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Abstract The analysis for the BMAP/MSP/1 queueing system is based on roots of the
associated characteristic equation of the vector-generating function of system-length distri-
bution at random epoch. We obtain the steady-state system-length distributions at various
epochs as well as of the actual sojourn-time distribution of an arbitrary customer in an
arriving batch.
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1 Introduction

Queueing models with non-renewal arrivals and/or service processes are often used to
model complex computer and communication systems. Several connections (data, voice,
video, etc.) generate traffic streams with very different characteristics (required bandwidth,
burstiness, correlation, etc.). Traditional teletraffic analysis based on Poisson arrival/service
process is not powerful enough to capture this correlative and bursty feature of traffic
streams in high-speed packet/cell based networks. These correlated and bursty non-renewal
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arrival and/or service processes in queueing systems have been shown empirically and theo-
retically to have a significant impact on queueing behaviour. The versatile Markovian point
process or Neuts (N ) process known as Markovian arrival process (MAP) has been intro-
duced by Neuts (1979) due to limitations of the Poisson process in modelling correlated
arrivals. Later (Lucantoni 1991) has shown that batch Markovian arrival process (BMAP)
generalizes the MAP by allowing batch arrivals. The BMAP is a convenient representation
of the N -process that includes several known processes such as Markovian arrival pro-
cess (MAP), Markov-modulated Poisson process (MMPP), Phase-type renewal process, and
superposition of such processes. The concepts of MAP and BMAP have been explained in
the past at several places by many researchers and are available in the literature, see, e.g.,
Pacheco et al. (2009), Chakravarthy (1993), and Machihara (1999). The Markovian service
process (MSP) is independent of the arrival process and can capture the correlation that
exists among successive service times. Note that the MSP generates real service comple-
tions only when the server is busy. For details on the MSP, readers are referred to Bocharov
et al. (2003), Albores-Velasco and Tajonar-Sanabria (2004), Gupta and Banik (2007), and
Chaudhry et al. (2012) and Alfa et al. (2000). For early works on correlated arrivals and
departures, see Chaudhry (1965,1966).

Many researchers have analyzed several queueing models with various types of ser-
vice as well as arrival processes and such results are available in the literature. The
asymptotic behaviour of stationary distributions of MAP/MSP/1 queue is discussed
in Abate et al. (1994) and Alfa et al. (2000). Ozawa (2006) carried out the analysis
of MAP/MSP/1 queue and derived the stationary sojourn-time distribution as well as
its asymptotic properties. Horváth et al. (2010) proposed an approximation for the out-
put process of MAP/MSP/1 queue based on the moments of the inter-departure time
and the joint moments of two consecutive inter-departure times. Zhang et al. (2005) ana-
lyzed the departure process of BMAP/MSP/1 queue based on an Efficient Technique
for the Analysis of QBD processes by Aggregation (ETAQA) developed in Riska and
Smirni (2002). The interest to analyze BMAP/MSP/1 queue with batch non-Poisson
traffic and non-exponential service time distributions has been mainly due to the fact that
the bursty and correlated nature of traffic arising in modelling telecommunication sys-
tems have significant impact on queueing behaviour. For analytic and numerical purposes,
we start our work with the vector-generating function (VGF) of system-length distribu-
tion at random epochs, evaluate the unknown vector π(0) (see Section 3.1) using the
roots inside and on the unit circle of the associated characteristic equation. Once the
roots are found, it becomes easy to obtain probability distributions of the number in sys-
tem at random, arrival and post-departure epochs as well as of the actual sojourn-time
distribution and other performance measures. We can also get the actual sojourn-time
distribution without evaluating the steady-state distribution of the number in system. In
this connection, see Chaudhry and Templeton (1983), Tijms HC (2003), and Janssen
and Leeuwaarden (2005), and Chaudhry et al. (1990), who have used the roots method.
The roots (including repeated roots) can be easily found using one of the several com-
mercially available packages such as MAPLE and MATHEMATICA. At an early stage,
Chaudhry (1991) developed a package called QROOT and used it to solve several queueing
problems.

This paper is organized as follows. In Section 2, we give the description of the model and
introduce the notations to describe the model parameters. The steady-state system-length
distributions at various epochs and the actual sojourn-time distribution of an arbitrary cus-
tomer in an arriving batch are analyzed in Section 3. Numerical results are presented in
Section 4. Section 5 concludes the paper.
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2 Model Description

We consider a continuous-time single-server queue wherein customers arrive according to a
batch Markovian arrival process and are served in accordance with a Markovian service pro-
cess. Let us first introduce the notation for the BMAP/MSP/1 queueing system presented
in this paper.

2.1 Batch Markovian Arrival Process

The batch Markovian arrival process is represented with parameter matrices Dk , k ≥ 0, of
order m1 × m1, where the matrix D0 = [(D0)i,j ] has negative diagonal elements and non-
negative off-diagonal elements, and the matrices Dk = [(Dk)i,j ], k ≥ 1, have non-negative
elements. We define the matrix-generating function D(z) = ∑∞

k=0 Dkz
k , for |z| ≤ 1. The

matrix D ≡ D(1) = ∑∞
k=0 Dk with De = 0, where e is a column vector of ones with an

appropriate dimension, is an infinitesimal generator corresponding to an irreducible Markov
chain underlying the BMAP. Let πa be the stationary probability vector of the Markov
process with generator D, i.e., πa satisfies πaD = 0 with πae = 1. Let Na(t) denote
the number of arrivals in (0, t] and Ja(t) the state of the underlying Markov chain (called
arrival phase) at time t . To accomplish this, we consider a two-dimensional Markov process
{Na(t), Ja(t)}t≥0 on the state space {(n, i) : n ≥ 0, 1 ≤ i ≤ m1} with an infinitesimal
generator

QBMAP =

⎛

⎜
⎜
⎜
⎝

D0 D1 D2 D3 · · ·
D0 D1 D2 · · ·

D0 D1 · · ·
. . .

⎞

⎟
⎟
⎟
⎠

.

Let {Pa(n, t) : n ≥ 0, t ≥ 0} denote the matrix of order m1 × m1 whose (i, j)th element
((Pa)i,j (n, t)) represents the probability that n arrivals occur in (0, t] with the arrival pro-
cess being in phase j at time t , given that the arrival process was in phase i at time zero.
Then, the probabilities

(Pa)i,j (n, t) = Pr {Na(t) = n, Ja(t) = j |Na(0) = 0, Ja(0) = i} , 1 ≤ i, j ≤ m1

lead to the following equations (in matrix notation)

d

dt
Pa(n, t) =

n∑

k=0

Pa(k, t)Dn−k, n ≥ 0, t > 0, (1)

with Pa(0, 0) = Im1 and Pa(n, 0) = 0 , n ≥ 1, where Ir is the identity matrix of order r × r .
Let us define the matrix-generating function P∗

a(z, t) as

P∗
a(z, t) =

∞∑

n=0

Pa(n, t)zn, |z| ≤ 1, t ≥ 0. (2)

Multiplying Eq. 1 by zn and summing over n = 0 to ∞, after using Eq. 2, we get

d

dt
P∗

a(z, t) = P∗
a(z, t)D(z), t > 0,
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with P∗
a(z, 0) = Im1 . Solving the above matrix-differential equations, we get

P∗
a(z, t) = eD(z)t , |z| ≤ 1, t ≥ 0. (3)

The first moment in matrix form [differentiation of Eq. 3 w.r.t. z and setting z = 1] is given
by

Ma(t) = teDt

∞∑

k=1

kDk.

