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Abstract A periodic-review insurance model is considered under the following assump-
tions. In order to avoid ruin the insurer maintains the company surplus above a chosen
level a by capital injections at the end of each period. One-period insurance claims form
a sequence of independent identically distributed nonnegative random variables with finite
mean. A nonproportional reinsurance is applied for minimization of total expected dis-
counted injections during a given planning horizon of n periods. Insurance and reinsurance
premiums are calculated using the expected value principle. Optimal reinsurance strategy is
established. Numerical results illustrating the theoretical ones are provided for three claims
distributions.
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1 Introduction

We begin by recalling the following well known facts. In order to study a real-life system
it is desirable to construct its mathematical model. There exist a lot of models describing
the system more or less precisely. The same mathematical model can arise in various appli-
cations. Thus, the methods employed in one research domain may be useful in other ones
(see, e.g., Prabhu (1998)).
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To describe a so-called input-output applied probability model one has to specify, along
with the system structure and its operation mode, input, output and control processes,
the planning horizon and objective function. The last element called also valuation crite-
rion, target or risk measure evaluates the system performance quality, for details see, e.g.,
Bulinskaya (2012) .

The control providing the extremum of objective function for a fixed planning horizon is
called optimal. The collection of optimal controls for all the planning horizons is called the
optimal strategy.

We are interested in obtaining the optimal reinsurance strategy in a discrete-time insur-
ance model with capital injections. Nowadays, reinsurance is an important tool for financial
risks management. Any insurance company, notwithstanding its size, has to use reinsurance
(risk transfer to other insurer) for stable performance. The definitions can be found in the
classical books Bühlmann (1970), Gerber (1980).

The problem of establishing the optimal reinsurance strategy was treated by many
researchers during the last decades and it is impossible even to mention all of them, so our
list of references does not pretend on completeness. One of the first papers is Dayananda
(1970). Then follow the papers Dickson and Waters (1996, 2006) Højgaard and Taksar
(1998), Schmidli (2002), Hipp and Vogt (2003), Kaishev (2005) and many others, studying
various continuous-time models and different objective functions. The most popular mod-
els are the classical Cramér-Lundberg model and its diffusion approximations. The target is
minimization of ruin probability, the control being reinsurance and investment.

However, the ruin probability does not take into account the time of ruin and its severity.
So, Dickson and Waters (2004), in context of expected discounted dividends maximization,
proposed a classical model modification. Namely, they assumed that in case of ruin the
shareholders must cover the company deficit to enable the further functioning. The classical
and diffusion models with capital injections (if surplus becomes negative) and reinsurance
were studied in Eisenberg and Schmidli (2011). The aim was minimization of the expected
discounted capital injections over all admissible reinsurance strategies. It was supposed that
reinsurance parameter could be changed continuously.

Since reinsurance treaties are usually negotiated at the end of financial year it seems
more realistic to study discrete-time insurance models. Exponential utility and ruin proba-
bility minimization by means of discrete-time dynamic programming were treated in Schäl
(2004). The optimal dynamic control for optimization of various utility functions was estab-
lished in Irgens (2005). The further examples of discrete-time models are Chan and Zhang
(2006) dealing with finite-time ruin probabilities for special cases of claim distributions,
Wei and Hu (2008) treating the ruin probabilities under assumption of stochastic interest
rates and Diasparra and Romera (2010) providing inequalities for ruin probability in a con-
trolled risk process. Li and Cong (2008) established the necessary conditions for optimality
of proportional reinsurance strategy, whereas Cong et al. (2011) further developed the multi-
period risk model with proportional reinsurance. Yartseva (2009) obtained upper and lower
bounds for dividends in the discrete model using proportional reinsurance. Optimal invest-
ment policy in a model with capital injections (maintaining the company surplus above some
prefixed level) was studied in Gromov (2013). It is clear that discrete-time models may be
used to investigate various aspects of insurance company activity.

Below we consider a periodic-review insurance model with capital injections and non-
proportional reinsurance. In contrast with previous papers, where the ruin probability was
chosen as objective function, we use a so-called cost approach introduced in Bulinskaya
(2003). That means, our aim is minimization of expected total discounted capital injections
during the n-period planning horizon, n ≥ 1, by an appropriate choice of retention levels.
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So we treat a new aspect of insurance and reinsurance not studied previously and interesting
for applications.

The paper is organized as follows. In Section 2 we give the model description. One-
period case is considered in Section 3. At first, the properties of some auxiliary functions are
studied. Moreover, we introduce three sets Di , i = 1, 2, 3, of parameters values (insurer’s
and reinsurer’s safety loadings) playing crucial role in the choice of retention level. In partic-
ular, the possibility to eliminate the additional costs in case of special relationship between
the safety loadings (set D1) is established. On the other hand, if the parameters belong to
the set D3 there is no need of reinsurance for the initial surplus lying below some thresh-
old u∗. The properties of the optimal retention level z1(u) as a function of initial insurance
company surplus u are obtained.

