fi/f1 and F i/F 1 are

increasing (decreasing). Therefore

λQ

(
u1, v1, . . . , vi−1,

F i(t)

F 1(t)
, vi+1, . . . , vn, w1, . . . , wi−1,

fi(t)

f1(t)
, wi+1 . . . , wn

)

is increasing in t whenever λQ is increasing (decreasing) in vi and wi . This last property
is true for all i = 2, . . . , n. From this last property and the preceding ones, it follows that
gQ/fQ increasing in t , that is, FQ ≤LR GQ.

The proof of (iv) is similar to that of (iii).

Remark 2.7 Note that, in the preceding proposition, if δQ(u1, v1, . . . , vn) is constant in vi

for a given i ∈ {2, . . . , n}, then we do not need the condition about Fi (i.e., F1 ≥HR Fi or
F1 ≤HR Fi). Also note that δQ(u1, v1, . . . , vn) is decreasing in vi for a i ∈ {2, . . . , n} if,
and only if,

Q(u1, u1v2, . . . , u1vn)

Q(u1v1, u1v2, . . . , u1vn)

DiQ(u1v1, u1v2, . . . , u1vn)

DiQ(u1, u1v2, . . . , u1vn)
≤ 1. (2.12)

If v1 > 1 and u1 ∈ (0, 1), then u1 < u1v1 and

Q(u1, u1v2, . . . , u1vn) ≤ Q(u1v1, u1v2, . . . , u1vn).

Analogously, if we assume that DiQ(u1, . . . , un) is decreasing in u1, then

DiQ(u1v1, u1v2, . . . , u1vn) ≤ DiQ(u1, u1v2, . . . , u1vn)

and Eq. 2.12 holds. Hence δQ(u1, v1, . . . , vn) is decreasing in vi . Analogously, it can be
proved that if DiQ(u1, . . . , un) is decreasing in u1, then δQ(u1, v1, . . . , vn) is increasing
in vi . These results will be used in Example 3.6.

3 Applications to Coherent Systems and Order Statistics

Let us consider a coherent system with lifetime T = ψ(X1, . . . , Xn) based on possibly
dependent components with lifetimes X1, . . . , Xn. Let us assume that X1, . . . , Xn have
DF Fi(t) = Pr(Xi ≤ t) and RF F i(t) = Pr(Xi > t) for i = 1, . . . , n. The k-out-
of-n systems are systems which work when at least k of their n component work. Their
lifetimes are the order statistics X1:n, . . . , Xn:n obtained from X1, . . . , Xn. In particular,
X1:n = min(X1, . . . , Xn) and Xn:n = max(X1, . . . , Xn) represent the series and parallel
system lifetimes, respectively.

We assume that the component lifetimes X1, . . . , Xn can be dependent or independent
and that this possible dependence will be represented by the joint reliability (or survival)
function of (X1, . . . , Xn)

F (t1, . . . , tn) = Pr(X1 > t1, . . . , Xn > tn).
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This function can be written using its copula representation as
F(t1, . . . , tn) = K(F 1(t1), . . . , F n(tn)), (3.1)

where K is the survival copula (K is a multivariate distribution function with uniform
marginals in (0, 1)). If the components are independent, then K is the product copula. This
representation is very convenient in this context since the different kinds of components
are represented by the component reliability functions F i and the dependence between the
components is represented by the survival copula K . A representation similar to Eq. 3.1
holds for the distribution functions (with the usual or distribution copula C).

It is well known (see, e.g., Barlow and Proschan 1975, p. 12) that the lifetime of a coher-
ent system can be written as T = maxj=1,...,r XPj

, where XP = mini∈P Xi is the lifetime
of the series system with components in P for all P ⊆ {1, . . . , n} and P1, . . . , Pr are the
minimal path sets of the system. A path set is a set of indices P such that if all the compo-
nents in P work, then the system works. A minimal path set is a path set which does not
contain other path sets. For example, the minimal path sets of the coherent system with life-
time T = min(X1, max(X2, X3)) are P1 = {1, 2} and P2 = {1, 3}. The minimal path sets
only depend on the system structure function.