The mean number of arrivals during a time of length t is

λ�(t) = πaMa(t)e

= tπa

∞∑

k=1

kDke,

where we are assuming that Ja(0) has distribution πa .
The fundamental arrival rate for the arrival process is then given by

λ� = λ�(t)

t
= πa

∞∑

k=1

kDke.

2.2 Markovian Service Process

The Markovian service process is represented with parameter matrices L0 and L1 of order
m2 × m2. Note that the matrix L0 = [(L0)i,j ] has non-negative off-diagonal and negative
diagonal elements, and the matrix L1 = [(L1)i,j ] has non-negative elements. Let us denote
L(z) = L0 + L1z with L ≡ L(1) = L0 + L1 being an infinitesimal generator matrix
corresponding to an irreducible Markov chain underlying the MSP. Let π s be the stationary
probability vector of the Markov process with generator L, i.e., π s satisfies π sL = 0 with
π se = 1. LetNs(t) denote the number of customers served in (0, t] and Js(t) the state of the
underlying Markov chain (called service phase) at time t . Then {Ns(t), Js(t)}t≥0 is a two-
dimensional Markov process with state space {(n, i) : n ≥ 0, 1 ≤ i ≤ m2} and infinitesimal
generator

QMSP =

⎛

⎜
⎜
⎜
⎝

L0 L1 0 0 · · ·
0 L0 L1 0 · · ·
0 0 L0 L1 · · ·
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎠

.

Let {Ps(n, t) : n ≥ 0, t ≥ 0} denote the matrix of order m2 × m2 whose (i, j)th element
((Ps)i,j (n, t)) represents the probability that n customers are served in (0, t]with the service
process being in phase j at time t , given that the service process was in phase i at time zero.
Then, the probabilities

(Ps)i,j (n, t) = Pr{Ns(t) = n, Js(t) = j |Ns(0) = 0, Js(0) = i}, 1 ≤ i, j ≤ m2

lead to the following equations (in matrix notation)

d

dt
Ps(0, t) = Ps(0, t)L0, t > 0 (4)

d

dt
Ps(n, t) = Ps(n, t)L0 + Ps(n − 1, t)L1, n ≥ 1, t > 0, (5)

with Ps(0, 0) = Im2 and Ps(n, 0) = 0 , n ≥ 1.
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Let us define the matrix-generating function P∗
s (z, t) as

P∗
s (z, t) =

∞∑

n=0

Ps(n, t)zn, |z| ≤ 1, t ≥ 0. (6)

Multiplying Eq. 4 by z0 and Eq. 5 by zn and summing over n = 0 to ∞, after using Eq. 6,
we get

d

dt
P∗

s (z, t) = P∗
s (z, t)L(z), t > 0,

with P∗
s (z, 0) = Im2 . Solving the above matrix-differential equations, we get

P∗
s (z, t) = eL(z)t , |z| ≤ 1, t ≥ 0. (7)

The first moment in matrix form [differentiation of Eq. 7 w.r.t. z and setting z = 1] is given
by

Ms(t) = teLtL1.

The mean number of service completions during a time of length t is

μ�(t) = π sMs(t)e

= tπ sL1e,

where we are assuming that Js(0) has distribution π s . The average service rate μ� (the so-
called fundamental service rate) of the stationary MSP is given by μ� = μ�(t)

t
= π sL1e.

The traffic intensity is given by ρ = λ�/μ� < 1.

3 Analysis of the Model

In this section, we carry out the analysis of the distributions of system-length at random,
arrival and post-departure epochs as well as of the actual sojourn-time distribution of an
arbitrary customer in an arriving batch.

3.1 System-Length Distribution at Random Epoch

We consider the steady-state system-length distribution at random epoch. Let N(t) denote
the number of customers in the system at time t , I (t) the phase of the BMAP and J (t)

the phase of the MSP at the same instant. We define the state of the system at time t by
Y (t) = (N(t), I (t), J (t)). Then {Y (t)}t≥0 is a continuous-time Markov chain on the state
space {(n, i, j) : n ≥ 0, 1 ≤ i ≤ m1, 1 ≤ j ≤ m2}. The infinitesimal generator Q for the
BMAP/MSP/1 queue has the following structure:

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

B0 B1 B2 B3 B4 · · ·
A0 A1 A2 A3 A4 · · ·

A0 A1 A2 A3 · · ·
A0 A1 A2 · · ·

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (8)

The matrices Bn, n ≥ 1, of order m × m, where m = m1m2, are said to increase the level
of the chain by n, while the matrix B0 of order m × m remains at the zero level. The matrix
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A0 of order m×m decreases the level of the chain by one. The matrices An, n ≥ 2, of order
m × m are said to increase the level of the chain by (n − 1), while the matrix A1 of order
m × m remains at the same level. The elements of An and Bn represent the rate of change
of both arrival and service phases of the chain. There are two situations to consider based
on the assumption that the MSP generates real service completions only when the server
is busy. One situation is that the service process is interrupted during idle periods of the
system, implying, in particular, that the service phase does not change during idle periods
of the system (Model 1). Other one is that the service process runs during idle periods of
the system without generating any real service completions (Model 2). Therefore, the block
matrices of Eq. 8 can be expressed using the Kronecker product ⊗ operation as

B0 = D0 ⊗ Im2 + Im1 ⊗ Φ

Bn = Dn ⊗ Im2 , n ≥ 1

A0 = Im1 ⊗ L1

A1 = D0 ⊗ Im2 + Im1 ⊗ L0

An = Dn−1 ⊗ Im2 , n ≥ 2,

where Φ = 0 for Model 1, while Φ = L for Model 2.
Let A(z) = [Ai,j (z)] be the matrix-generating function of a sequence {An}∞0 . Then, we

have

A(z) =
∞∑

n=0

Anz
n = z

(
D(z) ⊗ Im2 + Im1 ⊗ L

(
z−1

))
. (9)

Similarly, let B(z) be the matrix-generating function of a sequence {Bn}∞0 . Then, we have

B(z) =
∞∑

n=0

Bnz
n = D(z) ⊗ Im2 + Im1 ⊗ Φ.

