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Probability Law and Flow Function of Brownian Motion
Driven by a Generalized Telegraph Process
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Abstract We consider a standard Brownian motion whose drift alternates randomly
between a positive and a negative value, according to a generalized telegraph process. We
first investigate the distribution of the occupation time, i.e. the fraction of time when the
motion moves with positive drift. This allows to obtain explicitly the probability law and
the flow function of the random motion. We discuss three special cases when the times sep-
arating consecutive drift changes have (i) exponential distribution with constant rates, (ii)
Erlang distribution, and (iii) exponential distribution with linear rates. In conclusion, in view
of an application in environmental sciences we evaluate the density of a Wiener process
with infinitesimal moments alternating at inverse Gaussian distributed random times.

Keywords Standard Brownian motion · Alternating drift · Alternating counting process ·
Exponential random times · Erlang random times · Modified Bessel function · Two-index
pseudo-Bessel function
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1 Introduction

The problem of describing random motions which follow a trend subject to occasional
changes is not new. We recall for instance Chernoff and Zacks (1964), who developed a
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Bayesian procedure able to estimate the current position on the ground of observations on
a motion described by a sequence of Gaussian random variables with alternating means.
In this paper we focus on an alternating random motion performed by a Brownian particle
moving on the real line and subject to random changes in the trend. More precisely, we deal
with a Brownian motion whose drift takes alternately a positive and a negative value at ran-
dom times. The position of the moving particle is formally given by the sum of a standard
Brownian motion and an independent generalized telegraph process. The resulting stochas-
tic process is suitable to describe the motion of a particle that is subject to two streams of
perturbations: the first is a random noise responsible of the Brownian fluctuations, the sec-
ond is a random sequence of shocks which change the drift’s value. We aim to determine
the probability law of the particle motion and the related flow function.

Other versions of modified Brownian motion processes have been considered in the past.
Keilson andWellner (1978) treated the case in which the variance parameter alternates when
the process crosses state zero. Orsingher (1986) analyzed a Brownian-type particle in a
space-time plane with time alternating between forward and backward directions, where the
time alternation is governed by a Poisson process. Perry (1997) considered an alternating
two-sided regulated Brownian motion in which the drift switches when the process crosses
two fixed levels. We further point out that the perturbation of stochastic systems by diffusion
processes is often used in financial mathematics and risk theory, when the diffusive term
is aimed to describe the random error or random variations due to environmental variables
(see, for instance, Zhang and Wu 2002).

It should be mentioned that a topic related to the present framework is the so-called
‘Wiener disorder problem’. It is aimed to determine a stopping time which is as close as
possible to the (unknown) time when the drift of an observed Wiener process changes from
one value to another. In a similar problem, a least-squares approach has been employed by
De Gregorio and Iacus (2011) to estimate the change-point and the two intensities of the
random telegraph process.

Furthermore, the Brownian motion with alternating drift deserves interest in various
applied fields, such as financial mathematics. We mention, for instance, the paper by Esser
and Mönch (2007), where a stock price is modeled by a suitable jump-diffusion pro-
cess whose drift alternates according to a certain recursive rule. Furthermore, Gapeev and
Peskir (2006) provide a wide list of applied fields and contexts where the Wiener process
with varying drift plays a relevant role. Furthermore, we recall Guo (2001), who consid-
ered a Brownian motion whose drift and variance vary according to a continuous-time
Markov chain. See also Jobert and Rogers (2006), where Markov-modulated diffusions
governed by an irreducible Markov chain are investigated. Other examples of switching
processes applied to financial models come from Elliott et al. (2007) and Ratanov (2010),
where the dynamics of risky assets are driven by a Markov-modulated jump-diffusion
process.

This is the plan of the paper. In Section 2 we introduce the stochastic model and the
necessary notation. Section 3 is devoted to the determination of the formal distribution
of the occupation time, which is the fraction of time that the particle moved with pos-
itive drift. In Section 4 the distribution of the particle position is expressed in terms of
a suitable mixture of Gaussian densities, where the mixing law is the distribution of the
occupation time. The mean, the variance and the flow function of the process are also inves-
tigated. Some special cases are developed in Section 5, where the random times separating
consecutive drift changes have (i) exponential distribution with constant rates, (ii) Erlang
distribution, and (iii) exponential distribution with linear rates. We also discuss some com-
parisons between the densities of the occupation time for such three cases. In conclusion,
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in Section 6 we consider an application in environmental sciences, for which we apply the
foregoing approach to evaluate the probability density of aWiener process with infinitesimal
moments alternating at inverse Gaussian distributed random times.

We point out that the methods used in this paper might be adopted also to study simi-
lar kinds of motions subject to alternating behaviour. We recall for instance Lagache and
Holcman (2008), where a stochastic model is employed to describe a viral movement which
alternates between purely Brownian motion and a deterministic motion with a constant drift.

Throughout the paper we write [X |B] to refer to a random variable having the same
distribution of X conditional on B .

2 The Stochastic Model

Consider the random motion model based on the stochastic process {X(t); t ≥ 0},
defined as

X(t) = Y(t)+ B(t), t ≥ 0, (1)

where {Y(t)} is a generalized (integrated) telegraph process, and {B(t)} is a standard
Brownian motion (Wiener process), i.e. B(t) ∼ N (0, t). Assume that Y(t) and B(t) are
independent processes, and let Y(0) = B(0) = 0, so that X(0) = 0, i.e. the motion starts
from the origin. It should be remarked that the model (1) with the standard Brownian motion
B by a suitable scaling can be modified to X(t) = Y(t)+ σB(t), with σ > 0.

