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Abstract In this paper, we consider a Markov additive insurance risk process under a ran-
domized dividend strategy in the spirit of Albrecher et al. (ASTIN Bull 41(2):645–672,
2011). Decisions on whether to pay dividends are only made at a sequence of dividend deci-
sion time points whose intervals are Erlang(n) distributed. At a dividend decision time, if
the surplus level is larger than a predetermined dividend barrier, then the excess is paid as
a dividend as long as ruin has not occurred. In contrast to Albrecher et al. (ASTIN Bull
41(2):645–672, 2011), it is assumed that the event of ruin is monitored continuously Avanzi
et al. (Insur. Math Econ. 52(1):98–113, 2013) and Zhang (J Ind. Manag. Optim. 10(4):1041–
1058, 2014), i.e. the surplus process is stopped immediately once it drops below zero. The
quantities of our interest include the Gerber-Shiu expected discounted penalty function and
the expected present value of dividends paid until ruin. Solutions are derived with the use of
Markov renewal equations. Numerical examples are given, and the optimal dividend barrier
is identified in some cases.

Keywords Markov additive process · Barrier strategy · Inter-dividend-decision times ·
Gerber-Shiu function · Dividends · Markov renewal equation · Erlangization

AMS 2000 Subject Classification 91B30 · 97M30 · 60J27 · 60J75

Z. Zhang
College of Mathematics and Statistics, Chongqing University, Chongqing, 401331,
People’s Republic of China
e-mail: zmzhang@cqu.edu.cn

E. C.K. Cheung (�)
Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road,
Hong Kong, Hong Kong
e-mail: eckc@hku.hk

mailto:zmzhang@cqu.edu.cn
mailto:eckc@hku.hk


276 Methodol Comput Appl Probab (2016) 18:275–306

1 Introduction

In this paper, we model the surplus of an insurance company via a Markov additive process
(MAP) with downward jumps (e.g. Asmussen (2003, Chapter XI)). Let J = {Jt }t≥0 be
the underlying environment process, which is a homogeneous irreducible continuous-time
Markov chain with finite state space E = {1, 2, . . . , m} and representation (α,D0, D1).
Here α is the initial probability row vector and D0 + D1 is the intensity matrix. We shall
write D0 = (D0,ij )

m
i,j=1 and D1 = (D1,ij )

m
i,j=1. The claim number process N = {Nt }t≥0

of a MAP is controlled by J as follows:

(1) transition of J from state i to state j without any accompanying claim (where i �= j )
occurs at rate D0,ij ≥ 0; and

(2) transition of J from state i to state j with an accompanying claim (with the possibility
that i = j ) occurs at rate D1,ij ≥ 0.

Note that for D0 + D1 to be an intensity matrix, each diagonal element of D0 has to
be negative and is such that the sum of the elements on each row of D0 + D1 is zero.
The bivariate Markov process (N, J ) is called Markovian arrival process. Although in the
literature of applied probability, the abbreviation ‘MAP’ is also used for Markovian arrival
process, we will be using it to refer to the Markov additive process that will be introduced
below.

Let {Xk}∞k=1 be the sequence of individual claim severities which are positive continuous
random variables. It is assumed that the distribution of the claim severity is dependent on the
states of the environment process J immediately before and after transition of type (2). More
precisely, whenever a transition from i to j is accompanied by a claim, the resulting claim
severity has density fij with mean μij . For later use, we let f (x) = (fij (x))mi,j=1. In order
to account for small fluctuations of the insurer’s surplus, we shall use a Brownian motion
with zero mean as perturbation. Whenever J is in state i, we assume that the insurer collects
premium at rate ci > 0 and the diffusion volatility is σi > 0. Under these assumptions, the
surplus process U∞ = {U∞

t }t≥0 is defined as

U∞
t = u +

∫ t

0
cJs ds −

Nt∑
k=1

Xk +
∫ t

0
σJs dBs, t ≥ 0. (1.1)

Here u ≥ 0 is the initial surplus, and {Bt }t≥0 is a standard Brownian motion starting at zero
which is independent of other processes. The process U∞ is a spectrally negative Markov
additive process (MAP). For notational convenience, we write Pu,i{·}=P{·|U∞

0 =u, J0= i}
and Eu,i[·] = E[·|U∞

0 = u, J0 = i] for i ∈ E and u ≥ 0. The time of ruin of the surplus
process U∞ is defined by τ∞ = inf{t > 0 : U∞

t < 0} with the convention inf{∅} = ∞.
The net profit condition is given by

m∑
i=1

πi

⎛
⎝ci −

m∑
j=1

D1,ijμij

⎞
⎠ > 0, (1.2)

where (π1, π2, . . . , πm) is the stationary probability row vector of J . Condition (1.2)
ensures that the process (1.1) drifts to infinity in the long run (see e.g. Asmussen (2003),
Corollaries 2.7 and 2.9)). Throughout this paper, it is assumed that Eq. 1.2 holds.

The class of MAP risk processes (1.1) is known to be very general as it includes the
classical compound Poisson risk model (e.g. Asmussen and Albrecher (2010, Section IV)),
the Markov-modulated risk process (e.g. Asmussen (1989) and Lu and Tsai (2007)), the
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semi-Markovian model by Albrecher and Boxma (2005), and renewal risk process with
phase-type inter-arrival times (e.g. Feng (2009a,b)) as special cases. Recently, a lot of con-
tributions have been made to the MAP risk model (with or without diffusion). For example,
Cheung and Landriault (2009, Section 4) studied a dividend barrier strategy in which the
barrier is allowed to depend on J ; whereas Zhang et al. (2011) investigated the absolute ruin
problem under debit interest. Moreover, Salah and Morales (2012) studied the Gerber-Shiu
expected discounted penalty function (Gerber and Shiu (1998)) in a more general spectrally
negative MAP risk process; whereas generalizations of the Gerber-Shiu function were ana-
lyzed by Cheung and Landriault (2010), Cheung and Feng (2013), and Feng and Shimizu
(2014). While the afore-mentioned papers involve analytic derivations of the quantities of
interest, we remark that MAP risk processes may also be studied using a more probabilistic
approach via connection to Markov-modulated fluid flow (MMFF) processes (e.g. Badescu
et al. (2005,2007), Ahn and Badescu (2007), Ahn et al. (2007)).

In this paper, we shall implement a barrier type dividend strategy in the MAP risk pro-
cess described above. Recall that in the traditional dividend barrier strategy, the insurer pays
dividends to its shareholders immediately whenever the surplus process reaches a fixed bar-
rier level if ruin has not yet occurred (e.g. Gerber (1979), Lin et al. (2003) and Gerber and
Shiu (2004)). However, when the surplus process contains a diffusion component, dividend
payments may occur many times in a small time interval due to the existence of small fluctu-
ations. Following the ideas as in Albrecher et al. (2011), one way to get around this problem
is to assume that decisions are only made at discrete time points on whether lump sum
dividend payments are paid. More specifically, we let {Zi}∞i=1 be the sequence of dividend
decision times. At time Zi , if the surplus level x is larger than a given barrier b > 0, then a
lump sum dividend payment of size x − b is paid to the shareholders of the insurance com-
pany. To give the mathematical descriptions of the modified surplus process Ub = {Ub

t }t≥0
with dividends, the auxiliary process U∗

i = {U∗
i (t)}t≥0 is introduced for i = 1, 2, . . .. The

dynamics of Ub and U∗
i can be jointly described recursively via

U∗
i (t) =

{
U∞

t , i = 1; t ≥ 0,
Ub

Zi−1
+ ∫ t

Zi−1
cJs ds −∑Nt

k=NZi−1+1 Xk + ∫ t

Zi−1
σJs dBs, i = 2, 3, . . . ; t ≥ Zi−1,

and for i = 1, 2, . . .,

Ub
t =

{
U∗

i (t), Zi−1 < t < Zi,

min(U∗
i (Zi), b), t = Zi.

Without loss of generality, it is assumed that Z0 = 0− in the above definition, and therefore
Ub
0 = u even if U∞

0 = u > b. This means that time 0 is not assumed to be a dividend deci-
sion time. Unlike Albrecher et al. (2011,2013) who assumed that the event of ruin is only
checked at the times {Zi}∞i=1, Zhang (2014) studied a variant of the model where solvency
is monitored continuously as in the traditional case (see also Avanzi et al. (2013) for the cor-
responding variant in a dual risk model). We shall adopt the traditional definition of ruin in
the sense that the surplus process is stopped immediately once it drops below zero. Hence,
the time of ruin of Ub is defined by τb = inf{t > 0 : Ub

t < 0}. Let T1 = Z1 be the first
dividend decision time, and Ti = Zi − Zi−1 be the ith inter-dividend-decision time (i.e. the
interval between the (i − 1)th and the ith dividend decision times) for i = 2, 3, . . .. For the
rest of the paper, it is assumed that {Ti}∞i=1 forms a sequence of independent and identically
distributed random variables distributed as T with the Erlang(n) density

fT (t) = βntn−1e−βt

(n − 1)! , t > 0.
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Here n is the shape parameter which is a positive integer, and β > 0 is the scale parame-
ter. It is assumed that {Ti}∞i=1 is independent of all the attributes of the barrier-free process
U∞. The choice of the Erlang(n) distribution is motivated by the Erlangization techniques
proposed by Asmussen et al. (2002) in solving finite-time ruin problems (see also e.g.
Stanford et al. (2005, 2011) and Ramaswami et al. (2008)). Indeed, if we fix the mean
E[T ] = n/β = h and increase n (and β as well), then T converges in distribution to a point
mass at h. Hence, one can approximate the situation where the inter-dividend-decision times
are deterministic.

The Gerber-Shiu expected discounted penalty function, or Gerber-Shiu function in short,
has been analyzed extensively in increasingly complex risk models since its introduction
by Gerber and Shiu (1998). It unifies the study of various ruin-related quantities such as
the time of ruin and the deficit at ruin. In this paper, we are interested in the Gerber-Shiu
function pertaining to Ub defined as (given initial state i ∈ E and initial surplus u ≥ 0)

φi(u; b) = Eu,i[e−δτb

w(|Ub
τb |)]. (1.3)

Here δ ≥ 0 can be interpreted as the force of interest or the Laplace transform argument
with respect to τb, and w : [0, ∞) → [0, ∞) is the so-called penalty function that depends
on the deficit at ruin |Ub

τb |. It is assumed that w satisfies some mild integrability conditions.

