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A Functional Central Limit Theorem
for a Markov-Modulated Infinite-Server Queue

D. Anderson · J. Blom ·M. Mandjes ·H. Thorsdottir ·
K. de Turck

Abstract We consider a model in which the production of new molecules in a chemical
reaction network occurs in a seemingly stochastic fashion, and can be modeled as a Poisson
process with a varying arrival rate: the rate is λi when an external Markov process J (·) is
in state i. It is assumed that molecules decay after an exponential time with mean μ−1. The
goal of this work is to analyze the distributional properties of the number of molecules in the
system, under a specific time-scaling. In this scaling, the background process is sped up by
a factor Nα , for some α > 0, whereas the arrival rates become Nλi , for N large. The main
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result of this paper is a functional central limit theorem (F-CLT) for the number of molecules,
in that, after centering and scaling, it converges to an Ornstein-Uhlenbeck process. An inter-
esting dichotomy is observed: (i) if α > 1 the background process jumps faster than the
arrival process, and consequently the arrival process behaves essentially as a (homogeneous)
Poisson process, so that the scaling in the F-CLT is the usual

√
N , whereas (ii) for α ≤ 1

the background process is relatively slow, and the scaling in the F-CLT is N1−α/2. In the lat-
ter regime, the parameters of the limiting Ornstein-Uhlenbeck process contain the deviation
matrix associated with the background process J (·).

Keywords Ornstein-Uhlenbeck processes · Markov modulation · Central limit theorems ·
Martingale methods

AMS 2000 Subject Classifications (2010) Primary 60K25, 60K37, 60F17; Secondary
60G15 60G99

1 Introduction

When modeling chemical reaction networks within cells, the dynamics of the numbers of
molecules of the various types are often described by deterministic differential equations.
These models ignore the inherent stochasticity that may play a role, particularly when the
number of molecules is relatively small. To remedy this, the use of stochastic representations
of chemical networks has been advocated, see e.g., Arazia et al. (2004), Cookson et al.
(2011) and Gillespie (2007).

In this paper we use the formulation as in Anderson and Kurtz (2011) and Ball et al.
(2006) where the numbers of molecules evolve as a continuous-time Markov chain. A con-
cise description of this formulation is the following, with our specific model more formally
developed in Section 2. Consider a model consisting of a finite number, �, of species and a
finite number, K , of reaction channels. We let M(t) be the �-dimensional vector whose ith
component gives the number of molecules of the ith species present at time t . For the kth
reaction channel we denote by νk ∈ Z

�
≥0 the number of molecules of each species needed

for the reaction to occur, and by ν′k ∈ Z
�
≥0 the number produced. We let μk(x) denote

the rate, or intensity (termed propensity in the biology literature), at which the kth reaction
occurs when the numbers of molecules present equals the vector x. Then, M(t) may be
represented as the solution to the (vector-valued) equation

M(t) = M(0)+
K∑

k=1

(ν′k − νk) Yk

(∫ t

0
μk(M(s))ds

)
, (1)

where the stochastic processes Yk(·) are independent unit-rate Poisson processes (Anderson
and Kurtz 2011). Note that if, for some k� ∈ {1, . . . , K}, ν′k� − νk� equals the ith unit
vector ei , then the k�th reaction channel corresponds to the external arrival of molecules of
species i. For the specific situation that subnetworks operate at disparate timescales, these
can be analyzed separately by means of lower dimensional approximations, as pointed out
in e.g. (Kang and Kurtz 2013).

In this paper we study a model of the type described above, for the special case that
there is just one type of molecular species (i.e., � = 1), and that there are external arrivals.
The distinguishing feature is that the rate of the external input is determined by an indepen-
dent continuous-time Markov chain J (·) (commonly referred to as the background process)
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defined on the finite state space {1, . . . , d}. More concretely, we study a reaction system
that obeys the stochastic representation

M(t) = M(0)+ Y1

(∫ t

0
λJ(s)ds

)
− Y2

(
μ

∫ t

0
M(s)ds

)
,

where Y1(·) and Y2(·) are independent unit-rate Poisson processes, and λJ(s) takes the value
λi ≥ 0 when the background process is in state i. Hence, in this model external molecules
flow into the system according to a Poisson process with rate λi when the background
process J (·) is in state i, while each molecule decays after an exponentially distributed time
with mean μ−1 (independently of other molecules present).