Multi-step case is studied in Section 4. A useful mathematical tool here is Bellman’s
optimality principle. It is interesting to mention that dynamic programming was success-
fully used in inventory theory and other applications five decades ago. The optimal retention
levels zn(u) providing the objective function minimum are investigated as functions of ini-
tial surplus u and planning horizon length n. Asymptotic behaviour of minimal expected
n-period capital injections hn(u) is established, as n → ∞.

Theoretical results are illustrated by numerical examples presented in Section 5. We treat
three claim distributions (exponential, uniform and Pareto). For the first two cases (distri-
butions with light tails) it turned out that the domains Di , i = 1, 2, 3, do not depend on
distribution parameters. On the contrary, there is a strong dependence of the above men-
tioned sets on the shape parameter b of the Pareto distribution (having a heavy tail). All the
graphics are obtained using Wolfram Mathematica software. In conclusion (Section 6) we
discuss the obtained results and further research directions.

2 Model Description

Thus, we make the following assumptions. Let u be the initial insurer’s surplus and Xi

the claims amount during the ith period (usually a year). The sequence {Xi}i≥1 consists of
independent identically distributed random variables with distribution function F(x) having
density f (x) and finite mean γ . Each year, before claims payment, insurer acquires pre-
mium c calculated according to the expected value principle with safety loading λ > 0, i.e.
c = (1 + λ)γ . In order to avoid ruin insurer chooses some surplus level a which is main-
tained by capital injections at the end of each period. Nonproportional insurance is used
for minimization of expected total discounted injections during the planning horizon of n

periods. In other words, after claims payment and capital injection (if any) a retention level
z is fixed for the next period. Thus, insurer pays min(X, z) if the next period claim is X,
whereas reinsurer pays (X − z)+ = max(0, X − z). The reinsurance premium is equal to
(1 + μ)E(X − z)+, that is, calculated also on the base of the expected value principle. Fur-
thermore, it is natural to suppose that μ > λ, because the direct insurer is more risk averse
than reinsurer. That means, we consider a non-arbitrage situation. Hence, insurer’s premium
after reinsurance is given by

c(z) = (1 + λ)γ − (1 + μ)E(X − z)+ = lγ − m

∫ ∞

z

S(x) dx (1)

where l = 1 + λ, m = 1 + μ and S(x) = 1 − F(x) is survival function corresponding to
F(x). The discount factor is denoted by α.
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Note that due to capital injection insurer’s surplus at the beginning of the ith period,
i ≥ 2, cannot be less than a. So, it is natural to assume that u ≥ a as well. We do not specify
here the source of capital needed for injection. However there exist different possibilities.
We can assume, following Dickson and Waters (2004), that shareholders take care of deficit
at ruin (that is, a = 0). To maintain the surplus at the beginning of each period above some
level a > 0 one can use either bank loans or additional reinsurance treaties.

3 One-Step Model

We begin by treating a one-period model. Let u be the initial insurer’s surplus, X the claim
amount and z retention level. Then insurer’s premium after reinsurance is c(z) given by
Eq. 1. The objective function H1(u, z) = EJ (u, z) with

J (u, z) = (min(X, z) − e(u, z))+, e(u, z) = u − a + c(z),

represents the expected capital injection at the end of period in order to raise the surplus to
a fixed level a. Moreover, putting g(z) = z − c(z) it is possible to write

H1(u, z) =
∫ z

0
(x − e(u, z))+f (x) dx + (a − u + g(z))+S(z). (2)

Denote by h1(u) the minimal expected capital injection at the end of the period, then

h1(u) = inf
z>0

H1(u, z). (3)

Since it is impossible to transfer all the risk to reinsurer we have to choose z > 0 in Eq. 3.
Introduce also the following auxiliary functions

r(z) =
∫ ∞

z

S(x) dx and k(z) = z + mr(z).

Then c(z) = lγ − mr(z), whereas g(z) = k(z) − lγ .

3.1 Properties of auxiliary functions

For further investigation we need the following results.

Lemma 1 Function c(z) is concave and increases from (l − m)γ to lγ , as z grows from 0
to ∞.

Proof It is obvious that c′(z) = −mr ′(z) = mS(z) ≥ 0 and c′′(z) = −mf (z) ≤ 0, while
c(0) = (l − m)γ and c(z) → lγ , c′(z) → 0, as z → ∞.