The telegraph process Y(t) is characterized by velocities c and−v (with c > 0 and−v <

0), which vary according to an independent alternating counting process N(t). The latter
process is governed by the sequences of positive independent random times {U1, U2, . . .}
and {D1, D2, . . .}, which in turn are assumed to be independent. The random variable Ui

(resp. Di) describes the i-th random period during which Y(t) has positive (resp. negative)
velocity, i.e., the motion has positive (resp. negative) drift. Denoting by V (t) the velocity of
Y(t) at time t ≥ 0, we assume that initially it is random, i.e.,

P{V (0) = c} = P{V (0) = −v} = 1

2
, (2)

with V (0) independent from X(t). Hence, the following equations hold:

Y(t) =
∫ t

0
V (s) ds, V (t) = c − v

2
+ sgn(V (0))

c + v

2
(−1)N(t), t > 0. (3)

We remark that N(t) denotes the number of velocity changes of Y(t) occurred in
[0, t], and thus N(t) depends on V (0) because the sequence of alternating periods is
U1, D1, U2,D2, . . . if V (0) = c, and D1, U1,D2, U2, . . . if V (0) = −v. Hence, from the
previous assumptions we have

[V (t) |V (0) = c]
=
{
c if 0 ≤ t < U1, U1 +D1 ≤ t < U1 +D1 + U2, . . .
−v if U1 ≤ t < U1 +D1, U1 +D1 +U2 ≤ t < U1 +D1 +U2 +D2, . . . ,

and

[V (t) |V (0) = −v]
=
{−v if 0 ≤ t < D1, D1 + U1 ≤ t < D1 + U1 +D2, . . .
c if D1 ≤ t < D1 +U1, D1 +U1 +D2 ≤ t < D1 + U1 +D2 + U2, . . . .
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Figures 1 and 2 show suitable realizations of Y(t) andX(t), respectively, with indication
of the random times Ui and Di ; in both cases the initial velocity is positive.

Let FUi
(·) and FDi

(·) be respectively the absolutely continuous distribution functions of
Ui and Di , i = 1, 2, . . ., with densities fUi

(·) and fDi
(·). Moreover, the complementary

distribution functions will be denoted as FUi
(·) = 1 − FUi

(·) and FDi
(·) = 1 − FDi

(·),
respectively. We denote as follows the sums of the first n random periods during which Y(t)
has positive and negative velocity, respectively:

U(n) := U1 + . . .+ Un, D(n) := D1 + . . .+Dn, n = 1, 2, . . . . (4)

Their distribution functions will be denoted F
(n)
U (·) and F

(n)
D (·), with densities f (n)

U (·) and
f
(n)
D (·), respectively. Clearly, if the random variables Ui are i.i.d. for i = 1, 2, . . . , n, then

F
(n)
U (·) is the n-fold convolution of FU1(·), and similarly for F (n)

D (·). Moreover, we set

F
(0)
U (x) = F

(0)
D (x) = 1 for x ≥ 0.

From Eq. 1 it follows that X(t) describes a Brownian motion whose drift alternates ran-
domly according to Y(t). The first-passage-time problem for such process through a single
constant boundary was investigated by Di Crescenzo et al. (2005) who provided bounds
to the first-passage-time density and distribution functions, and constructed a simulation
procedure to estimate first-passage-time densities. Furthermore, Guo (2001) obtained the
Laplace transform of the first-passage-time distribution through a constant level for the
more general model given by a Brownian motion whose drift and variance vary accord-
ing to a continuous-time Markov chain. We also mention Buonocore et al. (2002), where a
Brownian motion with alternating drift is studied as an integrate-and-fire neuronal model
subject to fluctuating currents, and its simulating results are compared with those of a
Wiener-type neuronal model with sinusoidal input. Moreover, the optimal stopping problem
of detecting the first time when the drift changes has been recently faced by Dayanik (2010)
and by Sezer (2010) within a Bayesian framework, when the changing time has exponential
distribution or zero-modified exponential distribution.

We remark that the drift values of process X(t) have been taken with opposite sign by
analogy with the telegraph process. However, this assumption could be relaxed anyway. The
essential part of this theory is that the drift is an alternating renewal process.

t

Y (t)

0

U1

D1

U2

D2

Un

Dn

Un+1

Fig. 1 A sample path of Y(t), with V (0) = c
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Fig. 2 A simulated sample path
of X(t), with c = 2 and v = 1

In order to obtain the probability law of X(t) we follow the general method presented by
Zacks (2004). The key to the solution is to determine, for each fixed t > 0, the distribution
of the following occupation time:

W(t) :=
∫ t

0
1{V (s)=c}ds, t > 0, (5)

which is the fraction of time that the motion moved with positive drift (i.e., Y(t) had
velocity c) in [0, t]. In the following section we shall obtain the distribution of W(t).

3 Distribution of Occupation Time

Consider the occupation time (5); we note that

P{0 ≤ W(t) ≤ t} = 1,

and that the probability distribution of W(t) has a discrete component on points 0 and t ,
and an absolutely continuous component over (0, t). For v0, vt ∈ {−v, c} we introduce the
following function:

ψv0(x, t; vt ) :=
∂

∂x
P{W(t) ≤ x, V (t) = vt |V (0) = v0}, 0 < x < t. (6)

This is the joint density that at time t the occupation time is x and the drift of the motion is
vt , given that the initial drift is v0. Hence, recalling the initial condition (2), for vt ∈ {−v, c}
we have

ψ(x, t; vt) := ∂

∂x
P {W(t) ≤ x, V (t) = vt } = 1

2

[
ψ−v(x, t; vt )+ ψc(x, t; vt )

]
, 0 < x < t.