The main result of the paper is a functional central limit theorem (F-CLT) for the pro-
cess M(t), where we impose a specific scaling on the transition rates Q = (qij )

d
i,j=1 of

the background process J (t), as well as on the external arrival rates λ = (λ1, . . . , λd)
T

(note that all vectors are to be understood as column vectors). More precisely, the transition
rates of the background process are sped up by a factor Nα , with α > 0, while the arrival
rates are sped up linearly, that is, they become Nλi . Then we consider the process UN(t)

(with a superscript N to stress the dependence on N ), obtained from MN(t) by centering,
that is, subtracting the mean EMN(t), and normalizing, that is, dividing by an appropri-
ate polynomial in N . It is proven that UN(t) converges (as N → ∞) weakly to a specific
Gauss-Markov process, viz. an Ornstein-Uhlenbeck (OU) process with certain parameters
(which are given explicitly in terms of λ, μ, and the matrixQ). Our proofs are based on mar-
tingale techniques; more specifically, an important role is played by the martingale central
limit theorem.

Interestingly, if α > 1 the normalizing polynomial in the F-CLT is the usual
√
N , but

for α ≤ 1 it turns out that we have to divide by N1−α/2. The main intuition behind this
dichotomy is that for α > 1 the timescale of the background process is faster than that of
the arrival process, and hence the arrival process is effectively a (homogeneous) Poisson
process. As a result the corresponding F-CLT is in terms of the corresponding Poisson rate
(which we denote by λ∞ := πTλ, where π is the stationary distribution of the background
process) and μ only. For α ≤ 1, on the contrary, the background process jumps relatively
slowly; the limiting OU process is in terms of λ and μ, but features the deviation matrix
(Coolen-Schrijner and van Doorn 2002) associated to the background process J (·) as well.

In earlier works (Blom et al. 2013a, b) we studied a similar setting. However, where we
use a martingale-based approach in the present paper, in Blom et al. (2013a, b) we relied
on another technique: (i) we set up a system of differential equations for the Laplace trans-
form of MN(t) jointly with the state of the background process JN(t), (ii) modified these
into a system of differential equations for the transform of the (centered and normalized)
process UN(t) jointly with JN(t), (iii) approximated these by using Taylor expansions, and
(iv) then derived an ordinary differential equation for the limit of the transform of UN(t)

(as N → ∞). This differential equation defining a Normal distribution, the CLT was estab-
lished. Importantly, the results derived in Blom et al. (2013a, b) crucially differ from the
ones in the present paper. The most significant difference is that those results are no F-
CLT: just the finite-dimensional convergence to the OU process was established, rather than
convergence at the process level (i.e., to prove weak convergence an additional ‘tightness
argument’ would be needed). For the sake of completeness, we mention that Blom et al.
(2013b) covers just the case α > 1, that is, the regime in which the arrival process is
effectively Poissonian, while Blom et al. (2013a) allows all α > 0.
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Our previous works (Blom et al. 2013a, b, c) have been presented in the language of
queueing theory; the model described above can be seen as an infinite-server queue with
Markov-modulated input. In comparison to Markov-modulated single-server queues (and
to a lesser extent Markov-modulated many-server queues), this infinite-server model has
been much less intensively studied. This is potentially due to the fact that the presence of
infinitely many servers may be considered less realistic, perhaps rightfully so in the context
of operational research, the major application field of queueing theory. In the context of
chemical reactions, however, it can be argued that the concept of infinitely many servers is
quite natural: each molecule brings its own ‘decay’-server.

We conclude this introduction with a few short remarks on the relation of our work
with existing literature. By incorporating Markov-modulation in the external arrival rate
the infinite-server queue becomes, from a biological perspective, a more realistic model
(Schwabe et al. 2012). It is noted that deterministic modulation has been studied in
Eick et al. (1993) for various types of non-homogeneous arrival rate functions (Mt /G/∞
queue). For earlier results on the stationary distribution of Markov-modulated infinite-
server queues, for instance in terms of a recursive scheme that determines the moments,
we refer to e.g., D’Auria (2008), Fralix and Adan (2009), Keilson and Servi (1993)
and O’Cinneide and Purdue (1986).

As mentioned above, at the methodological level, our work heavily relies on the so-called
martingale central limit theorem (M-CLT), see for instance (Ethier and Kurtz 1986; Whitt
2007). It is noted that convergence to OU has been established in the non-modulated setting
before: an appropriately scaled M/M/∞ queue weakly converges to an OU process. For a
proof, see e.g., (Robert 2003, Section 6.6); cf. also (Borovkov 1967; Iglehart 1965).

The rest of this paper is organized as follows. Section 2 sets up the model, its properties
and quantities of interest, and presents the essential mathematical tools. The Nα-scaled
background process is thoroughly investigated in Section 3; most notably we derive its F-
CLT relying on the M-CLT. This takes us to Section 4, where we first show that M̄N(t) :=
N−1MN(t) converges to a deterministic solution, denoted by �(t), to finally establish the F-
CLT forMN(t) by proving asymptotic normality of the processNβ (M̄N(t)−�(t)), with β ∈
(0, 1/2) appropriately chosen. As indicated earlier, the parameters specifying the limiting
OU process depend on which speedup is ‘faster’: the one corresponding to the background
process (i.e., α > 1) or that of the arrival rates (i.e., α < 1). We conclude this paper by a set
of numerical experiments, that illustrate the impact of the value of α.