The system reliability function FT (t) = Pr(T > t) can be obtained by using the
above minimal path set representation, the inclusion-exclusion formula and the copula
representation given in Eq. 3.1 as

FT (t) = H(F 1(t), . . . , F n(t)) (3.2)

(see, e.g., Navarro and Spizzichino 2010; Navarro et al. 2011, 2014), where H is a func-
tion which depends on the minimal path sets P1, . . . , Pr (the system structure) and on
the survival copula K (the dependence between the components’ lifetimes) but it does not
depend on F 1, . . . , F n. Moreover, H is an increasing continuous function from [0, 1]n
to [0, 1] such that H(0, . . . , 0) = 0 and H(1, . . . , 1) = 1. Therefore, the system dis-
tribution is a GDD from the components’ distributions with multivariate dual distortion
function Q = H . In the case of independent components, K is the product copula and
the function H is a multivariate polynomial called reliability function of the structure
(see Barlow and Proschan 1975, p. 21) or domination polynomial (see Satyanarayana and
Prabhakar 1978). In the general case, the function H was called domination function in
Navarro and Spizzichino (2010) and structure-dependence function in Navarro et al. (2011).
A representation similar to Eq. 3.2 holds for the distribution functions with a different
distortion function (see, e.g., Navarro et al. 2015).

The representation formula presented here is based on the minimal path sets of the sys-
tem but the same object can be described in terms of different notions (such as aggregation
functions, utilities or capacities) as can be seen in the alternative expressions for this rep-
resentation obtained in Dukhovny and Marichal (2012), Gandy (2013) and Fantozzi and
Spizzichino (2015). For an interesting study concerning aggregation functions, one can see,
e.g., the paper Kolesarova et al. (2012) and references given therein.

In particular, for the series system X1:n, we have H = Q = K , that is,

F 1:n(t) = K(F 1(t), . . . , F n(t)). (3.3)

Analogously, for the parallel system Xn:n, we have Q = C, where C is the usual
(distribution) copula, that is,

Fn:n(t) = C(F1(t), . . . , Fn(t)). (3.4)

Hence
Fn:n(t) = 1 − Fn:n(t) = 1 − C(1 − F 1(t), . . . , 1 − Fn(t)),
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that is, its domination function is H(u1, . . . , un) = 1 − C(1 − u1, . . . , 1 − un).

Let us see how to obtain the domination function H for other coherent systems. For
example, let us consider the system with lifetime T = min(X1, max(X2, X3)). Then the
minimal path sets are {1, 2} and {1, 3} and we have

FT (t) = Pr({X{1,2} > t} ∪ {X{1,3} > t})
= Pr(X{1,2} > t) + Pr(X{1,3} > t) − P(X{1,2,3} > t)

= F(t, t, 0) + F(t, 0, t) − F(t, t, t)

= K(F 1(t), F 2(t), 1) + K(F 1(t), 1, F 3(t)) − K(F 1(t), F 2(t), F 3(t))

= H(F 1(t), F 2(t), F 3(t)), (3.5)

where the domination function H is given by

H(u1, u2, u3) = K(u1, u2, 1) + K(u1, 1, u3) − K(u1, u2, u3).

Clearly, H is a multivariate distortion function (i.e., it is increasing and continuous in [0, 1]3

and satisfies H(0, 0, 0) = 0 and H(1, 1, 1) = 1). In particular, in the independent case, the
domination polinomial (reliability function of the structure) is

H(u1, u2, u3) = u1u2 + u1u3 − u1u2u3.

Now we can use the results obtained in the preceding section to study preservation prop-
erties for coherent systems (order statistics). For example, in the independent case, for the
series system X1:n = min(X1, . . . , Xn), we have

Q(u1, . . . , un) = K(u1, . . . , un) = u1 . . . un,

and then αK
i (u1, . . . , un) = 1 for i = 1, . . . , n. Therefore, from Proposition 2.3 (ii), the HR

order is preserved (a well known property). In the next proposition we study the preservation
properties for the LR order in series systems with independent components.