Note that the indicator of the event {τb < ∞} is not necessary in the definition (1.3), since
ruin occurs almost surely as the surplus can never exceed level b at the dividend decision
times. Because of the perturbation, ruin may occur due to a claim or by diffusion. Thus, one
may rewrite Eq. 1.3 as (e.g. Gerber and Landry (1998) and Tsai and Willmot (2002))

φi(u; b) = w(0)Eu,i[e−δτb

1{Ub

τb =0}] + Eu,i[e−δτb

w(|Ub
τb |)1{Ub

τb <0}], (1.4)

where 1A stands for the indicator function of the event A. It is clear from Eq. 1.4 that
if we are only interested in the contribution by ruin due to diffusion, one can simply let
w(y) = 0 for y > 0. In contrast, the case where ruin is caused by a claim can be retrieved by
letting w(0) = 0. For later use, we also let φi(u;∞) be the Gerber-Shiu function associated
with the barrier-free model U∞. Another quantity of interest in this paper is the expected
discounted dividends paid until ruin defined by (for a force of interest of δ > 0)

Vi(u; b) = Eu,i

⎡
⎣ ∞∑

j=1

e−δZj (Ub
Zj − − b)+1{Zj <τb}

⎤
⎦ , (1.5)

where a+ = max(a, 0). In the corporate finance literature, the expectation of the present
value of dividends represents the value of the firm. Therefore, under the current barrier type
dividend strategy, the shareholders’ interest would be to find the optimal barrier b∗ that
maximizes Vi(u; b) with respect to b.

The remainder of this paper is structured as follows. In Section 2, some preliminary
results and notations that will be used throughout are presented. Expressions for the Gerber-
Shiu function (1.3) and the expected discounted dividends (1.5) are derived in Sections 3 and
4 respectively usingMarkov renewal equations. Examples along with numerical illustrations
are then given in Section 5. The Appendix is concerned with the proofs of the continuity
and smooth pasting conditions required in the derivations.
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2 Preliminaries

In this paper, matrix notations will be used extensively. We shall use O to denote the zero
matrix or vector with appropriate dimension known from the context. For a positive integer
k, letEk be the identity matrix of dimension k, and ek be a column vector of ones with length
k. For two arbitrary square matrices A = (aij )

k
i,j=1 and B = (bij )

k
i,j=1, the Hadamard

product (i.e. entrywise multiplication) is defined as A ◦ B = (aij bij )
k
i,j=1. The notation

A
 denotes the transpose of a matrix or vector A. In addition, we denote the Laplace
transform of a function defined on [0, ∞) (which is not necessarily a probability density)
by adding a hat on it. For example, for �(s) ≥ 0, one has f̂ij (s) = ∫∞

0 e−sxfij (x)dx.
Any integral with respect to a matrix-valued function is taken element-wise. For example,
f̂ (s) = ∫∞

0 e−sxf (x)dx = (f̂ij (s))
m
i,j=1.

The notion of the matrix Dickson-Hipp operator plays an important part in our analysis.
The matrix version of the Dickson-Hipp operator was first introduced by Feng (2009b) as
an extension of the classical scalar counterpart proposed by Dickson and Hipp (2001). For
a square matrix A having eigenvalues on the right-half of the complex plane, the matrix
Dickson-Hipp operator TA is defined as

TAh(x) =
∫ ∞

x

e−A(y−x)h(y)dy =
∫ ∞

0
e−Ayh(x + y)dy, x ≥ 0, (2.1)

where h is a matrix-valued function with appropriate dimension (such that the multiplica-
tion Ah makes sense) satisfying some integrability conditions (such that the above integral
exists). When A reduces to a scalar r with non-negative real part, then Tr is the classical
Dickson-Hipp operator. If x = 0 and A = sEk for �(s) ≥ 0 and some positive integer k

such that Ekh makes sense, then Eq. 2.1 is equivalent to the Laplace transform of h with
argument s, namely ĥ(s). An appealing property of the (matrix) Dickson-Hipp operator is
the commutative property. In particular, if the square matrices A1 and A2 commute (i.e.
A1A2 = A2A1) and A1 − A2 is nonsingular, then Feng (2009b, Lemma 2.1) showed that

TA1TA2h(x) = TA2TA1h(x) = (A1 − A2)
−1(TA2h(x) − TA1h(x)), x ≥ 0. (2.2)

Whenever a function under consideration has two arguments u and b, any derivative,
Laplace transform or Dickson-Hipp operator is assumed to be taken with respect to the first
argument u by default.

Next, we introduce some preliminaries on MAP. Let �σ 2 = diag(σ 2
1 , . . . , σ 2

m) and
�c = diag(c1, . . . , cm). From Asmussen (2003), Proposition XI.2.2), the matrix cumulant
generating function of U∞ is given by

G(s) = 1

2
s2�σ 2 + s�c + D0 + D1 ◦ f̂ (s)

for s ∈ C such that the integral in the last term exists. Note that G(s) is well defined at least
for �(s) ≥ 0. There exists a matrix Qγ that satisfies, for a given γ ≥ 0,

1

2
Q2

γ �σ 2 + Qγ �c − γEm + D0 +
∫ ∞

0
e−Qγ x(D1 ◦ f (x))dx = O. (2.3)

The existence ofQγ is known from Breuer (2008, Theorems 1 and 2) and Feng and Shimizu
(2014, Lemma 3.2); whereas the relation of Qγ to the intensity matrix of the time-reversed
version of the MAP risk model has been discussed by e.g. Zhang et al. (2011, Section 3) and
Salah and Morales (2012, Section 4). In particular, the matrix Qγ can be computed using
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either an iterative approach (Breuer (2008, Theorem 2)) or the more well-known eigen-
value/eigenvector method (e.g. Zhang et al. (2011, Lemma 1), and Cheung and Feng (2013,
Appendix)). We shall describe the latter method which is indeed linked to the more classical
form of the Lundberg’s equation (in ξ ), namely

det(G(ξ) − γEm) = 0. (2.4)

It follows from Feng and Shimizu (2014, Lemma 3.2) that the above equation has exactly
m roots with non-negative real parts. These roots are denoted by ργ,1, . . . , ργ,m. Through-
out this paper, we suppose that Qγ is diagonalizable. A sufficient condition for Qγ to
be diagonalizable is that ργ,1, . . . , ργ,m are distinct. Then Qγ admits the representation

Qγ = B−1
γ �ργ Bγ (see Zhang et al. (2011, Lemma 1)). Here �ργ = diag(ργ,1, . . . , ργ,m)

is the matrix of eigenvalues and Bγ = (b

γ,1, . . . , b



γ,m)
 is the matrix containing the cor-

responding eigenvectors. In particular, for each fixed i = 1, 2, . . . , m, the left eigenvector
bγ,i is a non-trivial solution of the equation (in b)

b[G(ργ,i) − γEm] = O.

It is instructive to note that since the situations in which there are multiple roots to the
Lundberg’s equation (2.4) are rare, the diagonalizability assumption imposed on Qγ is not
restrictive. Interested readers are referred to Ji and Zhang (2012) for the treatment of risk
models with multiple Lundberg’s roots.

3 The Gerber-Shiu Function

This section aims at deriving the solution to the Gerber-Shiu function. Note that the
Erlang(n) inter-dividend-decision time T can be regarded as the sum of n independent and
identically distributed exponential variables. To ease our analysis, for k = 1, 2, . . . , n we
define φk,i(u; b) to be the Gerber-Shiu function under the same conditions as φi(u; b),
except that the time until the first (not between all) dividend decision time is Erlang(n−k+1)
distributed. Obviously, one has that φi(u; b) = φ1,i (u; b). The introduction of these
auxiliary functions will enable us to capture the underlying phase-type structure of the
problem.

3.1 System of Integro-Differential Equations

We can start by considering the competition between the state transition of J and the phase
transition of the first dividend decision time over a very small time interval [0, h] for i ∈ E
and u > 0. For k = 1, 2, . . . , n − 1, no dividends will be payable within the interval and
one has

φk,i(u; b) = (1 − (−D0,ii + β)h)e−δh
E
[
φk,i(u + cih + σiBh; b)

]

+
m∑

j=1,j �=i

D0,ij he−δh
E
[
φk,j (u + cih + σiBh; b)

]

+
m∑

j=1

D1,ij he−δh
E
[
γk,ij (u + cih + σiBh; b) + ωij (u + cih + σiBh)

]

+ βhe−δh
E
[
φk+1,i (u + cih + σiBh; b)

]+ o(h), (3.1)
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where γk,ij (u; b) = ∫ u

0 φk,j (u−x; b)fij (x)dx and ωij (u) = ∫∞
u

w(x−u)fij (x)dx. Apply-
ing Taylor’s expansion to Eq. 3.1, dividing by h, letting h → 0 and rearranging terms, we
obtain

0 = σ 2
i

2
φ′′

k,i (u; b) + ciφ
′
k,i (u; b) − (δ + β)φk,i(u; b)

+
m∑

j=1

D0,ij φk,j (u; b) +
m∑

j=1

D1,ij (γk,ij (u; b) + ωij (u))

+ βφk+1,i (u; b), k = 1, 2, . . . , n − 1. (3.2)

For k = n, the analysis is essentially the same, except that dividends will be paid if the
surplus is above b when the first dividend decision time occurs. This leads us to

0 = σ 2
i

2
φ′′

n,i(u; b) + ciφ
′
n,i(u; b) − (δ + β)φn,i(u; b) +

m∑
j=1

D0,ij φn,j (u; b)

+
m∑

j=1

D1,ij (γn,ij (u; b) + ωij (u))

+ β(φ1,i (u; b)1{0<u≤b} + φ1,i (b; b)1{u>b}). (3.3)

Define φk(u; b) = (φk,1(u; b), . . . , φk,m(u; b))
 for k = 1, 2, . . . , n. The integro-
differential equations (3.2) and (3.3) can then be rewritten in matrix form as

O =
(
1

2
�σ 2

d2

du2
+ �c

d

du
− (δ + β)Em + D0

)
φk(u; b) +

∫ u

0
(D1 ◦ f (x))φk(u − x; b)dx

+ βφk+1(u; b) + ζ (u), k = 1, 2, . . . , n − 1, (3.4)

and

O =
(
1

2
�σ 2

d2

du2
+ �c

d

du
− (δ + β)Em + D0

)
φn(u; b) +

∫ u

0
(D1 ◦ f (x))φn(u − x; b)dx

+ βφ1(u; b)1{0<u≤b} + βφ1(b; b)1{u>b} + ζ (u), (3.5)

where ζ (u) = (D1 ◦ ω(u))em and ω(u) = (ωij (u))mi,j=1.
A trivial boundary condition for the system comprising Eqs. 3.4 and 3.5 is given by

φk(0; b) = w(0)em, k = 1, 2, . . . , n, (3.6)

since ruin occurs immediately with zero initial surplus. In addition, we assert that the
continuity condition

φk(b−; b) = φk(b+; b), k = 1, 2, . . . , n, (3.7)

and the smooth pasting condition

φ′
k(b−; b) = φ′

k(b+; b), k = 1, 2, . . . , n, (3.8)

hold at the barrier b . See Appendix for further discussions of Eqs. 3.7 and 3.8.

