
DOI 10.1007/s11009-013-9388-x

Telegraph Processes with Random Jumps and Complete
Market Models

Nikita Ratanov

Received: 9 April 2013 / Revised: 25 September 2013 /
Accepted: 18 October 2013
© Springer Science+Business Media New York 2013

Abstract We propose a new generalisation of jump-telegraph process with variable veloci-
ties and jumps. Amplitude of the jumps and velocity values are random, and they depend on
the time spent by the process in the previous state of the underlying Markov process. This
construction is applied to markets modelling. The distribution densities and the moments
satisfy some integral equations of the Volterra type. We use them for characterisation of the
equivalent risk-neutral measure and for the expression of historical volatility in various set-
tings. The fundamental equation is derived by similar arguments. Historical volatilities are
computed numerically.
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1 Introduction

The model of non-interacting particles which move with alternating finite velocities was
first introduced by Taylor (1922). Later, the model was developed by Goldstein (1951)
in connection with a certain hyperbolic partial differential equation. In 1956 Mark Kac
(see Kac (1974)) began to study the telegraph model in detail. Assuming the random time
intervals Tn between the velocity’s reversal to be independent and exponentially distributed,
Tn ∼ Exp(λ), Kac derived the telegraph (damped wave) equation for the distribution density
p = p(x, t) of the particles’ positions,

∂2p

∂t2
+ 2λ

∂p

∂t
= c2

∂2p

∂x2
.
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Afterwards, the telegraph process and its many generalisations have been studied in
great detail. In particular, the generalisations towards motions with the velocities alternated
in gamma- or Erlang-distributed random instants have been studied many times, see e. g.
Di Crescenzo (2001), Di Crescenzo and Martinucci (2010) and Zack (2004). Telegraph
processes with random velocities have been considered by Stadje and Zacks (2004).

Applications of telegraph processes to market modelling have been presented first by Di
Masi et al. (1994), and then, by Ratanov (1999); Di Crescenzo and Pellerey (2002). Now
these applications are transformed into the theory of Markov-modulated market models
based on telegraph processes with alternated constant velocities, see e. g. Ratanov (2007a,
2010) and López and Ratanov (2012) (see also the survey in Kolesnik and Ratanov (2013)).
One of the key principles of such a modelling is that the models are based on observable
parameters such as velocity and jump amplitude. Replacing the measure, we only change
the underlying distributions of time intervals between velocity reversals.

In this paper we assume that the telegraph particle moves with alternated random
and variable velocities performing jumps of random amplitude whenever the velocity is
changed. The telegraph processes of this type have been studied earlier only under the
assumption of mutual independence of velocity values and jump amplitudes, see Stadje and
Zacks (2004), López and Ratanov (2012) and Di Crescenco et al. (2013). Here we assume
that the actual velocity regime and subsequent jump are determined by the functions of
the time spent by the particle in the previous state. We assume also that the time intervals
between the state reversals have sufficiently arbitrary distributions. Under these assump-
tions we obtain the version of telegraph process which possesses some accelerating/damping
properties. The paper is a continuation of the paper Ratanov (2013), where such generalisa-
tions of the telegraph processes began to be studied. Here the problem is considered in a bit
more general setting and with financial applications.

Such a model with deterministic velocities and jumps is studied in detail by Ratanov
(2007a) and Di Crescenzo and Martinucci (2013). Moreover, earlier we proposed the option
pricing model based on jump-telegraph processes, Ratanov (2007a). In this paper we use
these processes with random velocity and jumps for the purposes of financial modelling.
In particular, this corresponds better to the technical analysis of oversold and overbought
markets.

If the random jump amplitudes are statistically independent of the underlying continuous
process, then the market model is typically incomplete (see the classical paper by Merton
(1976), the review by Runggaldier (2003) of the jump-diffusion models, and also by López
and Ratanov (2012) for the models based on the telegraph processes).

We profess here the approach of complete markets. In Cox and Ross (1976) the market
model is based on the simple jump process and thus with a single source of randomness.
Thus the model is complete. The model, proposed in this paper, typically remains to be
complete and arbitrage-free (similar to another simple model with fixed and deterministic
jump amplitude Ratanov (2007a)). In contrast with Ratanov (2007a), in our recent setting
the closed formulae for option prices do not exist. To analyse memory properties of the
proposed model we numerically evaluate a historical volatility.