Let π(n) = [
π11(n), . . . , π1m2(n), . . . , πij (n), . . . , πm11(n), . . . , πm1m2(n)

]
, n ≥ 0,

denote the row vector according to the block structure of the generator Q, where πij (n)

represents the steady-state probability that there are n customers in the system with the
arrival process being in phase i (1 ≤ i ≤ m1) and the service process being in phase j

(1 ≤ j ≤ m2). Now we obtain the VGF of the distribution of number of customers in the
system at random epoch. Writing πQ = 0, where π=[π(0),π(1),π(2), . . .], we have

π(0)Bn +
n+1∑

r=1

π(r)An+1−r = 0, n ≥ 0. (10)

Multiplying Eq. 10 by zn and summing them, and using π∗(z) = ∑∞
n=0 π(n)zn, we get

π∗(z) = π(0) [A(z) − zB(z)] adj [A(z)]
det[A(z)] , (11)

where adj [T] is the adjoint matrix of a square matrix T and det[T] is the determinant of T.
To evaluate the system-length distribution π(n), n ≥ 0, we apply the method of roots
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which involves the determination of roots of the so-called characteristic equation (c.e.) of
the vector-generating function π∗(z). Our main task is to first calculate the unknown vec-
tor π(0) accurately. For this, the knowledge of the zeros of det[A(z)] in the unit disk is
required. Thus, we first show that if ρ < 1 then det[A(z)] = 0 has exactly (m − 1) roots
in |z| < 1, one root at z = 1 and other mb roots in |z| > 1 (including multiplicity), where
b is the maximum size of batches, see Appendix A. We call the roots whose absolute value
is less than one as γ1, γ2, . . . , γm−1 and the roots whose absolute value is greater than one
as α1, α2, . . . , αmb. We assume that all roots are distinct. Each component π∗

ij (z) defined
as π∗

ij (z) = ∑∞
n=0 πij (n)zn of the VGF π∗(z) given in Eq. 11 being convergent in |z| ≤ 1

implies that π∗(z) is convergent in |z| ≤ 1. As each component π∗
ij (z) is convergent in

|z| ≤ 1, the zeros of det[A(z)] whose absolute value is less or equal to one must be the
zeros of the numerator of each component of Eq. 11. This shows that we can determine the
unknown vector π(0) by considering any one component of π∗(z). Therefore, we rewrite
the right-hand side of π∗(z) in Eq. 11 as

π∗(z) =
[

G11(z)

G(z)
,
G12(z)

G(z)
, . . . ,

Gij (z)

G(z)
, . . . ,

Gm1m2(z)

G(z)

]

, (12)

where Gij (z) is the ij -th component of the vector π(0) [A(z) − zB(z)] adj [A(z)], and
G(z) = det[A(z)].

Now, since each π∗
ij (z) is convergent in |z| ≤ 1 and γ1, γ2, . . . , γm−1 are the zeros of

G(z), we have

Gij (γk) = 0, k = 1, 2, . . . , m − 1 (13)

and using the normalization condition π∗(1)e = 1, we have

1 = lim
z→1

∑m1
i=1

∑m2
j=1 Gij (z)

G(z)
=

∑m1
i=1

∑m2
j=1 G′

ij (1)

G′(1)
, (14)

where h′(ξ) is the first derivative of h(z) at z = ξ .
Equations 13 and 14 givem linearly independent simultaneous equations inm unknowns,

πij (0)’s (1 ≤ i ≤ m1, 1 ≤ j ≤ m2). Solving these m equations, we get the m unknowns
πij (0)’s. This determines the vector π(0).

Once π(0) is known, we can obtain mean system-length L directly using Eq. 12 by
differentiating and taking the limit as z → 1. Using the fact that G(1) = 0, we obtain the
mean system-length as

L =
m1∑

i=1

m2∑

j=1

G′′
ij (1)G

′(1) − G′
ij (1)G

′′(1)
2[G′(1)]2 , (15)

where h′′(ξ) is the second derivative of h(z) at z = ξ .
Now, after substituting the value of π(0) in Eq. 12, and let π = π∗(1), we have

π =
[

G′
11(1)

G′(1)
,
G′

12(1)

G′(1)
, . . . ,

G′
ij (1)

G′(1)
, . . . ,

G′
m1m2

(1)

G′(1)

]

. (16)

Having found π(0), we now give our attention to calculate the remaining state probabilities
π(n), n ≥ 1. As each element of π∗(z), i.e., π∗

ij (z) in Eq. 11, is a rational function with
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completely known polynomials both in the numerator (after substituting the value of π(0))
and the denominator, we proceed to find its partial fractions. To do this we need to have
the knowledge of the zeros of det[A(z)]. The zeros of det[A(z)] with absolute value less or
equal to one are also the zeros of the numerator of π∗

ij (z). Therefore in making partial frac-
tions of π∗

ij (z), these zeros do not play any further role. So, we need to have the knowledge
of the zeros of det[A(z)] whose absolute value is greater than one. Since it is shown that
the equation det[A(z)] = 0 has exactly mb roots each with absolute value greater than one,
applying the partial-fraction method on the ij -th component π∗

ij (z) of π∗(z), we have

π∗
ij (z) =

mb∑

k=1

ck,ij

αk − z
, 1 ≤ i ≤ m1, 1 ≤ j ≤ m2, (17)

where

ck,ij = −Gij (αk)

G′(αk)
, k = 1, 2, . . . , mb.

Now, collecting the coefficient of zn from both sides of Eq. 17, we have

πij (n) =
mb∑

k=1

ck,ij

αn+1
k

, 1 ≤ i ≤ m1, 1 ≤ j ≤ m2, n ≥ 0,

and hence

π(n) =
[

mb∑

k=1

ck,11

αn+1
k

,

mb∑

k=1

ck,12

αn+1
k

, . . . ,

mb∑

k=1

ck,m1m2

αn+1
k

]

, n ≥ 0. (18)

Clearly, it is shown that πij (n), n ≥ 0, is a sum of geometric terms.
The mean system-length can be obtained from Eq. 18 as

L =
∞∑

n=1

nπ(n)e. (19)

Although one can get the mean system-length L from either Eq. 15 or Eq. 19, it is easier to
get the mean system-length from Eq. 15. From the Little’s law, we also have mean sojourn-
time W as

W = L

λ�
.

Remark 1 We assumed that the roots of the c.e. are distinct. Many authors have shown in
queueing theory that the roots are generally distinct and follow a nice pattern, see, e.g.,
Tijms HC (2003) and Janssen and Leeuwaarden (2005), and Chaudhry et al. (1990). Our
computational experience also indicates that, in general, the roots happen to be distinct. One
may note here that if some roots of det[A(z)] = 0 inside and on the unit circle (|z| = 1)
are repeated, Eqs. 13 and 14 need to be modified slightly to get the vector π(0). Again, if
some roots of det[A(z)] = 0 outside the unit circle (|z| = 1) are repeated, Eq. 17 needs to
be modified slightly to get the unknown constants.

Remark 2 It may be pointed out that π = πa ⊗ π s , when the service process runs during
idle periods of the system without generating any real service completions (Model 2). One
can check the accuracy of π(0)’s with the relation π = πa ⊗ π s , which is independent of



Methodol Comput Appl Probab (2016) 18:419–440 427

the roots. When the service process is interrupted during idle periods of the system (Model
1), we have π 
= πa ⊗ π s . For this case, one can also check the accuracy of π(0)’s with the
relation π(0)e = 1−ρ, which is also independent of the roots. It is noted here that πa ⊗π s

is the stationary probability vector of the Markov process with generator D ⊗ L.

Remark 3 For the BMAP/M/1 case, Model 1 and Model 2 become identical. Hence, π =
πa and π(0)e = 1 − ρ are valid for both the models.

3.2 System-Length Distribution at Arrival Epoch

Let π−(n) =
[
π−
11(n), . . . , π−

1m2
(n), . . . , π−

ij (n), . . . , π−
m11

(n), . . . , π−
m1m2

(n)
]
, n ≥ 0,

denote the row vector according to the block structure of the generator Q, where π−
ij (n)

represents the arrival epoch probability that an arbitrary customer of an arriving batch finds
n customers in the system with the arrival process being in phase i and the service process
being in phase j . Then, we have

π−(n) =
n∑

r=0

π(r)
(
Hn+1−r ⊗ Im2

)
, n ≥ 0, (20)

where Hk , k ≥ 1, is a matrix of order m1 × m1 whose (i, j)-th element [Hk]ij represents
the probability that the position of an arbitrary customer in an arriving batch is k with phase
changes from state i to j . In this connection, the interested reader is referred to Samanta
et al. (2007).