(7)

Theorem 3.1 For all t > 0 we have

P[W(t) = 0] = 1

2
FD1(t), P[W(t) = t] = 1

2
FU1(t). (8)

Moreover, the density ψ(x, t) := ∂
∂x
P{W(t) ≤ x} is given by

ψ(x, t) = ψ(x, t; c)+ ψ(x, t; −v), 0 < x < t, (9)
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where ψ(x, t; vt ) is given in Eq. 7, and where the densities (6) can be expressed as

ψc(x, t; c) =
+∞∑
n=1

[
F

(n)
U (x)− F

(n+1)
U (x)

]
f
(n)
D (t − x),

ψc(x, t;−v) =
+∞∑
n=0

[
F

(n)
D (t − x)− F

(n+1)
D (t − x)

]
f
(n+1)
U (x),

(10)

and, by symmetry,

ψ−v(x, t; c) =
+∞∑
n=0

[
F

(n)
U (x)− F

(n+1)
U (x)

]
f
(n+1)
D (t − x),

ψ−v(x, t;−v) =
+∞∑
n=1

[
F

(n)
D (t − x)− F

(n+1)
D (t − x)

]
f
(n)
U (x).

(11)

Proof Equalities (8) can be obtained from Eqs. 2 and 5. Density (9) immediately follows
from definition (7). The proof of Eqs. 10 and 11 can be stated by resorting to the analysis of
suitable compound counting processes. It is omitted, since it goes along the line of similar
results shown in Zacks (2012) or Bshouty et al. (2012).

Notice that the terms appearing in the right-hand-sides of Eqs. 10 and 11 have a proba-

bilistic meaning. For instance the term
[
F

(n)
U (x)− F

(n+1)
U (x)

]
f
(n)
D (t− x), appearing in the

first of Eq. 10, refers to the (n + 1)-th time period (having duration Un+1 and elapsing at
time t) in which the telegraph process Y(t) has positive velocity, when V (0) = c. Indeed,

F
(n)
U (x)− F

(n+1)
U (x) = P[U1 + . . .+ Un < x ≤ U1 + . . .+ Un+1]

is the probability that the first n upward periods of Y(t) plus the portion of the (n + 1)-th
upward period contained in [0, t] have total duration x, whereas f (n)

D (t − x) is the density
that the first n downward periods of Y(t) have total duration t − x, for 0 < x < t .

Remark 3.1 From Theorem 3.1 it is not hard to see that the probability mass of density
ψ(x, t) is given by the following mixture:

P (t) := P{0 < W(t) < t} =
∫ t

0
ψ(x, t) dx = 1

2

[
FD1(t)+ FU1(t)

]
, t ≥ 0. (12)

Moreover, the following symmetry property holds:

P[W(t) ≤ x]∣∣{(U(n),D(n));n≥1} = P[W(t) ≥ t − x]∣∣{(D(n),U(n));n≥1} for all 0 ≤ x ≤ t .

(13)
In particular, from Eq. 13 it follows that interchanging x with t − x and the distribution of
U(n) with that of D(n), for all n ≥ 1, the expression of ψ(x, t) remains unchanged.

Let us now come to the mean and the variance of occupation time.

Corollary 3.1 For all t > 0 we have

E[W(t)] = 1

2

∫ t

0

[
�c(x, t) +�−v(x, t)

]
dx (14)
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and

Var[W(t)] =
∫ t

0
x
[
�c(x, t)+�−v(x, t)

]
dx − {E[W(t)]}2 , (15)

where, for 0 < x < t ,

�c(x, t) := P[W(t) > x |V (0) = c] =
+∞∑
n=0

[
F

(n)
U (x)− F

(n+1)
U (x)

]
F

(n)
D (t − x), (16)

�−v(x, t) := P[W(t) > x |V (0) = −v] =
+∞∑
n=0

[
F

(n)
D (t − x)− F

(n+1)
D (t − x)

]
F

(n)
U (x).

(17)

Proof It follows from Theorem 3.1 by straightforward calculations.

4 Distribution ofX(t)

Before obtaining the distribution of process (1), we first express the probability law of the
generalized telegraph process Y(t) in terms of that ofW(t). We recall that (5) is the fraction
of time that the motion moved with positive drift in [0, t]. Note that −vt ≤ Y(t) ≤ ct ,
where Y(t) has a discrete component on the points −vt and ct for any fixed t > 0. The
absolutely continuous component over (−vt, ct) is described by the following density:

g(x, t) := ∂

∂x
P{Y(t) ≤ x}, −vt < x < ct, t > 0. (18)

Theorem 4.1 For all t > 0 we have

P[Y(t) = −vt] = 1

2
FD1(t), P[Y(t) = ct] = 1

2
FU1(t). (19)

Moreover, the density (18) is given by

g(x, t) = 1

c + v
ψ
(x + vt

c + v
, t
)
, −vt < x < ct, (20)

where an expression of ψ(x, t) has been obtained in Theorem 3.1.