Lemma 2 Functions k(z) and g(z) are convex attaining their minimum at the point z∗ =
Sinv(m−1) where Sinv is the function inverse to S. Moreover, k(z∗) = z∗ +mr(z∗), g(z∗) =
k(z∗) − lγ and g′(z) = k′(z) → 1, as z → ∞.

Proof Since k′(z) = g′(z) = 1− mS(z), the derivatives tend to 1, as z → ∞, and k′′(z) =
g′′(z) = mf (z) are nonnegative. Thus, both functions k and g are convex. Moreover, their
minimum is attained for z∗ satisfying 1−mS(z∗) = 0. Hence, z∗ = Sinv(m−1) and g(z∗) =
k(z∗) − lγ .
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Fig. 1 Function k(z)

Remark 1 It is important to underline that k(z∗) > z∗, see Fig. 1 as well. Note also that
g(0) = −c(0) and g(z) > −c(z) for z > 0.

Next we introduce the sets D1 = {mγ > lγ > k(z∗)}, D2 = {k(z∗) ≥ lγ > z∗} and
D3 = {z∗ ≥ lγ > γ }. It is obvious that g(z∗) < 0 in D1, g(z∗) ≥ 0 in D2 ∪ D3 and
z∗ − c(∞) ≥ 0 in D3. Put also u∗ = a + z∗ − lγ and u∗

1 = a + k(z∗) − lγ = a + g(z∗).
There exist three different situations as stated below.

Lemma 3 Inequalities a > u∗
1, u∗ < a ≤ u∗

1 and a ≤ u∗ are equivalent to the relations
(l, m) ∈ D1, (l,m) ∈ D2 and (l, m) ∈ D3 respectively.

Proof The desired result follows immediately from definition of Di , i = 1, 2, 3, u∗ and
u∗
1.

3.2 Optimal Reinsurance

Now we are able to obtain the optimal one-step reinsurance policy.

Theorem 1 If (l,m) ∈ D1 then h1(u) = 0 for all u ≥ a. The optimal retention level
z1(u) is the maximal root zr1(u) of the equation g(z) = u − a. Moreover, z1(u) is concave
increasing function and z′

1(u) → 1, as u → ∞.

Proof Since x−e(u, z) ≤ a−u+g(z) for x ∈ [0, z] it follows from Eq. 2 thatH1(u, z) = 0
for g(z) ≤ u − a. It is clear that for (l, m) ∈ D1 we have k(z∗) < lγ , in other words,
g(z∗) < 0. That means, for all u ≥ a equation g(z) = u−a has a root zr1(u) ≥ z∗, whereas
for u < a + (m − l)γ there exists another root zl1(u) ≤ z∗. Obviously, H1(u, z) = 0 for
z ∈ [zl1(u), zr1(u)] and H1(u, z) ≥ (a − u + g(z))S(z) > 0 for z > zr1(u). We take
zr1(u) as optimal retention level z1(u) since it gives the maximal insurance premium after
reinsurance (the function c(z) is increasing). Furthermore, using the rules of differentiation
of implicit functions, one easily obtains that

z′
1(u) = (1 − mS(z1(u)))−1 > 0 and

z′′
1(u) = −mf (z1(u))(1 − mS(z1(u)))−3 < 0. (4)
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Thus, z1(u) is concave increasing function and z′
1(u) → 1, since z1(u) → ∞, as u →

∞.

Theorem 2 If (l,m) ∈ D2 then h1(u) = 0 for u ≥ u∗
1. The optimal retention level z1(u) =

zr1(u) is defined as in Theorem 1 and has the same properties. Furthermore, z1(u∗
1) = z∗

and z′
1(u) → ∞ as u ↘ u∗

1.
For u ∈ [a, u∗

1) the function z1(u) = z0(u), the unique solution, for a fixed u, of the
equation e(u, z) = z∗. The function z0(u) is convex decreasing, z0(u) → z∗ and z′

0(u) →
−1, as u ↗ u∗

1.

Proof For (l, m) ∈ D2 we have u∗ < a ≤ u∗
1. Thus, g(z∗) ≥ 0 and for u ≥ u∗

1 equation
g(z) = u−a has two solutions 0 ≤ zl1(u) ≤ z∗ ≤ zr1(u) if g(z∗) ≤ u−a ≤ (m− l)γ , and
only one solution zr1(u) > z∗ if u− a > (m− l)γ . Reasoning as in the proof of Theorem 1
we take z1(u) = zr1(u) for u ≥ u∗

1. Obviously, zl1(u
∗
1) = zr1(u

∗
1) = z∗. Thus, it is easily

seen from Eq. 4 that z′
1(u

∗
1) = +∞.

