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Abstract Noting that risk neutral distributions are estimated by minimizing the squared
deviations between market and model option prices we consider using option payoff
moments in estimating distributional parameters from a sample of observations. It is
observed, in particular when compared to maximum likelihood estimation, that digital
option payoff moments yield the lowest chisquare statistics for a test of uniformity for data
transformed to the unit interval by the estimated distribution function.
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1 Introduction

Parametric models of probability densities have been estimated from data on option prices
by least squares minimization of the difference between model and market price for well
over twenty years. By way of examples we cite Bakshi, Cao and Chen (1997), Bates (1991),
Carr, Geman, Madan and Yor (2002), Heston (1993), and Madan, Carr and Chang (1998).
When one has time series data on returns the recommended estimation method is that of
maximum likelihood, see Fisher (1922). This is clearly the preferred method when data
are drawn from the said distribution but many advantages are known to remain when this
is not the case White (1982). For complex models much effort is expended in finding or
approximating the likelihood function, A ı̈t Sahalia (1999, 2002). Essentially all the methods
may be viewed as applications of moment methods (Hansen 1982), with the differences
lying in the moments being selected. Gallant and Tauchen (1996) advocate the use of the
score function.
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Though one may not estimate option pricing models using maximum likelihood, lacking
a set of data possibly drawn from the proposed distribution, one may evaluate expectations
of call payoffs from data on observed outcomes and then apply option pricing methods to
estimate parameters. These are moment matching methods for particular moments mimick-
ing option payoffs. Other moment choices include skewness, kurtosis or the characteristic
function (Feuerverger and Mureika 1977).

Once a model has been estimated for a distribution function one may evaluate the esti-
mated distribution function on the data and, presuming the data come from this estimated
distribution function, the sequence of evaluations should be uniformly distributed on the
unit interval. The different estimation methods may be compared by testing this sequence
of distribution function evaluations for uniformity, using for example, a chisquare statistic.
One could instead estimate parameters by minimizing the chisquare statistic, but our inter-
est is in selecting moments for moment matching equations that yield the lower values for
the chisquare statistic.

Given that we never know whether any real data comes from a particular model we study
and report on properties of estimators when the data is known not to come from the pro-
posed model. Of course we shall use particular models to generate some data samples but
as we suppose the researcher does not know this model, we cannot employ methods like
the correct maximum likelihood or related EM approaches known to be superior or rele-
vant for the particular data generating scheme. The data generation scheme is known to us
but not to the researcher who is estimating the wrong model. The researcher also knows
he has the wrong model and expects it to be rejected, and is not interested in finding the
right model as there may not be one for the data at hand that can be ascertained in the time
available. We expect and the resulting chisquare statistics do reject the proposed model,
but by construction this is not an observation of interest. The interest is in the the type of
moments that yield the lower and hence better chisquare statistics, thereby providing the
more acceptable estimated though incorrect model, on this metric. Properties of parame-
ters in small or large samples are also not of interest given that the model is known to
be wrong. The interest is just not in the model. One is merely trying to get the best esti-
mates of probabilities from a selection of proposed wrong models, recognizing that the true
data generation mechanism lies in all probability beyond our tractable analytical modeling
capabilities.

We shall argue in favor of the possibility of the superiority, at least for some examples,
for using digital moment estimation relative to maximum likelihood or other methods. Since
we do not wish to prove this proposition but merely to point to the possibility, a few exam-
ples suffice in the tradition of counterexamples. Other researchers in practical situations
are merely being pointed to consider the relevance of digital moment estimation in their
particular context.

For the proposed model we work with the two parameter Gaussian model for real valued
data and the two parameter gamma distribution for the data on the positive half line. As there
are two parameters to be estimated, we employ two moments for the purpose. One of our
estimators is the maximum likelihood estimator, henceforth MLE. The second estimator
we call the digital moment estimator, DME, that finds parameters to match two quantiles.
In addition we consider CME where the moment is the expectation of a call option type
payoff, for strikes taken at particular quantiles. We also consider an exponential call payoff
at the same strikes ECME.

We find that DME consistently yields the lowest chisquare statistic even when the true
distribution sought has been exponentially tilted. We conjecture that this is perhaps due to
the fact that the digital payoff is a fairly robust bounded moment. This leads us to suggest
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that distributions should probably not be estimated by maximum likelihood as classically
advocated but one may employ instead a digital moment estimator. The number of moments
may be adjusted to match or dominate the number of parameters.

