
Methodol Comput Appl Probab (2016) 18:487–498
DOI 10.1007/s11009-014-9436-1

Birth and Death Chains on Finite Trees: Computing
their Stationary Distribution and Hitting Times

José Luis Palacios ·Daniel Quiroz

Received: 24 April 2013 / Revised: 21 November 2014 /
Accepted: 29 December 2014 /Published online: 15 January 2015
© Springer Science+Business Media New York 2015

Abstract Every birth and death chain on a finite tree can be represented as a random walk
on the underlying tree endowed with appropriate conductances. We provide an algorithm
that finds these conductances in linear time. Then, using the electric network approach, we
find the values for the stationary distribution and for the expected hitting times between any
two vertices in the tree. We show that our algorithms improve classical procedures: they
do not exhibit ill-posedness and the orders of their complexities are smaller than those of
traditional algorithms found in the literature.

Keywords Effective resistance · Conductance · Star graph · Hitting times

Mathematics Subject Classification (2010) 60J15 · 60C05

1 Introduction

Birth and death (B. D.) chains on trees are natural generalizations of ordinary B. D. chains,
where the transitions occur from any given vertex of a tree to either itself or to any other
neighboring vertex in the tree. The ordinary birth-and-death processes occur on the linear
graph. The research involving B. D. chains on trees (Bertoncini 2011; Fayolle et al. 2004;
Ma 2010) appears to be directed to infinite (random or deterministic) trees and is related to

J. L. Palacios (�)
Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque,
NM 87131, USA
e-mail: jpalacios@unm.edu

D. Quiroz
Department of Mathematics, London School of Economics, London WC2A 2AE, UK
e-mail: D.Quiroz@lse.ac.uk

mailto:jpalacios@unm.edu
mailto:D.Quiroz@lse.ac.uk

488 Methodol Comput Appl Probab (2016) 18:487–498

the questions of whether the process is transient or recurrent and, in the latter case, whether
closed form formulas can be found for the stationary distribution. In this article we will be
concerned with B.D. chains which occur on finite trees, and we will find the values for the
stationary distribution and for the hitting times between any two arbitrary vertices. The idea
is to represent a B.D. chain on a finite tree as a random walk on the underlying tree, by
means of an algorithm that assigns suitable conductances to the edges of the tree, and then
use known formulas for the stationary distribution and for the hitting times given in terms
of the conductances.

Since the appearance of the book of Doyle and Snell (1984), a great deal of attention
has been devoted to the relation between electric networks and random walks on graphs. In
particular, the computation of stationary distributions and expected hitting times sometimes
is greatly simplified by this electric network approach, which consists of thinking of the
edge between vertices v and u as a resistor with resistance rvu (or conductance Cvu =
1/rvu); then we can define the randomwalk on the connected undirected graphG = (V ,E),
as the first order Markov chain Xn, n ≥ 0, that from its current vertex v jumps to the
neighboring vertex u with probability pvu = Cvu/C(v), where C(v) = ∑

w:w∼v Cvw , and
w ∼ v means that w is a neighbor of v. Note that we can assign a (fictitious) conductance
Czz from a vertex z to itself, giving rise to a transition probability from z to itself. We denote
by EaTb the expected value, starting from the vertex a, of the hitting time Tb of the vertex b,
defined by

Tb = inf{n ≥ 0 : Xn = b}.
The stationary distribution π = {πz}z∈V is the unique row probability vector that satisfies

πP = π, (1)

where P = (pvu)v,u∈V is the transition probability matrix of the process.
In this context we have:

Theorem 1 For a random walk on a finite tree G we have

πz = C(z)
∑

z C(z)
(2)

and for any a, b ∈ G and P the unique path of vertices between a and b we have

EaTb =
∑

x∈P

Rx,bC
x, (3)

where Rx,b is the effective resistance between x and b, Cx = ∑
w∈Gx

C(w), Gx is the
connected component of G − E(P) that contains x and E(P) is the set of edges in the
path P .