Proposition 3.1 Let X1:n = min(X1, . . . , Xn) and Y1:n = min(Y1, . . . , Yn) be the lifetimes
of two series systems with independent components having distributions F1, F2, . . . , Fn and
G1, F2, . . . , Fn, respectively, such that F1 ≤LR G1.

(i) If F1 is DHR and Fi is IHR for i = 2, . . . , n, then X1:n ≤LR Y1:n.
(ii) If G1 is DHR and Fi is IHR for i = 2, . . . , n, then X1:n ≤LR Y1:n.

Proof To prove (i), note that from Eq. 3.3, the reliability function of X1:n is the GDD

F 1:n(t) = Q(F 1(t), F 2(t), . . . , F n(t))

with Q(u1, . . . , un) = u1 . . . un. Analogously, for Y1:n we have

G1:n(t) = Q(G1(t), F 2(t), . . . , F n(t)).

Therefore, the function γ Q defined in Eq. 2.9 is given by

γ Qx(u1, . . . , un, v1, . . . , vn, w1, . . . , wn, z1, . . . , zn)

= v1 . . . vn

(w1/v1)z1 + · · · + (wn/vn)z1

z1 + · · · + zn

.

Hence, γ Q is constant in u1, . . . , un and increasing in v1, . . . , vn, w1, . . . , wn in the set
D = (0, 1)n × (1, ∞)n × (0, ∞)2n. Moreover, γ Q is decreasing in z1 if, and only if

w1

v1
(z2 + · · · + zn) ≤ w2

v2
z2 + · · · + wn

vn

zn
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holds. This property is satisfied if
w1

v1
− wi

vi

≤ 0, i = 2, . . . , n.

This property is not true in D and so Proposition 2.4 (iii) cannot be applied directly to this
case. However, by using a procedure similar to that used in the proof of that proposition
and taking into account the fact that, in the present case, w1 = g1/f1, v1 = G1/F 1, wi =
gi/fi = 1 and vi = Gi/F i = 1 for i = 2, . . . , n, we see that the function γ Q can be
written as

γ Q(u1, . . . , un, v1, . . . , vn, w1, . . . , wn, z1, . . . , zn)

= v1 . . . vn

(w1/v1)z1 + z2 + · · · + z1

z1 + z2 + · · · + zn

where w1/v1 will be replaced with (g1/G1)/(f1/F 1) = hG
1 /hF

1 . As F1 ≤LR G1 implies
F1 ≤HR G1, then we have hG

1 ≤ hF
1 and so we can assume w1 ≤ v1. A straightforward

calculation shows that γ Q is decreasing in z1 and increasing in z2, . . . , zn whenever w1 ≤
v1. Therefore, as F1 is DHR and Fi is IHR for i = 2, . . . , n, from Proposition 2.4 (iii) , we
have X1:n ≤LR Y1:n.

The proof of (ii) can be obtained by using a procedure similar to that used in the proof
of Proposition 2.4 (iv).

Proposition 3.2 Let X1:n = min(X1, . . . , Xn) and Y1:n = min(Y1, . . . , Yn) be the life-
times of two series systems with independent components having distributions F1, . . . , Fn

and G1, . . . , Gn, respectively, such that Fi ≤LR Gi for i = 1, . . . , n. If F1, . . . , Fn (or
G1, . . . , Gn) are exponential, then X1:n ≤LR Y1:n.

The proof is immediate from the first part of the preceding proof and Remark 2.5.
However, the next example shows that the LR order is not necessarily preserved for other
distributions.

Example 3.3 Let us consider the series systems X1:2 = min(X1, X2) and Y1:2 =
min(Y1, Y2) with independent components and Weibull reliability functions F 1(t) =
exp(−2ta), G1(t) = exp(−ta) and F 2(t) = G2(t) = exp(−tb) for a, b > 0. Note that
F1 ≤LR G1 and F1 and G1 are IHR when a ≥ 1. If a = 2 and b = 1 (i.e., F1,G1 are
strictly IHR and F2 is exponential), then the ratio r(t) = g1:2(t)/f1:2(t) is decreasing in
(0, 0.291578) and increasing in (0.291578,∞). Hence, X1:2 and Y1:2 are not LR-ordered.
If a = b = 1 (i.e. F1, G1, F2 are exponential), then r(t) is increasing and X1:2 ≤LR Y1:2.
If a = b = 2 (i.e. F1, G1, F2 are strictly IHR), then r(t) is strictly increasing and
X1:2 ≤LR Y1:2. The case a = b = 2 can also be solved from the results included in Example
1.C.36 of Shaked and Shanthikumar (2007).