2 The Model and Mathematical Tools

In this section we first describe our model in detail, and then present preliminaries (viz. a
version of the law of large numbers for Poisson processes and the M-CLT).

Model. Our paper considers the following Markovian model. Let J (t) be an irreducible
continuous-time Markov process on the finite state space {1, . . . , d}. Define its generator
matrix by Q = (qij )

d
i,j=1 and the (necessarily unique) invariant distribution by π ; as a

consequence, πTQ = 0T. Let Xi(t) be the indicator function of the event {J (t) = i}, for
i = 1, . . . , d; in other words: Xi(t) = 1 if J (t) = i and 0 otherwise. It is assumed that J (·)
is in stationarity at time 0 and hence at any t ; we thus have P(J (t) = i) = πi . As commonly
done in the literature, the transient distribution P(J (s) = j | J (0) = i) is denoted by pij (s)

and is computed as (eQs)i,j .
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The model considered in this paper is a so-called Markov-modulated infinite-server
queue. Its dynamics can be described as follows. For any time t ≥ 0, molecules arrive
according to a Poisson process with rate λi if Xi(t) = 1. We let the service/decay rate of
each molecule be μ irrespective of the state of the background process. There are infinitely
many servers so that the molecules’ sojourn times are their service times; the molecules go
in service immediately upon arrival. Throughout this paper, M(t) denotes the number of
molecules present at time t .

Scaling. In this paper a F-CLT under the following scaling is investigated. The background
process as well as the arrival process are sped up, while the service-time distribution remains
unaffected. More specifically, the transition matrix of the background process becomes
NαQ for some α > 0, while the arrival rates, λi for i = 1, . . . , d , are scaled linearly (i.e.,
become Nλi); then N is sent to ∞. To indicate the fact that they depend on the scaling
parameter N , we write in the sequel JN(t) for the background process, XN

i (t) for the indi-
cator function associated with state i of the background process at time t , andMN(t) for the
number of molecules in the system at time t . Later in the paper we let the transitions of the
background process go from being sublinear (i.e., α < 1) to superlinear (i.e., α > 1); one
of our main findings is that there is a dichotomy, in the sense that there is crucially different
behavior in these two regimes, with a special situation at the boundary, i.e., α = 1.

The above model can be put in terms of a chemical reaction network, as formulated in the
introduction. It turns out to be convenient to do so by interpreting the background process as
a model for a single molecule transitioning between d different states, with XN

i (t) denoting
the number of molecules in state i at time t . Since there is at most one such molecule, we
see XN

i (t) ∈ {0, 1}. The following table informally summarizes the relevant reactions and
corresponding intensity functions for the model of interest:

Reaction Intensity function Description
Xi → Xj (for i 	= j ) NαqijX

N
i (t) J (·) jumps from i to j

∅ → M
∑d

i=1NλiX
N
i (t) Arrival

M → ∅ μMN(t) Departure

As mentioned above, it is assumed that α > 0; in addition, qij ≥ 0 for i 	= j (while
Q1 = 0), λi ≥ 0, and μ > 0. The dynamics can be phrased in terms of the stochastic
representation framework, as described in the introduction. In the first place, the evolution
of the indicator functions can be represented as

XN
i (t) = XN

i (0)−
d∑

j=1
j 	=i

Yi,j

(
Nαqij

∫ t

0
XN
i (s)ds

)
+

d∑

j=1
j 	=i

Yj,i

(
Nαqji

∫ t

0
XN
j (s)ds

)
(2)

where the Yi,j (i, j = 1, . . . , d with i 	= j ) are independent unit-rate Poisson processes.
It is readily verified that if the XN

i (0), with i = 1, . . . , d , are indicator functions summing
up to 1, then so are the XN

i (t) for any t ≥ 0. The second (third, respectively) term in the
right-hand side represents the number of times that JN(·) leaves (enters) state i in [0, t].

In the second place, the number of molecules in the system evolves as

MN(t) = MN(0)+ Y1

(
N

∫ t

0

d∑

i=1

λiX
N
i (s)ds

)
− Y2

(
μ

∫ t

0
MN(s)ds

)
, (3)

where Y1, and Y2 are independent unit-rate Poisson processes (also independent of the Yi,j ).
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The objective of this paper is to describe the limiting behavior of the system as N → ∞,
for different values of α. Our main result is a F-CLT for the processMN(·); to establish this,
we also need a F-CLT for the state frequencies of JN(·) on [0, t], defined as

ZN(t) = (ZN
1 (t), . . . , ZN

d (t))T, with ZN
i (t) :=

∫ t

0
XN
i (s)ds.

This paper essentially makes use of two more or less standard ‘tools’ from probability
theory: the law of large numbers applied to Poisson processes and the martingale central
limit theorem (M-CLT). For the sake of completeness, we state the versions used here.