Derivations of Eqs. 2 and 3 can be read in Doyle and Snell (1984) and Palacios (2009),
respectively.

Doyle and Snell also noted that a finite ergodic Markov chain can be represented as
a random walk on a finite graph with conductances if and only if the Markov chain is
reversible. A stochastic process is said to be reversible if the future of the process at any
given time has the same distribution as the process seen in reversed time. In particular,
reversible Markov chains are characterized by Kolmogorov’s criteria in the following way
(see Kelly (1979)).

Methodol Comput Appl Probab (2016) 18:487–498 489

Lemma 1 A finite ergodic Markov chain on states {1, ..., N}, is reversible if and only if its
transition probabilities satisfy

p(j1, j2)p(j2, j3) . . . p(jk−1, jk)p(jk, j1)

= p(j1, jk)p(jk, jk−1) . . . p(j3, j2)p(j2, j1)

for any finite sequence of states j1, j2, . . . , jk ∈ {1, 2, . . . , N}.

Hence, as trees are acyclic, B.D. chains on trees are reversible and therefore, they can be
represented as random walks on the underlying tree endowed with conductances.

It was shown in Palacios and Tetali (1996) that every ordinary birth-and-death Markov
chain can be represented as a random walk on the linear graph with vertices 0, 1, . . . , N and
conductances Ck , 1 ≤ k ≤ N , between vertices k − 1 and k given by

Ck = p1 · · · pk−1

q1 · · · qk−1
C1, 2 ≤ k ≤ N, (4)

where C1 is arbitrary. C00 = s0
p0

C1 and conductances from any vertex to itself given by

Ckk = sk

qk

Ck, 1 ≤ k ≤ N. (5)

This pair of equations, which allows to explicitly find conductances on the linear graph
in terms of the transition probabilities, is one of the main inspirations of our algorithm. The
next lemma, which shows how to assign conductances starting from a vertex that branches
out in more than two directions, is the other source of inspiration.

Lemma 2 Any B.D. chain on the star graph with center N and leaves 1, 2, . . . , N − 1,
N ≥ 2, and transition probabilities

p(N, i) = pi, p(i, N) = qi, 1 ≤ i ≤ N − 1, p(i, i) = si , 1 ≤ i ≤ N

can be represented as a random walk on the star graph with conductances

CNi = C1pi

p1
, 1 ≤ i ≤ N − 1, CNN = C1sN

p1
, (6)

Cii = C1sipi

qip1
, 1 ≤ i ≤ N − 1, (7)

where C1 > 0 is arbitrary.

Proof Left to the reader.

2 The Algorithm

To avoid trivialities, all B.D. chains considered are ergodic Markov chains, that is, there are
non-zero probabilities to go from any given vertex to any neighboring vertex and back to
the original vertex. We will denote by p(v, u) the transition probability from v to u and the
underlying tree will be G = (V ,E), and recall that we write v ∼ u if v and u are neighbors.

490 Methodol Comput Appl Probab (2016) 18:487–498

Then we can describe the algorithm that expresses the chain as a random walk on the tree
with appropriate conductances on the edges as follows:

1. Take any vertex v ∈ V of the tree as the root, and consider any u ∼ v. Assign an
arbitrary (positive) value to Cvu.

2. Letting Cvu play the role of C1 in formulas (6), obtain the conductance Cvv and all
conductances Cvw where w is a neighbor of v, i.e.:

Cvw = Cvup(v,w)

p(v, u)
, w ∼ v; Cvv = Cvup(v, v)

p(v, u)
.

3. Taking v as the root, traverse the vertices of the tree using Breadth First Search (BFS).
Every time a vertex not previously visited is reached, only one of its adjacent conduc-
tances has being assigned. Take this conductance as the C1 used to obtain all other
adjacent ones.