The paper is organised as follows. The underlying processes are described in Section 2.
Section 3 is devoted to a version of Doob-Meyer decomposition which permits to charac-
terise martingales in our version of jump-telegraph processes. The market model (together
with the fundamental equation) is presented in Section 4. We focus on the calculations of
historical volatility in Section 5.
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2 Generalised Jump-Telegraph Processes

Let (�,F ,P) be a complete probability space with given filtration Ft , t ≥ 0 satisfying
the usual hypotheses, Protter (2005). We start with a two-state continuous-time Markov
process ε = ε(t) ∈ {0, 1}, t ≥ 0, adapted to Ft . Fixing the initial state of ε, consider the
conditional probabilities Pi , i ∈ {0, 1} with respect to the initial state of ε,

Pi (·) := P(· | ε(0) = i).

The corresponding expectations will be denoted by Ei{·}. Assume that sample paths of
ε = ε(t), t ≥ 0, are right-continuos a. s.

To fix the distribution properties of process ε we begin with the set of independent ran-
dom variables Tn, n ∈ Z, Tn ≥ 0 with alternated distributions. Denote the respective
distribution functions by F0, F1, the survival functions by F̄0, F̄1 and the densities by
f0, f1. The subscript indicates the starting position of the alternation which corresponds to
the initial state of ε, that is the distribution of Tn depends on ε(0) = i ∈ {0, 1}. Precisely,
under probability Pi the distribution function of Tn is Fi , if n is odd, and F1−i , if n is even.

Random variables Tn are the time intervals between successive switching of Markov
process ε. Let T = {τn} be the Markov flow of switching times. Then Tn = τn − τn−1. We
assume the usual non-explosion condition,

τ∞ := lim τn = +∞, P-a.s.

Moreover, let τ0 = 0, i.e. process ε starts at a switching instant.
The latter assumption can be neglected. If the process is observed beginning from time

s, 0 = τ0 < s < τ1, the corresponding conditional distributions can be described by the
survival functions

F̄i(t | s) =Pi (T > t | T > s) = Pi (T > t)

Pi (T > s)
= F̄i(t)

F̄i(s)
,

0 ≤ s < t, i = 0, 1.

(2.1)

Therefore, the corresponding densities are

fi(t | s) = − ∂

∂t
F̄i(t | s) = fi(t)

F̄i(s)
, 0 ≤ s < t, i = 0, 1.

Here T = T1 = τ1 > 0 is the first switching time.
Consider a particle, which moves on R under alternated velocity regimes c0 and c1,

starting from the origin. The velocities are described by two piecewise continuous functions
ci = ci (T , t), T , t > 0, i = 0, 1. At each instant τn ∈ T the particle takes the velocity
mode cε(τn)(Tn, ·), where Tn is the (random) time spent by the particle at the previous state
before the last switching. We define a generalised telegraph process T = T (t), t ≥ 0
driven by the velocity modes c0, c1 as follows,

T (t) = T (t; c0, c1) = cε(τn)(Tn, t − τn), if τn ≤ t < τn+1, n ≥ 0. (2.2)

The integral
∫ t

0 T (s)ds represents the current particle’s position,
∫ t

0 T (s)ds is named
the integrated telegraph process.

Denote by N = N(t) := max{n ≥ 0 : τn ≤ t}, t ≥ 0 a counting Poisson process.
Integrated telegraph processes can be described in terms of the compound Poisson process
as follows.
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Let τn−1 ≤ s < t < τn, n ≥ 1. Under the given value i = ε(τn−1) = ε(s) denote the
distance passed by the particle in time interval (s, t) without any reversal by li(T ; s, t),

li(T ; s, t) =
∫ t

s

ci (T , u − τn−1)du. (2.3)

Simplifying notations we will write li (T ; t) instead of li(T ; 0, t).
If N(t) = 0, i. e. 0 = τ0 ≤ t < τ1, and ε(0) = i, then the particle’s position is

t∫

0

T (u)du = li(T0; t). (2.4)

If N(t) > 0, then

t∫

0

T (u)du =
N(t)∑

n=1

lε(τn)(Tn−1; τn−1, τn) + lε(τN(t))(TN(t); τN(t), t). (2.5)

Equalities (2.3)–(2.5) define the integrated telegraph process.
Similarly, the jump component can be constructed. Let h0 = h0(T ) and h1 = h1(T ),

T ≥ 0, be a pair of deterministic piecewise continuous (or, at least, boundary measurable)
functions. Consider piecewise constant telegraph processes based on hi(T ) instead of ci =
ci(T , ·), i = 0, 1, see (2.2):

T (t; h0, h1) = hε(τn)(Tn), if τn < t ≤ τn+1, n ≥ 0.

We define an integrated jump process as the compound Poisson process,

t∫

0

T (u;h0, h1)dN(u) =
N(t)∑

n=1

hε(τn)(Tn). (2.6)

The amplitude of the subsequent jump depends on the time spent by the particle in the
current state.