3.2 The Case 0 < u < b

In this subsection, we will solve Eqs. 3.4 and 3.5 when 0 < u < b apart from some
unknown constants. Using the notion of Kronecker product, we define the square matrices
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�̃σ 2 = En ⊗ �σ 2 , �̃c = En ⊗ �c, D̃1 = En ⊗ D1, f̃ (x) = En ⊗ f (x), and

D̃0 =

⎛
⎜⎜⎜⎜⎜⎝

D0 − βEm βEm O · · · O

O D0 − βEm βEm · · · O
...

...
...

. . .
...

O O O · · · βE

βEm O O · · · D0 − βEm

⎞
⎟⎟⎟⎟⎟⎠

,

all of dimension mn. (The above matrix is understood to be D0 when n = 1.) Further define
the column vectors φ(u; b) = (φ


1 (u; b), . . . , φ

n (u; b))
 and ζ (u) = en ⊗ ζ (u). Then

Eqs. 3.4 and 3.5 can be neatly combined to yield

(
1

2
�̃σ 2

d2

du2
+ �̃c

d

du
− δEmn + D̃0

)
φ(u; b) +

∫ u

0
(D̃1 ◦ f̃ (x))φ(u − x; b)dx + ζ (u) = O, 0 < u < b,

(3.9)
which is a non-homogeneous matrix integro-differential equation. From the theory of
integro-differential equations, the general solution of Eq. 3.9 can be expressed in terms
of one of its particular solution plus a fundamental set of solutions of the homoge-
neous system. Hence we first identify a particular solution as follows. Define φ(u;∞) =
(φ1(u;∞), . . . , φm(u; ∞))
 for the barrier-free model U∞. Note that the integro-
differential equation satisfied by φ(u; ∞) can be obtained from Eq. 3.5 by setting n = 1
and taking the limit b → ∞. Thus, we have

(
1

2
�σ 2

d2

du2
+ �c

d

du
− δEm + D0

)
φ(u; ∞)+

∫ u

0
(D1 ◦ f (x))φ(u − x; ∞)dx+ζ (u) = O, u > 0,

from which one can easily deduce that φ(u;∞) = en ⊗ φ(u;∞) is a particular solution of
Eq. 3.9, i.e.

(
1

2
�̃σ 2

d2

du2
+ �̃c

d

du
− δEmn + D̃0

)
φ(u; ∞)+

∫ u

0
(D̃1◦f̃ (x))φ(u−x; ∞)dx+ζ (u) = O, u > 0.

(3.10)

Next, let vδ(u) be a vector valued function of length mn such that vδ(0) = O and it satisfies
the homogeneous version of Eq. 3.9, namely

(
1

2
�̃σ 2

d2

du2
+ �̃c

d

du
− δEmn + D̃0

)
vδ(u) +

∫ u

0
(D̃1 ◦ f̃ (x))vδ(u − x)dx = O, u > 0.

(3.11)
By taking Laplace transforms on both sides of Eq. 3.11, we obtain

(
1

2
s2�̃σ 2 + s�̃c − δEmn + D̃0 + D̃1 ◦ ̂̃f (s)

)
v̂δ(s) = 1

2
�̃σ 2v′

δ(0),

leading to

vδ(u) = Lδ(u)

(
1

2
�̃σ 2v′

δ(0)

)
, u ≥ 0, (3.12)
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where

Lδ(u) =

⎛
⎜⎜⎝

Lδ,1,1(u) · · · Lδ,1,n(u)

.

.

.
. . .

.

.

.

Lδ,n,1(u) · · · Lδ,n,n(u)

⎞
⎟⎟⎠ = L−1

((
1

2
s2�̃σ 2 + s�̃c − δEmn + D̃0 + D̃1 ◦ ̂̃f (s)

)−1
)

.

(3.13)

Here each sub-matrix Lδ,i,j (u) is a square matrix of dimension m, and L−1 represents the
inverse Laplace transform operator.

Now, by taking the difference of Eqs. 3.9 and 3.10, we note that φ(u; b) − φ(u;∞)

satisfies (3.11) for 0 < u < b. Moreover, using φ(0;∞) = w(0)emn and Eq. 3.6, it is clear
that the condition φ(0; b) − φ(0; ∞) = O holds true. Thus, Eq. 3.12 implies that we must
have

φ(u; b) = φ(u;∞) + Lδ(u)(k

1 , . . . , k


n )
, 0 ≤ u ≤ b, (3.14)

where k1, . . . , kn are unknown column vectors of constants, each of length m, that are to
be determined later (as in Eq. 3.48). It remains to derive exact expressions for φ(u;∞) and
Lδ(u). The derivation relies on the fact that

1

2
s2�̃σ 2 + s�̃c + D̃0 + D̃1 ◦ ̂̃f (s)

is the matrix cumulant generating function of a certain MAP with intensity matrix D̃0+D̃1.
Hence, it follows from Section 2 (see Eq. 2.3) that there exists a matrix Q̃δ (assumed to be
diagonalizable) such that

1

2
Q̃

2
δ�̃σ 2 + Q̃δ�̃c − δEmn + D̃0 +

∫ ∞

0
e−Q̃δx(D̃1 ◦ f̃ (x))dx = O, (3.15)

and the eigenvalues of Q̃δ are all on the right-half of the complex plane. The solution to
Lδ(u) is first given in the next Proposition.

Proposition 1 Let

M̃δ(u) =
∫ u

0
2�̃

−1
σ 2 e−(Q̃δ+2�̃c�̃

−1
σ2 )(u−x)eQ̃δxdx (3.16)

and

g̃δ(x) =
∫ x

0
2�̃

−1
σ 2 e−(Q̃δ+2�̃c�̃

−1
σ2 )(x−y)T

Q̃δ
(D̃1 ◦ f̃ (y))dy. (3.17)

Then we have

Lδ(u) = M̃δ(u) +
∫ u

0
S̃δ(x)M̃δ(u − x)dx, u ≥ 0, (3.18)

where

S̃δ(x) =
∞∑
i=1

g̃∗i
δ (x). (3.19)

Here the i-fold convolution is defined recursively as g̃∗i
δ (x) = ∫ x

0 g̃
∗(i−1)
δ (x − y)g̃δ(y)dy

for i = 2, 3, . . ., with the starting point g̃∗1
δ (x) = g̃δ(x).
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Proof Because the left-hand side of Eq. 3.15 represents a zero matrix by definition, by
subtraction we obtain

1

2
s2�̃σ 2 + s�̃c − δEmn + D̃0 + D̃1 ◦ ̂̃f (s)

= 1

2
((sEmn)

2 − Q̃
2
δ )�̃σ 2 + (sEmn − Q̃δ)�̃c +

∫ ∞

0
(e−sEmnx − e−Q̃δx)(D̃1 ◦ f̃ (x))dx

= (sEmn − Q̃δ)

(
1

2
(sEmn + Q̃δ)�̃σ 2 + �̃c − TsEmnTQ̃δ

(D̃1 ◦ f̃ (0))

)
, (3.20)

where the second step follows from the commutative property (2.2) of Dickson-Hipp oper-
ators. Note from Eq. 3.13 that the matrix inverse of the above expression is the Laplace
transform of Lδ(u), namely L̂δ(s). Hence, by simple manipulations we have that

(
Emn −

(
1

2
(sEmn + Q̃δ)�̃σ 2 + �̃c

)−1

TsEmnTQ̃δ
(D̃1 ◦ f̃ (0))

)
L̂δ(s)

=
(
1

2
(sEmn + Q̃δ)�̃σ 2 + �̃c

)−1

(sEmn − Q̃δ)
−1. (3.21)

Because
(
1

2
(sEmn + Q̃δ)�̃σ 2 + �̃c

)−1

= 2�̃
−1
σ 2

(
sEmn + Q̃δ + 2�̃c�̃

−1
σ 2

)−1
,

inverting the Laplace transforms with respect to s in Eq. 3.21 yields the Markov renewal
equation

Lδ(u) =
∫ u

0
g̃δ(x)Lδ(u − x)dx + M̃δ(u), u ≥ 0, (3.22)

where M̃δ(u) and g̃δ(x) are defined in Eqs. 3.16 and 3.17, respectively. The matrix∫∞
0 g̃δ(x)dx is known to be strictly substochastic (see Feng and Shimizu (2014, Appendix
D)), and therefore Eq. 3.22 can be regarded as a matrix version of defective renewal equa-
tion. By Markov renewal theory (e.g. Cinlar (1969, Section 3a) or Asmussen (2003, Section
VII.4)), the solution of Eq. 3.22 is given by Eq. 3.18.

We remark that the Gerber-Shiu function φ(u;∞) in the absence of dividends can in
principle be obtained from Feng and Shimizu (2014, Theorem 3.1 and Remark 5.1) via
some tedious algebra. Nonetheless, the solution to φ(u;∞) is given in the next Proposition
to keep this paper self-contained. We provide a direct proof because some of the techniques
will be used later on as well.

Proposition 2 Let

Z̃δ(u) = w(0)�̃
−1
σ 2 e−(Q̃δ+2�̃c�̃

−1
σ2 )u�̃σ 2emn +

∫ u

0
2�̃

−1
σ 2 e−(Q̃δ+2�̃c�̃

−1
σ2 )(u−x)T

Q̃δ
ζ (x)dx.

(3.23)
Then we have

φ(u;∞) = Z̃δ(u) +
∫ u

0
S̃δ(x)Z̃δ(u − x)dx, u ≥ 0, (3.24)

where S̃δ(x) is defined in Eq. 3.19.
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Proof Taking Laplace transforms in Eq. 3.10 along with the use of φ(0;∞) = w(0)emn

gives

(
1

2
s2�̃σ 2 + s�̃c− δEmn + D̃0 + D̃1◦̂̃f (s)

)
φ̂(s; ∞) = 1

2
�̃σ 2φ′(0; ∞)+w(0)

(
1

2
s�̃σ 2 + �̃c

)
emn−ζ̂ (s).