The fact that the procedure works, that is, the fact that we can recover the transition
probabilities from the conductances can be checked easily since

C(v) =
∑

w:w∼v

Cvw = Cvu

p(v, u)
,

and then the motion of the random walk from v to w is dictated by

Cvw

C(v)
= Cvup(v,w)

p(v, u)

p(v, u)

Cvu

= p(v,w),

when v ∼ w and

Cvv

C(v)
= Cuvp(v, v)

p(v, u)

p(v, u)

Cvu

= p(v, v),

as desired.
This procedure stops when all leaves, and thus all vertices, have been visited. Since trees

are acyclic no vertex is visited more than once. The number of operations is a linear function
of the number of vertices N : in this BFS algorithm, for each vertex v only one iteration is
made; the number of operations per iteration is, at most, 2d(v), where d(v) is the degree
of v. This number of operations is achieved when there is a positive transition probability
from vertex v to itself. In total, the number of operations is at most

∑
v∈V 2d(v) = 4|E| =

4N − 4.
Figure 1 shows an example of a B.D. chain on a tree with certain transition probabilities

and the same tree with the conductances assigned when the algorithm starts at vertex 1 and
C12 = C1 = 1. The next calculation is then C11 = C12p(1,1)

p(1,2) = 1/3
2/3 = 1

2 . The next is

C23 = C12p(2,3)
p(2,1) = 3/5

1/5 = 3. The next is C22 = C23p(2,2)
p(2,3) = 3/5

3/5 = 1, etc.
Once the transition probabilities have been turned into conductances, the stationary dis-

tribution of the process on the tree is found with formula (2), a computation which is
obviously linear in N . Also, for any pair of vertices a and b, the hitting time EaTb is found
by computing Eq. 3, a procedure whose linearity in N is a bit more involved to justify: the
summation in Eq. 3 runs over the edges of the unique path between a and b, and the compu-
tation of Cx involves adding conductances in Gx , the connected component of G − E(P)

that contains x; at the end, every edge of the tree is taken into account at most once during
the calculation of Eq. 3.

Methodol Comput Appl Probab (2016) 18:487–498 491

1 2 3

4 5

6
1/3 1/5

1/4

1/3

1/2 1/2

2/3

1/5

3/5

1/8
3/8 2/3

1/4

1/6

1/3

1/2

1 2 3

4 5

6
1/2 1 6

9/2

18 12

1 3

9

6

12

Transition probabilities

Conductances

Fig. 1 From transition probabilities to conductances

One should also take into account the storage complexity: how much computer memory
is used to store the data of the tree (first the transition probabilities, then the conductances)
expressed in terms of the size N of the tree. It is natural to store transition probabilities in
a matrix, and conductances in the form of an adjacency matrix with weights on the edges.
But since both matrices are sparse, having m non-zero elements with m ≤ 3N − 2, they
can be stored in a smaller data structure. Indeed, each matrix can be represented with the
help of three vectors a = (ai)1≤i≤m, b = (bi)1≤i≤m, and c = (ci)1≤i≤N+1 as follows: a
contains all non-zero elements ordered by row, and bi is the column to which the ai belongs.
The vector c satisfies that c1 = 1 and, for 2 ≤ i ≤ N + 1, ci equals ci−1 plus the number
of non-zero elements in the (i − 1)-th row of the matrix. So, in order to access the (i, j)

element of a matrix compressed in this way, one should check whether bk = j for any
ci ≤ k < ci+1. If it is so, then the (i, j) element of the matrix is ak . A different explanation
of the same structure, which we believe to be folklore, and an example of its use, can be
found in Dongarra (2000).

By avoiding the use of matrices in an explicit way, the memory used by this data
structure consists of a fixed number of scalars and a fixed number of vectors of length
at most 3N − 2. Therefore, the storage requirement for the tree data is a linear func-
tion of N . The process of accessing elements in these data structures does not affect the
linearity of the number of operations. Numerical examples are provided in Section 3 to
exemplify this.