Now let a ≤ u < u∗
1, that is, u − a < g(z∗) ≤ g(z) for all z > 0. In this case we can

rewrite Eq. 2 as follows

H1(u, z) =
∫ z

e(u,z)+
(x − e(u, z))f (x) dx + (a − u + g(z))S(z). (5)

Hence, if e(u, z) ≤ 0 then
∂H1

∂z
(u, z) = S(z)(1 − m),

whereas for e(u, z) > 0

∂H1

∂z
(u, z) = S(z)(1 − mS(e(u, z))).

Thus, it is possible to write, for all z > 0,

∂H1

∂z
(u, z) = S(z)G1(u, z) with G1(u, z) = 1 − mS(e(u, z)).

It follows immediately that G1(u, z) = 0 if

e(u, z) = z∗. (6)

This equation has a unique solution for each u ∈ [a, u∗
1] since lγ > z∗ for (l,m) ∈ D2.

Hence, it defines implicitly a function z0(u). For u = u∗
1 we get z∗ = c(z0(u

∗
1))+u∗

1 − a =
c(z0(u

∗
1)) + g(z∗) therefore c(z0(u

∗
1)) = c(z∗) and z0(u

∗
1) = z∗. Using Eq. 6 and the rules

of implicit functions differentiation one obtains

z′
0(u) = −(c′(z0(u)))−1 < 0, z′′

0(u) = m−2S−3(z0(u))f (z0(u)) > 0.

It follows immediately that z0(u) is convex decreasing and z′
0(u

∗
1) = −1. Since z0(u)

provides minimum of H1(u, z) for u ∈ [a, u∗
1] we take z1(u) = z0(u) in this interval.

Theorem 3 If (l, m) ∈ D3 then for u > u∗ the results coincide with those of Theorem 2.
Moreover, z1(u) → ∞ and z′

1(u) → −∞, as u ↘ u∗, whereas for u ∈ [a, u∗] it is optimal
to use no reinsurance, that is, to take z1(u) = ∞.

Proof For (l,m) ∈ D3 one has u∗ ≥ a. Hence, we have only to deal with u = u∗. In other
words, it follows e(u∗, z1(u∗)) = z∗, that is, c(z1(u∗)) = lγ implying z1(u∗) = ∞. Since
c′(z) → 0, as z → ∞, we get z′

1(u) → −∞, as u ↘ u∗. Furthermore, if u ∈ [a, u∗) the
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inequality e(u, z) < z∗ is valid for all z > 0. The function c(z) being increasing that entails
z1(u) = ∞. Thus, it is optimal to use no reinsurance for the mentioned values of u.

Corollary 1 For (l,m) ∈ D3 one has

h′
1(u) =

⎧⎨
⎩

−S(lγ + u − a), u ∈ [a, u∗),
−m−1, u ∈ [u∗, u∗

1),

0, u > u∗
1.

Proof We have established in Theorem 3 the form of optimal retention level z1(u). There-
fore h1(u) = H1(u, z1(u)) = H1(u,∞) for u ≤ u∗. Under assumption γ < ∞ one gets
zS(z) → 0, as z → ∞, thus, g(z)S(z) → 0 as well and H1(u,∞) = ∫ ∞

lγ+u−a
(a −u− lγ +

x)f (x) dx. That gives immediately h′
1(u) = −S(lγ + u − a) for u ∈ [a, u∗].

Obviously, for u ∈ [u∗, u∗
1) one can write

h′
1(u) = ∂H1

∂u
(u, z1(u)) + ∂H1

∂z
(u, z1(u))z′

1(u). (7)

By definition of z1(u) the second term on the right-hand side of relation Eq. 7 is equal to
zero. Moreover, equation Eq. 5 gives h′

1(u) = −m−1 for u ∈ [u∗, u∗
1) since

∂H1

∂u
(u, z1(u)) = −S(e(u, z1(u))) = −S(z∗).

Finally, h′
1(u) = 0 for u > u∗

1 because h1(u) = 0 for u ≥ u∗
1.

Remark 2 The changes necessary for the sets D2 and D1 are obvious.

4 Multi-Step Model

Now we consider the multi-period case, that is, the planning horizon n ≥ 2. Denote by
Uk(z) the surplus at the end of the kth period if z is the retention level assigned for this
period. It is clear that Uk(z) = uk−1 + c(z) − min(Xk, z) where c(z) is defined by formula
Eq. 1, Xk is the claims amount in the kth period and uk−1 is the surplus at the end of the
previous period.

Our aim is to obtain the minimal expected n-period discounted costs hn(u) and establish
the optimal reinsurance strategy. In other words, we want to find the sequence of func-
tions zk(u), k = 1, n, representing the optimal retention levels. More precisely, zk(u) is the
retention level to use at the first step of the k-step process with initial surplus u.