Proof Due to Eqs. 3 and 5, the process Y(t) is related to the occupation time by

Y(t) = (c+ v)W(t)− vt, t ≥ 0. (21)

The proof immediately follows.

Equation 20 allows to express the probability density of the generalized telegraph process
Y(t) in terms of the occupation time density obtained in Eq. 9.

We are now able to obtain the distribution of process (1). Let

p(x, t) = ∂

∂x
P{X(t) ≤ x}, x ∈ R, t > 0 (22)

be the probability density of X(t) at time t . In the following, as usual, �(·) denotes the
standard normal distribution, and φ(·) denotes the corresponding density.
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Theorem 4.2 For all t > 0 and x ∈ R we have

p(x, t) = 1√
t

[
1

2
FU1(t) φ

(
x − ct√

t

)
+ 1

2
FD1(t) φ

(
x + vt√

t

)

+
∫ t

0
ψ(w, t) φ

(
x + vt − (c + v)w√

t

)
dw

]
,

(23)

where ψ(x, t) is given in Eq. 9.

Proof Since the Brownian motion is a process of independent increments (a Lévy process),
and since Y(t) is independent of B(t), the conditional distribution of X(t), givenW(t), due
to Eqs. 1 and 21, is

[X(t) |W(t)] ∼ (c + v)W(t)− vt +√
W(t) Z1 +

√
t −W(t)Z2, t > 0,

where Z1 and Z2 are independent standard normal random variables. Moreover,[√
W(t)Z1 +

√
t −W(t)Z2

∣∣∣W(t)
]
∼ √

t Z, t > 0,

where Z has a standard normal distribution and is independent ofW(t). Hence, we have

[X(t) |W(t)] ∼ (c + v)W(t)− vt +√
t Z, t > 0, (24)

so that the distribution function of X(t) conditional onW(t) is given by

P [X(t) ≤ x |W(t)] = �

(
x + vt − (c + v)W(t)√

t

)
, t > 0. (25)

The distribution of X(t) is thus given by the mean of Eq. 25 conditional on the distribution
ofW(t). Hence, recalling Theorem 3.1, from Eq. 25 we get

P[X(t) ≤ x] = 1

2
FU1(t)�

(
x − ct√

t

)
+ 1

2
FD1(t)�

(
x + vt√

t

)

+
∫ t

0
ψ(w, t)�

(
x + vt − (c + v)w√

t

)
dw, t > 0.

Equation 23 thus follows by differentiation.

Remark 4.1 From Remark 3.1 and Theorem 4.2 we have the following symmetry property:

p(x, t)
∣∣{(U(n),D(n));n≥1} = p((c− v)t − x, t)

∣∣{(D(n),U(n));n≥1} for all 0 ≤ x ≤ t . (26)

The expected value and the variance of X(t) can be found directly from Eq. 24. Indeed,
the following result holds.

Corollary 4.1 For all t > 0 we have

E[X(t)] = (c + v)E[W(t)] − vt, (27)

and
Var[X(t)] = (c + v)2Var[W(t)] + t, (28)

where E[W(t)] and Var[W(t)] can be evaluated by using Eqs. 14 and 15.

We conclude this section by introducing the flow function of X(t), which is defined as

j (x, t) := f (x, t)− b(x, t), x ∈ R, t > 0. (29)

Methodol Comput Appl Probab (2015) 17:761–780768



Here f (x, t) and b(x, t) denote the probability densities of the motion with forward and
backward drift, respectively, and are given by

f (x, t) = ∂

∂x
P{X(t) ≤ x,V (t) = c}, b(x, t) = ∂

∂x
P{X(t) ≤ x,V (t) = −v}, (30)

for x ∈ R and t > 0. Similarly as for the telegraph process (see Orsingher (1990)), in a large
ensamble of particles moving as X(t), function (29) measures, at each time t , the excess of
particles moving with drift c with respect to the ones moving with drift−v near point x. Let
us now obtain the expressions of densities (30).

Corollary 4.2 For all t > 0 and x ∈ R we have

f (x, t) = 1√
t

[
1

2
FU1(t) φ

(
x − ct√

t

)
+
∫ t

0
ψ(w, t; c) φ

(
x + vt − (c + v)w√

t

)
dw

]
,

b(x, t) = 1√
t

[
1

2
FD1 (t) φ

(
x + vt√

t

)
+
∫ t

0
ψ(w, t;−v) φ

(
x + vt − (c+ v)w√

t

)
dw

]
,

(31)

where densities ψ(x, t; c) and ψ(x, t; −v) are defined in Eq. 7, and can be evaluated by
means of Eqs. 10 and 11.

Proof Expressions (31) easily follow from a reasoning similar to the proof of Theorem
4.2.

5 Special Cases

In this section we analyze some special cases, in which the distributions of the random times
Ui and Di are specified explicitly. Note that in Sections 5.1 and 5.2 the random variables
Ui (Di ), i = 1, 2, . . ., are i.i.d., whereas in Section 5.3 they are not identically distributed.

5.1 Exponential Times with Constant Rates

Some experimental studies, as those shown in Berg and Brown (1972) on Escherichia coli
bacteria, show that the motion of certain micro-organisms can be approximated by random
trajectories which change directions at exponentially distributed random times. This sug-
gests to investigate the Brownian motion governed by telegraph process in the special case
when the random alternating times are exponentially distributed.

In this section we thus assume that Ui and Di , for all i = 1, 2, . . ., are exponentially
distributed with parameter λ > 0 and μ > 0, respectively. Under these assumptions we first
show that the probability densities f (x, t) and b(x, t) are solution of a differential system.