492 Methodol Comput Appl Probab (2016) 18:487–498

These linear procedures are substantially more efficient that the classical ones. Indeed,
finding the stationary distribution of a finite Markov chain on N states entails solving the
(redundant) N × N system given by Eq. 1 with the additional equation

∑

z

πz = 1.

The brute force procedure to solve this system is a costly algorithm of order roughly
N3, though there are known methods for solving this type of linear systems of equa-
tions which have smaller order of complexity as they take advantage of the sparsity of the
matrix P. We will show in Section 3 that our linear procedures behave better than these
methods.

Additionally, the classical procedures to obtain the hitting times involve matrix inver-
sions, therefore having complexity roughly N3 and sometimes exhibiting ill-posedness.
That is the case, for instance, when we take W to be the matrix with all rows are identical
to π , and then from the fundamental matrix Z given by

Z = {Zij }i,j∈V = (I − P + W)−1,

we obtain (see Grinstead and Snell, 1997)

EaTb = Zbb − Zab

πb

.

One final note: our algorithm obtains a single hitting time in linear time, and therefore
if we wanted to obtain all hitting times then the complexity of our procedure would seem
to become N3. We will show in Section 4, however, that we may reduce the complexity of
computing all hitting times down to N2.

3 Numerical Examples

In order to test the speed and precision of our algorithm we created a procedure that
randomly generates birth-and-death chains on trees. This procedure is based on algo-
rithms found in Quiroz (1989) which randomly generate trees, either with a fixed number
k of descendants per vertex (k − ary trees, which we call type k trees) or trees with
no restriction on the number of descendants per vertex (which we call free trees). Our
procedure takes the resulting tree and randomly assigns non-zero transition probabilities
between neighboring vertices. All the calculations were implemented in Fortran using
Silverfrost FTN95.

3.1 About the Computation of the Stationary Distribution

We generated trees of several thousand vertices using this procedure. For each of them, the
stationary distribution π∗ was computed and

max
u∈V

|(π∗ − π∗P)u|
π∗

u

,

that is, the maximum relative error, was recorded.

Methodol Comput Appl Probab (2016) 18:487–498 493

The results follow:

N Type Execution time (sec.) Max. rel. error

1,000 free 0.0156 2.305 E-07
5,000 free 0.1716 2.296 E-07
20,000 free 0.4524 2.508 E-07
1,001 1 0.0468 2.227 E-07
3,165 2 0.1248 2.373 E-07
20,001 2 0.4524 2.655 E-07
15,685 3 0.3432 2.339 E-07
30,202 3 0.7020 2.694 E-07
24,893 7 0.7956 3.095 E-07
75,529 24 1.0764 4.460 E-07
116,071 73 1.5912 6.917 E-07
60,001 600 ≈ N/100 1.3260 1.542 E-06
200,001 2000 ≈ N/100 4.4460 2.698 E-06
40,001 4, 000 ≈ N/10 0.8736 2.421 E-06
6,523 2, 174 ≈ N/3 0.1560 2.292 E-06
15,151 5, 050 ≈ N/3 0.3276 2.400 E-06
7,003 3, 501 ≈ N/2 0.1560 2.631 E-06
5,684 5, 683 ≈ N 0.1248 1.001 E-06
12,031 12, 030 ≈ N 0.2808 4.567 E-06

Though our method is recursive, using previously obtained conductances in order to
compute new ones, the result for the stationary distribution appears to be very precise even in
graphs of tens of thousands of vertices. As the fourth column shows, the maximum relative
error seems to grow as the type grows to N , that is, as the number of descendants per vertex
grows to N ; but it stays below 10−5. This shows how reliable this method is for calculating
the stationary distribution.