The following example shows that Proposition 3.2 is not necessarily true for other
coherent systems (parallel systems).

Example 3.4 Let us consider the parallel systems X2:2 = max(X1, X2) and Y2:2 =
max(Y1, Y2) with independent components and exponential reliability functions F 1(t) =
exp(−at), G1(t) = exp(−bt) and F 2(t) = G2(t) = exp(−ct) for a, b, c > 0. Note that
F1 ≤LR G1 if a ≥ b. If a = 2 and b = c = 1, then the ratio r(t) = g2:2(t)/f2:2(t) is
increasing and X2:2 ≤LR Y2:2 holds. However, if a = 3, b = 2 and c = 1, then by plotting
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the ratio r(t) = g2:2(t)/f2:2(t) we see that it is first increasing and then decreasing. Hence
X2:2 ≤LR Y2:2 does not hold. Therefore, the LR order is not preserved and Proposition 3.2
is not true for parallel systems (non-series systems). The case a = 2 and b = c = 1, can also
be solved from the results included in Example 1.C.36 of Shaked and Shanthikumar (2007).

Proposition 2.2 can be used to obtain comparison results for this system. For example, if
we have two independent components and we want to compare X2:2 = max(X1, X2) and
X1:2 = min(X1, X2) in the HR order, then we should study the ratio

H2:2(u1, u2)

H1:2(u1, u2)
= u1 + u2 − u1u2

u1u2
= 1

u2
+ 1

u1
− 1.

As it is decreasing in both u1 and u2, then, from Proposition 2.2 (ii) , we have X1:2 ≤HR

X2:2 for all F1, F2. However, if we want to compare X2:2 = max(X1, X2) and X1, then we
should study the ratio

H2:2(u1, u2)

H1:1(u1, u2)
= u1 + u2 − u1u2

u1
= 1 + u2

u1
− u2.

As it is decreasing in u1 and increasing in u2 in the set (0, 1)2, then, surprisingly, X2:2
and X1 are not HR ordered for all F1, F2. For example, they are not HR ordered if the
independent components have exponential distributions with means 1 and 1/2, respectively.

Next we study preservation properties for other coherent system structures and coherent
systems with dependent components. In the first one, we study the preservation of the HR
order in series systems with dependent components having an Archimedean survival copula.

Example 3.5 Let X1:2 = min(X1, X2) be the lifetime of a series system with two dependent
components having an Archimedean survival copula

K(u1, u2) = g(g−1(u1) + g−1(u2)),

where g is a non-negative decreasing real-valued function (called generator) satisfying
some properties (see Theorem 4.1.4 in Nelsen 2006, p. 111) and g−1 is its inverse function.
Recall that for series systems we have Q = H = K . We want to use Proposition 2.3 (ii),
to study if the HR order is preserved under the formation of this kind of systems. By the
symmetry of the copula, from Proposition 2.3, it is enough to study the monotonicity of

αK
1 (u1, u2) = u1D1K(u1, u2)

K(u1, u2)

in (0, 1)2. For the Archimedean copulas, this function can be written as

αK
1 (u1, u2) = u1

g′(g−1(u1) + g−1(u2))

g(g−1(u1) + g−1(u2))
(g−1)′(u1).

Therefore, if αK
1 is decreasing in (0, 1)2, then the HR order is preserved.

For example, the Gumbel-Barnett copula is obtained with g(x) = exp(−(exp(x)−1)/θ),

where θ ∈ (0, 1] (see copula number 9 of Table 4.1 in Nelsen 2006, p. 116). Then a
straightforward calculation gives

α
KGB

1 (u1, u2) = 1 − θ ln u2.