Lemma 2.1 (Anderson and Kurtz (2011), Theorem 2.2) Let Y be a unit rate Poisson
process. Then for any U > 0,

lim
N→∞ sup

0≤u≤U

∣∣∣∣
Y (Nu)

N
− u

∣∣∣∣ = 0,

almost surely.

The following is known as (a version of) the M-CLT, and is a corollary to Thoerem 7.1.4
and the proof of Theorem 7.1.1 in Ethier and Kurtz (1986). Here and in the sequel, ‘⇒’
denotes weak convergence; in addition, [·, ·]t is the quadratic covariation process.

Theorem 2.2 Let {MN }, for N ∈ N, be a sequence of Rd -valued martingales with
MN(0) = 0 for any N ∈ N. Suppose

lim
N→∞E

[
sup
s≤t

∣∣∣MN(s)−MN(s−)

∣∣∣
]
= 0, withMN(s−) := lim

u↑s M
N(u),

and, as N → ∞,

[MN
i ,MN

j ]t → Cij (t)

for a deterministic matrixCij (t) that is continuous in t , for i, j = 1, . . . , d and for all t > 0.
Then MN ⇒ W , where W denotes a Gaussian process with independent increments and
E

[
W (t)W (t)T

] = C(t) (such that E[Wi(t)Wj (t)] = Cij (t)).

There is an extensive body of literature on the M-CLT; for more background, see e.g.,
Jacod and Shiryayev (1987), Rebolledo (1980) and Whitt (2007).

3 A Functional CLT for the State Frequencies

In this section we establish the F-CLT for the integrated background processes ZN(t), that
is, the state frequencies of the Markov process JN(·) on [0, t]. This F-CLT is a crucial ele-
ment in the proof of the F-CLT of MN(t), as will be given in the next section. It is noted
that there are several ways to establish this F-CLT; we refer for instance to the related weak
convergence results in Bhattacharya (1982) and Kurtz and Protter (1991), as well as the
nice, compact proof for the single-dimensional convergence in (Asmussen 2003, Ch. II,
Theorem 4.11). We chose to include our own derivation, as it is straightforward, insight-
ful and self-contained, while at the same time it also introduces a number of concepts
and techniques that are used in the M-CLT-based proof of the F-CLT for MN(t) in the
next section.
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We first identify the corresponding law of large numbers. To this end, we consider the
process XN(t) by dividing both sides of Eq. 2 by Nα and letting N → ∞. Since XN

i (t) ∈
{0, 1} for all t , the XN

i (t) and XN
i (0) terms both go to zero as N → ∞. Thus we may apply

Lemma 2.1 to see that also, as N → ∞,

−
∑

j 	=i

qijZ
N
i (t)+

∑

j 	=i

qjiZ
N
j (t) → 0,

almost surely, or limN→∞ ZN(t)TQ = 0T. Bearing in mind that 1TZN(t) = t , the limit of
ZN(t) solves the global balance equations, entailing that

ZN
j (t) → πj t (4)

almost surely as N → ∞, where we recall that π is the stationary distribution associated
with the background process J (·).

As mentioned above, the primary objective of this section is to establish a F-CLT for
ZN(·) as N → ∞. More specifically, we wish to identify a covariance matrix C such that,
as N → ∞,

Nα/2
(
ZN(t)− π t

)
⇒ W (t), (5)

with W (·) representing a (d-dimensional) Gaussian process with independent increments
such that E

[
W (t)W (t)T

] = C t . In other words: our goal is to show weak convergence to
a d-dimensional Brownian motion (with dependent components).

We start our exposition by identifying a candidate covariance matrix C, by studying
the asymptotic behavior (that is, as N → ∞) of Cov(ZN

i (t), ZN
j (t)) for fixed t . Bearing

in mind that ZN
i (t) is the integral over s of XN

i (s), and using standard properties of the
covariance, this covariance can be rewritten as

∫ t

0

∫ s

0
Cov

(
XN
i (r),XN

j (s)
)
drds +

∫ t

0

∫ t

s

Cov
(
XN
i (r),XN

j (s)
)
drds.

Recalling that the process JN(·) starts off in equilibrium at time 0, and that Xi(s) is the
indicator function of the event {JN(s) = i}, this expression can be rewritten as

∫ t

0

∫ s

0

(
πip

N
ij (s − r)− πiπj

)
drds +

∫ t

0

∫ t

s

(
πjp

N
ji(r − s)− πiπj

)
drds,

where we use the notation pN
ij (s) := P(JN(s) = j | JN(0) = i). Performing the change of

variable u := rNα we thus find that

Nα
Cov(ZN

i (t), ZN
j (t)) = πi

∫ t

0

∫ sNα

0

(
pij (u)− πj

)
duds

+πj

∫ t

0

∫ (t−s)Nα

0

(
pji(u)− πi

)
duds.