The execution time stays below 1 second for graphs of less than 50,000 vertices. It stays
below 2 seconds for graphs of size up to 120,000 and only reaches 4.4 seconds for the
200,001 vertex 2000-ary tree. Therefore, even in these large graphs, the computation of the
stationary distribution is made in a reasonably short time.

3.2 Linearity of the Computation of a Single Hitting Time and the Stationary Distribution

The algorithm provided in Section 2 has been shown to be linear under the assumption
that there is no relevant computational cost of extracting data from the matrix of transition
probabilities P and the matrix which stores the conductances. However, we mentioned that
the storage complexity could also be made linear by representing each matrix in the form
of 3 vectors of length no greater than 3N − 2. Extracting data from this vector structure
involves more computations. Here we will exemplify that the method presented is still linear
when the data is stored in this way.

In order to visualize the complexity, 10 trees of size N = 36, 10 of size 37, and 10 of
size 38 were generated randomly with no restriction on the degree of their vertices. The
transition probability matrix P was stored in the form of three vectors, as specified in

494 Methodol Comput Appl Probab (2016) 18:487–498

Section 2. We measured the execution time of the following three procedures: the compu-
tation of corresponding conductances and their storage (also in the form of three vectors),
the computation of the stationary distribution and the computation of one hitting time. Then
the logarithm of the size of the trees, N , was plotted against the logarithm of the execution
time, t . The plot, shown in Fig. 2, was made using MATLAB and shows the linearity of
the relationship between N and t for the proposed method, for the slope of the line made
by the corresponding dots is close to one. This implies the individual experimental linearity
of obtaining the conductances of the random walk, the computation of a single hitting time
and the computation of the stationary distribution.

In the case of the computation of the stationary distribution we mentioned that there are
methods for solving sparse linear systems of equations that could bring down the cost of
solving πP = π with the additional equation

∑
i πi = 1. In Davis (2006) the recommended

method for this type of systems is the QR decomposition with Givens’ rotation. This book
also mentions that MATLAB’s backslash (mldivide) executes this method automatically
when the input matrix is sparse and has more rows than columns. For the same trees men-
tioned before the time taken by this method to solve the corresponding system was recorded
for each of them. The log-log plot of the size of the trees against the execution time is also
shown in Fig. 2.

Fig. 2 Experimental complexity of the algorithms

Methodol Comput Appl Probab (2016) 18:487–498 495

From Fig. 2 we can see that the experimental order of the complexity of obtaining the
stationary distribution through QR decomposition is clearly greater than the complexity of
the method presented in this paper, and that it is approximately N2.

3.3 About the Precision on the Computation of the Hitting Times

If the assignment of conductances is started from different vertices, with the same initial
arbitrary conductance, the resulting conductances in the graph will be different. Even if
the computation of the hitting times should not be affected by this, the results obtained
numerically for the hitting times could differ when starting the algorithm from different
vertices. In order to look for this type of error, the algorithm of assigning conductances was
carried out starting from 4 different vertices. Then 4 different hitting times where obtained
(the choice, from left to right in the tables, was the following: (i) both the start and the finish
vertices are leaves (ii) only the start is a leaf (iii) only the end is a leaf (iv) neither the start
nor the end are leaves). The maximum relative difference between the obtained hitting times
was computed and set on the last row of the tables. This was performed for one graph of size
N=5000 and one of size N=15000, both with no restriction on the degree of their vertices.