Theorem 5.1 For all i = 1, 2, . . ., let Ui and Di be exponentially distributed with param-
eter λ and μ, respectively. Then, for x ∈ R and t > 0 the densities defined in Eq. 30 satisfy
the differential system ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂f

∂t
= −c

∂f

∂x
+ 1

2

∂2f

∂x2
− λf + μb,

∂b

∂t
= v

∂b

∂x
+ 1

2

∂2b

∂x2
− μb+ λf.

(32)
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The proof of Theorem 5.1 is omitted, since it follows by typical arguments, by which
X(t) is viewed as the suitable limit of a randomwalk with drift-dependent step probabilities.
For instance, we refer to Orsingher (1985) and Ratanov (1999), where a limit procedure is
employed to obtain differential equations of finite-velocity random motions. Moreover, it is
interesting to note the analogies between system (32) and system (2.4) of Ratanov (2010),
which is satisfied by the (generalized) probability densities of a jump telegraph-diffusion
process.

Corollary 5.1 Under the assumptions of Theorem 5.1, for x ∈ R and t > 0 the following
differential system holds:⎧⎪⎪⎨

⎪⎪⎩

∂p

∂t
= −c − v

2

∂p

∂x
− c + v

2

∂j

∂x
+ 1

2

∂2p

∂x2
,

∂j

∂t
= −c + v

2

∂p

∂x
− c − v

2

∂j

∂x
− (λ− μ)p − (λ+ μ) j,

(33)

where p(x, t) and j (x, t) are defined in Eqs. 22 and 29, respectively.

Proof Making use of Eq. 29 and noting that density (22) is related to functions (30) by
p(x, t) = f (x, t)+ b(x, t), x ∈ R, t > 0, system (33) follows from Eq. 32.

It is worth noting that if c = v = 0 then system (33) yields the classical heat equation of
the standard Brownian motion

∂p

∂t
= 1

2

∂2p

∂x2
,

whereas if the diffusive term 1
2

∂2p

∂x2
is neglected then (33) becomes the differential system

that governs the telegraph process with drift (see Eq. 3.2 of Beghin et al. (2001)).
In the following we resort to Theorem 4.2 to obtain the distribution of W(t), the density

p(x, t) and the flow function j (x, t) in the present case. We recall that since Ui and Di ,
i = 1, 2, . . ., are exponentially distributed with parameter λ and μ, respectively, then the
sums (4) have Erlang distribution with parameters (λ, n) and (μ, n). Hence,

f
(n)
U (x) = λnxn−1

(n− 1)! e
−λx, F

(n)
U (x) = 1− e−λx

n−1∑
j=0

(λx)j

j ! , x ≥ 0, (34)

while f (n)
D (x) and F (n)

D (x) are defined analogously, with parameter μ.

Proposition 5.1 If Ui andDi , i = 1, 2, . . ., are exponentially distributed with parameter λ
and μ, respectively, then

P[W(t) = 0] = 1

2
e−μt , P[W(t) = t] = 1

2
e−λt , t > 0, (35)

and

ψ(x, t) = e−λx−μ(t−x)

2

{
(λ+ μ) I0

[
2
√
λμx(t − x)

]
+

√
λμ t√

x(t − x)
I1

[
2
√
λμx(t − x)

]}
,

(36)
for 0 < x < t , where

In(z) =
+∞∑
k=0

(z/2)2k+n

k! (k + n)! , n = 0, 1, . . . ,
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is the modified Bessel function. Moreover, for all t > 0 and x ∈ R we have

p(x, t) = 1√
t

[
1

2
e−λt φ

(
x − ct√

t

)
+ 1

2
e−μt φ

(
x + vt√

t

)

+
∫ t

0
ψ(w, t) φ

(
x + vt − (c + v)w√

t

)
dw

]
,

(37)

with ψ(x, t) given in Eq. 36. The flow function (29) is given by

j (x, t) = 1√
t

[
1

2
e−λt φ

(
x − ct√

t

)
− 1

2
e−μt φ

(
x + vt√

t

)

+
∫ t

0
[ψ(w, t; c)− ψ(w, t; −v)]φ

(
x + vt − (c + v)w√

t

)
dw

]
,

(38)

where

ψ(w, t; c)− ψ(w, t; −v) = e−λw−μ(t−w)

2

{
(μ− λ) I0

[
2
√
λμw(t −w)

]

+
√
λμ (2w − t)√
w(t −w)

I1

[
2
√
λμw(t −w)

] }
.

(39)

Proof Equation 35 immediately follows from Eq. 8. Under the given assumptions, from
Eqs. 10 and 34 after some calculations we obtain

ψc(x, t; c) = e−λx−μ(t−x)

√
λμx√
t − x

I1

[
2
√
λμx(t − x)

]
, 0 < x < t,

ψc(x, t;−v) = λe−λx−μ(t−x) I0

[
2
√
λμx(t − x)

]
, 0 < x < t.

Recalling Theorem 3.1, density ψ−v(x, t; c) can be obtained from ψc(x, t; −v) by inter-
changing λ with μ, and x with t − x. Clearly, ψ−v(x, t; −v) follows from ψc(x, t; c) in
the same way. Density (36) thus can be obtained by making use of Eq. 9. Moreover, Eq. 37
holds by virtue of Eq. 23. Finally, the right-hand-side of Eq. 38 is due to Eqs. 31 and 29,
whereas Eq. 39 follows from the densities evaluated in the first part of the proof.