A crucial role in the analysis is played by the deviation matrix D = (Dij )
d
i,j=1 associated

with the finite-state Markov process J (·); it is defined by

Dij :=
∫ ∞

0
(pij (t)− πj )dt; (6)

see e.g., Coolen-Schrijner and van Doorn (2002) for background and a survey of the main
results on deviation matrices. Combining the above, we conclude that, as N → ∞, with
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Cij := πiDij +πjDji we have identified that candidate covariance matrix, in the sense that
we have shown that, for given t ,

Nα
Cov

(
ZN
i (t), ZN

j (t)
)
→ Cij t

as N → ∞. The objective of the remainder of this section is to establish the weak
convergence (5) with the covariance matrix C = (Cij )

d
i,j=1.

We now prove this weak convergence relying on the M-CLT. We start by considering
linear combinations of theXN

i (t) processes based on Eq. 2 and introduce X̃N
i (t) := XN

i (t)−
XN
i (0) for notational convenience. For any real constants fi , i = 1, . . . , d , we have that

d∑

i=1

fiX̃
N
i (t) =

d∑

i=1

∑

j 	=i

fi

(
Yji

(
NαZN

j (t)qji

)
− Yij

(
NαZN

i (t)qij

) )

=
d∑

i=1

d∑

j=1

(fj − fi)Yij

(
NαZN

i (t)qij

)
, (7)

where we do not need to define the processes Yii as the terms containing them are zero
anyway. Note that the quadratic variation of this linear combination is equal to

[
d∑

i=1

fiX̃
N
i

]

t

=
d∑

i=1

d∑

j=1

(fj − fi)
2Yij (N

αZN
i (t)qij ), (8)

as the quadratic variation of a Poisson process is equal to itself. Due to Lemma 2.1 and
Eq. 4, we have for N → ∞,

[
N−α/2

d∑

i=1

fiX̃
N
i

]

t

→ t

d∑

i=1

d∑

j=1

(fj − fi)
2πiqij . (9)

The crucial step in proving the weak convergence and consequently applying the M-CLT
is the identification of a suitable martingale. We prove the following lemma.

Lemma 3.1 Let D denote the deviation matrix of the background Markov chain J (t).

V N(t) := N−α/2X̃
N
(t)T D +Nα/2

(
ZN(t)− π t

)
is an R

d -valued martingale.

Proof We center our unit-rate Poisson processes by introducing Ỹi,j (u) := Yi,j (u) − u.
The following algebraic manipulations are easily verified:

N−α/2
d∑

i=1

d∑

j=1

(Djk −Dik)Ỹij

(
NαZN

i (t)qij

)

= N−α/2
d∑

i=1

X̃N
i (t)Dik −Nα/2

d∑

i=1

d∑

j=1

(Djk −Dik)Z
N
i (t)qij

= N−α/2
(
X̃

N
(t)T D

)

k
−Nα/2

d∑

i=1

d∑

j=1

ZN
i (t)qijDjk

= N−α/2
(
X̃

N
(t)T D

)

k
+Nα/2(ZN

k (t)− πkt),
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where we used Eq. 7, the fact that
∑d

i=1 Z
N
i (t) = t and the property QD = 	 − I , with

	 = 1πT. As centered Poisson processes are martingales, and linear combinations preserve
the martingale property, this concludes the proof.

We now wish to apply the M-CLT to V N(t) as N → ∞. As the second term is absolutely
continuous, and the first term is a jump process with jump sizes N−α/2, we have indeed
vanishing jump sizes as required by the M-CLT. We now compute the covariations of V N(t),
and note that as the second term is absolutely continuous and thus does not contribute to the
covariation, we have that

[
V N
i , V N

j

]

t
= N−α

[((
X̃

N
)T

D

)

i

,

((
X̃

N
)T

D

)

j

]

t

= 1

2
N−α

([((
X̃

N
)T

D

)

i

+
((

X̃
N

)T
D

)

j

]

t

−
[((

X̃
N

)T
D

)

i

]

t

−
[((

X̃
N

)T
D

)

j

]

t

)

= 1

2
N−α

⎛

⎝
[

d∑

k=1

X̃N
k (Dki +Dkj )

]

t

−
[

d∑

k=1

X̃N
k Dki

]

t

−
[

d∑

k=1

X̃N
k Dkj

]

t

⎞

⎠ ,

(10)

where we have used the polarization identity 2[X, Y ]t = [X + Y ]t − [X]t − [Y ]t .
Using Eq. 9, this converges to

[
V N
i , V N

j

]

t
→ 1

2
t

d∑

k=1

d∑

�=1

πkqk�

(
(Dki +Dkj −D�i −D�j )

2 − (Dki −D�i)
2

− (Dkj −D�j )
2
)

= t

d∑

k=1

d∑

�=1

πkqk�(Dki −D�i)(Dkj −D�j )