The objective function is calculated as follows

Ln(u, z1, . . . , zn) = E

(
n−1∑
k=0

αkJ (Uk(zn−k), zn−k)/U0 = u

)
,

hence,

hn(u) = inf
zi>0,i=1,n

Ln(u, z1, . . . , zn).

Using the Bellman optimality principle (see, e.g., Bellman (1957)) we get the following
recurrent relation

hn(u) = inf
z>0

[H1(u, z) + αEhn−1(max(a, u + c(z) − min(z, X)))] (8)
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where X has the same distribution function F(x) as all Xk , k ≥ 1. Obviously, h0(u) ≡ 0.
Thus, h1(u) = infz>0 H1(u, z) was already obtained in previous Section 3.

In order to investigate the multi-period case we have to use the following representation
Hn(u, z) = H1(u, z) + αdn−1(u, z) where

dk(u, z) = Ehk(max(a, u + c(z) − min(z, X))).

It is easy to see that putting e(u, z) = u + c(z) − a we get

dk(u, z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

hk(a), e(u, z) < 0∫ e(u,z)

0
hk(u + c(z) − x)f (x) dx + hk(a)S(e(u, z)), e(u, z) ∈ [0, z],∫ z

0
hk(u + c(z) − x)f (x) dx + hk(u − g(z))S(z), e(u, z) > z.

(9)

It follows immediately that ∂Hk+1
∂z

(u, z) = S(z)Gk+1(u, z) where Gk+1(u, z) is equal to

1 − mS(e(u, z)) + mα

∫ e(u,z)

0
h′

k(u + c(z) − x)f (x) dx

for e(u, z) ≤ z whereas for e(u, z) > z it has the form

α[m
∫ z

0
h′

k(u + c(z) − x)f (x) dx − h′
k(u − g(z))g′(z)].

In particular, Gk+1(u, z) = 1 − m if e(u, z) < 0.
Now we can prove the following results.

Theorem 4 If (l, m) ∈ D1 one gets hn(u) = 0 for any u ≥ a and n ≥ 1. The optimal
retention level zn(u) = zr1(u) for all n ≥ 1.

Proof One has a ≥ u∗
1 for (l, m) ∈ D1 according to Lemma 3. It was also established in

Theorem 1 that h1(u) = 0 for all u ≥ a. It follows immediately that H2(u, z) = H1(u, z)

because d1(u, z) = 0 for all u ≥ a and z > 0. Moreover, H1(u, z) = 0 for g(z) ≤ u−a. As
previously, we choose the maximal z for which H1(u, z) = 0, namely, put z2(u) = zr1(u).

We proceed by mathematical induction. Assume that hk(u) = 0 for u ≥ a and k ≤ n−1.
Then dn−1(u, z) = 0 for all u ≥ a and z > 0. That means Hn(u, z) = H1(u, z). So it is
optimal to take zn(u) = z1(u) getting hn(u) = 0.

For other values of l and m the optimal behaviour is more complicated.

Theorem 5 For (l,m) ∈ D2 ∪D3 one gets hn(u) = 0 if u ≥ u∗
n = a +ng(z∗). The optimal

retention at the beginning of the n-step process zn(u) = z1(u − (n − 1)g(z∗)) for u ≥ u∗
n.

Proof As in the proof of Theorem 4, we use the mathematical induction. Clearly, for
(l, m) ∈ D2 ∪ D3, it follows from Theorems 2 and 3 that h1(u) = 0 if u ≥ u∗

1. Assume
now that the desired result is proved for k ≤ n − 1 and establish its validity for k = n.
According to our assumption dn−1(u, z) = 0 for u − g(z) ≥ u∗

n−1 = a + (n − 1)g(z∗).
Rewriting this inequality in the form u − (n − 1)g(z∗) − a ≥ g(z) we see immedi-
ately, that dn−1(u, z) = 0 for z ∈ [zl1(u − (n − 1)g(z∗)), zr1(u − (n − 1)g(z∗))]. Since
H1(u, z) = 0 for z ∈ [zl1(u), zr1(u)] and function zr1(u) is increasing in u one can take
zn(u) = zr1(u − (n − 1)g(z∗)) and obtain hn(u) = 0 for u ≥ u∗

n.
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Theorem 6 If (l,m) ∈ D2 ∪ D3 the optimal retention level zn(u) is a convex decreasing
function for u ∈ (max(a, u∗), u∗

1), moreover, zn(u) > z1(u) and z′
n(u) = −(c′(zn(u)))−1.