Therefore, αKGB

1 is decreasing in (0, 1)2 and the HR order is preserved, that is, if Xi ≤HR Yi

for i = 1, 2, then X1:2 ≤HR Y1:2 for this copula and any F1, F2. It is easy to see that this
order is also preserved in the case of independent components (a well known property).
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Fig. 1 Plots of the hazard rate functions for the series systems with two dependent components with the
Clayton copula considered in Example 3.5 when θ = 0.5, the first components have exponential distributions
with hazard rates 2 (blue line) and 1 (black line) and the second components have a common IHR Weibull
distribution

However, the HR is not always preserved. For example, if the copula is the Clayton
Archimedean copula

KC(u1, u2) = (max(u−θ
1 + u−θ

2 − 1, 0))−1/θ

for θ > 0, which is obtained with the generator g(x) = (1 + θx)−1/θ (see copula number 1
of Table 4.1 in Nelsen 2006, p. 116), then a straightforward calculation gives

α
KC

1 (u1, u2) = u−θ
1

u−θ
1 + u−θ

2 − 1

for all u1, u2 such that u−θ
1 + u−θ

2 − 1 > 0. This function is decreasing in u1 but increasing
in u2. Hence the condition for the preservation of the HR order given in Proposition 2.3 (ii)
does hold. Then this order is not necessarily preserved. For example, if θ = 0.5, F 1(t) =
exp(−2t), G1(t) = exp(−t) and F 2(t) = G2(t) = exp(−t2), then the hazard rate func-
tions are not ordered (see Fig. 1). Note that, at the beginning, hF

1:2(t) > hG
1:2(t) (the first

system is worse than the second one). However, when t > 1.38622, then hF
1:2(t) < hG

1:2(t).
Hence,

(X1:2 − t |X1:2 > t) ≥ST (Y1:2 − t |Y1:2 > t), f or all t > 1.38622,

that is, the used series systems with age t > 1.38622 obtained from the worse components
are ST-better (more reliable) than that obtained from the better components!

In the next example we apply Proposition 2.6 and Remark 2.7 to obtain HR ordering
properties for a system with independent components.

Example 3.6 Let us consider the coherent systems with lifetimes TX =
min(X2, max(X1, X3)) and TY = min(Y2, max(Y1, Y3)) where we assume that
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X1, X2, X3, Y1, Y2, Y3 are independent with reliability functions F 1, F 2, F 3,G1, F 2, F 3,
respectively. From Eq. 3.5 the reliability functions of these systems are

FTX(t) = Q(F 1(t), F 2(t), F 3(t))

and
FTY(t) = Q(G1(t), F 2(t), F 3(t))

respectively, where
Q(u1, u2, u3) = u1u2 + u2u3 − u1u2u3.

To apply Proposition 2.6 (i) , we compute

δQ(u1, v1, v2, v3) = v1 + v3 − u1v1v3

1 + v3 − u1v3
.

This function is decreasing in u1 and v3 and constant with respect to v2 in the set (0, 1) ×
(1, ∞)×(0,∞)×(1,∞). Hence, from Proposition 2.6 (i) and Remark 2.7, we have TX ≤HR

TY whenever F1 ≤HR G1 and F1 ≥HR F3. This property is not necessarily true if F1 ≥HR

F3 does not hold. For example, if F 1(t) = exp(−2t2), F 2(t) = F 3(t) = exp(−t) and
G1(t) = exp(−t2), by plotting the hazard rate functions of these systems we see that they
are not HR ordered.

In the following example, we use the results given in Proposition 2.2 to compare systems
with different structures. The example shows that these results can also be used to compare
systems with the same structure but having components with different levels of dependency.

