
Methodol Comput Appl Probab (2015) 17:999–1014
DOI 10.1007/s11009-014-9432-5

Estimating the Model with Fixed and Random Effects
by a Robust Method
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Abstract Regression model with fixed and random effects estimated by modified versions
of the Ordinary Least Squares (OLS) is a standard tool of panel data analysis. However,
it is vulnerable to the bad effects of influential observations (contamination and/or atyp-
ical observations). The paper offers robustified versions of the classical methods for this
framework. The robustification is carried out by the same idea which was employed when
robustifying OLS, it is the idea of weighting down the large order statistics of squared resid-
uals. In contrast to the approach based on the M-estimators this approach does not need the
studentization of residuals to reach the scale- and regression-equivariance of estimator in
question. Moreover, such approach is not vulnerable with respect the inliers. The numerical
study reveals the reliability of the respective algorithm. The results of this study were col-
lected in a file which is possible to find on web, address is given below. Patterns of these
results were included also into the paper. The possibility to reach nearly the full efficiency
of estimation - due to the iteratively tailored weight function - in the case when there are no
influential points is also demonstrated.

Keywords Linear regression model · The least weighted squares · Fixed and random
effects · Numerical simulations
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1 An Introduction

Atypical observations in a data set can cause misleading conclusions of the regression
analysis. That was the reason for building up the robust methods for identifying the true
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underlying model in the various frameworks. One such framework is the regression model
with the fixed and random effects and we can meet with proposals of robust estimators of
this model based on the idea of M- estimators, on the idea of the Least Median of Squares
(LMS) or on the idea of the Least Trimmed Squares (LTS), see e. g. (Bramati and Croux
2007; Dehon et al. 2009; Kott 1989; Rocke 1991; Veradi and Croux 2009) or (Veradi and
Wagner 2010).

The employment of M-estimators requires studentization of residuals - to reach the scale-
and regression-equivariance of the estimators in question, see Bickel (1975). Bickel showed
that - to reach the goal for the M-etimators - the studentization has to be done by a scale-
equivariant and regression-invariant estimator of standard deviation of disturbances but
there are only a few robust estimators of standard deviation of disturbances which are scale-
equivariant and regression-invariant, see Croux and Rousseeuw (1992) and Jurečková
and Sen (1984) or Vı́šek (2010a). Moreover, all these estimators utilize the preliminary
robust scale- and regression-equvivariant estimator of regression model. So, it seems more
reasonable to use the estimator which is directly scale- and regression-equvivariant.

The latter proposals based on LMS and LTS can be (and typicaly are) very sensitive
to “inliers”, see Vı́šek (1996b) or Vı́šek (2011a). The discussion on the sensitivity of
highly robust estimators to inliers has been started by Hettmansperger and Sheather (1992).
Although their shocking results appeared later to be due to the bad algorithm they used (see
again Vı́šek (1996b) and also Boček and Lachout (1993)), they gave an inspiration for stud-
ies of sensitivity of robust methods to the changes of data inside the main cloud of them, i. e.
sensitivity to the inliers1 (Vı́šek 1996b; 2002; 2006b). The Least Weighted Squares (LWS)
which employs the idea of smooth decrease of the influence of atypical observations by
means of prescribing the weights to the order statistics of the squared residuals rather than
to the squared residuals directly, rid of both these problems, i. e. the problem of residual stu-
dentization as well as with inliers. Moreover, the advantage of LWS is that it can be adjusted
to the level and/or the character of contamination by an adaptive selection of the weights
(which is possible to perform iteratively in a reasonable time due to the fast algorithm we
have for computing the estimator and the speed of the computational technique).

2 The Model and Estimators

Sometimes we model panel date containing several groups of observed objects (patients
in hospital, industries in the national economy, countries in EU) and we believe that the
slope parameters are (or are likely to be) the same for all of them but the objects have
different “intercepts”, i. e. their regression planes are “parallel” but shifted “up or down”. An
approach via dummy variables would be cumbersome. In fact such a model has to contain
the same number of “intercepts” as is the number of objects and hence the design matrix can
be pretty “wide” and what is really important these intercepts would be (usually) estimated
on the base of small number of observations (i. e. in the text below, if T is small and only n

goes to infinity).
These reasons led (approximately) in sixties of the past century to the idea of considering

a model in which the different intercepts for different groups of observations are assumed
to be realization of one latent variable, see e. g. Hausman (1978) and Hausman and Taylor

1The inliers are similarly as the outliers or the leverage points the observations which have the large influence
on the estimate in question in the sense that their small shift can cause a large change of values of estimator .
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(1981) or Maddala (1971). The ideas which already hinted that such model can be a plau-
sible solution of the problem however appeared even earlier, see e.g. Balestra and Nerlove
(1966) or Wallace and Hussain (1969). The situation (we have mentioned a few lines above)
was discussed also in a bit different framework e. g. in Telser (1964) and Zellner (1962) or
(Zellner 1965). So, let us give the framework we will consider in the form of formalized
model.

For any n, T ∈ N (the set of all positive integers) and β0 ∈ Rp (p-dimensional
Euclidean space) we will study the linear regression model (we employ formalism as in
Wooldridge (2006))

Yit = X′
it β

0 + ui + eit , i = 1, 2, ..., n, t = 1, 2, ..., T (1)

with Yit ’s being the response variables, Xit ’s staying for p-dimensional random explanatory
variables, ui’s for the effects and eit ’s for the disturbances.

For the case when cov(Xitj , ui) = 0 for all i = 1, 2, ..., n, t = 1, 2, ..., T and j =
1, 2, ..., p, the model (1) will be called the random effects model, otherwise we speak about
the fixed effects model, see e. g. (Judge et al. 1985).