For the sake of completeness, the procedure is briefly described here. The probability
that an arbitrary customer belongs to a batch of size n is

Pr{BS = n} = πnDne
λ∗ , n = 1, 2, 3, . . . ,

where ‘BS’ represents the batch size.
The probability that an arbitrary customer occupies a position, say k-th position, in a

batch of size n and phase changes from state i to j is

[Pr{PA = k|BS = n}]ij = 1

n
· (Dn)i,j

πDne
, 1 ≤ k ≤ n,

where ‘PA’ represents the position of an arbitrary customer.
The probability that the position of an arbitrary customer in an arriving batch of size n is

k with phase changes from state i to j is given by

[Pr{BS = n, PA = k}]ij = πnDne
λ∗ · 1

n
· (Dn)i,j

πDne
= (Dn)i,j

λ∗ , 1 ≤ k ≤ n.

Hence the probability that the position of an arbitrary customer in an arriving batch is k with
phase changes from state i to j is given by

[Hk]ij =
∞∑

n=k

[Pr{BS = n, PA = k}]ij = 1

λ∗
∞∑

n=k

(Dn)i,j , k = 1, 2, 3, . . . .
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Therefore, in matrix notation, we have

Hk = 1

λ∗
∞∑

n=k

Dn, k = 1, 2, 3, . . . .

3.3 System-Length Distribution at Post-Departure Epoch

Let π+(n) =
[
π+
11(n), . . . , π+

1m2
(n), . . . , π+

ij (n), . . . , π+
m11

(n), . . . , π+
m1m2

(n)
]
, n ≥ 0,

denote the row vector according to the block structure of the generator Q, where π+
ij (n)

represents the post-departure epoch probability that there are n customers in the system
immediately after a service completion with the arrival process being in phase i and the
service process being in phase j . The post-departure epoch thus occurs immediately after
the server has either reduced the queue or has become idle. Hence, using level-crossing
arguments, we have

π+(n) = 1

λ�
π(n + 1)

(
Im1 ⊗ L1

)
, n ≥ 0.

It is noted that the relation π+(n)e = π−(n)e, n ≥ 0, also holds, as it should.

3.4 Actual Sojourn-Time Distribution

In this section, we obtain the actual sojourn time of an arbitrary customer in an
arriving batch. By the sojourn time we mean the total time spent by an arbitrary
customer of a batch in the system (from its arrival until departure). Let W(x) =[
W11(x), . . . ,W1m2(x), . . . ,Wij (x), . . . , Wm11(x), . . . , Wm1m2(x)

]
, x ≥ 0, denote the

row vector according to the block structure of the generator Q, where Wij (x) repre-
sents the stationary joint probability that the sojourn time is less than or equal to x,
the arrival phase is in i at time x and the service phase is in j at time x, given
that arbitrary customer arrived at time 0. Further, let W̃(θ) = [

W̃11(θ), . . . , W̃1m2(θ),

. . . , W̃ij (θ), . . . , W̃m11(θ), . . . , W̃m1m2(θ)
]
, where W̃ij (θ) is the Laplace-Stieltjes trans-

form (LST) of Wij (x), i.e.,

W̃ij (θ) =
∫ ∞

0
e−θxdWij (x), �(θ) ≥ 0.

Here, let Ψ n(x) denote the matrix of order m2 × m2 whose (i, j)th element represents the
probability that n customers will be served within time x and the service phase is j at time
x, provided at the initial instant of arrival epoch there were n customers in the system and
the service process was in phase i. Let Ψ̃ n(θ) denote the LST of the matrix Ψ n(x). Since
the probability that the service of a customer is completed in the time interval (x, x +dx] is
given by the matrix eL0xL1dx + o(dx) and the total service time of n customers is the sum
of their service times, we have

Ψ̃ n(θ) = [Ψ̃ 1(θ)]n, n ≥ 1,

where

Ψ̃ 1(θ) =
∫ ∞

0
e−θxeL0xL1dx

= (θIm2 − L0)
−1L1. (21)
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Hence, the LST of the stationary distribution of the sojourn time of an arbitrary customer in
an arriving batch is given by

W̃(θ) =
∞∑

n=0

π−(n)
(
Im1 ⊗ [Ψ̃ 1(θ)]n+1

)
. (22)

Using Eq. 20 in Eq. 22, after simplification, we obtain

W̃(θ) = 1

λ�

( ∞∑

n=0

π(n)
(
Im1 ⊗ Ψ̃ 1(θ)

)n

) ( ∞∑

k=1

Dk ⊗
k∑

r=1

[Ψ̃ 1(θ)]r
)

. (23)

Using Eq. 11 and 21 in Eq. 23, after simplification, we obtain

W̃(θ) =
π(0)

[
θ

(
Im1 ⊗ Im2

) − (
Im1 ⊗ Φ

)]
adj [Ω(θ)]

( ∞∑
k=1

Dk ⊗
k∑

r=1
[Ψ̃ 1(θ)]r

)

λ�det [Ω(θ)]
,

(24)

where

Ω(θ) = θ
(
Im1 ⊗ Im2

) +
∞∑

k=0

Dk ⊗ [Ψ̃ 1(θ)]k.

Proceeding in a similar manner as we did in Subsection 3.1, the equation det[Ω(θ)] = 0
has (m− 1) roots with positive real parts, one root at θ = 0, while other mb roots each with
negative real part. We call these roots whose real part is negative as βk (1 ≤ k ≤ mb). We
assume that all βk (1 ≤ k ≤ mb) are distinct. We can get the vector π(0) from Eq. 24 in a
similar way as we did before in Subsection 3.1. However, since we already know the vector
π(0), we use its value to calculate the actual sojourn-time distribution.

Now each element of W̃(θ), i.e., W̃ij (θ) in Eq. 24 is a rational function with completely
known polynomials both in the numerator (after substituting the value of π(0)) and the
denominator. Therefore, we rewrite the right-hand side of W̃(θ) in Eq. 24 as

W̃(θ) =
[

F11(θ)

F (θ)
,
F12(θ)

F (θ)
, . . . ,

Fij (θ)

F (θ)
, . . . ,

Fm1m2(θ)

F (θ)

]

, (25)

where Fij (θ) is the ij -th component of the vector

1

λ�
π(0)

[
θ

(
Im1 ⊗ Im2

) − (
Im1 ⊗ Φ

)]
adj [Ω(θ)]

( ∞∑

k=1

Dk ⊗
k∑

r=1

[Ψ̃ 1(θ)]r
)

and F(θ) = det[Ω(θ)].
Once π(0) is known, we can obtain mean actual sojourn-time W directly using Eq. 25

by differentiating and taking the limit as θ → 0. Using the fact that F(0) = 0, we obtain
the mean actual sojourn-time as

W =
m1∑

i=1

m2∑

j=1

F ′
ij (0)F

′′(0) − F ′′
ij (0)F

′(0)
2[F ′(0)]2 . (26)

Let W = [W 11,W 12, . . . , W ij , . . . ,Wm1m2 ] be the stationary probability vector of the
actual sojourn time of an arbitrary customer in an arriving batch. From Eq. 25, using W =
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W̃(0), we have

W =
[

F ′
11(0)

F ′(0)
,
F ′
12(0)

F ′(0)
, . . . ,

F ′
ij (0)

F ′(0)
, . . . ,

F ′
m1m2

(0)

F ′(0)

]

. (27)

Now applying the partial-fraction method on the ij -th component W̃ij (θ) of W̃(θ), we have

W̃ij (θ) =
mb∑

k=1

dk,ij

θ − βk

, 1 ≤ i ≤ m1, 1 ≤ j ≤ m2, (28)

where

dk,ij = Fij (βk)

F ′(βk)
, k = 1, 2, . . . , mb.