Generalised integrated jump-telegraph process is sum of the integrated telegraph process
defined by (2.4)–(2.5) and the jump component defined by (2.6):

X(t) =
t∫

0

T (u; c0, c1)du +
t∫

0

T (u;h0, h1)dN(u), t ≥ 0. (2.7)

We consider also the processes Xi, i = 0, 1, defined by (2.7) under the fixed initial state of
ε(0) = i ∈ {0, 1}. So, Xi(t) gives the position at time t, t ≥ 0 of the particle, which starts
at the origin with velocity mode ci, i = ε(0), and continues moving with the alternated
at random times τn velocity regimes. Each velocity reversal is accompanied by jumps of
random amplitude.

Conditioning on the first switching, we have the following equalities in distribution
(under the probability P0 and P1 respectively):

X0(t) |P0 D= l0(T0; t)1{τ1>t} +
[
l0(T0; τ1) + h0(τ1) + X̃1(t − τ1)

]
1{τ1<t}, (2.8)

where T0 and τ1 have the distribution functions F1 and F0 respectively;

X1(t) |P1 D= l1(T0; t)1{τ1>t} +
[
l1(T0; τ1) + h1(τ1) + X̃0(t − τ1)

]
1{τ1<t}, (2.9)
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where T0 and τ1 are distributed in the opposite order, with distribution functions F0 and F1
respectively. Here X̃i (t) is the integrated jump-telegraph process starting with the velocity
regime ci (T1; ·), i = 0,1.

The distributions ofX0(t),X1(t) andX(t), t > 0, are separated into the singular and the
absolutely continuous parts. All distributions will be described in terms of the conditional
probabilities Pi (· | N(s) = 0) under the condition {N(s) = 0} = {τ1 > s}, see (2.1). Here
s, s ∈ [0, τ1) is the time when the observations begin.

For any Borelian set B ⊂ (−∞,∞) consider

Pi (B, t |s) := Pi (X(t) ∈ B | N(s) = 0), i = 0, 1.

The singular part of the distribution Pi (·, t |s) corresponds to the first terms in the RHS
of (2.8)–(2.9), the movement without any reversal, N(t) = 0. To describe the singular part,
consider the linear functionals (generalised functions),

φ → Pi (τ1 > t |N(s) = 0)Ei{φ(li(τ1; t))} =F̄i(t |s)
∞∫

0

f1−i (τ)φ(li(τ ; t))dτ,

i =0, 1,

on the space of (continuous) test-functions φ. The generalised function

p0
i (x, t |s) = F̄i (t |s)

∫ ∞

0
f1−i (τ)δli (τ ;t)(x)dτ, i = 0, 1 (2.10)

can be viewed as the (conditional) distribution “density”. Here δa(x) is the Dirac measure
(of unit mass) at point a.

Let
pi(x, t |s) = Pi (X(t) ∈ dx | N(s) = 0)/dx

be the distribution densities of Xi(t), i = 0, 1.
By conditioning on the first velocity reversal we obtain the following system of integral

equations

p0(x, t |s) =p0
0(x, t |s)

+
∫ ∞

0
f1(τ)dτ

∫ t

s

p1(x − l0(τ ; u) − h0(u), t − u)f0(u|s)du,

p1(x, t |s) =p0
1(x, t |s)

+
∫ ∞

0
f0(τ)dτ

∫ t

s

p0(x − l1(τ ; u) − h1(u), t − u)f1(u|s)du,

t > s ≥ 0, x ∈ (−∞,∞),

(2.11)

where p0
i , i = 0, 1, are defined by (2.10).

Then, systems similar to (2.11) can be derived for the expectations.
Let μi(t |s) := Ei{X(t) | N(s) = 0}, t > s ≥ 0 be the conditional expectation with

respect to Pi (·|N(s) = 0), and μi(t) := Ei{X(t)} = lim
s↓0 μi(t |s), i = 0, 1.

One can easily obtain, for t > s

μi(t |s) = F̄i (t |s)l̄i(t) +
∫ t

s

(l̄i (u) + hi(u) + μ1−i (t − u))fi(u|s)du,

where l̄i (·) = E{li (T ; ·)} = ∫∞
0 f1−i (τ)li(τ ; ·)dτ, i = 0, 1.
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Therefore, the conditional expectations μ0(t |s) and μ1(t |s) read as,

μ0(t |s) = a0(t |s) +
∫ t

s

μ1(t − u)f0(u|s)du,

μ1(t |s) = a1(t |s) +
∫ t

s

μ0(t − u)f1(u|s)du.