We will consider the residuals in a bit more general form than it is frequently done. So,
for any β ∈ Rp, i ∈ N and t ∈ {1, 2, ..., T } we will consider the residual of the (i, t)-th
observation given as

rit (β) = Yit − X′
it · β (2)

and we denote by r2
(�)(β) the �-th order statistic among the squared residuals r2

it (β), i =
1, 2, ..., n, t = 1, 2, ..., T , i. e. we have

r2
(1)(β) ≤ r2

(2)(β) ≤ ... ≤ r2
(n·T )(β).

Finally, let’s recall the classical Ordinary Least Squares and their robust version, the Least
Weighted Squares.

Definition 1 Let w� ∈ [0, 1], � = 1, 2, ..., n · T be weights. The estimators

β̂(OLS,n,T )= arg min

β ∈ Rp

n∑

i=1

T∑

t=1

r2
it (β) and β̂(LWS,n,T ,w) = arg min

β ∈ Rp

n·T∑

�=1

w� r2
(�)(β)

are called the Ordinary Least Squares (OLS) and the Least Weighted Squares (LWS)
estimator, respectively (Vı́šek 2000).

Denoting the empirical distribution function of the absolute values of residuals rit (β)’s
by F

(n)
β (r), a straightforward derivation shows that β̂(LWS,n,T ,w) is one of solutions of the

normal equations
n∑

i=1

T∑

t=1

w
(
F

(n·T )
β (|rit (β)|)

)
Xit (Yit − X′

it · β) = 0. (3)

Then the generalization of the classical Kolmogorov-Smirnov result on uniform conver-
gence of empirical d. f. for the regression model framework (see Vı́šek (2011b)2)

supβ∈Rp sup−∞<r<∞
√

n

∣∣∣∣∣ F
(n·T )
β (r) − (n · T )−1

n∑

i=1

T∑

t=1

F
(it)
β (r)

∣∣∣∣∣ = Op(1)

2The main technical tool for the proof of this generalization was the Skorohod embedding into Wiener
process, see Portnoy (1983).
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allows to prove the consistency of β̂(LWS,n,T ,w) under the following conditions:

Condition C 1. The sequence

{{(
X′

it , eit

)′}T

t=1

}∞

i=1
is a sequence independent and iden-

tically distributed (p + 1)-dimensional random variables (r.v.’s) distributed according to

distribution functions (d.f.) FX,e(x, r) = FX(x) · Fe(r) with Ee = 0 and var (e) = σ 2.
Moreover, Fe(r) is absolutely continuous with bounded density fe(r). Further, there is
q > 1 so that E ‖X1‖2q < ∞. Finally, {ui}∞i=1 is a sequence of independent and identically

distributed r. v.’s, independent from the sequence

{{(
X′

it , eit

)′}T

t=1

}∞

i=1
, with d. f. Fu(s)with

finite variance σ 2
u .

The weights are usually generated as w� = w
(

�−1
n·T

)
and we typically assume:

Condition C 2. The weight function w(u) is continuous, nonincreasing and w : [0, 1] →
[0, 1] with w(0) = 1.

Condition C 3. Put F
(it)
β (r) = P (|rit (β)| ≤ r) (remember (2) ). For any n ∈ N there is

the only solution of

E

{
n∑

i=1

T∑

t=1

[
w

(
F

(nT )
β (|rit (β)|)

)
Xit

(
Yit − X′

it β
)]

}
= 0 (4)

namely β0.

Theorem 1 Let Conditions C 1, C 2 and C 3 be fulfilled. Then any sequence{
β̂(LWS,n,T ,w)

}∞
n=1

of the solutions of normal Eq. 3 is weakly consistent.

The proof is a direct reformulation of the result (Vı́šek 2011a) from the cross-sectional-
data framework to the panel-data framework (possibly with fixed or random effects).
The result can be - under a bit stronger conditions - strengthen to

√
n-consistency of

β̂(LWS,n,T ,w), (Vı́šek 2010a).

Remark 1 Notice that we need no condition for T . It can be fixed or it can go to ∞,
simultaneously with n (Tables 1, 2, 3, 4).

3 Fixed and Random Effects Estimation

Let’s recall the classical solutions (assuming normality of disturbances). For
model with random effects we have (see Eq. 1)

Yit = X′
it β

0 + vit , i = 1, 2, ..., n, t = 1, 2, ..., T (5)

where vit = ui + eit , Evit = 0, Ev2
it = σ 2

u + σ 2
e , cov(Xitj , vit ) = 0 and E [vit , vis] =

var(ui) = σ 2
u . It implies that β̂(OLS,n,T ) is not efficient due to the correlation between
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Table 1 The disturbances are independent from explanatory variables but the effects are correlated with
them. There is no contamination but we assume some hence we take measures against it

True coeffs β0 3 1 2 −4 5

Contamination level is assumed high, h = 0.2 · n and g = 0.8 · n.

β̂OLS

(var(β̂OLS ))
3.00(0.011) .00(0.002) 2.00(0.002) −4.00(0.002) 5.00(0.002)

β̂FE

(var(β̂FE))
0.00(0.000) 1.00(0.001) 2.00(0.001) −4.00(0.001) 5.00(0.001)

β̂RE

(var(β̂RE))
3.00(0.011) 1.00(0.001) 2.00(0.001) −4.00(0.001) 5.00(0.001)

β̂LWS

(var(β̂LWS ))
3.00(0.015) 1.00(0.006) 2.00(0.006) −4.00(0.006) 5.00(0.006)

β̂FWE

(var(β̂FWE))
0.00(0.000) 1.00(0.003) 2.00(0.003) −3.99(0.003) 5.00(0.003)

β̂RWE

(var(β̂RWE))
3.00(0.106) 1.00(0.003) 2.00(0.003) −4.00(0.003) 5.00(0.003)

From previous lines of Table 1 it follows that the contamination is not high (as the all estimates

have nearly the same value), hence we accommodated the weight function a bit and we put

h = 0.6 · n and g = 0.9 · n. (In the next two part of Table 1 the first three lines would be the

same as in the previous part, hence they were omitted.)