Initial E1330T1636 E3289T1904 E2107T4588 E2187T1803
vertex

1708 1.217774 5.975456 1.304592 4.890942
E+21 E+12 E+16 E+15

4986 1.217775 5.975454 1.304592 4.890941
E+21 E+12 E+16 E+15

293 1.217776 5.975459 1.304593 4.890942
E+21 E+12 E+16 E+15

2469 1.217776 5.975464 1.304593 4.890944
E+21 E+12 E+16 E+15

Max. Rel. Dif. 1.642340 1,673513 7.665231 6.133788
E−06 E−06 E−07 E−07

Hitting times obtained through proposed method, N=5000

Initial E9879T4701 E3115T11857 E13263T10736 E472T6352
vertex

3002 1.683652 4.278469 2.559966 3.250613
E+27 E+19 E+22 E+22

7656 1.683653 4.278470 2.559969 3.250616
E+27 E+19 E+22 E+22

14318 1.683652 4.278470 2.559969 3.250616
E+27 E+19 E+22 E+22

317 1.683652 4.278470 2.559967 3.250613
E+27 E+19 E+22 E+22

Max. Rel. Dif. 5.939469 2.337284 1.171890 9.229028
E−07 E−07 E−06 E-07

Hitting times obtained through proposed method, N=15000

496 Methodol Comput Appl Probab (2016) 18:487–498

For both graphs the proposed method shows no ill-posedness, presenting no relative
difference larger than 10−5 as the initial vertex changes, for any of the hitting times
computed.

We checked the results obtained by the proposed method against those obtained by the
classical method which uses the fundamental matrix Z. For this purpose a graph of size
N=500 was created. Six hitting times of this graph were computed, both by the proposed
method and by the classic method. The relative difference between the results obtained
was also computed (normalizing by the result of smallest absolute value). Note that the
classical procedure for obtaining hitting times needs the matrix W, with all rows identical
to the stationary distribution π , and it was obtained through our algorithm. Also, the matrix
inversion needed to obtain Zwas done using inv function of the free software package GNU
Octave.

Hitting time Proposed method Classic method Relative difference

E106T17 34.3233 −2115.01 95.943540
E214T158 2.18007 2435.48 1116.1567
E341T351 1.490487 1.492161 0.001123

E+12 E+12
E461T114 567123 566713.5 7.225873

E−4
E206T447 6.895986 −8.561326 2.241494

E+09 E+09
E154T413 8.680532 8.676188 6.506707

E+11 E+11 E−4

Hitting times obtained through both methods, N=500

For E341T351, E461T114, and E154T413 both methods obtained similar results. In these
three cases the relative difference did not exceed 10−3. However, for the other three hitting
times the relative difference exceeded 1. Moreover, the classic method produced negative
hitting times, something which shows clearly how unreliable a method which involves the
inversion of a matrix can be, even for this relatively small graph.

We carried out a series of simulations to validate the results for E106T17 and E214T158.
Specifically, 10,000 random walks were performed, starting from vertex 106 and ending in
vertex 17. The average number of steps taken turned out to be 34.2614. Similarly, 10,000
random walks were performed from vertex 214 to vertex 158. The average number of steps
was 2.1893. These results support those obtained by the proposed method. Given the mag-
nitude of the third hitting time with big differences in the methods, E206T447, it seemed
unreasonable to try to confirm this result using simulations that would take an inordinate
amount of time.

A final remark on the computation of hitting times, it should be noted that sometimes,
when we exceed a size of 50,000 and even sometimes for smaller graphs, the proposed
algorithm returned a floating point error. This error is associated with the equations in Eq. 6.
As the conductances used in this formulas can get very small, if the term they have to be
multiplied by is also very small we might get a numerical 0. Another possibility is that these
conductances are very large (we have noticed in our experiments that the distribution of
these conductances, far from the root, has a very heavy tail) and if the term they have to be
multiplied by is also very large we can get an overflow error.

Methodol Comput Appl Probab (2016) 18:487–498 497

4 Computing All Hitting Times in a Tree

In this section we shall assume that the B.D. chain on a tree has been turned into a ran-
dom walk on the same tree through the linear algorithm discussed in the previous sections.
Restricted to the case where there are no loops (no transition probability from a state to
itself), we want to show that the computation of all hitting times can be brought down to
an N2 complexity. This is achieved by first computing all hitting times between adjacent
vertices, and then computing the hitting times between more distant vertices.