The outline of the rest of the paper is as follows. Section 2 reports on results for the
Gaussian model. Section 3 reports on results for the gamma model on the upper half line.
Section 4 concludes.

2 The Gaussian Model

The Gaussian model postulates that the underlying probability distribution is the normal
distribution with mean μ and variance σ 2. For a sample of data xt , t = 1, · · · , T possibly
drawn from this distribution the MLE estimators are also the mean and variance moment
estimates with

μ̂m = 1

T

∑

t

xt

σ̂ 2
m = 1

T

∑

t

(xt − μ̂)2 .

The DME estimators define strikes k1 < k2 for quantiles a1 < a2 by

1

T

∑

t

1xt≤ki = ai, i = 1, 2.

The DME parameter estimates μ̂d , σ̂d solve the equations

N

(

ki − μ̂d

σ̂d

)

= ai,

where N(x) is the standard normal distribution function. It follows that

σ̂d = k2 − k1

N−1(a2)−N−1(a1)

μ̂d = k1 − σ̂dN
−1(a1).

The CME parameter estimates μ̂c, σ̂c solve for

ci = 1
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(xt − ki)
+ ,

the equations
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(
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Similarly the ECME parameter estimates μ̂e, σ̂e solve for

ei = 1

T

∑

t

(

ext − eki
)+

the equations

ei = N (d1)− ekiN(d2)

d1 = μ̂e

σ̂e
+ σ̂e

d2 = μ̂e

σ̂e

that follow from the Black, Merton and Scholes option pricing model for a drift of μ̂e+σ̂ 2
e /2

and a volatility of σ̂e.
We present two sets of results on the Gaussian model. First we generate a thousand sets

of samples each with 10,000 points drawn from a centered variance gamma model (Madan
and Seneta 1990; Madan, Carr and Chang 1998). The centered variance gamma distribution
has three parameters σ, ν, θ that may be sampled by first sampling a gamma variable g with
shape and scale parameter equal to 1/ν and the variance gamma variable X is then, for Z a
standard normal variable,

X = θ(g − 1)+ σ
√
gZ.

When θ = ν = 0 the centered variance gamma reduces to a normally distributed variable
with zero mean and variance σ 2. The parameter θ calibrates skewness while ν is a measure
of excess kurtosis. By taking ν = .15 and θ = −.03 we sample from a distribution that is
not Gaussian, for which we estimate mean and variance by MLE, DME and CME. The
quantiles used were .25 and .75.

For each of the thousand samples of 10,000 points we transform the data to variables

uwt = N

(

xt − μ̂w

σ̂w

)

, t = 1, · · · , 10000, w = m, d, c.

For 20 uniformly constructed cells on the unit interval we evaluate three chisquare statis-
tics to test for the uniformity of uwt , w = m, d, c. This is done for each of a thousand
samples with 10,000 points. Figure 1 presents a graph of the resulting chisquare statis-
tics. We observe that the lowest chisquare statistics are associated with the DME estimates,
followed by CME and MLE.

The second set of results we report for the Gaussian model incorporate the exponen-
tial call payoffs or the estimator ECME with parameter estimates μ̂e, σ̂e where we now
evaluate for uniformity of the exponentially tilted distribution function defined by

G(y) =
∫ y

−∞
exg(x)dx

∫ ∞
−∞ exg(x)dx

where we take g(x) to be

g(x) = 1

σ
√

2π
exp

(

− (x − μ)2

2σ 2

)

.
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Fig. 1 Chisquare statistics for MLE, DME and CME estimates of the Gaussian model on VG data trans-
formed to the unit interval by the estimated distribution function. The MLE statistics are represented by
circles, CME by squares and DME by dots

We may evaluate

G(y) =
∫ y−μ

σ

−∞
eμ+σz

eμ+σ 2/2

1√
2π

e−
z2
2 dz

=
∫ y−μ

σ

−∞
1√
2π

e−
(z−σ)2

2 dz

= N

(

y − μ

σ
− σ

)

. (1)

We may see from Eq. 1 that if xt is normally distributed with mean μ and variance σ 2

then

G
(

xt + σ 2
)

= N

(

xt − μ

σ

)

is a uniformly distributed variate. Exponential tilting of a normal random variable is just
another normal variate with a mean shifted by σ 2 . Evaluating G(xt ) in place of G(xt +σ 2)

instead is another model error and here we are just observing how much the departure from
uniformity is being affected for each of the estimators by another error specification or
wrong model construction.