= t (πjDji + πiDij ) (11)

where we used the properties Q1 = 0,	Q = 0, QD = 	− I and	D = 0.
Thus, from the M-CLT we have that V N(t) converges weakly to d-dimensional Brownian

motion with covariance matrix C := DTdiag{π} + diag{π}D. As the first term of V N(t)

vanishes for N → ∞, we have established the desired F-CLT:

Proposition 3.2 As N → ∞,

Nα/2
(
ZN(t)− π t

)
⇒ WC(t),

whereWC(·) is a zero-mean Gaussian process with independent increments and covariance
structure E

[
WC(t)WC(t)

T
] = C t .
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4 A Functional CLT for the ProcessMN(t)

Using the F-CLT for the process ZN(t), as established in the previous section, we are now
in a position to understand the limiting behavior of the main process of interest, MN(t), as
N grows large. As before, we begin by considering the average behavior of the quantity of
interest. Dividing both sides of Eq. 3 by N , and denoting M̄N(t) := N−1MN(t), we have

M̄N(t) = M̄N(0)+N−1Y1

(
N

d∑

i=1

λiZ
N
i (t)

)
−N−1Y2

(
Nμ

∫ t

0
M̄N(s)ds

)
.

Assuming that M̄N(0) converges almost surely to some value �0, the use of Lemma 2.1
in conjunction with Eq. 4 yields that M̄N(t) converges almost surely to the solution of the
deterministic integral equation

�(t) = �0 +
(

d∑

i=1

λiπi

)
t − μ

∫ t

0
�(s)ds = �0 + λ∞t − μ

∫ t

0
�(s)ds, (12)

with λ∞ := πTλ. It is readily verified that this solution is given by

�(t) = �0e
−μt + λ∞

μ
(1− e−μt ). (13)

As our goal is to derive a F-CLT, we center and scale the process MN(·); this we do
by subtracting N�(·), and dividing by N1−β for some β > 0 to be specified later. More
concretely, we introduce the process

UN
β (t) := Nβ

(
M̄N(t)− �(t)

)
.

Letting β > 0 be arbitrary (for the moment), we have that due to Eq. 12,

Nβ
(
M̄N(t)− �(t)

)
= Nβ

(
M̄N(0)− �0

)
−Nβ(�(t)− �0)

+Nβ

(
N−1Y1

(
N

d∑

i=1

λiZ
N
i (t)

)
−N−1Y2

(
Nμ

∫ t

0
M̄N(s)ds

))

= Nβ(M̄N(0)− �0)−Nβ

(
λ∞t − μ

∫ t

0
�(s)ds

)

+Nβ

(
N−1Ỹ1

(
N

d∑

i=1

λiZ
N
i (t)

)
−N−1Ỹ2

(
Nμ

∫ t

0
M̄N(s)ds

))

+Nβ
d∑

i=1

λiZ
N
i (t)−Nβμ

∫ t

0
M̄N(s)ds.

This identity can be written in a more convenient form by defining the process

Rβ(t) := Ỹ1

(
N

d∑

i=1

λiZ
N
i (t)

)
− Ỹ2

(
Nμ

∫ t

0
M̄N(s)ds

)
,
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which is a martingale (Anderson and Kurtz 2011). The resulting equation for UN
β (t) is

UN
β (t) = UN

β (0)+Nβ−1Rβ(t)+Nβ

(
d∑

i=1

λiZ
N
i (t)− λ∞t

)
− μ

∫ t

0
UN
β (s)ds. (14)

We wish to establish the weak convergence of the process UN
β (t), as N → ∞. We must

simultaneously consider how to choose the parameter β. To do so we separately inspect the
terms involving Rβ(t) and ZN

i (t) in Eq. 14.
First note that the sequence of martingales {Nβ−1Rβ(t)}, for N ∈ N, clearly satisfies the

first condition of Theorem 2.2, that of vanishing jump sizes, under the condition that β < 1,
which we impose from now on. To obtain its weak limit, we compute its quadratic variation

[
Nβ−1Rβ

]

t
= N2β−2

(
Y1

(
N

d∑

i=1

λiZ
N
i (t)

)
+ Y2

(
Nμ

∫ t

0
M̄N(s)ds

))
. (15)

For this term to converge in accordance with Theorem 2.2, we need β ≤ 1
2 , which we

impose from now on. With β = 1
2 , the term (15) will converge to λ∞t + μ

∫ t

0�(s)ds.
Choosing β < 1

2 will take it to zero. Turning to the ZN
i terms of Eq. 14, by Proposition 3.2,

and recalling that λ∞ = πTλ, we have that for β = α/2,

Nβ

(
d∑

i=1

λiZ
N
i (t)− λ∞t

)
⇒ λ ·WC(t), (16)

which is distributionally equivalent to W(Þt), where W is a standard Brownian motion and

Þ :=
d∑

i=1

d∑

j=1

λiλjCij . (17)

If β < α/2 the term on the left-hand side of Eq. 16 converges to zero. Combining the
above leads us to select β = min{α/2, 1/2}. In the sequel we distinguish between α > 1,
α < 1, and α = 1.