(3.25)

Note that the term φ′(0;∞) appearing in the above equation is unknown. Following
the same arguments as in the proof of Theorem 2 in Zhang et al. (2011), we omit the
straightforward algebra and obtain

O = 1

2
�̃σ 2φ′(0;∞) + w(0)

(
1

2
Q̃δ�̃σ 2 + �̃c

)
emn −

∫ ∞

0
e−Q̃δuζ (u)du. (3.26)

By subtraction and property (2.2) of Dickson-Hipp operators, the right-hand side of Eq. 3.25
can be represented as

1

2
�̃σ 2φ′(0;∞) + w(0)

(
1

2
s�̃σ 2 + �̃c

)
emn − ζ̂ (s)

= 1

2
w(0)(sEmn − Q̃δ)�̃σ 2emn +

∫ ∞

0
(e−Q̃δu − e−sEmnu)ζ (u)du

= (sEmn − Q̃δ)

(
1

2
w(0)�̃σ 2emn + TsEmnTQ̃δ

ζ (0)

)
. (3.27)

Substitution of Eqs. 3.20 and 3.27 into Eq. 3.25 yields(
Emn −

(
1

2
(sEmn + Q̃δ)�̃σ 2 + �̃c

)−1

TsEmnTQ̃δ
(D̃1 ◦ f̃ (0))

)
φ̂(s; ∞)

=
(
1

2
(sEmn + Q̃δ)�̃σ 2 + �̃c

)−1 (1
2
w(0)�̃σ 2emn + TsEmnTQ̃δ

ζ (0)

)
.

Upon Laplace transform inversion, this leads to the (defective) Markov renewal equation

φ(u; ∞) =
∫ u

0
g̃δ(x)φ(u − x; ∞)dx + Z̃δ(u), u ≥ 0,

with Z̃δ(u) defined in Eq. 3.23. Then the solution (3.24) follows immediately.

Remark 1 For a Markov additive risk process under the traditional dividend barrier strat-
egy, Cheung and Landriault (2009) provided the representations of the expected discounted
dividends, the higher moments of discounted dividends and the Gerber-Shiu function in
their equations (11), (22) and (37), respectively. These formulas were expressed in terms
of a homogeneous solution (which the authors denoted by vB(u)) and the barrier-free
Gerber-Shiu function. However, general solutions for these two components were not given.
While the barrier-free Gerber-Shiu function can be obtained from our Proposition 2 (with
n = 1), the quantity vB(u) is related to the results in Proposition 1 (under n = 1) via
vB(u) = (1/2)Lδ(u)�σ 2 . �

3.3 The Case u > b

In this subsection, we consider the case u > b for Eqs. 3.4 and 3.5, which will eventually
lead to the full solution to φ(u; b) = (φ


1 (u; b), . . . , φ

n (u; b))
 for u ≥ 0 as in Theorem 1.
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When u > b, we note that for k = 1, 2, . . . , n − 1 the equation (3.4) involves both φk(u; b)

and φk+1(u; b); whereas Eq. 3.5 only involves φn(u; b) as the unknown function. Therefore,
our solution procedure is to solve (3.4) for φk(u; b) in terms of φk+1(u; b) recursively for
k = 1, 2, . . . , n − 1, with the starting point φn(u; b) obtained as the solution of Eq. 3.5.

First, by some straightforward calculations, we obtain (for �(s) > 0)

∫ ∞

b

e−sEm(u−b)

(
1

2
�σ 2

d2

du2
+ �c

d

du
− (δ + β)Em + D0

)
φk(u; b)du

=
(
1

2
s2�σ 2 + s�c − (δ + β)Em + D0

)
TsEmφk(b; b)

− 1

2
�σ 2φ′

k(b; b) −
(
1

2
s�σ 2 + �c

)
φk(b; b).

Moreover, by a change of order of integrations, it can be shown that

∫ ∞

b

e−sEm(u−b)

∫ u

0
(D1 ◦ f (x))φk(u − x; b)dxdu

= (D1 ◦ f̂ (s))TsEmφk(b; b) +
∫ b

0

(
TsEm(D1 ◦ f (b − x))

)
φk(x; b)dx.

Hence, multiplying both sides of Eq. 3.4 by e−sEm(u−b) and performing integration with
respect to u from b to ∞ , we arrive at

(
1

2
s2�σ 2 + s�c − (δ + β)Em + D0 + D1 ◦ f̂ (s)

)
TsEmφk(b; b)

= 1

2
�σ 2φ′

k(b; b) +
(
1

2
s�σ 2 + �c

)
φk(b; b) − βTsEmφk+1(b; b) − TsEmζ (b)

−
∫ b

0

(
TsEm(D1 ◦ f (b − x))

)
φk(x; b)dx, k = 1, 2, . . . , n − 1. (3.28)

With the use of the matrix Qγ defined in Section 2 (under γ = δ + β), analogous to (3.20)
one has

(
1

2
s2�σ 2 + s�c − (δ + β)Em + D0 + D1 ◦ f̂ (s)

)

= (sEm − Qδ+β)

(
1

2
(sEm + Qδ+β)�σ 2 + �c − TsEmTQδ+β

(D1 ◦ f (0))

)
. (3.29)

Similar to Eq. 3.26, the matrix Qδ+β can also be used to determine the condition

O = 1

2
�σ 2φ′

k(b; b) +
(
1

2
Qδ+β�σ 2 + �c

)
φk(b; b) − βTQδ+β

φk+1(b; b) − TQδ+β
ζ (b)

−
∫ b

0

(
TQδ+β

(D1 ◦ f (b − x))
)

φk(x; b)dx, k = 1, 2, . . . , n − 1.
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Thus, as in Eq. 3.27, the right-hand side of Eq. 3.28 can be expressed as

1

2
�σ 2φ′

k(b; b) +
(
1

2
s�σ 2 + �c

)
φk(b; b) − βTsEmφk+1(b; b) − TsEmζ (b)

−
∫ b

0

(
TsEm(D1 ◦ f (b − x))

)
φk(x; b)dx

= (sEm − Qδ+β)

(
1

2
�σ 2φk(b; b) + βTsEmTQδ+β

φk+1(b; b) + TsEmTQδ+β
ζ (b)

+
∫ b

0
(TsEmTQδ+β

(D1 ◦ f (b − x)))φk(x; b)dx

)
, k = 1, 2, . . . , n − 1.

(3.30)

Plugging Eqs. 3.29 and 3.30 into Eq. 3.28 gives

(
Em −

(
1

2
(sEm + Qδ+β)�σ 2 + �c

)−1

TsEmTQδ+β
(D1 ◦ f (0))

)
TsEmφk(b; b)

=
(
1

2
(sEm+Qδ+β)�σ 2 + �c

)−1 (1
2
�σ 2φk(b; b) + βTsEmTQδ+β

φk+1(b; b) + TsEmTQδ+β
ζ (b)

+
∫ b

0
(TsEmTQδ+β

(D1 ◦ f (b − x)))φk(x; b)dx

)
, k=1, 2, . . . , n − 1.

(3.31)

Using the fact that the Dickson-Hipp transform Tsh(b) can be regarded as the Laplace
transform (with argument s) of the shifted function h(b + ·) (which extends to matrix quan-
tities), one can perform Laplace transform inversion in the above equation. Together with
the application of Eq. 3.14 and the continuity condition (3.7), this leads to

φk(b + u; b) =
∫ u

0
gδ+β(x)φk(b + u − x; b)dx

+ Wφ,k(u) + Rφ,k(u) +
n∑

j=1

H k,j (u)kj , k = 1, 2, . . . , n − 1; u ≥ 0,

(3.32)
where

gδ+β(x) = 2�−1
σ 2

∫ x

0
e
−(Qδ+β+2�c�

−1
σ2

)(x−y)TQδ+β
(D1 ◦ f (y))dy,

Wφ,k(u) = 2β�−1
σ 2

∫ u

0
e
−(Qδ+β+2�c�

−1
σ2

)(u−x)TQδ+β
φk+1(b + x; b)dx,

Rφ,k(u) = �−1
σ 2 e

−(Qδ+β+2�c�
−1
σ2

)u
�σ 2φ(b; ∞) + 2�−1

σ 2

∫ u

0
e
−(Qδ+β+2�c�

−1
σ2

)(u−x)TQδ+β
ζ (b + x)dx

+ 2�−1
σ 2

∫ u

0
e
−(Qδ+β+2�c�

−1
σ2

)(u−y)
∫ b

0
(TQδ+β

(D1 ◦ f (b + y − x)))φ(x; ∞)dxdy,

(3.33)
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and

H k,j (u) = �−1
σ 2 e

−(Qδ+β+2�c�
−1
σ2

)u
�σ 2Lδ,k,j (b)

+ 2�−1
σ 2

∫ u

0
e
−(Qδ+β+2�c�

−1
σ2

)(u−y)
∫ b

0
(TQδ+β

(D1◦f (b+y−x)))Lδ,k,j (x)dxdy, j =1, 2 . . . , n.

(3.34)

Clearly, Eq. 3.32 is a Markov renewal equation satisfied by φk(b + ·; b) (and again∫∞
0 gδ+β(x)dx is strictly substochastic). Note that the non-homogeneous term depends
on φk+1(b + x; b) for x > 0 via Wφ,k(u). Upon defining the quantity Sδ+β(x) =∑∞

i=1 g∗i
δ+β(x) with the obvious definition of i-fold convolution, by renewal theory and

some tedious but straightforward calculations, we arrive at

φk(b + u; b) = Wφ,k(u) + Rφ,k(u) +
n∑

j=1

H k,j (u)kj

+
∫ u

0
Sδ+β(u − z)

(
Wφ,k(z) + Rφ,k(z) +

n∑
j=1

H k,j (z)kj

)
dz

=
∫ ∞

0
Zδ,β (u, y)φk+1(b + y; b)dy+Kφ,k(u)+

n∑
j=1

P k,j (u)kj , k=1, 2, . . . , n−1;u≥0,

(3.35)

where

Zδ,β(u, y) = 2β�−1
σ 2

∫ min(u,y)

0
e
−(Qδ+β+2�c�

−1
σ2

)(u−x)
e−Qδ+β (y−x)dx

+ 2β
∫ u

0

∫ min(z,y)

0
Sδ+β(u − z)�−1

σ 2 e
−(Qδ+β+2�c�

−1
σ2

)(z−x)
e−Qδ+β (y−x)dxdz,

(3.36)

Kφ,k(u) = Rφ,k(u) +
∫ u

0
Sδ+β(u − z)Rφ,k(z)dz, (3.37)

and

P k,j (u) = H k,j (u) +
∫ u

0
Sδ+β(u − z)H k,j (z)dz, j = 1, 2 . . . , n. (3.38)

Note from Eq. 3.33 that Rφ,1 ≡ Rφ,2 ≡ · · · ≡ Rφ,n−1 and therefore Eq. 3.37 implies
Kφ,1 ≡ Kφ,2 ≡ · · · ≡ Kφ,n−1. We adopt the seemingly redundant subscript to ease
presentation later on, as we consider the case k = n next.