Proof According to Lemma 3, for (l,m) ∈ D2 we have u∗ < a ≤ u∗
1, whereas a ≤ u∗ for

(l, m) ∈ D3. We begin by treating the case n = 2. Since u < u∗
1, we have the following

relation
∂H2

∂z
(u, z) = S(z)G2(u, z)

with

G2(u, z) = 1 − mS(e(u, z)) + αm

∫ e(u,z)

0
h′
1(a + e(u, z) − x)f (x) dx. (10)

It is clear that
∂G2

∂z
(u, z) = c′(z)∂G2

∂u
(u, z).

Furthermore, the optimal retention level z2(u) = z
(2)
0 (u) defined implicitly by the following

relation G2

(
u, z

(2)
0 (u)

)
= 0. Hence

z′
2(u) = −

(
∂G2

∂u
/
∂G2

∂z

)
(u, z2(u)) = −(c′(z2(u)))−1 < 0.

Obviously,
z′′
2(u) = f (z2(u))m−2S−3(u, z2(u)) > 0.

Recalling that e(u, z1(u)) = z∗ for u < u∗
1 we get

G2(u, z1(u)) = αm

∫ z∗

0
h′
1(a + z∗ − x)f (x) dx < 0.

That means z1(u) < z2(u) for u < u∗
1. So, we have established the desired result for n = 2.

The results for n > 2 can be obtained by induction. Due to the lack of space they are
omitted.

For the same reason we formulate the next result only for n = 2.

Theorem 7 If (l,m) ∈ D2 then z2(u) = min(z0(u − g(z∗)),max(zr1(u), z0(u))) for u ∈
(u∗

1, u
∗
2).

Proof Recall that h′
1(u) = −m−1 for u ∈ (max(a, u∗), u∗

1) and h′
1(u) = 0 for u > u∗

1
according to Corollary 1. Moreover, for z ∈ A(u) = (zl1(u), zr1(u)) we have

G2(u, z) = α[m
∫ z

0
h′
1(a + e(u, z) − x)f (x) dx − g′(z)h′

1(u − g(z))]. (11)

Using the form of h′
1(u) and equivalency of the inequalities

a + e(u, z) − x > u∗
1 ⇔ x < a + e(u, z) − u∗

1 = e(u, z) − g(z∗) = e(u − g(z∗), u),

we can rewrite Eq. 11 as follows

G2(u, z) = αm−1[1 − mS(e(u − g(z∗), z))].
Thus, solution z

(2)
0 (u) of equation G2(u, z) = 0, for a fixed u, is given implicitly by

the relation e(u − g(z∗), z(2)
0 (u)) = z∗. That means, z

(2)
0 (u) = z0(u − g(z∗)), there-

fore z
(2)
0 (u∗

2) = z0(u
∗
1) = z∗ and z

(2)
0 (u) → ∞, as u ↘ u∗ + g(z∗) > u∗

1. It follows
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immediately that curves z
(2)
0 (u) and zr1(u) will cross for some ū ∈ (u∗ + g(z∗), u∗

2). So,

it is impossible to choose z
(2)
0 (u) as optimal retention level z2(u) for u < ū. Moreover,

G2(u, zr1(u)) < 0 for u < ū, whereas it is positive for u > ū. Hence, it is reasonable to

take z2(u) = min
(
z
(2)
0 (u), zr1(u)

)
.

However another adjustment is needed in the neighbourhood of the point u∗
1. We know

that for z /∈ A(u)

G2(u, z) = g′(e(u, z)) + αm

∫ e(u,z)

0
h′
1(a + e(u, z) − x)f (x) dx.

This expression can be rewritten as 1 − (m − α)S(e(u, z)) − αS(e(u − g(z∗), z)), making
obvious that it is an increasing function in z. Proving Theorem 6 we denoted by z0(u)

the root of equation G2(u, z) = 0 in this case. It was established that the function z0(u)

is decreasing and z0(u
∗
1) > z∗ = zr1(u

∗
1). Therefore one has to take max(z0(u), zr1(u))

obtaining the desired form of z2(u).

The last result we present here is

Theorem 8 For (l,m) ∈ D2 minimal expected discounted costs hn(u) converge uniformly
in u, as n → ∞.

Proof After establishing the optimal retention levels zn(u) we have the representation
hn(u) = Hn(u, zn(u)), n ≥ 1. This entails the following inequality

|hn+1(u) − hn(u)| ≤ max
z=zn(u),zn+1(u)

|Hn+1(u, z) − Hn(u, z)|.
Introducing δn = maxu≥a |hn+1(u) − hn(u)| it is easy to obtain δn ≤ Cαn with C = h1(a).
Hence, there exists h(u) = limn→∞ hn(u) and convergence is uniform in u.

5 Examples

Now we consider three examples. Two distributions (exponential and uniform) have light
tails, the third one (Pareto) is heavy-tailed. All the numerical results were obtained by means
of program Wolfram Mathematica.