We remark the analogies between the results given in Proposition 5.1 and those pro-
vided in Section 2 of Ratanov (2010) for a jump telegraph-diffusion process. Even though
closed-form expressions of density (37) and flow function (38) seem not feasible, some
plots of p(x, t) and j (x, t) have been obtained via numerical computation (see Figs. 3
and 4, respectively).

Remark 5.1 An alternative formula to density (39) can be established as follows. In the
present case, according to the gamma-Poisson relationship, the functions given in Eq. 34
can be expressed as

f
(n)
U (x) = λp(n− 1;λx), F

(n)
U (x) = 1− P (n− 1;λx), x ≥ 0, (40)

Methodol Comput Appl Probab (2015) 17:761–780 771



Fig. 3 Density (37) for λ = μ = 1, c = 1 and v = 1, 2, 3, for t = 1 (left) and t = 2 (right)

where p(j ; η) and P (j ;η) denote respectively the Poisson p.d.f. and c.d.f. with mean η

evaluated at j . Hence, from Theorem 3.1 after few calculations we obtain:

ψ(x, t) = 1

2

+∞∑
n=0

{
λp(n; λx)[p(n;μ(t − x))+ p(n+ 1;μ(t − x))]

+ μp(n;μ(t − x))[p(n;λx)+ p(n+ 1;λx)]
}
, x ≥ 0.

Let us conclude this section by evaluating the mean ofW(t).

Proposition 5.2 Under the assumptions of Proposition 5.1, we have

E[W(t)] = μ

λ+ μ
t + λ− μ

2(λ+ μ)2

(
1− e−(λ+μ)t

)
, t ≥ 0. (41)

Proof Consider the second identity of Corollary 1 of Ratanov (2007) for s = 0, and for
(c−, λ−) = (−v,μ) and (c+, λ+) = (c, λ). By combining the two cases concerning the
initial velocity with equal probability, and recalling relation (21) we obtain Eq. 41.

Fig. 4 Flow function (38) for the same cases of Fig. 3
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5.2 Erlang Distributed Random Times

Let the random times Ui and Di , i = 1, 2, . . ., have Erlang distribution with parameters
(λ, k) and (μ, r), respectively. Hence, the sums (4) are Erlang-distributed with parameters
(λ, nk) and (μ, nr), so that

f
(n)
U (x) = λnkxnk−1

(nk − 1)! e
−λx, F

(n)
U (x) = 1− e−λx

nk−1∑
j=0

(λx)j

j ! , x ≥ 0, (42)

with f
(n)
D (x) and F

(n)
D (x) having similar expressions. In the forthcoming proposition we

express the occupation time density in terms of the following two-index pseudo-Bessel
function (see Di Crescenzo (2001) for its use in the description of finite-velocity random
motions with Erlang-distributed random times):

S
(k,r)
i,j (x, y) =

+∞∑

=0

xk
+i yr
+j

(k
+ i)! (r
+ j)! , (43)

defined for integers k, r ≥ 1 and i, j ≥ 0.

Proposition 5.3 If Ui and Di have Erlang distribution with parameters (λ, k) and (μ, r),
respectively, then for all t > 0

P[W(t) = 0] = 1

2
e−μt

r−1∑
j=0

(μt)j

j ! , P[W(t) = t] = 1

2
e−λt

k−1∑
j=0

(λt)j

j ! ,

and, for 0 < x < t ,

ψ(x, t) = e−λx−μ(t−x)

2

[
μ

2k−1∑
j=0

S
(k,r)
j,r−1(λx,μ(t−x))+λ

2r−1∑
j=0

S
(k,r)
k−1,j (λx,μ(t−x))

]
. (44)

Moreover, for all t > 0 and x ∈ R we have

p(x, t) = 1√
t

[
1

2
e−λt

k−1∑
j=0

(λt)j

j ! φ

(
x − ct√

t

)
+ 1

2
e−μt

r−1∑
j=0

(μt)j

j ! φ

(
x + vt√

t

)

+
∫ t

0
ψ(w, t) φ

(
x + vt − (c + v)w√

t

)
dw

]
,

(45)

with ψ(x, t) given in Eq. 44.

Proof The first result is due to Eq. 8. From Eq. 42 we get

[
F

(n)
U (x)− F

(n+1)
U (x)

]
f
(n)
D (t − x) = μe−λx−μ(t−x)

nk+k−1∑
j=nk

(λx)j

j !
(μ(t − x))nr−1

(nr − 1)! .

The first density of Eq. 10 thus becomes

ψc(x, t; c) = μe−λx−μ(t−x)

k−1∑
j=0

S
(k,r)
k+j,r−1(λx,μ(t − x)), 0 < x < t,
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where S(k,r)i,j (x, y) is defined in Eq. 43. Analogously, we have

ψc(x, t; −v) = λe−λx−μ(t−x)
r−1∑
j=0

S
(k,r)
k−1,j (λx,μ(t − x)), 0 < x < t.

Due to Theorem 3.1, densityψ−v(x, t; c) can be obtained from ψc(x, t; −v) by interchang-
ing λ with μ, k with r , and x with t − x. Similarly, ψ−v(x, t; −v) follows from ψc(x, t; c).
Hence, recalling (9), and making use of the symmetry property S

(k,r)
i,j (x, y) = S

(r,k)
j,i (y, x),

we obtain the density (44). In conclusion, from Eq. 23 we have Eq. 45.