β̂LWS

(var(β̂LWS ))
3.00(0.013) 1.00(0.004) 2.00(0.004) −4.00(0.005) 5.00(0.004)

β̂FWE

(var(β̂FWE))
0.00(0.000) 1.00(0.002) 1.99(0.002) −4.00(0.003) 5.00(0.002)

β̂RWE

(var(β̂RWE))
2.99(0.579) 1.00(0.002) 2.00(0.002) −4.00(0.003) 5.00(0.002)

We learned that contamination is probably very low, if any (as again the values of all estimates

are the same and differences of MSE are small), and hence we further accommodated the weight

function putting h = 0.8 · n and g = 0.98 · n.

β̂LWS

(var(β̂LWS ))
2.99(0.011) 1.00(0.002) 2.00(0.003) −4.00(0.002) 5.00(0.002)

β̂FWE

(var(β̂FWE))
0.00(0.000) 1.00(0.001) 2.00(0.001) −4.00(0.001) 5.00(0.001)

β̂RWE

(var(β̂RWE))
2.99(0.014) 1.00(0.001) 2.00(0.001) −4.00(0.001) 5.00(0.001)

disturbances. The estimation can be improved either by utilizing the Generalized Least
Squares or - equivalently - by considering slightly modified data

Ỹit = Yit − λY i and X̃it = Xit − λXi, with λ = 1 − σ 2
e ·

(
σ 2

e + T ·σ 2
u

)−1
, (6)

(where Y i = T −1 ∑T
t=1 Yit and Xi = T −1 ∑T

t=1 Xit ) and applying β̂(OLS,n,T ) on Ỹit ’s and
X̃it ’s, see e. g. Wooldridge (2006). The variances σ 2

e and σ 2
u can be estimated employing

rit

(
β̂(OLS,n,T )

)
by the classical estimators for the variance of disturbances, say σ̂ 2

v and σ̂ 2
u ,

taking into account that σ 2
e = σ 2

v − σ 2
u and then we can use λ̂ instead of λ. Applying then

OLS on the transformed data we obtain RE-estimate (which is below in tables denoted as
β̂RE).

Assuming framework with fixed effects, we have in model (6) Evit = 0 with

cov(Xitj , vit ) 	= 0. It implies the inconsistency and biasedness of β̂(OLS,n,T ). Among all
possible remedies it seems the most attractive fixed-effect-estimation (or alternatively called
the within-the-groups transformation). It considers data

Ỹit = Yit − Y i and X̃it = Xit − Xi, with Y i = 1

T

T∑

t=1

Yit and Xi = 1

T

T∑

t=1

Xit (7)
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Table 2 Both, the disturbances and the effects, are independent from explanatory variables. Contamina-
tion is created by outliers, i. e. explanatory variables are not changed but values of contaminated response
variables are equal to −2.5 multiple of original values of response variable

True coeffs β0 3 1 2 −4 5

Contamination level is equal to 0.5 %.

β̂OLS(
var(β̂OLS )

) 2.95(0.016) 0.93(0.040) 1.87(0.042) −3.73(0.060) 4.63(0.076)

β̂FE(
var(β̂FE)

) 0.00(0.000) 0.93(0.039) 1.87(0.041) −3.73(0.059) 4.63(0.074)

β̂RE(
var(β̂RE)

) 2.95(0.016) 0.93(0.039) 1.87(0.041) −3.73(0.059) 4.63(0.074)

β̂LWS(
var(β̂LWS)

) 3.00(0.015) 0.99(0.007) 2.00(0.006) −4.00(0.006) 4.99(0.006)

β̂FWE(
var(β̂FWE)

) 0.00(0.000) 1.00(0.003) 2.00(0.003) −4.00(0.003) 4.99(0.003)

β̂RWE
(

var(β̂RWE)
)

3.01(0.158) 1.00(0.003) 2.00(0.003) −4.00(0.003) 4.99(0.003)

Contamination level is equal to 1 %

β̂OLS(
var(β̂OLS )

) 2.90(0.041) 0.87(0.055) 1.76(0.068) −3.49(0.093) 4.36(0.105)

β̂FE(
var(β̂FE)

) 0.00(0.000) 0.87(0.055) 1.76(0.068) −3.49(0.096) 4.37(0.105)

β̂RE(
var(β̂RE)

) 2.06(0.131) 0.87(0.055) 1.76(0.069) −3.49(0.095) 4.36(0.106)

β̂LWS(
var(β̂LWS)

) 3.00(0.026) 1.00(0.004) 2.00(0.003) −4.00(0.004) 5.00(0.004)

β̂FWE(
var(β̂FWE)

) 0.00(0.000) 1.00(0.002) 1.99(0.002) −3.98(0.002) 4.98(0.002)

β̂RWE(
var(β̂RWE)

) 0.50(0.118) 1.00(0.002) 1.99(0.002) −3.98(0.002) 4.99(0.002)

Contamination level is equal to 4 %

β̂OLS(
var(β̂OLS )

) 2.57(0.093) 0.55(0.135) 1.11(0.164) −2.22(0.243) 2.81(0.292)

β̂FE(
var(β̂FE)

) 0.00(0.000) 0.55(0.135) 1.11(0.164) −2.22(0.249) 2.81(0.295)

β̂RE(
var(β̂RE)

) 2.26(0.127) 0.55(0.134) 1.11(0.164) −2.21(0.243) 2.80(0.293)

β̂LWS(
var(β̂LWS)

) 2.99(0.023) 1.00(0.003) 2.00(0.003) −4.00(0.003) 5.00(0.003)

β̂FWE(
var(β̂FWE)

) 0.00(0.000) 0.99(0.002) 1.98(0.002) −3.96(0.002) 4.95(0.002)

β̂RWE(
var(β̂RWE)

) 0.78(0.292) 0.99(0.002) 1.99(0.002) −3.98(0.002) 4.97(0.002)

Contamination level is equal to 8 %

β̂OLS(
var(β̂OLS )