Exponential Distribution Let f (x) = b exp{−bx}I[0,∞)(x), b > 0, then S(x) = exp{−bx}
for x ≥ 0 and S(x) = 1 for x < 0.

It is easy to calculate that γ = b−1, z∗ = b−1 lnm and
∫ ∞
z∗ S(x) dx = (mb)−1. Thus,

the regions Di , i = 1, 2, 3, are given by the following relations between insurer’s and
reinsurer’s loadings, more precisely between l and m,

D1 = {m > l > 1 + lnm}, D2 = {1 + lnm ≥ l > lnm}, D3 = {lnm ≥ l > 1}.
Recall that D1 = {(l,m) : g(z∗) < 0}, D3 = {(l,m) : z∗ − c(∞) ≥ 0} and D2 ∪

D3 = {(l,m) : g(z∗) ≥ 0}, as depicted in Fig. 2. It is important to underline that sets Di ,
i = 1, 2, 3, do not depend on distribution parameter b.

For illustration of theoretical results obtained in previous sections we consider several
special cases fixing different pairs (l,m).

1. At first we take l = 2, m = 2.1. That means (l,m) ∈ D1, hence, g(z∗) < 0. According
to Theorem 1, the minimal expected costs hn(u) = 0 for all n ≥ 1 and u ≥ a, whereas
all the retention levels zn(u) are equal to zr1(u).
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Fig. 2 Sets Di for exponential distribution

Using the explicit form of function g(z) = z−b−1(l−me−bz)we obtain the maximal
solution of the equation g(z) = u − a by means of function FindRoot of the program
Wolfram Mathematica. Since g(z) is convex having a unique minimum attained at z∗,
taking the initial value greater than z∗ implies that the procedure FindRoot based on the
Newton method converges to zr1(u) for any u ≥ a.

Thus, the graphics of zn(u), n ≥ 1, have the form given by Fig. 3(a). We have taken
b = 0.5, b = 1 and b = 4 and put a = 1 for simplicity. Note that the retention levels
corresponding to smaller values of parameter b are situated above.

2. Now take l = 2, m = 5, that is, (l,m) ∈ D2. So, g(z∗) ≥ 0 and z∗ − c(∞) < 0. In this
case the conditions of Theorem 2 are fulfilled for n = 1 and we obtain zn(u) and hn(u)

as follows.

Fig. 3 Optimal retention levels for exponential distribution
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Let n = 1. For u ≥ u∗
1 = a + g(z∗) we have h1(u) = 0 and z1(u) = zr1(u) is calculated

as described above.
For a ≤ u < u∗

1 we can easily obtain the explicit form of z1(u) = z0(u) and h1(u).
Namely, they are given by the following relations

z0(u) = cinv(z∗ + a − u) = b−1[lnm − ln(l − lnm − ba + bu)],
h1(u) = b−1(e−bz∗ − e−bz0(u)) = 1 − l + lnm + ba − bu

bm
.

For the same values of parameter b the optimal retention level z1(u) is depicted by
(Fig. 3(b))

Now turn to the case n > 1. We have proved that hn(u) = 0 for u ≥ u∗
n = a + ng(z∗).

Moreover, zn(u) = z1(u − (n − 1)g(z∗)), that is, the maximal root of equation u − a =
g(z) + (n − 1)g(z∗). It can be calculated using the subprogram FindRoot.

If a ≤ u < u∗
n to obtain hn(u) we calculated hn(uk) = minz Hn(uk, z) for uk = a +

kg(z∗)/20, k ≥ 0, and then made the interpolation which was used at the next step n+1. To
get Hn(u, z) we used the numerical integration. The subprogram FindMinimum provided
not only the desired minimum but the value of argument zn(u) for which this minimum is
attained. In particular, for b = 1 the functions hn(u), 1 ≤ n ≤ 7, have the form presented
by Fig. 4(a). In all the calculations we put α = 0.5.

For a fixed u the functions hn(u) increase in n. We can distinguish only three functions,
since hn(u), n = 4, 5, 6, 7, practically coincide with h3(u).

It is interesting to see (Fig. 4(b)) that function zn(u) has n local minima the last one
attained at u = u∗

n.

Uniform distribution In this case the density f (x) = b−1
I[0,b](x), b > 0. Hence, S(x) = 1

for x ≤ 0, S(x) = 1 − xb−1 for x ∈ [0, b] and S(x) = 0 for x ≥ b.
That gives γ = b/2, z∗ = b(1 − m−1) and

∫ b

z∗ S(x) dx = γm−2. Then it easily follows

that D1 = {m > l > 2−m−1}, D2 = {2−m−1 ≥ l > 2−2m−1}, D3 = {2−2m−1 ≥
l > 1}.