For k = n, multiplying both sides of Eq. 3.5 by e−sEm(u−b) and integrating from b to ∞
yields (

1

2
s2�σ 2 + s�c − (δ + β)Em + D0 + D1 ◦ f̂ (s)

)
TsEmφn(b; b)

= 1

2
�σ 2φ′

n(b; b) +
(
1

2
s�σ 2 + �c

)
φn(b; b) − βs−1φ1(b; b) − TsEmζ (b)

−
∫ b

0

(
TsEm(D1 ◦ f (b − x))

)
φn(x; b)dx. (3.39)
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We now look at the right-hand side of the above equation. Using the same arguments
leading to Eq. 3.30 and omitting the details, we obtain

1

2
�σ 2φ′

n(b; b) +
(
1

2
s�σ 2 + �c

)
φn(b; b) − βs−1φ1(b; b) − TsEmζ (b)

−
∫ b

0

(
TsEm(D1 ◦ f (b − x))

)
φn(x; b)dx

= (sEm − Qδ+β)

(
1

2
�σ 2φn(b; b) + β(sQδ+β)−1φ1(b; b) + TsEmTQδ+β

ζ (b)

+
∫ b

0
(TsEmTQδ+β

(D1 ◦ f (b − x)))φn(x; b)dx

)
.

This helps us convert (3.39) into(
Em −

(
1

2
(sEm + Qδ+β)�σ 2 + �c

)−1

TsEmTQδ+β
(D1 ◦ f (0))

)
TsEmφn(b; b)

=
(
1

2
(sEm + Qδ+β)�σ 2 + �c

)−1 (1
2
�σ 2φn(b; b) + β(sQδ+β)−1φ1(b; b) + TsEmTQδ+β

ζ (b)

+
∫ b

0
(TsEmTQδ+β

(D1 ◦ f (b − x)))φn(x; b)dx

)
. (3.40)

Similar to Eq. 3.32, inversion of Laplace transforms yields the defective Markov renewal
equation

φn(b + u; b) =
∫ u

0
gδ+β(x)φn(b + u − x; b)dx + Rφ,n(u) +

n∑
j=1

H n,j (u)kj , u ≥ 0,

(3.41)
where

Rφ,n(u) = �−1
σ 2 e

−(Qδ+β+2�c�
−1
σ2

)u
�σ 2φ(b; ∞) + 2β�−1

σ 2

∫ u

0
e
−(Qδ+β+2�c�

−1
σ2

)x
Q−1

δ+βφ(b; ∞)dx

+ 2�−1
σ 2

∫ u

0
e
−(Qδ+β+2�c�

−1
σ2

)(u−x)TQδ+β
ζ (b + x)dx

+ 2�−1
σ 2

∫ u

0
e
−(Qδ+β+2�c�

−1
σ2

)(u−y)
∫ b

0
(TQδ+β

(D1 ◦ f (b + y − x)))φ(x; ∞)dxdy,

(3.42)

and

H n,j (u) = �−1
σ 2 e

−(Qδ+β+2�c�
−1
σ2

)u
�σ 2Lδ,n,j (b) + 2β�−1

σ 2

∫ u

0
e
−(Qδ+β+2�c�

−1
σ2

)x
Q−1

δ+βLδ,1,j (b)dx

+ 2�−1
σ 2

∫ u

0
e
−(Qδ+β+2�c�

−1
σ2

)(u−y)
∫ b

0
(TQδ+β

(D1◦f (b+y−x)))Lδ,n,j (x)dxdy, j =1, 2 . . . , n.

(3.43)

As a result, the application of Markov renewal theory gives

φn(b + u; b) = Kφ,n(u) +
n∑

j=1

P n,j (u)kj , u ≥ 0, (3.44)
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where the definitions (3.37) and (3.38) are now extended to k = n.
Note that Eq. 3.35 for k = 1, 2, . . . , n − 1 forms an iterative system with the starting

value given by Eq. 3.44. By some straightforward algebra, one can put the iteration in nicer
form as

φn−k+1(b + u; b) = Bφ,n−k+1(u) +
n∑

j=1

Cn−k+1,j (u)kj , k = 1, 2, . . . , n; u ≥ 0,

(3.45)
where Bφ,n−k+1(u) and Cn−k+1,j (u) are evaluated recursively (for increasing k) as{

Bφ,n(u) = Kφ,n(u),

Bφ,n−k+1(u) = Kφ,n−k+1(u) + ∫∞
0 Zδ,β(u, y)Bφ,n−k+2(y)dy, k = 2, 3, . . . , n,

(3.46)
and for each fixed j = 1, 2, . . . , n,{

Cn,j (u) = P n,j (u).

Cn−k+1,j (u) = P n−k+1,j (u) + ∫∞
0 Zδ,β(u, y)Cn−k+2,j (y)dy, k = 2, 3, . . . , n.

(3.47)
Furthermore, setting Bφ(u) = (B


φ,1(u), . . . , B

φ,n(u))
 and

C(u) =
⎛
⎜⎝

C1,1(u) · · · C1,n(u)
...

. . .
...

Cn,1(u) · · · Cn,n(u)

⎞
⎟⎠ ,

Eq. 3.45 can be rewritten as

φ(b + u; b) = Bφ(u) + C(u)(k

1 , . . . , k


n )
, u ≥ 0.

Except for (k

1 , . . . , k


n )
, the above equation gives the exact solution for the Gerber-Shiu
function in the upper layer. The unknown vector (k


1 , . . . , k

n )
 can be obtained using the

smooth pasting condition (3.8) together with Eq. 3.14, giving

(k

1 , . . . , k


n )
 = (L′
δ(b) − C′(0)

)−1
(
B ′

φ(0) − φ′(b;∞)
)

. (3.48)

The main results of this section are summarized in the following Theorem.

Theorem 1 Suppose that the matrices Q̃δ and Qδ+β are diagonalizable. Then

φ(u; b) = φ(u;∞) + Lδ(u)
(
L′

δ(b) − C′(0)
)−1

(
B ′

φ(0) − φ′(b;∞)
)

, 0 ≤ u ≤ b,

(3.49)
and

φ(u; b) = Bφ(u − b) + C(u − b)
(
L′

δ(b) − C′(0)
)−1

(
B ′

φ(0) − φ′(b;∞)
)

, u > b.

(3.50)
In particular, the Gerber-Shiu function φ(u; b) can be computed by the following procedure.

• Step 1: Compute the matrices Q̃δ and Qδ+β using one of the methods discussed in
Section 2.

• Step 2: Compute Lδ(u) and φ(u;∞) by Propositions 1 and 2, respectively.
• Step 3: Compute Rφ,k(u) by Eqs. 3.33 and 3.42; and H k,j (u) by Eqs. 3.34 and 3.43.
• Step 4: Compute Zδ,β(u, y) by Eq. 3.36; and Kφ,k(u) and P k,j (u) by Eqs. 3.37 and

3.38, respectively.
• Step 5: Compute Bφ,k(u) and Ck,j (u) recursively via Eqs. 3.46 and 3.47, respectively.
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• Step 6: Compute φ(u; b) via Eqs. 3.49 and 3.50.

Remark 2 If one is interested in the limit behavior of the Gerber-Shiu function as u → ∞,
it suffices to consider the case u > b. Applying the Final Value Theorem for Laplace
transforms, we have

lim
u→∞ φk(u; b) = lim

u→∞ φk(b + u; b) = lim
s→0

sTsEmφk(b; b).

Hence, application of Eq. 3.28 gives the iterative expression

lim
s→0

sTsEmφk(b; b) =
(
lim
s→0

(
1

2
s2�σ 2 + s�c − (δ + β)Em + D0 + D1 ◦ f̂ (s)

)−1
)

×
(
lim
s→0

s

(
1

2
�σ 2φ′

k(b; b)+
(
1

2
s�σ 2 +�c

)
φk(b; b) − βTsEmφk+1(b; b) − TsEmζ (b)

−
∫ b

0

(
TsEm(D1 ◦ f (b − x))

)
φk(x; b)dx

))

= β ((δ + β)Em − D0 − D1)
−1 lim

s→0
sTsEmφk+1(b; b), k = 1, 2, . . . , n − 1.

Similarly, Eq. 3.39 leads to the starting point

lim
s→0

sTsEmφn(b; b) = β ((δ + β)Em − D0 − D1)
−1 φ1(b; b).

Combining all the above, we arrive at the asymptotic formula, for each k = 1, 2, . . . , n,

φk(u; b) ∼ βn−k+1 ((δ + β)Em − D0 − D1)
−(n−k+1) φ1(b; b) as u → ∞. (3.51)

It can be verified that∫ ∞

0
e−δtfT (t)e(D0+D1)t dt = βn ((δ + β)Em − D0 − D1)

−n .