) 2.06(0.135) 0.16(0.184) 0.37(0.210) −0.69(0.303) 0.88(0.313)

β̂FE(
var(β̂FE)

) 0.00(0.000) 0.16(0.190) 0.37(0.219) −0.69(0.314) 0.89(0.322)

β̂RE(
var(β̂RE)

) 1.91(0.190) 0.16(0.184) 0.37(0.211) −0.69(0.303) 0.87(0.315)

β̂LWS(
var(β̂LWS)

) 3.00(0.027) 1.00(0.005) 2.00(0.005) −4.00(0.005) 5.00(0.004)

β̂FWE(
var(β̂FWE)

) 0.00(0.000) 0.98(0.004) 1.96(0.005) −3.92(0.004) 4.91(0.005)

β̂RWE(
var(β̂RWE)

) 0.86(0.211) 0.98(0.004) 1.97(0.004) −3.95(0.004) 4.94(0.004)
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Table 2 (continued)

True coeffs β0 3 1 2 −4 5

Contamination level is equal to 16 %

β̂OLS(
var(β̂OLS )

) 1.27(0.174) −0.30(0.201) −0.54(0.230) 1.13(0.294) −1.42(0.375)

β̂FE(
var(β̂FE)

) 0.00(0.000) −0.30(0.212) −0.54(0.234) 1.12(0.298) −1.41(0.379)

β̂RE(
var(β̂RE)

) 1.19(0.243) −0.30(0.201) −0.54(0.229) 1.13(0.295) −1.43(0.377)

β̂LWS(
var(β̂LWS)

) 2.99(0.022) 1.00(0.004) 2.01(0.004) −3.99(0.004) 5.00(0.004)

β̂FWE(
var(β̂FWE)

) 0.00(0.000) 0.96(0.006) 1.92(0.005) −3.84(0.007) 4.81(0.007)

β̂RWE(
var(β̂RWE)

) 0.96(0.132) 0.97(0.004) 1.95(0.004) −3.89(0.005) 4.87(0.005)

(X̃it1 ≡ 0). Hence, let’s put Ṽitj = X̃itj+1 and γ 0
j = β0

j+1 for i = 1, 2, ..., n, t = 1, 2, ..., T

and j = 1, 2, ...p − 1,, we have

Ỹit = Ṽ ′
it γ

0 + eit , with E

[
Ṽitj · eit

]
= 0 (8)

and hence γ̂ (OLS,n,T ) is unbiased and consistent but even under the normality of eit ’s it is
not efficient as the covariance matrix of “new” disturbances ẽit = eit − ēi is not diagonal
(of course, the efficiency can be reached by β̂(EGLS,n,T ) as we can estimate the covariance
matrix in question). The intercept, if it was included in the original model, can be addi-

tionally estimated by β̂
(OLS,n,T )
1 = 1

n

∑n
i=1

[
Y i − X

′
i γ̂

(OLS,n,T )
]
. An alternative way is to

make differences of successive observation within the groups. It is evident that the differ-
ences don’t contain the fixed effects, so we can apply the ordinary least squares. But this
method is not suitable for robustification - it is impossible (at least form the application
point of view) to rid of the contamination in this way.

On the very first lines of this paper we have reminded that the classical estimators (typ-
ically) suffer by vulnerability to outliers and/or leverage points. That is why we propose
below the robustified versions of the both just recalled estimating methods. Prior to it let’s
briefly mention what was already done. There are only a few papers devoted to the topic.
Some of them are case studies ((Amos 1994; Rocke 1991) - analysis of variance, Jones
(1992) - trying to cope with publication bias, paper from meta-analysis, (Cameron et al.
2011) - clustering) considering the situations which need not assume the leverage points.
Therefore they cope with the problem by quantile regression of Koenker and Bassett (1978)
- the former even addressed the topic but he restricted himself also only on quantile regres-
sion3, see Koenker (2004). Some papers try to solve the problem with outliers by employing
the distribution of disturbances with heavy tails (Gill 2000; Pinheiro and Liu 2001) or by
the bayesian approach (Schall 1991).

3One can notice that on the economic conferences when people referring results of case studies consider more
and more robust approach. Unfortunately they employ (nearly) exclusively quantile regression, probably
mostly due to the fact that it is available in commercially supplied packages. Sometimes they are not even
aware that the quantile regression can cope (reliably) only with outliers but (distant) leverage points can cause
problems. Moreover, in economic papers we can meet with the robustness with respect to heteroscedaticity
in the sense of paper by White (1980).
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Table 3 The disturbances are independent from explanatory variables but the effects are correlated with
them. Contamination is created by outliers, i. e. explanatory variables are not changed but values of
contaminated response variables are equal to −2.5 multiple of original values of response variable

True coeffs β0 3 1 2 −4 5

Contamination level is equal to 0.5 %

β̂OLS(
var(β̂OLS )

) 2.94(0.088) 0.59(0.062) 1.58(0.059) −4.25(0.023) 4.46(0.131)

β̂FE(
var(β̂FE)

) 0.00(0.000) 0.77(0.049) 1.76(0.047) −4.07(0.021) 4.64(0.104)

β̂RE(
var(β̂RE)

) 2.03(0.559) 0.63(0.045) 1.62(0.043) −4.21(0.018) 4.50(0.102)

β̂LWS(
var(β̂LWS)

) 3.00(0.004) 0.80(0.003) 1.80(0.003) −4.20(0.003) 4.80(0.003)

β̂FWE(
var(β̂FWE)

) 0.00(0.000) 0.99(0.003) 1.99(0.003) −3.99(0.003) 4.98(0.003)

β̂RWE(
var(β̂RWE)

) 0.90(0.351) 0.95(0.006) 1.94(0.006) −4.04(0.005) 4.94(0.005)

Contamination level is equal to 1 %

β̂OLS(
var(β̂OLS )