Now, taking the inverse Laplace-transform of Eq. 28, component-wise explicit closed-form
expression of the probability density function (p.d.f.) wij (x) = d

dx
Wij (x) is given by

wij (x) =
mb∑

k=1

dk,ij e
βkx, 1 ≤ i ≤ m1, 1 ≤ j ≤ m2, x ≥ 0. (29)

Clearly, it is shown that wij (x), x ≥ 0, is a sum of exponential terms.
From Eq. 29, we can get Wij (x) as

Wij (x) =
∫ x

0
wij (t)dt

=
mb∑

k=1

dk,ij

βk

eβkx −
mb∑

k=1

dk,ij

βk

= Wij +
mb∑

k=1

dk,ij

βk

eβkx, x ≥ 0, (30)

where

Wij = −
mb∑

k=1

dk,ij

βk

is obtained by taking θ → 0 in Eq. 28.
Hence, the actual sojourn-time distribution is obtained as

W(x) = W +
mb∑

k=1

1

βk

dke
βkx, x ≥ 0, (31)

where dk = [
dk,11, dk,12, . . . , dk,ij , . . . , dk,m1m2

]
.

The mean sojourn-time from Eq. 28 is given by

W =
m1∑

i=1

m2∑

j=1

mb∑

k=1

dk,ij

β2
k

. (32)

Although one can get the mean sojourn-time from either Eq. 26 or Eq. 32, it is easier to get
the mean sojourn-time from Eq. 26.
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Table 1 System-length distribution at random epoch (Model 1)

n π11(n) π12(n) π13(n) π21(n) π22(n) π23(n) π(n)e

0 0.106975 0.030037 0.023295 0.151447 0.042515 0.032965 0.387234

1 0.008489 0.002604 0.001902 0.012947 0.003960 0.002893 0.032794

2 0.009025 0.002771 0.002023 0.014212 0.004347 0.003177 0.035555

3 0.009522 0.002925 0.002135 0.015657 0.004794 0.003506 0.038539

4 0.007947 0.002442 0.001783 0.011382 0.003501 0.002557 0.029612

5 0.008402 0.002581 0.001885 0.011893 0.003659 0.002672 0.031092

10 0.006889 0.002134 0.001558 0.011398 0.003510 0.002563 0.028052

50 0.000193 0.000061 0.000044 0.000320 0.000100 0.000073 0.000792

100 0.000002 0.000001 0.000001 0.000004 0.000001 0.000001 0.000010

115 0.000001 0.000000 0.000000 0.000001 0.000000 0.000000 0.000003

130 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001

sum 0.261298 0.077863 0.058219 0.396138 0.118221 0.088261 1.000000

L = 8.071949, W = 0.877024

4 Numerical Results

We have carried out numerical work based on the procedure discussed in this paper.
During the computational work, several outputs were generated for testing the procedure
but only a few of them are appended here. All the calculations were performed using
MAPLE and some sample outputs are shown in the following tables. We use the command
f solve(G(z), z, complex) to find all roots of the characteristic equation G(z) = 0. The
equation G(z) = 0 has m1m2(b + 1) = 78 (m1 = 2,m2 = 3, b = 12) roots in total.
Out of these 78 roots, m1m2 − 1 = 5 roots γ1, γ2, . . . , γ5 are inside the unit circle, one
root at z = 1 and all other m1m2b = 72 roots are outside the unit circle and we call these
roots as α1, α2, . . . , α72. These 72 outside roots are used in Eq. 17 for the partial-fractions.
Using the inside roots γ1, γ2, . . . , γ5 in Eq. 13 and z = 1 in Eq. 14, and then solving these

Table 2 System-length distribution at arrival epoch (Model 1)

n π−
11(n) π−

12(n) π−
13(n) π−

21(n) π−
22(n) π−

23(n) π−(n)e

0 0.010952 0.003075 0.002384 0.024767 0.006953 0.005392 0.053524

1 0.011848 0.003349 0.002585 0.026815 0.007581 0.005850 0.058029

2 0.012814 0.003645 0.002801 0.029033 0.008260 0.006347 0.062900

3 0.010532 0.003032 0.002311 0.021516 0.006212 0.004725 0.048328

4 0.011074 0.003199 0.002433 0.022549 0.006530 0.004958 0.050744

5 0.011637 0.003372 0.002560 0.023608 0.006857 0.005196 0.053230

10 0.007614 0.002282 0.001696 0.022948 0.006785 0.005085 0.046411

50 0.000203 0.000064 0.000046 0.000564 0.000177 0.000129 0.001184

100 0.000003 0.000001 0.000001 0.000007 0.000002 0.000002 0.000015

115 0.000001 0.000000 0.000000 0.000002 0.000001 0.000001 0.000004

130 0.000000 0.000000 0.000000 0.000001 0.000000 0.000000 0.000001

sum 0.187326 0.055848 0.041737 0.470125 0.140216 0.104747 1.000000
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Table 3 System-length distribution at post-departure epoch (Model 1)

n π+
11(n) π+

12(n) π+
13(n) π+

21(n) π+
22(n) π+

23(n) π+(n)e

0 0.014149 0.003975 0.003085 0.021570 0.006053 0.004692 0.053524

1 0.015043 0.004227 0.003282 0.023680 0.006645 0.005152 0.058029

2 0.015873 0.004462 0.003465 0.026094 0.007324 0.005683 0.062900

3 0.013249 0.003724 0.002893 0.018978 0.005337 0.004147 0.048328

4 0.014006 0.003937 0.003058 0.019831 0.005577 0.004335 0.050744

5 0.014837 0.004170 0.003239 0.020657 0.005810 0.004516 0.053230

10 0.011171 0.003150 0.002458 0.019757 0.005555 0.004319 0.046411

50 0.000296 0.000084 0.000066 0.000490 0.000139 0.000109 0.001184

100 0.000004 0.000001 0.000001 0.000006 0.000002 0.000001 0.000015

115 0.000001 0.000000 0.000000 0.000002 0.000000 0.000000 0.000004

130 0.000000 0.000000 0.000000 0.000001 0.000000 0.000000 0.000001

sum 0.257599 0.072632 0.056654 0.408357 0.115067 0.089690 1.000000

m1m2 = 6 linearly independent simultaneous equations, we get the vector π(0). In the case
of waiting-time analysis, we also use the same command for the characteristic equation
F(θ) = 0 which has 5 roots with positive real parts, one root at θ = 0, while other 72 roots
each with negative real part. These 72 roots each with negative real part are used in Eq. 28
for the partial-fractions. Numerical results for Model 1 have been presented in Tables 1, 2,
3 and 4. Similarly, numerical results for Model 2 have also been given in Tables 5, 6, 7 and
8. It is found that the mean sojourn time W using Little’s rule given in Tables 1 and 5 match
with the results obtained from the actual sojourn-time distribution. Moreover, it is found in
Table 1 for Model 1 that π(0)e = 1 − ρ which represents the probability that the server is
idle. While for Model 2 it is found in Table 5 that π = πa ⊗ π s . These are internal checks