Before we treat the three cases, we first recapitulate the class of Ornstein-Uhlenbeck (OU)
processes. We say that S(t) is OU(a, b, c) if it satisfies the stochastic differential equation
(SDE)

dS(t) = (a − b S(t))dt +√
c dW(t),

with W(t) a standard Brownian motion. This SDE is solved by

S(t) = S(0)e−bt + a

∫ t

0
e−b(t−s)ds +√

c

∫ t

0
e−b(t−s)dW(s).

By using standard stochastic calculus it can be verified that (taking u ≤ t)

ES(t) = S(0)e−bt + a

b
(1− e−bt ), (18)

Var S(t) = c

2b
(1− e−2bt ),

Cov(S(t), S(u)) = ce−bu

2b

(
ebt− e−bt

)
.

For t large, we see that

ES(∞) = a

b
, Var S(∞) = c

2b
, lim

t→∞Cov(S(t), S(t + u)) = c

2b
e−bu.
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After this intermezzo, we now treat the three cases separately.

Case 1: α > 1. In this case we pick β = 1/2. The term (15) converges to

d∑

i=1

λiπi t + μ

∫ t

0
�(s)ds = λ∞t + μ

∫ t

0
�(s)ds,

while the term (16) converges to zero and is therefore neglected. Hence, UN
1/2(t) converges

in distribution to the solution of

U1/2(t) = U1/2(0)+W

(
λ∞t + μ

∫ t

0
�(s)ds

)
− μ

∫ t

0
U1/2(s)ds,

where W is a standard Brownian motion. The above solution is distributionally equivalent
to the solution of the Itô formulation of the SDE

U1/2(t) = U1/2(0)+
∫ t

0

√
λ∞ + μ�(s)dW(s)− μ

∫ t

0
U1/2(s)ds.

This SDE can be solved using standard techniques to obtain

U1/2(t) = e−μt

(
U1/2(0)+

∫ t

0

√
λ∞ + μ�(s)eμsdW(s)

)
.

We now demonstrate how to compute the variance of U1/2(t). To this end, first recall that
by virtue of Eq. 13,

VarU1/2(t) =
∫ t

0
(λ∞ + μ�(s))e−2μ(t−s)ds

=
∫ t

0

(
λ∞ + μ

(
�0e

−μs + λ∞
μ

(1− e−μs)

))
e−2μ(t−s)ds.

After routine calculations, this yields

VarU1/2(t) =
(
�0e

−μt + λ∞
μ

)
(1− e−μt ),

cf. the expressions in (Blom et al. 2013b, Section 4). In a similar fashion, we can derive that

Cov(U1/2(t), U1/2(t + u)) = e−μu

(
�0e

−μt + λ∞
μ

)
(1− e−μt ).

It is seen that for t → ∞ the limiting process behaves as OU(0, μ, 2λ∞).

Case 2: α < 1. In this case we pick β = α/2 and the term (15), and therefore the term
Nβ−1Rβ(t), converges to zero, whereas the term (16) converges to W(Þt), where W is a
standard Brownian motion and Þ as defined by Eq. 17. Hence, UN

α/2(t) converges weakly to
the solution of

Uα/2(t) = Uα/2(0)+W(Þt)− μ

∫ t

0
Uα/2(s)ds,

It is straightforward to solve this equation:

Uα/2(t) = e−μt

(
Uα/2(0)+

∫ t

0

√
Þ eμsdW(s)

)
.

This process has variance

VarUα/2(t) =
∫ t

0
Þe−2μ(t−s)ds = Þ

1− e−2μt

2μ
. (19)
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It is readily checked that this process is OU(0, μ,Þ); this is due to

Cov(Uα/2(t), Uα/2(t + u)) = Þe−μu 1− e−2μt

2μ
.

Case 3: α = 1. In this case we put β = 1/2, and the terms Nβ−1Rβ(t) and Eq. 16 are of
the same order. Hence, their sum converges weakly to

W

(
λ∞t + μ

∫ t

0
�(s)ds + Þt

)
,

where W is a standard Browian motion. In this case UN
1/2(t) converges weakly to the

solution of

U1/2(t) = U1/2(0)+W

(∫ t

0
(λ∞ + Þ+ μ�(s)) ds

)
− μ

∫ t

0
U1/2(s)ds.

Solving the above in a similar fashion to cases 1 and 2 yields

U1/2(t) = e−μt

(
U1/2(0)+

∫ t

0

√
λ∞ + Þ+ μ�(s) eμsdW(s)

)
.

with the corresponding variance

VarU1/2(t) =
∫ t

0
(λ∞ + Þ+ μ�(s)) e−2μ(t−s)ds

=
(
�0e

−μt + λ∞
μ

)
(1− e−μt )+ Þ

2μ
(1− e−2μt )

and covariance

Cov(U1/2(t), U1/2(t + u)) = e−μu

((
�0e

−μt + λ∞
μ

)
(1− e−μt )+ Þ

2μ
(1− e−2μt )

)
.