The (i, j)th element of the above expression is E[e−δT 1{JT =j}|J0 = i], namely the expected
present value of a dollar payable at the first dividend decision time T1 if J is in state j at time
T1, given that J starts in state i. Then Eq. 3.51 at k = 1 can be interpreted probabilistically
as follows. Suppose J0 = i. When the initial surplus Ub

0 = u is very large, it is highly likely
that the surplus processUb is above b at time T1 (before dividends) and ruin has not occurred
in the interim, regardless of the initial environmental state J0 = i. If J is in state j at time
T1, this first gives rise to the discount factor E[e−δT 1{JT =j}|J0 = i] from time T1 to time 0.
Then the payment of dividend will cause the surplus to drop to the level b, from which the
expected discounted penalty onward is φ1,j (b; b). Since the state j is arbitrary, summing
over j explains (3.51) at k = 1. Similarly, (3.51) for k = 2, 3, . . . can be interpreted by
replacing T1 with an Erlang(n− k +1) random variable in the above arguments. See Avanzi
et al. (2013, Remark 2.3) for related intuitions in the context of a dual risk model. �

4 Expected Present Value of Dividends Paid Until Ruin

This section is concerned with the full solution to the dividend function Vi(u; b) defined by
Eq. 1.5. Since the derivations closely resemble those in Section 3, we mostly present the key
steps involved with omission of some algebraic details. As in Section 3, we define Vk,i(u; b)

(for k = 1, 2, . . . , n) to be the expected present value of total dividends paid until ruin,
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given that the time until the first dividend decision time is distributed as Erlang(n − k + 1).
Clearly, Vi(u; b) = V1,i (u; b). Let V k(u; b) = (Vk,1(u; b), . . . , Vk,m(u; b))
 for k =
1, 2, . . . , n. Then, applying the same arguments used to obtain (3.4) and (3.5), we arrive at
the matrix integro-differential equations

O =
(
1

2
�σ 2

d2

du2
+ �c

d

du
− (δ + β)Em + D0

)
V k(u; b) +

∫ u

0
(D1 ◦ f (x))V k(u − x; b)dx

+ βV k+1(u; b), k = 1, 2, . . . , n − 1,
(4.1)

and

O =
(
1

2
�σ 2

d2

du2
+ �c

d

du
− (δ + β)Em + D0

)
V n(u; b)

+
∫ u

0
(D1 ◦ f (x))V n(u − x; b)dx + βV 1(u; b)1{0<u≤b}

+ β ((u − b)em + V 1(b; b)) 1{u>b}. (4.2)

One has the trivial boundary condition

V k(0; b) = O, k = 1, 2, . . . , n, (4.3)

as well as the continuity and the smooth pasting conditions given by

V k(b−; b) = V k(b+; b), k = 1, 2, . . . , n, (4.4)

and

V ′
k(b−; b) = V ′

k(b+; b), k = 1, 2, . . . , n. (4.5)

Setting V (u; b) = (V 

1 (u; b), . . . ,V 


n (u; b))
, (4.1) and (4.2) in the lower layer can be
collectively written as

(
1

2
�̃σ 2

d2

du2
+ �̃c

d

du
− δEmn + D̃0

)
V (u; b)+

∫ u

0
(D̃1 ◦ f̃ (x))V (u−x; b)dx = O, 0 < u < b.

With the boundary condition (4.3), it follows from Section 3.2 that

V (u; b) = Lδ(u)(y

1 , . . . , y


n )
, 0 ≤ u ≤ b, (4.6)

where y1, . . . , yn are m-dimensional column vectors to be determined. For u > b,
multiplying Eqs. 4.1 and 4.2 by e−sEm(u−b) and integrating from b to ∞, we obtain

(
1

2
s2�σ 2 + s�c − (δ + β)Em + D0 + D1 ◦ f̂ (s)

)
TsEmV k(b; b)

= 1

2
�σ 2V ′

k(b; b) +
(
1

2
s�σ 2 + �c

)
V k(b; b) − βTsEmV k+1(b; b)

−
∫ b

0

(
TsEm(D1 ◦ f (b − x))

)
V k(x; b)dx, k = 1, 2, . . . , n − 1, (4.7)
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and (
1

2
s2�σ 2 + s�c − (δ + β)Em + D0 + D1 ◦ f̂ (s)

)
TsEmV n(b; b)

= 1

2
�σ 2V ′

n(b; b) +
(
1

2
s�σ 2 + �c

)
V n(b; b) − βs−1V 1(b; b) − βs−2em

−
∫ b

0

(
TsEm(D1 ◦ f (b − x))

)
V n(x; b)dx. (4.8)

Remark 3 As a by-product of Eqs. 4.7 and 4.8, analogous to Eq. 3.51 we can obtain the
asymptotic result, for each k = 1, 2, . . . , n,

V k(u; b) ∼ βn−k+1 ((δ + β)Em − D0 − D1)
−(n−k+1) emu as u → ∞. (4.9)

The above formula can be interpreted as in Remark 2. See also Avanzi et al. (2013, Remark
3.2). �

Following the same steps used to transform Eqs. 3.28 and 3.39 to Eqs. 3.31 and 3.40,
Eqs. 4.7 and 4.8 respectively become
(

Em −
(
1

2
(sEm + Qδ+β)�σ 2 + �c

)−1

TsEmTQδ+β
(D1 ◦ f (0))

)
TsEmV k(b; b)

=
(
1

2
(sEm + Qδ+β)�σ 2 + �c

)−1 (1
2
�σ 2V k(b; b) + βTsEmTQδ+β

V k+1(b; b)

+
∫ b

0
(TsEmTQδ+β

(D1 ◦ f (b − x)))V k(x; b)dx

)
, k = 1, 2, . . . , n − 1,

(4.10)

and(
Em −

(
1

2
(sEm + Qδ+β)�σ 2 + �c

)−1

TsEmTQδ+β
(D1 ◦ f (0))

)
TsEmV n(b; b)

=
(
1

2
(sEm + Qδ+β)�σ 2 + �c

)−1 (1
2
�σ 2V n(b; b) + β(sQδ+β)−1V 1(b; b) + βs−1Q−2

δ+βem

+βs−2Q−1
δ+βem +

∫ b

0
(TsEmTQδ+β

(D1 ◦ f (b − x)))V n(x; b)dx

)
.

(4.11)

Upon inversion of Laplace transforms in Eq. 4.10 along with the use of the representation
(4.6) and the continuity condition (4.4), we obtain the defective Markov renewal equation

V k(b + u; b) =
∫ u

0
gδ+β(x)V k(b + u − x; b)dx

+ WV,k(u) +
n∑

j=1

H k,j (u)yj , k = 1, 2, . . . , n − 1; u ≥ 0,

(4.12)
where H k,j (u) is defined in Eq. 3.34, and

WV,k(u) = 2β�−1
σ 2

∫ u

0
e
−(Qδ+β+2�c�

−1
σ2

)(u−x)TQδ+β
V k+1(b + x; b)dx.
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Similarly, Eq. 4.11 leads to

V n(b + u; b) =
∫ u

0
gδ+β(x)V n(b + u − x; b)dx + RV (u) +

n∑
j=1

H n,j (u)yj , u ≥ 0,

(4.13)
where H n,j (u) is given by Eq. 3.43, and

RV (u) = 2β�−1
σ 2

∫ u

0
e
−(Qδ+β+2�c�

−1
σ2

)x
Q−2

δ+βemdx + 2β�−1
σ 2

∫ u

0
e
−(Qδ+β+2�c�

−1
σ2

)(u−x)
xQ−1

δ+βemdx.

(4.14)
It is instructive to note that Eqs. 4.12 and 4.13 are structurally similar to Eqs. 3.32 and 3.41,
respectively. Consequently, in parallel to Eqs. 3.35 and 3.44, their solutions are

V k(b+u; b) =
∫ ∞

0
Zδ,β(u, y)V k+1(b+y; b)dy+

n∑
j=1

P k,j (u)yj , k = 1, 2, . . . , n−1; u ≥ 0,

(4.15)
and

V n(b + u; b) = KV (u) +
n∑

j=1

P n,j (u)yj u ≥ 0. (4.16)

Here the function P k,j (u) has the same definition as in Eq. 3.38, and

KV (u) = RV (u) +
∫ u

0
Sδ+β(u − x)RV (x)dx. (4.17)

On the grounds of the iterative system that consists of Eqs. 4.15 and 4.16, we obtain

V n−k+1(b + u; b) = BV,n−k+1(u) +
n∑

j=1

Cn−k+1,j (u)yj , k = 1, 2, . . . , n; u ≥ 0,

(4.18)
where Cn−k+1,j (u) follows the definition (3.47), and BV,n−k+1(u) can be computed
recursively via{

BV,n(u) = KV (u).

BV,n−k+1(u) = ∫∞
0 Zδ,β(u, y)BV,n−k+2(y)dy, k = 2, 3, . . . , n.

(4.19)

Letting BV (u) = (B

V,1(u), . . . , B


V,n(u))
, we can rewrite (4.18) as

V (b + u; b) = BV (u) + C(u)(y

1 , . . . , y


n )
, u ≥ 0.

Finally, we further apply Eq. 4.6 and the smooth pasting condition (4.5) to determine the
unknown vector as

(y

1 , . . . , y


n )
 = (L′
δ(b) − C′(0)

)−1
B ′

V (0).

We summarize the main results in the following Theorem.

Theorem 2 Suppose that the matrices Q̃δ and Qδ+β are diagonalizable. Then

V (u; b) = Lδ(u)
(
L′

δ(b) − C′(0)
)−1

B ′
V (0), 0 ≤ u ≤ b, (4.20)

and

V (u; b) = BV (u − b) + C(u − b)
(
L′

δ(b) − C′(0)
)−1

B ′
V (0), u > b. (4.21)

In particular, the expected discounted dividends paid until ruin V (u; b) can be computed
by the following procedure.
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• Step 1: Compute the matrices Q̃δ and Qδ+β using one of the methods discussed in
Section 2.

• Step 2: Compute Lδ(u) by Proposition 1.
• Step 3: Compute RV (u) by Eq. 4.14; and H k,j (u) by Eqs. 3.34 and 3.43.
• Step 4: Compute Zδ,β(u, y) by Eq. 3.36; and KV (u) and P k,j (u) by Eqs. 4.17 and

3.38, respectively.
• Step 5: Compute BV,k(u) and Ck,j (u) recursively via Eqs. 4.19 and 3.47, respectively.
• Step 6: Compute V (u; b) via Eqs. 4.20 and 4.21.

5 Numerical Examples

5.1 Brownian Motion Risk Model

In this subsection, we consider the Brownian motion risk model (i.e. m = 1 and there are
no claims at all). Writing c = c1 and σ1 = σ , the cumulant generating function of the
barrier-free process U∞ is given by

1

t
lnE[esU∞

t ] = 1

2
σ 2s2 + cs.

Since there is only one environmental state, we also let φ(u; b) = φ1(u; b) and V (u; b) =
V1(u; b). Note that ruin can only be caused by diffusion because there are no claims. Hence,
without loss of generality we let w(0) = 1, and then φ(u; b) actually represents the Laplace
transform of the time of ruin.

We first assume that the inter-dividend-decision times follow an exponential distribution,
i.e. n = 1. In this simplest case, the results for φ(u; b), V (u; b) and the optimal dividend
barrier are very explicit. For the Gerber-Shiu function φ(u; b), it follows from Eq. 3.5 that

1

2
σ 2φ′′(u; b) + cφ′(u; b) − (δ + β)φ(u; b) + βφ(u; b)1{0<u≤b} + βφ(b; b)1{u>b} = 0.

Due to the simplicity of the problem, instead of using Theorem 1 one can proceed to solve
the above piecewise differential equation subject to the conditions

φ(0; b) = 1, φ(b−; b) = φ(b+; b), φ′(b−; b) = φ′(b+; b),

as well as the fact that φ(u; b) ≤ 1. Following similar notations as in Gerber and Shiu
(2004), for γ ≥ 0 we define sγ < 0 and rγ ≥ 0 to be the roots of the quadratic equation (in
ξ )

1

2
σ 2ξ2 + cξ − γ = 0.