Table 4 Actual sojourn-time distribution (Model 1)

x W11(x) W12(x) W13(x) W21(x) W22(x) W23(x) W(x)e

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.1 0.017372 0.004784 0.003642 0.039090 0.010766 0.008196 0.083851

0.5 0.081906 0.022949 0.017743 0.183301 0.051342 0.039675 0.396917

1.0 0.132876 0.037375 0.029057 0.319557 0.089860 0.069832 0.678557

1.5 0.159626 0.044951 0.035003 0.392762 0.110591 0.086105 0.829038

2.0 0.173731 0.048945 0.038138 0.431811 0.121648 0.094782 0.909055

2.5 0.181225 0.051067 0.039803 0.452595 0.127533 0.099400 0.951624

3.0 0.185210 0.052196 0.040689 0.463652 0.130663 0.101857 0.974267

4.0 0.188457 0.053115 0.041411 0.472662 0.133215 0.103859 0.992719

5.0 0.189376 0.053375 0.041615 0.475211 0.133937 0.104426 0.997940

6.0 0.189636 0.053449 0.041673 0.475933 0.134141 0.104586 0.999417

7.0 0.189710 0.053469 0.041689 0.476137 0.134199 0.104632 0.999835

10.0 0.189738 0.053478 0.041695 0.476215 0.134221 0.104649 0.999996

11.5 0.189739 0.053478 0.041695 0.476217 0.134221 0.104649 0.999999

20.0 0.189739 0.053478 0.041695 0.476217 0.134222 0.104649 1.000000
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Table 5 System-length distribution at random epoch (Model 2)

n π11(n) π12(n) π13(n) π21(n) π22(n) π23(n) π(n)e

0 0.104765 0.032089 0.023438 0.148329 0.045408 0.033168 0.387198

1 0.008473 0.002608 0.001912 0.012917 0.003967 0.002911 0.032789

2 0.008993 0.002785 0.002040 0.014145 0.004376 0.003212 0.035551

3 0.009475 0.002963 0.002148 0.015548 0.004885 0.003532 0.038551

4 0.007940 0.002443 0.001788 0.011372 0.003503 0.002563 0.029609

5 0.008384 0.002586 0.001896 0.011872 0.003666 0.002685 0.031089

10 0.006873 0.002140 0.001568 0.011365 0.003521 0.002583 0.028050

50 0.000193 0.000061 0.000044 0.000320 0.000100 0.000073 0.000792

100 0.000002 0.000001 0.000001 0.000004 0.000001 0.000001 0.000010

115 0.000001 0.000000 0.000000 0.000001 0.000000 0.000000 0.000003

130 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001

sum 0.258761 0.080111 0.058508 0.392407 0.121487 0.088726 1.000000

L = 8.072680, W = 0.877103

which are independent of the roots. We choose the following matrices Dn, n ≥ 0, of order
2 of the arrival process (BMAP):

D0 =
[ −4.70 3.17
2.46 −3.55

]

, D3 =
[
0.13 0.40
0.11 0.32

]

, D7 =
[
0.23 0.27
0.16 0.09

]

,

D12 =
[
0.20 0.30
0.00 0.41

]

.

This leads to
πa = [

0.397380 0.602620
]

with λ� = 9.203799.

Table 6 System-length distribution at arrival epoch (Model 2)

n π−
11(n) π−

12(n) π−
13(n) π−

21(n) π−
22(n) π−

23(n) π−(n)e

0 0.010726 0.003285 0.002399 0.024257 0.007427 0.005425 0.053519

1 0.011620 0.003560 0.002601 0.026300 0.008056 0.005886 0.058023

2 0.012582 0.003857 0.002819 0.028508 0.008739 0.006387 0.062894

3 0.010362 0.003185 0.002326 0.021182 0.006513 0.004756 0.048325

4 0.010905 0.003352 0.002448 0.022215 0.006832 0.004989 0.050741

5 0.011467 0.003525 0.002575 0.023273 0.007158 0.005228 0.053227

10 0.00755 0.002333 0.001705 0.022703 0.007000 0.005115 0.046409

50 0.000203 0.000064 0.000047 0.000564 0.000177 0.000129 0.001184

100 0.000003 0.000001 0.000001 0.000007 0.000002 0.000002 0.000015

115 0.000001 0.000000 0.000000 0.000002 0.000001 0.000001 0.000004

130 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001

sum 0.185526 0.057438 0.041949 0.465643 0.144160 0.105285 1.000000
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Table 7 System-length distribution at post-departure epoch (Model 2)

n π+
11(n) π+

12(n) π+
13(n) π+

21(n) π+
22(n) π+

23(n) π+(n)e

0 0.014137 0.003975 0.003095 0.021549 0.006052 0.004711 0.053519

1 0.015016 0.004231 0.003304 0.023624 0.006651 0.005197 0.058023

2 0.015820 0.004480 0.003498 0.025967 0.007369 0.005760 0.062894

3 0.013244 0.003724 0.002897 0.018971 0.005336 0.004153 0.048325

4 0.013994 0.003937 0.003069 0.019815 0.005577 0.004349 0.050741

5 0.014806 0.004174 0.003264 0.020623 0.005815 0.004544 0.053227

10 0.011149 0.003154 0.002477 0.019702 0.005562 0.004365 0.046409

50 0.000296 0.000084 0.000066 0.000490 0.000139 0.000109 0.001184

100 0.000004 0.000001 0.000000 0.000006 0.000002 0.000001 0.000015

115 0.000001 0.000000 0.000000 0.000002 0.000000 0.000000 0.000004

130 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001

sum 0.257297 0.072705 0.056888 0.407776 0.115209 0.090124 1.000000

We choose the following matrices L0 and L1 of order 3 of the service process (MSP):

L0 =
⎡

⎣
−15.42 0.11 0.10
0.19 −18.05 5.06
0.00 5.08 −22.30

⎤

⎦ , L1 =
⎡

⎣
13.06 2.15 0.00
0.02 7.04 5.74
10.15 0.00 7.07

⎤

⎦ .

This leads to
π s = [

0.651169 0.201597 0.147234
]

with μ� = 15.020090, and hence ρ = 0.612766.

Table 8 Actual sojourn-time distribution (Model 2)

x W11(x) W12(x) W13(x) W21(x) W22(x) W23(x) W(x)e

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.1 0.017197 0.004831 0.003750 0.038694 0.010873 0.008440 0.083785

0.5 0.081626 0.023011 0.017944 0.182670 0.051483 0.040126 0.396861

1.0 0.132598 0.037439 0.029261 0.318929 0.090005 0.070290 0.678523

1.5 0.159351 0.045016 0.035209 0.392142 0.110738 0.086564 0.829020

2.0 0.173458 0.049010 0.038344 0.431196 0.121796 0.095242 0.909046

2.5 0.180952 0.051133 0.040009 0.451982 0.127681 0.099861 0.951618

3.0 0.184938 0.052261 0.040895 0.463039 0.130812 0.102318 0.974264

4.0 0.188185 0.053181 0.041616 0.472051 0.133364 0.104321 0.992718

5.0 0.189104 0.053441 0.041821 0.474600 0.134086 0.104887 0.997940

6.0 0.189364 0.053514 0.041879 0.475322 0.134290 0.105048 0.999417

7.0 0.189438 0.053535 0.041895 0.475526 0.134348 0.105093 0.999835

10.0 0.189466 0.053543 0.041901 0.475605 0.134370 0.105111 0.999996

11.5 0.189467 0.053543 0.041901 0.475606 0.134371 0.105111 0.999999

20.0 0.189467 0.053544 0.041901 0.475606 0.134371 0.105111 1.000000
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Hence, we have

πa ⊗ π s = [
0.258761 0.080111 0.058508 0.392407 0.121487 0.088726

]
.