As for the case of Section 5.1, it seems that density (45) cannot be expressed in closed
form. Nevertheless in Fig. 5 we give various plots of p(x, t), obtained by means of
numerical computations.

5.3 Exponential Times with Linear Rates

We now assume that the random times Ui and Di , i = 1, 2, . . ., have exponential dis-
tribution with linear parameters λi and μi, respectively, so that they are not identically
distributed. A telegraph process characterized by such random times and its geometric ver-
sion have been studied by Di Crescenzo and Martinucci (2010) and Di Crescenzo et al.
(2012), respectively. In this case the sums (4) have generalized exponential distribution, with

f
(n)
U (x) = n

(
1− e−λx

)n−1
λe−λx, F

(n)
U (x) = (

1− e−λx
)n

, x ≥ 0. (46)

Functions f (n)
D (x) and F

(n)
D (x) have similar expressions, with parameter μ. We stress the

damped nature of the random times, since in the present case Ui and Di are stochastically
decreasing in i ≥ 1. Hence, under the above assumptionsXt changes drift faster and faster
as time proceeds.

Proposition 5.4 If Ui and Di are exponentially distributed with parameter λi and μi, i =
1, 2, . . ., respectively, then

P[W(t) = 0] = 1

2
e−μt , P[W(t) = t] = 1

2
e−λt , t > 0,

Fig. 5 Density (45) for λ = μ = 1, k = r = 2, c = 1 and v = 1, 2, 3, for t = 1 (left) and t = 2 (right)
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and

ψ(x, t) = e−λx−μ(t−x)

(
2(λ+ μ)− μe−λx − λe−μ(t−x)

)
2[1− (1− e−λx)(1− e−μ(t−x))]2 , 0 < x < t. (47)

Furthermore, for all t > 0 and x ∈ R we have

p(x, t) = 1√
t

[
1

2
e−λt φ

(
x − ct√

t

)
+ 1

2
e−μt φ

(
x + vt√

t

)

+
∫ t

0
ψ(w, t) φ

(
x + vt − (c + v)w√

t

)
dw

]
,

(48)

where ψ(x, t) is given in Eq. 47.

Proof The discrete component of the probability law of W(t) follows from Eq. 8. From
Eq. 10 we have

ψc(x, t; c) = μe−λx−μ(t−x) 1− e−λx

[1− (1− e−λx)(1− e−μ(t−x))]2 , 0 < x < t,

ψc(x, t; −v) = λe−λx−μ(t−x) 1

[1− (1− e−λx)(1− e−μ(t−x))]2 , 0 < x < t.

Due to Theorem 3.1, density ψ−v(x, t; c) can be obtained from ψc(x, t; −v) by interchang-
ing λ with μ, k with r , and x with t − x. In a similar way ψ−v(x, t;−v) follows from
ψc(x, t; c). Recalling (9), we get the density (47). Finally, from Eq. 23 we have Eq. 48.

Figure 6 shows some plots of density (48) obtained via suitable numerical computations.

Remark 5.2 According to Remark 3.1, it is easy to check the validity of the symmetry
property

ψ(x, t)
∣∣
(λ,μ)

= ψ(t − x, t)
∣∣
(μ,λ)

for all 0 ≤ x ≤ t

for each of the three cases considered in this section, i.e. for densities Eqs. 36, 44 and 47.
Similarly, due to Remark 4.1, the following symmetry property holds true:

p(x, t)
∣∣
(λ,μ)

= p((c − v)t − x, t)
∣∣
(μ,λ)

for all 0 ≤ x ≤ t,

and is satisfied by densities Eqs. 37, 45 and 48.

Fig. 6 Density (48) for λ = μ = 1, c = 1 and v = 1, 2, 3, for t = 1 (left) and t = 2 (right)
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Fig. 7 Plots of�(t), given in Eq. 49, for the 2 cases described in the text; in both cases λ = 1 and μ = 0.25,
0.5, 1, 2, 4 (from bottom to top near the origin)

5.4 Some Comparisons

The similarity exhibited by the plots of Figs. 3, 5 and 6 suggests the existence of certain
analogies among the three cases. However, density p(x, t) is shown only for few instances
of the involved parameters, and thus the figures are uneffective to find out the closeness
among the three considered models. Hence, looking for a more appropriate comparison we
consider the following measure of closeness:

�(t) = d(2)(ψ1(t), ψ2(t)) =
{∫ t

0
|ψ1(x)− ψ2(x)|2 dx

}1/2
, t > 0. (49)

The right-hand-side of Eq. 49 is the L2-distance of ψ1(x) and ψ2(x), defined on (0, t).
Figure 7 shows some plots of�(t) obtained via numerical evaluations, in 2 cases where ψ1

and ψ2 are respectively the densities

(i) Equations 36 and 47, with random times having exponential distribution with constant
rates, and linear rates;

(ii) Equations 36 and 44, when the random times have exponential distribution with
constant rates, and Erlang distribution.

In case (i) the measure �(t) is increasing in t , see Fig. 7 (i), so that the sojourn times
of the two models become remarkable different when t grows, and when μ grows. This is
a consequence of the significant discrepancy between the two schemes with random times
having exponential distribution with constant and linear rates, the latter case yielding a
damped behavior.