) 2.87(0.196) 0.47(0.104) 1.40(0.129) −4.24(0.043) 4.23(0.230)

β̂FE(
var(β̂FE)

) 0.00(0.000) 0.67(0.070) 1.60(0.086) −4.04(0.042) 4.43(0.162)

β̂RE

(var(β̂RE))
1.84(0.756) 0.53(0.073) 1.46(0.091) −4.18(0.036) 4.29(0.173)

β̂LWS

(var(β̂LWS ))
3.00(0.004) 0.80(0.002) 1.80(0.002) −4.20(0.002) 4.80(0.002)

β̂FWE

(var(β̂FWE))
0.00(0.000) 0.99(0.003) 1.99(0.003) −3.99(0.003) 4.98(0.003)

β̂RWE

(var(β̂RWE))
0.77(0.198) 0.96(0.004) 1.96(0.004) −4.03(0.005) 4.95(0.004)

Contamination level is equal to 4 %

β̂OLS

(var(β̂OLS ))
2.62(0.320) 0.04(0.179) 0.88(0.185) −4.09(0.102) 3.34(0.453)

β̂FE

(var(β̂FE))
0.00(0.000) 0.21(0.152) 1.05(0.180) −3.91(0.096) 3.51(0.425)

β̂RE

(var(β̂RE))
1.33(0.503) 0.08(0.156) 0.92(0.180) −4.04(0.080) 3.37(0.443)

β̂LWS

(var(β̂LWS ))
3.00(0.004) 0.80(0.002) 1.81(0.002) −4.20(0.002) 4.80(0.003)

β̂FWE

(var(β̂FWE))
0.00(0.000) 0.99(0.002) 1.98(0.003) −3.99(0.003) 4.98(0.003)

β̂RWE

(var(β̂RWE))
0.65(0.017) 0.99(0.003) 1.98(0.003) −4.00(0.003) 4.98(0.003)

Contamination level is equal to 8 %

β̂OLS

(var(β̂OLS ))
2.20(0.580) −0.45(0.211) 0.14(0.284) −3.60(0.220) 2.05(0.632)

β̂FE

(var(β̂FE))
0.00(0.000) −0.27(0.208) 0.32(0.278) −3.42(0.216) 2.22(0.614)

β̂RE

(var(β̂RE))
1.00(0.361) −0.43(0.191) 0.15(0.268) −3.57(0.192) 2.05(0.614)

β̂LWS

(var(β̂LWS ))
3.00(0.003) 0.80(0.002) 1.81(0.002) −4.20(0.002) 4.80(0.002)

β̂FWE

(var(β̂FWE))
0.00(0.000) 0.97(0.002) 1.97(0.003) −4.00(0.002) 4.96(0.003)

β̂RWE

(var(β̂RWE))
0.67(0.008) 1.00(0.002) 2.00(0.002) −3.98(0.002) 4.99(0.002)

Contamination level is equal to 16 %

β̂OLS

(var(β̂OLS ))
1.37(0.687) −1.12(0.249) −0.91(0.328) −2.23(0.472) −0.23(0.824)

β̂FE

(var(β̂FE))
0.00(0.000) −0.93(0.301) −0.73(0.388) −2.05(0.410) −0.06(0.911)

β̂RE

(var(β̂RE))
0.53(0.306) −1.16(0.244) −0.96(0.332) −2.26(0.415) −0.31(0.841)
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Table 3 (continued)

True coeffs β0 3 1 2 −4 5

β̂LWS

(var(β̂LWS ))
3.00(0.004) 0.80(0.002) 1.81(0.003) −4.20(0.002) 4.80(0.003)

β̂FWE

(var(β̂FWE))
0.00(0.000) 0.93(0.006) 1.92(0.006) −4.01(0.005) 4.89(0.006)

β̂RWE

(var(β̂RWE))
0.71(0.018) 1.00(0.003) 2.01(0.003) −3.95(0.003) 4.98(0.004)

Robustification of the classical estimation of model with random effects and of

model with fixed effects consists of substituting β̂(OLS,n,T ), Y i, Xi, σ̂
2
v and σ̂ 2

u by

β̂(LWS,n,T ,w), Y
(LWS,n,T ,w)

i , X
(LWS,n,T ,w)

i , σ̂ 2
LWS,v and σ̂ 2

LWS,u, respectively. Such estima-

tor is denoted in the tables below as the Random Weighted Effects estimator β̂RWE and the
Fixed Weighted Effects estimator β̂FWE , respectively. However, we are not able to derive
analytically an improvement (if any) of β̂RWE compared to β̂LWS (of course the same is
true for mutual relation of β̂FWE and β̂LWS). That is why we performed the numerical study
and we discuss the results in Section 5.

A few lines above we mentioned that in the robustification of β̂RE (to obtain β̂RWE)
we need to employ the robust estimates of scale of the disturbaces v’s and u’s and we
proposed to utilize σ̂ 2

LWS,v and σ̂ 2
LWS,u. Let’s be more specific and give the first of it,

σ̂ 2
LWS,v , explicitly. We estimate the naive β̂(LWS,n,T ,w) for the model given in Eq. 5, say

β̂(LWS,n,T ,w) (Y,X). Employing the residuals from this model, say

rit

(
β̂(LWS,n,T ,w)

)
= Yit − X′

it · β̂(LWS,n,T ,w),

we calculate instead of the classical estimates of scale of disturbances v’s

σ̂ 2
v = 1

n · T

n∑

i=1

T∑

t=1

(
rit (β̂

(LWS,n,T ,w) − r̄(β̂(LWS,n,T ,w)
)2

with

r̄(β̂(LWS,n,T ,w) = 1

n · T

n∑

i=1

T∑

t=1

rit (β̂
(LWS,n,T ,w),

the robust LWS-estimates of location and variance as follows. Let us denote

a(it)

(
β̂(LWS,n,T ,w)

)
=

∣∣∣rit
(
β̂(LWS,n,T ,w)

)∣∣∣

and by a(�)

(
β̂(LWS,n,T ,w)

)
the corresponding order statistics, i. e. we have

a(1)

(
β̂(LWS,n,T ,w)

)
≤ ... ≤ a(�)

(
β̂(LWS,n,T ,w)

)
≤ ... ≤ a(n·T )

(
β̂(LWS,n,T ,w)

)
.