5 Conclusion

In this paper, we have presented a procedure to evaluate the steady-state system-length
distributions at random, arrival and post-departure epochs, and the actual sojourn-time
distribution of the BMAP/MSP/1 queue. The analysis is based on roots of the asso-
ciated characteristic equation of the vector-generating function (VGF) of system-length
distribution at random epoch. The proposed method can be applied to get computational
results of more complex models such as bulk service BMAP/BMSP/1 and multi-server
BMAP/MSP/c queues.
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Appendix A

Theorem A.1 Every function Ak,k(z), 1 ≤ k ≤ m, has exactly one zero inside or on the
unit circle, and b zeros outside the unit circle.

Proof From Eq. 9, we have

Ak,k(z) =
b∑

n=0

(Dn)i,iz
n+1 + z(L0)j,j + (L1)j,j , (33)

k = j + (i − 1)m2; i = 1, 2, . . . , m1, j = 1, 2, . . . , m2.

Each Ak,k(z) is a polynomial function of degree b + 1. Consider absolute values of f (z) =
z
(
(D0)i,i + (L0)j,j

)
and g(z) =

b∑

n=1
(Dn)i,iz

n+1 + (L1)j,j on the circle |z| = 1+ δ, where

δ is positive and sufficiently small. Now, on the circle |z| = 1 + δ, using the Taylor series
expansion, we have

|g(z)| ≤
b∑

n=1

(Dn)i,i (|z|)n+1 + (L1)j,j

=
b∑

n=1

(Dn)i,i (1 + (n + 1)δ) + (L1)j,j + o(δ)

=
b∑

n=1

(Dn)i,i (1 + δ) + δ

b∑

n=1

n(Dn)i,i + (L1)j,j + o(δ).
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Since
b∑

n=1
(Dn)i,i ≤ |(D0)i,i | and (L1)j,j ≤ |(L0)j,j |, we have

|g(z)| ≤ |(D0)i,i |(1 + δ) + δ

b∑

n=1

n(Dn)i,i + |(L0)j,j | + o(δ). (34)

Differentiating Eq. 9 w.r.t. z and setting z = 1, we have

A′(1) = D ⊗ Im2 +
b∑

k=1

kDk ⊗ Im2 + Im1 ⊗ L0.

Since (πa ⊗ π s)
(
D ⊗ Im2

)
e = 0, (πa ⊗ π s)

(
b∑

k=1
kDk ⊗ Im2

)

e = λ� and

(πa ⊗ π s)
(
Im1 ⊗ L0

)
e = −μ�, we have

(πa ⊗ π s)A′(1)e = λ� − μ�. (35)

Now assume the following inequality holds for some i ∈ {1, 2, . . . , m} :
m∑

j=1

A′
i,j (1) = A′(1)e ≥ 0. (36)

Pre-multiplying Eq. 36 by i-th component of (πa ⊗ π s) and then summing over i, we get

(πa ⊗ π s)A′(1)e ≥ 0 ⇒ λ� − μ� ≥ 0 ⇒ ρ ≥ 1.

This contradicts ρ < 1, and hence

A′(1)e < 0

⇒
b∑

n=1

n

m1∑

k=1

(Dn)i,k +
m2∑

k=1

(L0)j,k < 0, i = 1, 2, . . . , m1; j = 1, 2, . . . , m2

⇒
b∑

n=1

n(Dn)i,i < |(L0)j,j |. (37)

Hence, using Eq. 37 in Eq. 34, we have

|g(z)| < |f (z)|.
Hence, using the well-known Rouché’s theorem, f (z) and f (z) + g(z) have the same num-
ber of zeros inside the circle |z| = 1 + δ. It is obvious that f (z) = 0 has exactly one zero
inside the circle |z| = 1 + δ. Thus, f (z) + g(z) = Ak,k(z) has exactly one zero inside or
on the unit circle. As Ak,k(z) is a polynomial function of degree b + 1, other b zeros are
outside the unit circle.

Theorem A.2 The following inequalities hold on the circle |z| = 1 + δ:

|Ai,i(z)| >

m∑

j=1, j 
=i

|Ai,j (z)|, 1 ≤ i ≤ m. (38)
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Proof On the circle |z| = 1 + δ, using the Taylor series expansion, we have

|Ai,i(z)| ≥ −Ai,i(|z|)
= −Ai,i(1) − δA′

i,i (1) + o(δ)

=
m∑

j=1, j 
=i

Ai,j (1) − δA′
i,i (1) + o(δ), 1 ≤ i ≤ m,

and
m∑

j=1, j 
=i

|Ai,j (z)| ≤
m∑

j=1, j 
=i

Ai,j (|z|)

=
m∑

j=1, j 
=i

Ai,j (1) + δ

m∑

j=1, j 
=i

A′
i,j (1) + o(δ), 1 ≤ i ≤ m.

Now assume the following inequality holds for some i ∈ {1, 2, . . . , m} :

|Ai,i(z)| ≤
m∑

j=1, j 
=i

|Ai,j (z)|.

This implies
m∑

j=1, j 
=i

Ai,j (1) − δA′
i,i (1) + o(δ) ≤

m∑

j=1, j 
=i

Ai,j (1) + δ

m∑

j=1, j 
=i

A′
i,j (1) + o(δ)

⇒ −δA′
i,i (1) + o(δ) ≤ δ

m∑

j=1, j 
=i

A′
i,j (1) + o(δ).

When δ → 0, we have

0 ≤
m∑

j=1

A′
i,j (1) = A′(1)e

⇒ 0 ≤ (πa ⊗ π s)A′(1)e
⇒ λ� ≥ μ� ⇒ ρ ≥ 1.

This contradicts the system stability condition ρ < 1, and hence Eq. 38 is satisfied.

Theorem A.3 The determinant det[A(z)] has exactly (m − 1) zeros in |z| < 1, one zero at
z = 1 and mb zeros in |z| > 1 (including multiplicity).

Proof Mathematical induction is used to prove this theorem. Let us denote

Rn(z) = det[A(z)] (39)

represents the determinant of the underlying square matrix of order n.