For t large this process behaves as OU(0, μ, 2λ∞ + Þ).

We summarize the above results in the following theorem; it is the F-CLT for MN(t)

that we wished to establish. It identifies the Gauss-Markov process to whichMN(·) weakly
converges, after centering and scaling; this limiting process behaves, modulo the effect of
the initial value �0, as an OU process. More specifically, the theorem describes the limiting
behavior of the centered and normalized versionUN

β (·) ofMN(·): the focus is on the process

UN
β (t) = Nβ

(
M̄N(t)− �(t)

)
= MN(t)−N�(t)

N1−β
. (20)

It is observed that for α ≥ 1, we have the usual
√
N CLT-scaling; for α < 1, however, the

normalizing polynomial is N1−α/2, that is β = min{α/2, 1/2}.

Theorem 4.1 As N → ∞, the process UN
β (t) converges in distribution to the solution of

Uβ(t) = e−μt

(
Uβ(0)+

∫ t

0
σ(s)eμs dW(s)

)
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where

σ(s) :=

⎧
⎪⎨

⎪⎩

√
λ∞ + μ�(s), α > 1, β = 1/2;√
Þ, α < 1, β = α/2;√
λ∞ + Þ+ μ�(s), α = 1, β = 1/2,

W is standard Brownian motion and Þ = ∑d
i=1

∑d
j=1 λiλjCij .

5 Discussion and an Example

Above we identified two crucially different scaling regimes: α > 1 and α < 1 (where the
boundary case of α = 1 had to be dealt with separately). In case α > 1, the background
process evolves fast relative to the arrival process, and as a consequence the arrival stream is
effectively Poisson with rateNλ∞. When the arrival process is simplified in such a way, the
system essentially behaves as an M/M/∞ queue. This regime was discussed in greater detail
in e.g., Blom et al. (2013b), focusing on convergence of the finite-dimensional distributions.
On the other hand, for α < 1 the arrival rate is sped up more than the background process.
Intuitively, then the system settles in a temporary (or local) equilibrium.

5.1 A Two-State Example

In this example we numerically study the limiting behavior ofUN
β (t) := Nβ (M̄N(t)−�(t))

with β = min{α/2, 1/2} (as N → ∞) in a two-state system for different α. For various
values of N , we compute the moment generating function (MGF) of UN

β (t) by numerically
evaluating the system of differential equations derived in (Blom et al. 2013b, Section 3.1).
We have shown that the limiting distribution of UN

β (t) is Gaussian with specific parameters.
We now explain how the MGF of the limiting random variable can be computed. Intro-

ducing the notation �(t, θ) := EeθUβ(t) and �N(t, θ) := Ee
θUN

β (t), it is immediate from
Theorem 4.1 that we have

�(t, θ) = exp

(
θ2

2

[(
�0e

−μt + λ∞
μ

)
(1− e−μt ) 1{α≥1} + Þ

(1− e−2μt )

2μ
1{α≤1}

])
,

(21)
In the regime that α ≤ 1, we need to evaluate the parameter Þ, which can be easily computed
for d = 2. For the generator matrix Q = (qij )

2
i,j=1, let qi := −qii and note that qi > 0.

With q̄ := q1 + q2, the matrix exponential is given by

eQt = 1

q̄

[
q2 + q1e

−q̄t q1 − q1e
−q̄t

q2 − q2e
−q̄t q1 + q2e

−q̄t

]
.

Since π1 = q2/q̄ and π2 = q1/q̄, we can now compute the components of the deviation
matrix D (see Eq. 6) and covariance matrix C:

D = 1

q̄2

[
q1 q1
−q2 q2

]
, C = 2q1q2

q̄3

[
1 −1
−1 1

]
.

From the above we find the value of Þ:

Þ = 2q1q2
q̄3

(λ1 − λ2)
2.
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Fig. 1 Convergence of the MGF of UN
β (t) as a function of t ≥ 0. Panels (a)–(c) correspond to three values

of α; panel (d) depicts the convergence rate as a function of N

Figure 1 illustrates the convergence of UN
β (t) to Uβ(t) when q = (1, 3), λ = (1, 4) and

μ = 1. We assume �0 = 0 and let θ = 0.5. In Fig. 1a–c we see the effect of α. Fig. 1d
depicts the convergence rate, computed as

max
t≥0

∣∣∣�N(t, θ)−�(t, θ)

∣∣∣ .

We observe a roughly loglinear convergence speed for α ≥ 1, whereas for α < 1 the
convergence turns out to be substantially slower.
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