Moreover, let s� is equal 1 if the residual rit

(
β̂(LWS,n,T ,w)

)
corresponding to

a(�)

(
β̂(LWS,n,T ,w)

)
has the nonnegative sign and equal to −1 otherwise. Then put

r̄ (LWS,n,T ,w)(β̂(LWS,n,T ,w)) = 1

n · T

n∑

i=1

T∑

t=1

s� · w� · a(�)

(
β̂(LWS,n,T ,w)

)
. (9)
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Table 4 The disturbances are independent from explanatory variables but the effects are correlated with
them. Contamination is created by leverage points, i. e. values of explanatory variables are equal to the 10
times the original values of them and response is taken with minus sign

True coeffs β0 3 1 2 −4 5

Contamination level is equal to 0.5 %

β̂OLS

(var(β̂OLS ))
2.36(1.761) −0.00(1.922) 0.66(2.852) −2.91(3.543) 2.35(6.582)

β̂FE

(var(β̂FE))
0.00(0.000) −0.42(1.555) 0.24(2.073) −3.39(4.343) 1.97(5.629)

β̂RE

(var(β̂RE))
0.88(15.404) −0.25(1.514) 0.41(2.185) −3.30(3.625) 2.22(5.867)

β̂LWS

(var(β̂LWS ))
3.00(0.002) 1.20(0.002) 2.20(0.002) −3.81(0.002) 5.20(0.002)

β̂FWE

(var(β̂FWE))
0.00(0.000) 1.00(0.003) 1.99(0.003) −4.01(0.003) 4.99(0.003)

β̂RWE

(var(β̂RWE))
3.00(0.018) 1.07(0.006) 2.06(0.006) −3.94(0.006) 5.07(0.005)

Contamination level is equal to 1 %

β̂OLS

(var(β̂OLS ))
−1.15(1.833) −0.39(1.168) −0.80(1.546) 1.62(1.781) −1.98(2.575)

β̂FE

(var(β̂FE))
0.00(0.000) −0.41(1.368) −0.86(1.673) 1.75(1.911) −2.17(2.586)

β̂RE

(var(β̂RE))
0.01(0.179) −0.42(1.368) −0.86(1.672) 1.75(1.899) −2.17(2.580)

β̂LWS

(var(β̂LWS ))
3.00(0.003) 1.00(0.003) 2.00(0.003) −4.00(0.003) 5.00(0.003)

β̂FWE

(var(β̂FWE))
0.00(0.000) 0.96(0.025) 1.94(0.023) −3.88(0.024) 4.85(0.025)

β̂RWE

(var(β̂RWE))
0.01(0.032) 0.97(0.022) 1.96(0.018) −3.91(0.019) 4.89(0.020)

Contamination level is equal to 4 %

β̂OLS

(var(β̂OLS ))
−1.35(1.153) −0.93(0.200) −1.57(0.285) 2.21(1.030) −3.44(0.857)

β̂FE

(var(β̂FE))
0.00(0.000) −1.10(0.229) −1.74(0.272) 2.08(1.055) −3.65(0.822)

β̂RE

(var(β̂RE))
0.50(0.294) −1.05(0.235) −1.70(0.287) 2.15(1.021) −3.62(0.831)

β̂LWS

(var(β̂LWS ))
3.00(0.005) 0.80(0.003) 1.80(0.004) −4.20(0.003) 4.80(0.003)

β̂FWE

(var(β̂FWE))
0.00(0.000) 0.98(0.004) 1.98(0.004) −3.99(0.005) 4.96(0.004)

β̂RWE

(var(β̂RWE))
0.67(0.009) 0.99(0.004) 1.98(0.004) −4.00(0.004) 4.97(0.004)

Contamination level is equal to 8 %

β̂OLS

(var(β̂OLS ))
−2.75(0.006) −0.92(0.004) −1.83(0.005) 3.66(0.007) −4.58(0.008)

β̂FE

(var(β̂FE))
0.00(0.000) −0.92(0.088) −1.85(0.086) 3.66(0.090) −4.58(0.095)

G β̂RE

(var(β̂RE))
0.03(0.309) −0.92(0.087) −1.85(0.085) 3.66(0.088) −4.58(0.092)

β̂LWS

(var(β̂LWS ))
3.00(0.008) 1.00(0.008) 2.00(0.008) −4.00(0.008) 4.99(0.007)

β̂FWE

(var(β̂FWE))
0.00(0.000) 0.96(0.045) 1.94(0.046) −3.86(0.047) 4.83(0.045)

β̂RWE

(var(β̂RWE))
−0.00(0.041) 0.97(0.042) 1.96(0.044) −3.91(0.043) 4.88(0.040)

Contamination level is equal to 16 %

β̂OLS

(var(β̂OLS ))
−2.65(0.016) −1.00(0.002) −1.93(0.003) 3.64(0.010) −4.72(0.008)

β̂FE

(var(β̂FE))
0.00(0.000) −1.09(0.029) −2.03(0.029) 3.54(0.036) −4.81(0.029)

β̂RE

(var(β̂RE))
−1.85(0.466) −1.06(0.029) −2.00(0.028) 3.57(0.035) −4.79(0.028)

β̂LWS

(var(β̂LWS ))
3.01(0.009) 0.81(0.005) 1.80(0.006) −4.20(0.006) 4.80(0.005)

β̂FWE

(var(β̂FWE))
0.00(0.000) 0.92(0.021) 1.89(0.034) −4.04(0.034) 4.87(0.036)

β̂RWE

(var(β̂RWE))
0.71(0.019) 0.99(0.011) 1.98(0.011) −3.98(0.017) 4.96(0.010)
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Further denote

b2
it (β̂

(LWS,n,T ,w)) =
(
rit (β̂

(LWS,n,T ,w)) − r̄ (LWS,n,T ,w)(β̂(LWS,n,T ,w))
)2

and (similarly as above) b2
(�)(β̂

(LWS,n,T ,w)) the corresponding order statistics, i. e. we have

b2
(1)(β̂

(LWS,n,T ,w)) ≤ ... ≤ b2
(�)(β̂

(LWS,n,T ,w)) ≤ ... ≤ b2
(n·T )(β̂

(LWS,n,T ,w)).