1. We show that the statement is true for n = 1.
For n = 1, Eq. 39 becomes R1(z) = A(z), where A(z) ≡ A1,1(z) = z(−λ +

λX(z))−μz+μ with X(z) being the probability generating function of batch size. The
arrival process is a compound Poisson process with mean arrival rate λX′(1). Service
time is exponential with rate μ. That is, μ = (L1)1,1, −λ = (D0)1,1, −μ = (L0)1,1,
λgn = (Dn)1,1, n ≥ 1, where gn represents the batch size with p.g.f. X(z). Thus,
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A(z) is the characteristic function for the classical MX/M/1 queue. This polynomial
function is of degree b + 1. Consider absolute values of f (z) = −(λ + μ)z and g(z) =
λzX(z) + μ on the circle |z| = 1 + δ, where δ is positive and sufficiently small. Now,
on the circle |z| = 1 + δ, using the Taylor series expansion, we have

|g(z)| ≤ λ|z|X(|z|) + μ

= λ(1 + δ)(1 + δX′(1)) + μ + o(δ)

= λ(1 + δ) + δλX′(1) + μ + o(δ). (40)

Since ρ = λX′(1)
μ

< 1, we have λX′(1) < μ which leads (40) that |g(z)| < |f (z)|.
Hence, using the well-known Rouché’s theorem, f (z) and f (z) + g(z) have the same
number of zeros inside the circle |z| = 1 + δ. It is obvious that f (z) = 0 has exactly
one zero inside the circle |z| = 1 + δ. Thus, f (z) + g(z) = A(z) has exactly one zero
inside the circle |z| = 1 + δ. It is cleared that A(z) = 0 has one root at z = 1. Thus,
A(z) has no zeros in |z| < 1. As A(z) is a polynomial function of degree b + 1, other b

zeros are outside the unit circle.
2. For n = 2, Eq. 39 becomes

R2(z) =
∣
∣
∣
∣
A1,1(z) A1,2(z)

A2,1(z) A2,2(z)

∣
∣
∣
∣

= A2,2(z)R1(z) + A2,1(z)C2,1(z), (41)

where C2,1(z) = −A1,2(z) is the cofactor of A2,1(z), and R1(z) = A1,1(z),
Again, we can write Eq. 41 as

∣
∣
∣
∣
R2(z) − A2,2(z)R1(z)

A2,2(z)R1(z)

∣
∣
∣
∣ =

∣
∣
∣
∣
A2,1(z)C2,1(z)

A2,2(z)R1(z)

∣
∣
∣
∣

=
∣
∣A2,1(z)

∣
∣
∣
∣y2,1(z)

∣
∣

∣
∣A2,2(z)

∣
∣

< 1,

where

|y2,1(z)| = |C2,1(z)|
|R1(z)| = |A1,2(z)|

|A1,1(z)| < 1

and
∣
∣A2,1(z)

∣
∣

∣
∣A2,2(z)

∣
∣

< 1

by Theorem A.2 for m = 2.
Hence, we have |g(z)| < |f (z)|, where f (z) = A2,2(z)R1(z) and g(z) = R2(z) −

A2,2(z)R1(z). By Rouché’s theorem f (z) and f (z) + g(z) have the same number of
zeros inside the circle |z| = 1+δ. By Theorem A.1, f (z) has two zeros inside the circle
|z| = 1 + δ. Since A1,2(1) = −A1,1(1) and A2,1(1) = −A2,2(1), R2(z) = 0 has one
root at z = 1. Thus, R2(z) = f (z) + g(z) has two zeros inside and on the unit circle.
As R2(z) is a polynomial function of degree 2(b + 1), other 2b zeros are outside the
unit circle.

3. We assume that the statement is true for n = m − 1. It must then be shown that the
statement holds for n = m.
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The determinant Rn(z) for n = m is given by

Rm(z) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

A1,1(z) A1,2(z) · · · A1,m−1(z) A1,m(z)

A2,1(z) A2,2(z) · · · A2,m−1(z) A2,m(z)
...

...
...

...
...

Am−1,1(z) Am−1,2(z) · · · Am−1,m−1(z) Am−1,m(z)

Am,1(z) Am,2(z) · · · Am,m−1(z) Am,m(z)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (42)

Now we can rewrite Eq. 42 in the following way

Rm(z) =
m−1∑

j=1

Am,j (z)Cm,j (z) + Am,m(z)Rm−1(z), (43)

where Cm,j (z) is the cofactor of Am,j (z).
Again, we can write Eq. 43 as

∣
∣
∣
∣
Rm(z) − Am,m(z)Rm−1(z)

Am,m(z)Rm−1(z)

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

∑m−1
j=1 Am,j (z)Cm,j (z)

Am,m(z)Rm−1(z)

∣
∣
∣
∣
∣

≤
∑m−1

j=1

∣
∣Am,j (z)

∣
∣
∣
∣ym,j (z)

∣
∣

∣
∣Am,m(z)

∣
∣

, (44)

where |ym,j (z)| = |Cm,j (z)|
|Rm−1(z)| is the unique solution (by Cramer’s rule, provided

Rm−1(z) 
= 0) of the system of equations
⎛

⎜
⎜
⎜
⎝

A1,1(z) A1,2(z) · · · A1,m−1(z)

A2,1(z) A2,2(z) · · · A2,m−1(z)
...

...
...

...

Am−1,1(z) Am−1,2(z) · · · Am−1,m−1(z)

⎞

⎟
⎟
⎟
⎠
·

⎛

⎜
⎜
⎜
⎝

ym,1(z)

ym,2(z)
...

ym,m−1(z)

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎝

A1,m(z)

A2,m(z)
...

Am−1,m(z)

⎞

⎟
⎟
⎟
⎠
. (45)

The k-th equation of Eq. 45 is given by

Ak,k(z)ym,k(z) +
m−1∑

j=1,j 
=k

Ak,j (z)ym,j (z) = Ak,m(z), 1 ≤ k ≤ m − 1. (46)

Now, we assume the contrary that

Maxj |ym,j (z)| = |ym,k(z)| ≥ 1.

Because of our assumption
∣
∣
∣
ym,j (z)

ym,k(z)

∣
∣
∣ ≤ 1 and

∣
∣
∣ 1
ym,k(z)

∣
∣
∣ ≤ 1, we can rewrite Eq. 46 in the

form

|Ak,k(z)| ≤
m−1∑

j=1,j 
=k

∣
∣Ak,j (z)

∣
∣
∣
∣
∣
∣
ym,j (z)

ym,k(z)

∣
∣
∣
∣ + ∣

∣Ak,m(z)
∣
∣
∣
∣
∣
∣

1

ym,k(z)

∣
∣
∣
∣

≤
m∑

j=1,j 
=k

∣
∣Ak,j (z)

∣
∣ .

This contradicts Theorem A.2. Thus we have |ym,j (z)| < 1.
Hence, using Theorem A.2 and |ym,j (z)| < 1, the right-hand side expression of

Eq.44 is less than one, and therefore |g(z)| < |f (z)|, where f (z) = Am,m(z)Rm−1(z)

and g(z) = Rm(z) − Am,m(z)Rm−1(z). By Rouché’s theorem f (z) and f (z) + g(z)

have the same number of zeros inside the circle |z| = 1+δ. By our assumptionRm−1(z)
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has (m − 1) zeros, and Am,m(z) has one zero inside and on the unit circle, |z| = 1, by
Theorem A.1. This implies f (z) has m zeros inside and on the unit circle. Hence, it
has now been proved by mathematical induction that f (z) + g(z) = Rm(z) has exactly
m zeros inside and on the unit circle. As Rm(z) is a polynomial function of degree
m(b + 1), other mb zeros are outside the unit circle.

Remark 4 For alternative proofs of this theorem, one may see references such as Gail et al.
(1996), and Dudin and Klimenok (1996).
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