Hence, we get Fig. 5, where as in previous example, (l, m) ∈ D1 means g(z∗) < 0,
(l, m) ∈ D3 signifies that z∗ − c(∞) ≥ 0 and g(z∗) ≥ 0 for (l,m) ∈ D2 ∪ D3.

As in previous case of exponential distribution the sets Di , i = 1, 2, 3, have the same
form for all values of parameter b.

The procedure of obtaining the functions zn(u) and hn(u) for uniform distribution of
claims is similar to that for exponential one.

Fig. 4 Exponential distribution with b = 1
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Fig. 5 Sets Di for uniform distribution

1. Let us take l = 1.7 and m = 3. For such values of parameters g(z∗) < 0. Hence,
hn(u) = 0 for all n ≥ 1 and u ≥ a. It is convenient to set a = 1. The optimal retention
levels zn(u) are shown by Fig. 6(a) for b = 2, b = 3, b = 4, b = 5 and b = 6. The
levels corresponding to larger values of b are lying above.

2. Now set l = 1.5, m = 3, it follows that g(z∗) ≥ 0 and z∗ − c(∞) < 0.

Consider n = 1. If u ≥ u∗
1 then h1(u) = 0 and optimal retention level z1(u) = zr1(u), the

maximal root of the equation u − a = g(z).

Fig. 6 Optimal retention levels for uniform distribution
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Fig. 7 Uniform distribution in [0, 2]

On the other hand, if a ≤ u < u∗
1 we can obtain the explicit form of z1(u) = z0(u),

namely,

z0(u) = cinv(z∗ + a − u) = b − b

√(
l

2
− 1 + 1

m
+ u − a

b

)
2

m
,

whereas h1(u) is calculated as follows

h1(u) =
z0(u)∫

e(u,z0(u))

(x − e(u, z0(u)))f (x) dx + (a − u + g(z0(u)))S(z0(u)).

Taking b = 2, b = 3, b = 4, b = 5 and b = 6 we get the Fig. 6(b) representing z1(u) for
these parameter values.

For n > 1 we use once more the program Wolfram Mathematica to calculate hn(u) and
zn(u). Thus, for b = 2 and 1 ≤ n ≤ 7 we get the results given by Fig. 7(a).

Fig. 8 Domains Di for Pareto distribution



Methodol Comput Appl Probab (2015) 17:899–914 913

Fig. 9 Domains Di for Pareto distribution with b = 5, d = 2

Here we cannot distinguish the functions hn(u), n ≥ 5, because they almost coincide
with h4(u).

The optimal retention levels have the form depicted by Fig. 7(b).

Pareto distribution This distribution depends on two parameters d and b in the following
way: f (x) = bdbx−b−1

I[d,∞)(x). Here, d > 0 and b > 1, since we assumed that the
expected value γ < ∞. Thus, S(x) = 1 for x ≤ d and S(x) = dbx−b for x ≥ d. It is
easy to obtain that γ = bd(b − 1)−1, z∗ = dm1/b and m

∫ ∞
z∗ S(x) dx = dm1/b(b − 1)−1.

That means D1 = {m > l > m1/b}, D2 = {m1/b ≥ l > (1 − b−1)m1/b}, D3 =
{(1 − b−1)m1/b ≥ l > 1}.

We see that sets Di depend heavily on parameter b. So, it is interesting to compare the
graphics for b = 2 and b = 5.

We see that the set D1 grows, whereas D2 and D3 diminish, as b → ∞. It is clearly
shown by Fig. 8(a) and Fig. 8(b).

We have also calculated the minimal expected costs (Fig. 9(a)) and optimal retention
levels (Fig. 9(b)).

6 Conclusion and Further Research Directions

We have considered a periodic-review insurance model with capital injections. The main
tool for minimizing the discounted expected injections was the nonproportional reinsurance
of stop loss type. The optimal reinsurance strategy was established under different assump-
tions on system parameters. Numerical results were provided for three distributions of claim
amounts, namely, exponential, uniform and Pareto.

It is interesting to stress that choosing a special relation between insurer’s and reinsurer’s
safety loadings one can guarantee the expected discounted costs equal to zero for any plan-
ning horizon n and initial surplus u ≥ a (see Theorems1 and 4). Furthermore, under other
assumptions about safety loadings, for each planning horizon n there exists a threshold u∗

n

such that hn(u) = 0 for u ≥ u∗
n (see Theorems 2, 3 and 5).

The results established for the multi-period model (under conditions of Theorem 3
proved for one-step model) will be published in a forthcoming paper.

The next problem to solve is how to choose an appropriate reinstatement level a and
the source of capital injection. We plan also to investigate the asymptotic behaviour of the
insurer’s surplus under optimal reinsurance strategy.
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