Finally, put

σ̂ 2
LWS,v = 1

n · T

n∑

i=1

T∑

t=1

w� · b2
(�)(β̂

(LWS,n,T ,w)).

In the similar way we estimate σ̂ 2
LWS,u (of course, we use the classical “trick” over empirical

covariances of rit (β̂
(LWS,n,T ,w)), see e. g. Judge et al. (1985)). It allows to compute

σ̂ 2
LWS,e = σ̂ 2

LWS,v − σ̂ 2
LWS,u.

Employing formula for λ given in Eq. 6 but plugging in the robust estimates σ̂ 2
LWS,e and

σ̂ 2
LWS,u, we obtain a robust estimate λ̂(LWS,n,T ,w). Finally, estimating by LWS-approach

also mean values of Yit ’s and Xit ’s, we conclude transformation of original data by formulas
given in the left-hand-side of Eq. 6 and obtain (say) Ỹ

(LWS,n,T ,w)
it and X̃

(LWS,n,T ,w)
it . Then

we compute

β̂(LWS,n,t)
(
Ỹ

(LWS,n,T ,w)
it , X̃

(LWS,n,T ,w)
it

)
.

For robustification of the classical estimation of the model with fixed effects we need

robust estimators of the mean values of response Y i and of explanatory variables Xi by

Y
(LWS,n,T ,w)

i and X
(LWS,n,T ,w)

i , respectively. These estimator we calculate in the same way

as it was indicated for location and scale estimators of the residulas rit

(
β̂(LWS,n,T ,w)

)
, i. e.

employing the order statistics of absolute values of Yit ’s and Xitj ’s, their original signs and
weights w� - see Eq. 9. Then employing transformation (7) with these estimates instead of
with Y i’s and Xi’s, we can finally employ γ̂ (LWS,n,T ,w) (i. e. analogy of β̂(LWS,n,T ,w) for
the model (8) ) we compute the Fixed Weighted Effects Estimator (denoted below as β̂FWE).

4 Numerical Study

First of all, we specified the model given in Eq. 1 as

Yit =3+1·Xit1+2·Xit2−4·Xit3+5·Xit5+ui+eit , i =1, 2, ..., 50, t =1, 2, ..., 20. (10)

Having generated data
{ {{

X
(k)
it , e

(k)
it

}20

t=1

}50

i=1
,

{
u

(k)
i

}50

i=1

}500

k=1

where all variables were distributed according to the standard normal distribution4, we put
X̃

(k)
itj = X

(k)
itj + u

(k)
i for i = 1, 2, ..., 50 t = 1, 2, ..., 20 and j = 1, 2, ..., 5. Then employing

4We have used also data with larger or smaller variance of effects - it is described in the heads of tables below.
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(10) we computed response variables for two groups (for the second one we employed
X̃

(k)
it ’s instead of X

(k)
it ’s)

{ {{
Y

(k)
it , X

(k)
it

}20

t=1

}50

i=1

}500

k=1

and

{ {{
Ỹ

(k)
it , X̃

(k)
it

}20

t=1

}50

i=1

}500

k=1

.

The first group represents data for the model with random effects, the second one the model
with fixed effects. Then the estimates of regression coefficients were computed - for both
groups all estimators, i. e. β̂(OLS,n,T ), β̂FE , β̂RE , β̂(LWS,n,T ,w), β̂FWE and β̂RWE were
computed, to offer the reader a possibility to create an idea how e. g. estimator proposed
for the model with the fixed effects works when estimating coefficients of the model with
random effects etc. . So, we obtained, say

{
β̂(index,k) = (β̂1, β̂2, ..., β̂5)

′}500

k=1

(where index “attains values” OLS, RE, FE, LWS, RWE and FWE indicating the method
employed for the computation).

The weight function w(r) : [0, 1] → [0, 1] was selected in an optimal way - see a brief
discussion in Conclusions. We used the weights:

wi = 1 for i = 1, 2, ..., h, h ∈ {1, 2, ..., n},
wi = 0 for i = g, g + 1, ..., n, g ∈ {1, 2, ..., n}, g > h

and for h ≤ i ≤ g the weights wi’s decreased linearly from 1 to 0. The values of h and g

was selected according to our long years experiences to be approximately optimal for given
situation, the details can be found in (Vı́šek 2011c; 2013; 2014a) or (Vı́šek 2014b). We can
generally say that g has to be selected so that the weight function assigns weights equal to
zero all leverage points and outliers it is able to cope with small number of outliers even in
the interval between h and g. The selection of h is approximately optimal in (surprisingly)
wide range of values - even rather small values of h don’t decrease the efficiency of estima-
tion too much. In the case of processing the real data we can employ the “forward search”,
up to the moment when the estimated model significantly changes (usually by a jump), see
Atkinson and Riani (2000).

The empirical means and empirical variances of estimates of coefficients (over these 500
repetitions indicated above)

β̂
(index)
j = 1

500

500∑

k=1

β̂
(index,k)
j and v̂ar

(
β̂

(index)
j

)
= 1

500

500∑

k=1

[
β̂

(index,k)
j

]2 −
[
β̂

(index)
j

]2

are reported below in tables.
We should also explain how the observations (which we contaminated) were selected

and then contaminated. There are principally two possible approaches. The first one (which
could be called “Huber’s” one) can select randomly an apriori given percent of observa-
tions and from them create either outliers and/or leverage points. We obtain a sample of
observation generated by some distribution function of “Huber’s” type, namely

Q(x) = (1 − δ) · F(x) + δ · H(x), δ ∈ (0, 1.)