Given any tree, it is well known that we can find a traversal walk such that all its edges are
traversed exactly once in each direction (see Tarry (1895)). In the first part of this procedure
we obtain the hitting times between neighbors, and to do so we use this traversal walk. When
the edge (i, j) is first visited (and assuming the walk visits vertex i before vertex j), EiTj is
computed by the linear implementation of formula (3) introduced in Section 2. Eventually,
this edge will be visited in the opposite direction and then EjTi will be obtained. Since
computing each hitting time is linear and 2N − 2 hitting times are to be computed, this first
step of the procedure is of order N2 regarding the number of operations. The hitting times
obtained are to be stored in a matrix, say M , such that Mi,j = EiTj , and so this part is also
of order N2 as far as the storage complexity is concerned.

Since we are restricted to the case were there are no loops, we can apply the following
formula to obtain the remaining hitting times:

ExTy = ExTv1 + Ev1Tv2 + · · · + EvnTy (8)

where v1, v2, ..., vn is the (unique) path of length n + 1, n ≥ 1 between x and y.
Given a fixed vertex x we compute ExTy for every other vertex y through the following

procedure:

1. Mx,x = ExTx is assigned the value 0.
2. A BFS search starts with x as the root.
3. Given that the root is in generation 0 and its neighbors in generation 1, for every vertex

i in generation k ≥ 1, ExTi is obtained as ExTp + EpTi , where p is the “parent” of i,
belonging to generation k − 1. Mx,i := ExTi .

The BFS search visits every vertex once and, therefore, it is linear in N . But since we must
do that search for every vertex x, this part of the procedure is quadratic in the number of
operations. Now since the first part was also quadratic and both parts are performed in a
sequence, then the whole procedure is of order N2 regarding the number of operations.
Finally, since the only relevant element of storage is the matrix M of hitting times, the
procedure is also of order N2 regarding the storage complexity.

References

Bertoncini O (2011) Cut-off and escape behavior for birth and death chains on trees. Lat A J Probab Math
Stat Phys 8:149–162

Davis TA (2006) Direct methods for sparse linear systems, Siam book series on the fundamentals of
algorithms, SIAM, Philadelphia

Dongarra J (2000) Sparse matrix storage formats. In: Bai Z, Demmel J, Dongarra J, Ruhe A, van der
Vorst H (eds) Templates for the solution of algebraic eigenvalue problems: a practical guide. SIAM,
Philadelphia

Doyle PG, Snell JL (1984) Random walks and electrical networks. The Mathematical Association of
America, Washington DC

498 Methodol Comput Appl Probab (2016) 18:487–498

Fayolle G, Krikun M, Lasgouttes JM (2004) Birth and death processes on certain random trees: classification
and stationary laws. Probab Theory Relat Fields 128:386–418

Grinstead CM, Snell JL (1997) Introduction to probability, second edition, American Mathematical Society.
Providence RI

Kelly FP (1979) Reversibility and stochastic networks. Wiley, Chichester
Ma Y (2010) Birth-death processes on trees. Sci China Math 53:1–10
Palacios JL, Tetali P (1996) A note on expected hitting times for birth and death chains. Stat Probab Lett

30:119–125
Palacios JL (2009) On hitting times of random walks on trees. Stat Probab Lett 79:234–236
Quiroz AJ (1989) Fast random generation of binary, t-ary and other types of trees. J Class 6:223–231
Tarry G (1895) Le problème des labyrinthes. Nouvelles Annales de Mathématiques, ser 3(14):187–190

	Birth and Death Chains on Finite Trees: Computing their Stationary Distribution and Hitting Times
	Abstract
	Introduction
	The Algorithm
	Numerical Examples
	About the Computation of the Stationary Distribution
	Linearity of the Computation of a Single Hitting Time and the Stationary Distribution
	About the Precision on the Computation of the Hitting Times

	Computing All Hitting Times in a Tree
	References