Example 3.7 Let us consider the series system with lifetime T1 = min(X1, X2, X3) and
the coherent system with lifetime T2 = min(X1, max(X2, X3)). If the components are
independent, then the system reliability functions are

FT1(t) = Q1(F 1(t), F 2(t), F 3(t))

and
FT2(t) = Q2(F 1(t), F 2(t), F 3(t))

respectively, where F 1, F 2, F 3 are the component reliability functions and where

Q1(u1, u2, u3) = u1u2u3

and
Q2(u1, u2, u3) = u1u2 + u1u3 − u1u2u3

from Eq. 3.5. Then, from Proposition 2.2 (ii), T1 ≤HR T2 holds if and only if Q2/Q1 is
decreasing in (0, 1)3. As

Q2(u1, u2, u3)

Q1(u1, u2, u3)
= 1

u3
+ 1

u2
− 1

is decreasing, we have T1 ≤HR T2 for all F 1, F 2, F 3.
Let us assume now that the components in both systems are dependent with a common

Farlie-Gumbel-Morgenstern (FGM) survival copula

KFGM(u1, u2, u3) = u1u2u3 (1 + θ(1 − u1)(1 − u2)(1 − u3)) , (3.6)

where θ ∈ [−1, 1]. The independence case is obtained when θ = 0. Then, from Eq. 3.5,

Q
θ

1(u1, u2, u3) = u1u2u3(1 + θ(1 − u1)(1 − u2)(1 − u3))
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and

Q
θ

2(u1, u2, u3) = u1u2 + u1u3 − u1u2u3(1 + θ(1 − u1)(1 − u2)(1 − u3))

when the copula is given by Eq. 3.6. Hence

Q
θ

2(u1, u2, u3)

Q
θ

1(u1, u2, u3)
= 1

u3(1 + θ(1 − u1)(1 − u2)(1 − u3))

+ 1

u2(1 + θ(1 − u1)(1 − u2)(1 − u3))
− 1

is decreasing in (0, 1)3 if θ ≤ 0. Therefore, we have T1 ≤HR T2 for all F 1, F 2, F 3 and all
θ ≤ 0 (negative dependency). However, these systems are not necessarily ordered if θ > 0
(positive dependency).

Finally, if we want to compare the series systems with dependent components having
a FGM survival copula with different levels of dependency, from Proposition 2.2 (ii), we
should compute

Q
θ ′
1 (u1, u2, u3)

Q
θ

1(u1, u2, u3)
= 1 + θ ′(1 − u1)(1 − u2)(1 − u3)

1 + θ(1 − u1)(1 − u2)(1 − u3)
.

This function is decreasing in (0, 1)3 when θ ′ ≥ θ . Therefore, we have T θ
1 ≤HR T θ ′

2 for
all F 1, F 2, F 3 and all −1 ≤ θ ≤ θ ′ ≤ 1, that is, the performance of the series system
is improved (in the HR order) when the components are more dependent (an expectable
property).

We conclude this section giving some direct applications of the simple result included
in Proposition 2.2 (i). Firstly, we note that many copulas include a dependence parame-
ter and they are ordered with respect to this parameter. Hence, from Proposition 2.2 (i),
Eqs. 3.3 and 3.4, the respective series (or parallel) systems will be ST-ordered with respect
to the (dependence) copula parameter. For example, we can consider the Cuadras-Augé
bivariate family of copulas given by

Cθ (u1, u2) = [min (u1, u2)]
θ [u1u2]1−θ , θ ∈ [0, 1] , (3.7)

(see equation (2.2.10) in Nelsen 2006, p. 15). In this copula, the parameter θ measures
the degree of stochastic dependence between the two components. Note that C0 (u1, u2)

represents the case of independent components and C1 (u1, u2) is the Fréchet-Hoeffding
upper bound copula. This parametric family of copulas is positively ordered, that is, if 0 ≤
θ1 ≤ θ2 ≤ 1, then Cθ1 (u1, u2) ≤ Cθ2 (u1, u2) for u1, u2 ∈ (0, 1) (see Example 2.19 in
Nelsen 2006, p. 39). Therefore, under a Cuadras-Augé distribution copula, if 0 ≤ θ1 ≤
θ2 ≤ 1, then the respective parallel system lifetimes satisfy X

θ1
2:2 ≥ST X

θ2
2:2, which means

that a greater positive dependence implies a smaller reliability of the parallel system. In a
similar way, if we consider the series systems with component lifetimes having the survival
copula K = Cθ defined in Eq. 3.7, then we obtain X

θ1
1:2 ≤ST X

θ2
1:2, which means that a

greater positive dependence implies a greater reliability of the series system. Similar results
can be obtained, for example, for the Gumbel-Barnett copula considered in Example 3.5
or for the Farlie-Gumbel-Morgenstern (FGM) copula considered in Example 3.7. These
results suggest that dependence among components is crucial for the reliability of parallel
and series systems.
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The following result provides simple stochastic bounds for a large class of GDD in terms
of the baseline distribution functions F1, . . . , Fn.