On the contrary, in case (ii) the measure�(t) is definitely decreasing and vanishing as t
grows, see Fig. 7 (ii). This shows that when t is large the sojourn times of the two models are
very similar. This is intuitively justified by the fact that the Erlang distribution is the sum of
i.i.d. exponential distributions, and thus the distribution of the sojourn times in both models
is a suitable combination of exponential distributions in which the constant parameters play
a similar role.

6 Application in Environmental Sciences

In this section we shall indicate an application of the foregoing results in environmental
sciences.
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Freidlin and Pavlopoulos (1997) proposed a stochastic model aimed to describe the tem-
poral evolution of the moisture content in a given oceanic atmospheric column. In order
to take into account the intermittence of rainfall and the dynamics of moisture processes,
the authors considered the alternation of two Wiener processes with drift of opposite signs
and unequal diffusion coefficients, the alternation being governed by the attainment of cer-
tain thresholds. Such model was suitably approximated in Di Crescenzo et al. (2005) by a
Wiener process with alternating drift and infinitesimal variance. We point out that the above
results on process (1) can be suitably extended to such a case. In particular, similarly to
Theorem 4.2 it can be shown that the probability density of a Wiener process with
alternating infinitesimal moments {c, σ 2

1 } and {−v, σ 2
2 }, for all x ∈ R and t > 0,

is given by

p(x, t) = 1

2
√
t

[
FU1(t)

1

σ1
φ

(
x − ct

σ1
√
t

)
+ FD1(t)

1

σ2
φ

(
x + vt

σ2
√
t

)]

+
∫ t

0
ψ(w, t)

1√
σ 2
1w + σ 2

2 (t − w)

φ

⎛
⎜⎝ x − cw + v(t − w)√

σ 2
1w + σ 2

2 (t −w)

⎞
⎟⎠ dw, (50)

where ψ(x, t) is the density of the occupation time given in Eq. 9, and φ(·) is the standard
normal density.

According to Di Crescenzo et al. (2005) we assume that the random times between con-
secutive infinitesimal moments’ changes follow the inverse Gaussian distribution, this being
the distribution of the first-passage time of a Wiener process through a constant boundary.
We recall that a random variable having inverse Gaussian distribution IG(μ, λ), with mean
μ > 0 and shape parameter λ > 0, has density

fIG(x;μ, λ) :=
(

λ

2πx3

)1/2
exp

{
−λ(x − μ)2

2μ2x

}
, x > 0,

and distribution function

FIG(x;μ, λ) := �

((λ
x

)1/2( x
μ

− 1
))

+exp

{
2λ

μ

}
�

(
−
(λ
x

)1/2( x
μ

+ 1
))

, x > 0,

where �(·) is the standard normal distribution function. We now aim to investigate process
(1) when the random times Ui and Di , i = 1, 2, . . ., have inverse Gaussian distribution
IG(m1, l1) and IG(m2, l2), respectively. Since the sequences {Ui} and {Di} are constituted
by independent random variables, from a well-known property of inverse Gaussian distri-
butions we have that the random variables (4) are distributed as U(n) ∼ IG(nm1, n

2l1) and
D(n) ∼ IG(nm2, n

2l2), respectively, so that:

f
(n)
U (x) = fIG(x;nm1, n

2l1), f
(n)
D (x) = fIG(x;nm2, n

2l2),

F
(n)
U (x) = FIG(x;nm1, n

2l1), F
(n)
D (x) = FIG(x;nm2, n

2l2).
(51)

We consider the following choices of the involved parameters, as suggested by the
estimates obtained in Freidlin and Pavlopoulos (1997) via the method of moments:

l1 = 0.7518, m1 = 1.4215, l2 = 0.5073, m2 = 1.0476,

c = 0.2313, σ1 = 0.3792, v = 0.3139, σ2 = 0.4616.
(52)

For the considered model, the density of the occupation time seems not obtainable in closed
form. However, it can be numerically evaluated via Theorem 3.1, due to the relations given
in Eq. 51. As example, Fig. 8 shows four instances of ψ(x, t) for different times t . The
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Fig. 8 Plots of density ψ(x, t) for the model with random intertimes having inverse Gaussian distribution
with parameters given in Eq. 52, for 0 < x < t , with t = 1, 2, 3, 4. The probability mass of the density is
0.6513, 0.8324, 0.9044, 0.9407, respectively

displayed asymmetry is due to the asymmetric values of parameters (m1, l1) and (m2, l2) in
Eq. 52. It is clear that the density spreads out within the support (0, t) as t increases, and its
probability mass increases at the same time. Indeed, recalling Eq. 12 the probability mass
is given by the following function, which is plotted in Fig. 9 for 0 ≤ t ≤ 5:

P (t) = 1

2
[FIG(t;m1, l1)+ FIG(t;m2, l2)] , t ≥ 0. (53)

Some plots of the density p(x, t) are finally shown in Fig. 10, the parameters being chosen
as in Eq. 52.

Let us now discuss some features of the performed computations. A crucial role is played
by the density of the occupation time. The three cases investigated in Section 5 deal with
exact expressions for the right-hand-sides of Eqs.10 and 11. On the contrary, for the appli-
cation treated in this Section we have been forced to resort to suitable approximations by

Fig. 9 Plots of probability
mass (53)
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Fig. 10 Plots of density (50) for the same cases of Fig. 8

appropriate truncation of the related series, and by numerical integration of the integral
in the right-hand-side of Eq. 50. All the performed evaluations have been implemented in
MATHEMATICA on a desktop PC, the truncation errors being controlled in order to attain
a precision of at least 6 digits.
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