Omitting the straightforward algebra, we arrive at

φ(u; b) = (rδ − δ
δ+β

sδ+β)e−sδ(b−u) − (sδ − δ
δ+β

sδ+β)e−rδ(b−u)

(rδ − δ
δ+β

sδ+β)e−sδb − (sδ − δ
δ+β

sδ+β)e−rδb
, 0 ≤ u ≤ b, (5.1)

and

φ(u; b) = φ(b; b)

(
β

δ + β
+ δ

δ + β
esδ+β (u−b)

)
, u > b.

For the expected discounted dividends paid until ruin V (u; b), we obtain from Eq. 4.2 that

1

2
σ 2V ′′(u; b)+ cV ′(u; b)− (δ +β)V (u; b)+βV (u; b)1{0<u≤b} +β(u−b +V (b; b))1{u>b} = 0.
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It can be solved using the conditions

V (0; b) = 0, V (b−; b) = V (b+; b), V ′(b−; b) = V ′(b+; b),

and the fact that V (u; b) is asymptotically linear in u (see Remark 3). This yields

V (u; b) =
β

δ+β
(1 − csδ+β

δ+β
)(erδu − esδu)

(rδ − δ
δ+β

sδ+β)erδb − (sδ − δ
δ+β

sδ+β)esδb
, 0 ≤ u ≤ b, (5.2)

and

V (u; b) = V (b; b)

(
β

δ + β
+ δ

δ + β
esδ+β (u−b)

)
+ β

δ + β

(
u − b + c

δ + β
(1 − esδ+β (u−b))

)
, u > b.

(5.3)
Apart from explicit expressions for φ(u; b) and V (u; b), we are also interested in the opti-
mal dividend barrier b∗ maximizing the dividend function V (u; b) with respect to b. All
else being equal, on average a lower (higher) barrier leads to more (less) dividends at early
times but less (more) dividends in the long run due to earlier (later) ruin. Hence, choosing
b∗ can somehow be regarded as striking a balance between the timing of dividend payments
(because of discounting) and the total (non-discounted) amount of dividends paid. The value
of b∗ can be obtained by solving

∂

∂b
V (u; b) = 0.

From Eq. 5.2, one readily obtains

b∗ = 1

rδ − sδ
ln

sδ(sδ − δ
δ+β

sδ+β)

rδ(rδ − δ
δ+β

sδ+β)
, (5.4)

which maximizes V (u; b) as long as 0 ≤ u ≤ b∗. It can also be checked that the above b∗ is
also a turning point of the expression (5.3), and therefore it indeed maximizes V (u; b) for
all u ≥ 0. In parallel to Avanzi et al. (2013, Section 4.3) who considered the optimal barrier
in a dual risk model with exponential jumps in the absence of diffusion, we can verify that
V ′(b∗; b∗) = 1. This leads to

∂

∂b
[u − b + V (b; b)]

∣∣∣
b=b∗ = 0.

The above equation means that the optimal barrier is still b∗ even if we declare time 0 to be
a dividend decision time.

Remark 4 Since sδ+β = (−c−√c2 + 2σ 2(δ + β))/σ 2, it is clear that limβ→∞ sδ+β = −∞
and
limβ→∞ sδ+β/(δ + β) = 0. Thus, the limits of Eqs. 5.1 and 5.2 as β → ∞ are identical
to equations (3.7) and (2.11) of Gerber and Shiu (2004), respectively. This is expected
because the inter-dividend-decision times tend to zero as β → ∞, and we are back to the
traditional barrier strategy in which dividend decisions are made continuously. Moreover,
the optimal barrier (5.4) reduces to the one from Gerber and Shiu (2004, equation (6.2)) at
the limit. It can also be verified analytically that Eq. 5.4 is an increasing concave function
of β and the details are omitted here. �

Based on the explicit formulas derived above, we look at a numerical example by setting
c = 0.2, σ 2 = 0.3, δ = 0.01 and β = 0.05. Figures 1a and b show the behaviour of the
Laplace transform of the time of ruin φ(u; b) when either u or b varies. It can be seen that
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Fig. 1 The Laplace transform of the time of ruin (a) as a function of u; and (b) as a function of b

φ(u; b) is decreasing in both u and b. This is because for larger initial surplus u or larger
barrier level b, ruin is likely to happen at a later time, and therefore the present value of a
dollar payable at ruin is worth less. Note that for each fixed b, the curve in Fig. 1a flattens
out as u increases, which can be attributed to the asymptotic formula (3.51). Similarly, the
plots of the expected discounted dividends V (u; b) with respect to u and b are depicted in
Figs. 2a and b. For each fixed b, Fig 2a illustrates that V (u; b) is an increasing function of u,
and the relationship is almost linear as u increases due to Eq. 4.9. However, from Fig. 2b, for
each fixed u the dividend function V (u; b) is first increasing and then decreasing in b, and
there is a unique optimal barrier b∗. In particular, the value of b∗ = 3.237 is independent of
the initial surplus u, which is consistent with our theoretical findings.

Next, we still retain the same parameters except that the value of β is varied in order to
study its impact on the optimal barrier b∗. In accordance with Remark 4, Fig. 3 shows that b∗
is increasing concave in β, converging to the classical optimal barrier of 4.692 as β → ∞.
When β increases, the inter-dividend-decision times are shorter (since β = 1/E[T ]).

Fig. 2 The expected discounted dividends (a) as a function of u; and (b) as a function of b
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Fig. 3 The optimal dividend barrier b∗ as a function of β = 1/E[T ]

If the barrier value remains the same, a larger amount of early dividends would be paid
at the expense of earlier ruin as dividend decisions are made more frequently, shift-
ing the balance between the timing and the total amount of dividend payments to the
former. Thus, the optimal barrier b∗ should increase to counterbalance the effect of
larger β.

So far exponential inter-dividend-decision times have been assumed in this subsection.
For general Erlang(n) inter-dividend-decision times with n > 1, expressions for φ(u; b)

and V (u; b) still involve exponential and linear functions in u and b only, but the optimal
barrier b∗ can no longer be represented in explicit form. Instead of directly solving ordinary
differential equations, we can use the algorithms provided in Theorems 1 and 2 to get exact
values of φ(u; b) and V (u; b). For numerical illustrations, we only look at V (u; b) since
this will give insights to the optimal barrier. We still let c = 0.2, σ 2 = 0.3 and δ = 0.01. To
see the effect of Erlangization, we increase n from 1 to 5 while fixing E[T ] = n/β = 20
(i.e. increasing β). Figs. 4a and b show that V (u; 3) as a function of u and V (3; b) as a
function of b are of the same shape as in the case n = 1 even if we increase n. In addition,
for fixed values of u and b, the dividend function V (u; b) appears to be increasing and
converging as n increases. More importantly, we observe from Fig. 4b that for each fixed
n the optimal barrier b∗ exists. We have further carried out some numerical checking using
different values of initial surplus (which is not reproduced here), and found that for each
fixed n the optimal barrier b∗ is independent of u. The values of b∗ are given by 3.237,
3.299, 3.300, 3.331, 3.337 respectively when n = 1, 2, 3, 4, 5.
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Fig. 4 The expected discounted dividends (a) as a function of u when b = 3; and (b) as a function of b

when u = 3

5.2 Bivariate MAP Risk Model

This subsection aims at providing further numerical examples for bivariate MAP risk mod-
els. First, we consider a bivariate Markov-modulated Brownian risk model (i.e. there are no
claims). We set

�c =
(
0.1 0
0 0.25

)
, �σ 2 =

(
0.1 0
0 0.2

)
, D0 =

(−0.06 0.06
0.03 −0.03

)
, D1 = O.

It is assumed that the inter-dividend-decision times follow the Erlang(2) distribution with
β = 0.05 and the force of interest is δ = 0.01. From Fig. 5, the expected present val-
ues of dividends given different initial states, namely V1(u; b) and V2(u; b), show similar
behaviour as in Fig. 2a, i.e. they both increase in u for each fixed b and then essentially grow
linearly as u increases further. For each fixed u, Fig. 6 shows that V1(u; b) and V2(u; b) first
increase and then decrease in b. Interestingly, using the exact dividend values calculated

Fig. 5 (a) V1(u; b) as a function of u; and (b) V2(u; b) as a function of u
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Fig. 6 (a) V1(u; b) as a function of b; and (b) V2(u; b) as a function of b

via Theorem 2, it is found that regardless of the initial surplus level u, the optimal dividend
barriers that maximize V1(u; b) and V2(u; b) coincide and are both given by b∗ = 1.935.
In other words, the optimal dividend barrier b∗ appears to be independent of the initial sur-
plus and the initial environmental state. The latter also implies that b∗ is the same for the
unconditional process Ub under any initial probability row vector α of the Markov chain J .

Next, we look at a perturbed Markov-modulated risk model with two states. Let

�c =
(
0.04 0
0 0.03

)
, �σ 2 =

(
0.01 0
0 0.05

)
(5.5)

and

D0 =
(−0.06 0.03

0.1 −0.2

)
, D1 =

(
0.03 0
0 0.1

)
.

The claim severities are assumed to be exponentially distributed such that

f11(x) = e−x, f22(x) = 5e−5x,

so that μ11 = 1 and μ22 = 0.2 (and the loading condition (1.2) is satisfied). In addi-
tion, the inter-dividend-decision times are assumed to be exponential with β = 0.1. We
are interested in the distribution of the deficit at ruin, which is denoted by F (z|u; b) =
(F1(z|u; b), F2(z|u; b)). For i = 1, 2, the quantity Fi(z|u; b) can be retrieved from φi(u; b)

by letting δ = 0 and w(y) = 1{y≤z}. Fig. 7 depicts F (z|u; b) under b = 4. Note that both
F1(z|u; 4) and F2(z|u; 4) have probability masses at z = 0 because ruin may be caused by
oscillation. Furthermore, we observe that F1(z|u; 4) and F2(z|u; 4) tend to 1 as z increases,
which is due to the fact that ruin is certain under this Erlangized dividend barrier strategy.
Except for small values of u where there is higher chance of early ruin by oscillation, the
values of F1(z|u; 4) and F2(z|u; 4) appear to be not very sensitive to change in the initial
surplus level.