Methodol Comput Appl Probab (2015) 17:823–831 827



We present in Fig. 2 the chisquare statistics for the MLE, DME, CME and ECME estima-
tors evaluating the uniformity of the data transformed by the distribution function of Eq. 1.
The data is from a variance gamma variable with the same parametric settings as before.
We observe again that the lowest chisquare statistics are those of DME followed now by
ECME, MLE and CME.

3 The Gamma Model

On the positive half line we consider the gamma distribution as the proposed model with
scale parameter c and shape parameter γ with density

f (x) = cγ

�(γ )
xγ−1e−cx, x > 0.

We now compare the DME, CME and MLE estimators for data generated from a richer
distribution than that of the postulated gamma model. In this regard consider the gamma
distribution as a model for data generated from a double gamma model where the shape
parameter of the second gamma distribution is itself sampled as affine in a first gamma
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Fig. 2 Chisquare statistics for MLE, DME, CME and ECME estimators testing for uniformity of data trans-
formed by a tilted distribution function. MLE is represented by circles, DME by dots, CME by squares and
ECME by stars
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variable. The joint density for the pair v, x is

k(v, x) = γ γ vγ−1e−γ v

�(γ )

αβ+δvxβ+δv−1e−αx

�(β + δv)

and the marginal density for x is

h(x) =
∫ ∞

0
k(v, x)dv

where we fit a gamma distribution to the data on x.

For the MLE estimator we maximize over parameters ĉm, γ̂m the log likelihood for data
xt , t = 1, · · · , T , given by

L ((xt , t = 1, · · · , T ), ĉm, γ̂m) = T γ̂m ln(̂cm)−T ln�(γ̂m)+(γ̂m−1)
∑

t

ln(xt )−ĉm
∑

t

xt

For the DME estimates ĉd , γ̂d we solve the equations for ki being the ai quantiles

1

�(γ̂d)

∫ ĉd ki

0
uγ̂d−1e−udu = ai
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Fig. 3 Chisquare statistics for the gamma distribution model fit to double gamma data using MLE, DME
and CME. MLE is represented by circles, CME is presented bu squares and DME are shown by dots
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For the CME estimates ĉc, γ̂c we solve the equations

ci = γ̂c

ĉc�(γ̂c)

∫ ĉcki

0
uγ̂c e−udu− ki

∫ ĉcki

0
uγ̂c−1e−udu

ci = 1

T

∑

t

(xt − ki)
+ .

We generated data from the double gamma model with parameters that were used in
fitting VIX options of

γ = 0.1

α = 0.01

β = 3

δ = 3

We then generated a thousand sets of 10,000 points from this data and fit a gamma
distribution using MLE, DME and CME. The quantiles used were .25 and .75. We then
transformed the data by the estimated distribution function to compute chisquare statistics
for a test of unifromity for the transformed data. The result is displayed in Fig. 3. We again
observe that the DME estimators yield the lowest chisquare statistics followed by MLE

and CME.
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Fig. 4 Chisquare statistics for the gamma distribution fit to data from the double gamma model for DME
at quantiles [.4,.6], [.25,.57] and [.1,.9]. The first two quantile sets are represented by squares and circles
respectively while the last is represented by dots
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Finally with a view to addressing the sensitivity of DME with respect to the choice of
the quantiles used we present in Fig. 4 the gamma fit to the double gamma using digitals
at [0.4 0.6], [0.1 0.9] along with [0.25 0.75]. We observe that the quantiles [.25, .75] and
[.4, .6] perform equally well and significantly better than [.1, .9].

4 Conclusion

Following the practice in estimating risk neutral distributions of minimizing by least squares
the deviation between market and model prices for options we consider the use of option
payoff moments in estimating parameters of distributions from a sample of data on observa-
tions from a possibly related distribution. It is observed that digital option payoff moments
yield the lowest chisquare statistics on a test of uniformity for data transformed to the unit
interval by the estimated distribution function. For a two parameter proposed model, the use
of the first and thrid quartiles as moments appears to be adequate.
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