Consider for a while a creation of outliers. We can generate them in such a way that we
multiply the response variable by some constant (see the heads of tables below). Then it can
happen (and it do happen) that among the randomly selected observations some of them
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can have X′
it β

0 nearly equal to zero (in the case when the norm ‖Xit‖ is small) and also
the disturbance eit can be small. But it results in the fact that the corresponding outlier does
not represent (nearly) no problem for the estimator in question (because the observation is
similar as the noncontaminated observations).

That is why we adopted an alternative way. We selected the observations from
the generated sample according to their magnitude of ‖Xit‖. If it overcome some
threshold, the observation was contaminated. We believe that the contamination pre-
pared in this way can cause the estimator really the problems. The snag however is
that than the distribution of noncontaminated observations would be completely with-
out the tails. Hence we adjusted the threshold a bit lower and part (approximately half
of them) of observations with large ‖ Xit ‖ were not contaminated. Then the thresh-
old was adjusted so that in the mean we obtained the required level of contamination.
The way how we ten created outliers and/or leverage points is given at the heads of
tables.

Prior to collecting results for the contaminated data we offer a possibility of creating
an idea how the robust procedures (here β̂(LWS,n,T ,w), β̂FWE and β̂RWE) work for non-
contaminated data. So, in other words, Table 1 addresses the problem of efficiency of
robust estimation. In other words, we had assumed a contamination of data and hence we
employed, except of the classical procedures, also β̂(LWS,n,T ,w), β̂FWE and β̂RWE . We
have started with rather high robustness of β̂(LWS,n,T ,w), β̂FWE and β̂RWE (i. e. the weight
function had h and g near to n/2). But we found that the results of β̂(OLS,n,T ), β̂FE , β̂RE ,
β̂(LWS,n,T ,w), β̂FE and β̂RE practically coincide. Our study - due to the repetition of gen-
erating the data sets - allows to estimate the variance of all estimators and we found that
the classical estimators were more efficient than the robust one. So we accommodated the
weights a bit - for a lower level of contamination. But than we learned that again the esti-
mated values are the same for the all estimators. So we assigned to the robust estimators
weights only slightly depressing influence of observations with large residuals. For such
an adjustment of weights the efficiency of all estimators are nearly the same (for the sake
of space we present only results of this final experiment, with h and g near to n). (Due to
the speed of the algorithm we can afford to do the same also for the real data without any
problems.)

Now we are going to present results of simulations for the different situations - all
necessary items are given at the heads of tables.

5 Conclusions

It is evident that even very low level of contamination (in the form of outliers as well as of
leverage points) causes problems to β̂(OLS,n) in efficiency and increasing level of contami-
nation brings problems also in bias. Robustfication by β̂(LWS,n,T ,w) helps a lot and β̂FWE

and β̂RWE attain an improvement even in efficiency of robust estimation. Notice however
that improvement is not extremely significant. Moreover it is true only up to 12 % for con-
tamination in the case of outliers and up to 8 % of contamination in the case of leverage
points (please, see also the results given in the file on the address http://samba.fsv.cuni.cz/
∼visek/asdma2013/). For higher levels of contamination β̂FWE and β̂RWE even worsen
the estimation and it is better to employ only β̂(LWS,n,T ,w). Further, the deviating from
normal distribution of disturbances would probably worsen the situation - similarly as in
the case of well-known results by (Fisher 1920). But it has to be confirmed by much more
extended simulations.

http://samba.fsv.cuni.cz/~visek/asdma2013/
http://samba.fsv.cuni.cz/~visek/asdma2013/
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We have also briefly addressed the problem of efficiency of robust estimation and opti-
mality of the selection of weight function5. Firstly, we assumed high contamination and
hence we tried to depress the influential points very resolutely. But the data were gener-
ated without any contamination. Our selection of weights resulted in the large variances
of β̂(LWS,n,T ,w), β̂FWE and β̂RWE but the values of estimators were the same as
values β̂(OLS,n,T ), β̂FE and β̂RE . The fact that the values of non-robust estimators
were not different from the values of robust estimators indicated the absence or at least
low level of contamination. That was why we modified weights so that they depressed
less a possible contamination but the situation repeated. So, we modified the weights once
again, adjusting them for a very low contamination. For such an adjustment of weights
the efficiency of both estimators is the same. Due to the speed of the algorithm we can
afford it for the real data without any problems as well as in the simulation study. The
complete collection of results of the above described numerical study can be seen in file
which is on the address http://samba.fsv.cuni.cz/∼visek/asdma2013/. One can find there
the results for much more levels of contamination and hence it offers a possibility to
create an idea about the scale of deviations of the estimator as a function of level of
contamination.

As we have already mentioned some additional studies are to be made to map the devi-
ations of the estimator from the assumed behavior when the underlying distribution of
disturbances (and other variables) is not normal one, we should follow (Fisher 1920) or
(Huber 1981). Moreover, the topic which was not probably addressed at all (even for the
classical estimation) is the behavior of the estimators under heteroscedasticity (maybe some
studies of a similar type as was performed in the pioneering paper by (White 1980) or in
the paper by (Cragg 1983) showing how to employ the heteroscedasticity for an improve-
ment of estimation). Similarly, it is with Hausman’s test, see (Hausman 1978). A very first
attempt - when considering the possibility of utilization of instrumental variables when the
orthogonality condition is broken - was made in (Vı́šek 1998). Nevertheless, any considera-
tion about robustification of Hausman’s test in the sense in which it was treated in the paper
by (Hausman 1978) or in (Hausman and Taylor 1981) (the latter one written with William
Taylor) is still missing.
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