Proposition 3.8 Let FQ = Q(F1, . . . , Fn) be a GDD based on the MDF Q and on the
distribution functions F1, . . . , Fn.

(i) If Q(u1, . . . , un) ≤ ui (≥) for some i ∈ {1, . . . , n}, then FQ ≥ST Fi (≤ST ).
(ii) If Q(u1, . . . , un) ≤ ui (≥) for all i ∈ {1, . . . , n}, then FQ ≥ST min (F1, . . . , Fn)

(resp. FQ ≤ST max (F1, . . . , Fn)).
(iii) If Q(u1, . . . , un) ≤ ui (≥) for some i ∈ {1, . . . , n}, then FQ ≤ST F i (≥ST ).
(iv) If Q(u1, . . . , un) ≤ ui (≥) for all i ∈ {1, . . . , n}, then FQ ≤ST min

(
F 1, . . . , F n

)

(resp. FQ ≥ST max
(
F 1, . . . , F n

)
).

The proof is immediate. These results can be applied to coherent systems by using the
Fréchet-Hoeffding upper bound (UB) copula given by

CUB (u1, . . . , un) = min (u1, . . . , un) .

This copula represents comonotonicity which corresponds to the strongest type of positive
dependence. It is well known that any other copula K , satisfies

K (u1, . . . , un) ≤ CUB (u1, . . . , un) .

Hence, we obtain XK
1:n ≤ST XUB

1:n , where XK
1:n and XUB

1:n represent the series system lifetimes
obtained with the arbitrary survival copula K and with the upper bound survival copula
CUB , respectively. Moreover, if T is the lifetime of a coherent system whose component
lifetimes X1, . . . , Xn have the survival copula K and whose domination function H satisfies
H(u1, . . . , un) ≤ ui for i = 1, . . . , n, then

XK
1:n ≤ST T ≤ST XUB

1:n .

The first inequality is obtained from T = φ(X1, . . . , Xn) ≥ min(X1, . . . , Xn) = X1:n and
the second from Proposition 3.8 (iv). Analogously, for the parallel systems with compo-
nents having the distributional copulas C and CUB , we obtain XC

n:n ≥ST XUB
n:n . Hence, if

H(u1, . . . , un) ≥ ui for i = 1, . . . , n, then

XUB
n:n ≤ST T ≤ST XC

n:n.
Moreover, we of course have XUB

1:n ≤ST XUB
n:n .

4 Conclusions

In this paper we give a procedure to study preservation properties for stochastic orders
under the formation of generalized distorted distributions. This general approach can be
applied to study order statistics and coherent systems with independent or dependent com-
ponents. We want to point out that, for certain systems, some stochastic orders are not
preserved. Thus, for example, in the case of independent components, the LR order is not
preserved under the formation of series systems. Then, we obtain some conditions under
which this order is preserved. For example, it is preserved if the components in one sys-
tem have exponential distributions. The tools provided in this paper can be used to obtain
more results of this type for other system structures and/or specific dependence models
for the components in the system. They can also be used to study other statistical con-
cepts that can be written as generalized distorted distributions. This includes finite mixtures
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(F = p1F1 + · · · + pnFn for p1, . . . , pn ≥ 0), arithmetic means (F = (F1 + · · · + Fn)/n),
geometric means (F = (F1 . . . Fn)

1/n and F = (F 1 . . . F n)
1/n), generalized proportional

hazard rate models (F = F
α1
1 . . . F

αn

n , α1, . . . , αn ≥ 0), generalized proportional reversed
hazard rate models (F = F

α1
1 . . . F

αn
n , α1, . . . , αn ≥ 0), bounds (FU = max(F1, . . . , Fn)

and FL = min(F1, . . . , Fn)), etc.
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