Finally, we study a bivariate MAP risk process in which �c and �σ 2 are still given by
(5.5) and the inter-dividend-decision times are exponential with β = 0.1. However, the
generators are now assumed to be

D0 =
(−0.06 0.03

0.01 −0.02

)
, D1 =

(
0.02 0.01
0 0.01

)
.
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Fig. 7 (a) F1(z|u; 4) as a function of u and z; and (b) F2(z|u; 4) as a function of u and z

Furthermore, the claim densities are

f11(x) = 2e−2x, f12(x) = e−x, f22(x) = 0.3(2e−2x) + 0.7(5e−5x).

Compared to the previous example, the current specification of D1 allows a transition
from state 1 to state 2 to be accompanied by a claim (that follows a mixture of two
exponentials). We are interested in the Laplace transform of the ruin time given ini-
tial state i, which can be retrieved from the Gerber-Shiu function φi(u; b) by letting
w ≡ 1. Under a Laplace transform argument of δ = 0.01, the quantities φ1(u; b)

and φ2(u; b) are plotted against the initial surplus u for each fixed b = 1, 2, 3, 4, 5 in
Fig. 8. Similar behaviour as in Fig. 1 is observed, and the same interpretation therein
applies.

Fig. 8 (a) φ1(u; b) as a function of u; and (b) φ2(u; b) as a function of u



302 Methodol Comput Appl Probab (2016) 18:275–306

6 Appendix on Continuity and Smooth Pasting

In this appendix, we demonstrate how to check the continuity conditions (3.7) and (4.4) as
well as the smooth pasting conditions (3.8) and (4.5), which have been used to derive full
solutions to the Gerber-Shiu function and the expected discounted dividends until ruin. To
begin, we need some auxiliary functions. For i ∈ E and u ≥ 0, we define the stopping time
τu
i = inf{t > 0 : u + ci t + σiBt < 0} and the associated resolvent measure, for q ≥ 0,

R(q)
i (u, dx) =

∫ ∞

0
e−qt

P{u + ci t + σiBt ∈ dx, t < τu
i }dt.

Further let η(q)

1i ≥ 0 and η
(q)

2i < 0 be the roots of the quadratic equation (in ξ )

1

2
σ 2

i ξ2 + ciξ − q = 0.

It follows from Theorem 8.7 and Corollary 8.8 in Kyprianou (2006) that the above resolvent
measure admits a density, which is such thatR(q)

i (u, dx) = r
(q)
i (u, x)dx and given by

r
(q)
i (u, x) = e−η

(q)
1i xW

(q)
i (u) − W

(q)
i (u − x).

Here W
(q)
i is a q-scale function defined as W

(q)
i (x) = 0 for x < 0 and

W
(q)
i (x) = eη

(q)

1i x − eη
(q)

2i x

σ 2
i

2 (η
(q)

1i − η
(q)

2i )

, x ≥ 0.

More explicitly, we have

r
(q)
i (u, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e
η
(q)
2i (u−x)−e

η
(q)
2i u−η

(q)
1i x

σ2
i
2 (η

(q)

1i −η
(q)

2i )

, 0 ≤ x ≤ u,

e
η
(q)
1i (u−x)−e

η
(q)
2i u−η

(q)
1i x

σ2
i
2 (η

(q)
1i −η

(q)
2i )

, x > u.

(A.1)

It is also well known that the Laplace transform of τu
i is (see e.g. Borodin and Salminen

(2002, p.295))

H(q)
i (u) = E[e−qτu

i ] = eη
(q)
2i u.

The key to proving continuity and smooth pasting is the derivation of appropriate integral
equations as follows. Suppose that for the process Ub, the initial surplus is u ≥ 0, the initial
state is J0 = i ∈ E , and the time until the next dividend decision time is Erlang(n − k + 1)
distributed for some k = 1, 2, . . . , n. Let C1 be the time until the first phase change of
the dividend decision time. Clearly, C1 is always exponentially distributed with mean 1/β.
Define Ei to be the time until the first event of the bivariate Markov process (N, J ) occurs.
Then Ei is an exponential random variable with mean −1/D0,ii . Three situations need to be
distinguished: (1) τb < Ei ∧ C1; (2) Ei < τb ∧ C1; and (3) C1 < τb ∧ Ei . Note that under
Pu,i , Ub is distributed as the process {u + ci t + σiBt } for 0 ≤ t < Ei ∧ C1. In addition,
{u + ci t + σiBt } and the random variables Ei and C1 are mutually independent. Therefore,
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for the Gerber-Shiu function we arrive at

φk,i (u; b) = w(0)E[e−δτu
i 1{τu

i <Ei ,τ
u
i <C1}]

+
∫ ∞

0
e−(δ+β−D0,ii )t

m∑
j=1,j �=i

D0,ij

∫ ∞

0
φk,j (x; b)P{u + ci t + σiBt ∈ dx, t < τu

i }dt

+
∫ ∞

0
e−(δ+β−D0,ii )t

m∑
j=1

D1,ij

∫ ∞

0
(γk,ij (x; b) + ωij (x))P{u + ci t + σiBt ∈ dx, t < τu

i }dt

+
∫ ∞

0
βe−(δ+β−D0,ii )t

∫ ∞

0
φk+1,i (x; b)P{u + ci t + σiBt ∈ dx, t <τu

i }dt, k=1, 2, . . . , n−1.

(A.2)

Because

E[e−δτu
i 1{τu

i <Ei,τ
u
i <C1}] = E[E[e−δτu

i 1{τu
i <Ei,τ

u
i <C1}|τu

i ]]

= E

[
e−δτu

i

(∫ ∞

τu
i

(−D0,ii )e
D0,ii t dt

)(∫ ∞

τu
i

βe−βxdx

)]

= E[e−(δ+β−D0,ii )τ
u
i ] = H(δ+β−D0,ii )(u),

using the resolvent measure we can rewrite (A.2) as

φk,i(u; b) = w(0)H(δ+β−D0,ii )(u) +
m∑

j=1,j �=i

D0,ij

∫ ∞

0
φk,j (x; b)r

(δ+β−D0,ii )

i (u, x)dx

+
m∑

j=1

D1,ij

∫ ∞

0
(γk,ij (x; b) + ωij (x))r

(δ+β−D0,ii )

i (u, x)dx

+ β

∫ ∞

0
φk+1,i (x; b)r

(δ+β−D0,ii )

i (u, x)dx, k = 1, 2, . . . , n − 1. (A.3)

Similarly, for k = n we have

φn,i(u; b) = w(0)H(δ+β−D0,ii )(u) +
m∑

j=1,j �=i

D0,ij

∫ ∞

0
φn,j (x; b)r

(δ+β−D0,ii )

i (u, x)dx

+
m∑

j=1

D1,ij

∫ ∞

0
(γn,ij (x; b) + ωij (x))r

(δ+β−D0,ii )

i (u, x)dx

+ β

∫ b

0
φ1,i (x; b)r

(δ+β−D0,ii )

i (u, x)dx + β

∫ ∞

b

φ1,i (b; b)r
(δ+β−D0,ii )

i (u, x)dx.

(A.4)

Concerning the expected present value of dividends paid until ruin, we have

Vk,i(u; b) =
m∑

j=1,j �=i

D0,ij

∫ ∞

0
Vk,j (x; b)r

(δ+β−D0,ii )

i (u, x)dx

+
m∑

j=1

D1,ij

∫ ∞

0

(∫ x

0
Vk,j (x − y; b)fij (y)dy

)
r
(δ+β−D0,ii )

i (u, x)dx

+ β

∫ ∞

0
Vk+1,i (x; b)r

(δ+β−D0,ii )

i (u, x)dx, k = 1, 2, . . . , n − 1, (A.5)
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and

Vn,i (u; b) =
m∑

j=1,j �=i

D0,ij

∫ ∞

0
Vn,j (x; b)r

(δ+β−D0,ii )

i (u, x)dx

+
m∑

j=1

D1,ij

∫ ∞

0

(∫ x

0
Vn,j (x − y; b)fij (y)dy

)
r
(δ+β−D0,ii )

i (u, x)dx

+ β

∫ b

0
V1,i (x; b)r

(δ+β−D0,ii )

i (u, x)dx + β

∫ ∞

b

(x − b + V1,i (b; b))r
(δ+β−D0,ii )

i (u, x)dx.

(A.6)

Continuity and smooth pasting can be shown based on Eqs. A.3-A.6. For illustrative
purposes, we only focus on Vn,i(u; b) since the other functions can be checked analogously.
Letting

ϑi(x) =
m∑

j=1,j �=i

D0,ij Vn,j (x; b) +
m∑

j=1

D1,ij

∫ x

0
Vn,j (x − y; b)fij (y)dy

+ βV1,i (x; b)1{0<x≤b} + β(x − b + V1,i (b; b))1{x>b}, (A.7)

Equation A.6 can be rewritten as

Vn,i(u; b) =
∫ ∞

0
ϑi(x)r

(δ+β−D0,ii )

i (u, x)dx

=
∫ u

0
ϑi(x)

eη̃2i (u−x) − eη̃2iu−η̃1i x

σ 2
i

2 (η̃1i − η̃2i )

dx +
∫ ∞

u

ϑi(x)
eη̃1i (u−x) − eη̃2iu−η̃1i x

σ 2
i

2 (η̃1i − η̃2i )

dx.

(A.8)

Here Eq. A.1 has been used in the second equality, and we define η̃1i = η
(δ+β−D0,ii )

1i

and η̃2i = η
(δ+β−D0,ii )

2i for convenience. From the above representation, it is clear that
Vn,i(0; b) = 0 and Vn,i(u; b) is a continuous function in u for all u ≥ 0. Similarly, one can
deduce from Eq. A.5 that Vk,i(u; b) is continuous in u for each k = 1, 2, . . . , n − 1. Con-
sequently, ϑi(x) is continuous as well, as evident from Eq. A.7. Hence, taking derivative of
Eq. A.8 with respect to u gives

Vn,i′ (u; b) =
∫ u

0
ϑi(x)

η̃2ie
η̃2i (u−x) − η̃2i e

η̃2i u−η̃1i x

σ 2

2 (η̃1i − η̃2i )
dx+

∫ ∞

u

ϑi(x)
η̃1ie

η̃1i (u−x) − η̃2i e
η̃2i u−η̃1i x

σ 2

2 (η̃1i − η̃2i )
dx.

Therefore, Vn,i′(u; b) is continuous in u for all u ≥ 0. Indeed, by further differentiating the
above equation with respect to u (or by inspecting (4.2) and using the fact that Vn,i(u; b)

and Vn,i′(u; b) are continuous in u), one can observe that Vn,i′′(u; b) is also continuous in u

for all u ≥ 0. However, higher order derivatives are in general not continuous at u = b.
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