(2.12)

Hence, the expectations μi = μi(t) = Ei{X(t)}, i = 0, 1 satisfy the following Volterra-
type system

μ0(t) = a0(t) +
∫ t

0
μ1(t − u)f0(u)du,

μ1(t) = a1(t) +
∫ t

0
μ0(t − u)f1(u)du.

(2.13)

Here

ai(t |s) := F̄i(t |s)l̄i(t) +
∫ t

s

(l̄i (u) + hi(u))fi(u|s)du, t > s,

and ai(t) = ai(t |0), i = 0, 1. Integrating by parts in the latter integral, we have
∫ t

s

l̄i (u)fi(u|s)du = −F̄i(t |s)l̄i(t) + l̄i (s) +
∫ t

s

c̄i (u)F̄i(u|s)du,

which leads to the following expression for ai(t |s):

ai(t |s) = l̄i (s) +
∫ t

s

(
F̄i (u|s)c̄i(u) + fi(u|s)hi(u)

)
du.

Since l̄i (0) = 0 and F̄i(t |0) = F̄i(t), fi (t |0) = fi(t), we get

ai(t) =
∫ t

0

(
F̄i(u)c̄i(u) + fi(u)hi(u)

)
du. (2.14)

Moreover, the equalities in (2.1) and (2.14) lead to

ai(t |s) =l̄i (s) + F̄i(s)
−1
∫ t

s

(
F̄i(u)c̄i(u) + fi(u)hi(u)

)
du

=l̄i (s) + F̄i(s)
−1(ai(t) − ai(s)), i = 0, 1.

(2.15)

Here we denote c̄i (s) = E{ci (·; s)} = ∫∞
0 f1−i (τ)ci (τ ; s)dτ .

Remark 1 The Volterra system (2.13) has a unique solution, see e. g. Linz (1985).Moreover,
μ0(t) ≡ 0, μ1(t) ≡ 0 if and only if a0(t) ≡ 0, a1(t) ≡ 0, or equivalently,

F̄0(t)c̄0(t) + h0(t)f0(t) = 0

F̄1(t)c̄1(t) + h1(t)f1(t) = 0
, t ≥ 0, (2.16)

see (2.14).
Hence, μ0(t) ≡ 0, μ1(t) ≡ 0 if and only if the hazard rate functions of the spending

time T , T > 0, see e.g. Capasso and Bakstein (2005),

αi(t) := fi(t)

F̄i(t)
(2.17)

are expressed by αi(t) = −c̄i (t)/hi(t), t ≥ 0.
Due to equations (2.12) and (2.14)–(2.15), condition (2.16) guarantees that

μ0(t |s) = l̄0(s), μ1(t |s) = l̄1(s). (2.18)
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In some particular cases the solution of (2.12) and (2.13) can be written explicitly.
Consider the following example. Let the alternated distributions of interarrival times are
exponential:

fi(t) = λi exp(−λit), t ≥ 0, i = 0, 1. (2.19)

Hence fi(t |s) = λi exp(−λi(t − s)), t > s ≥ 0. In this case the solution of system (2.13)
reads

μ(t) = a(t) +
∫ t

0
(I + ϕλ(t − u)�)La(u)du, (2.20)

where

ϕλ(t) = 1 − e−2λt

2λ
, 2λ := λ0 + λ1. (2.21)

Here we use the matrix notations μ = (μ0, μ1)
′, a = (a0, a1)

′, see (2.14),

L =
(
0 λ0
λ1 0

)

and � =
(−λ0 λ0

λ1 −λ1

)

.

To check it, notice that system (2.13) is equivalent to ODE with zero initial condition:

dμ(t)

dt
= �μ(t) + ψ(t), t > 0, μ(t) |t↓0= 0,

whereψ = da

dt
+(L−�)a.We obtain this equation differentiating in (2.13) with subsequent

integration by parts. Clearly, the equation is solved by

μ(t) =
∫ t

0
e(t−u)�ψ(u)du. (2.22)

Integrating by parts in (2.22) we obtain

μ(t) = a(t) +
∫ t

0
e(t−u)�La(u)du.

Since �2 = −2λ�, the exponential of t� is

exp{t�} = I + ϕλ(t)� = 1

2λ

⎛

⎝
λ1 + λ0e−2λt λ0

(
1 − e−2λt

)

λ1
(
1 − e−2λt

)
λ0 + λ1e−2λt

⎞

⎠ ,

and then, we have (2.20).
The explicit formulae for conditional expectationsμi(t |s), i = 0, 1 follow directly from

(2.12) and (2.20).
Equations for variances σ i (t) := Var{Xi(t)} = E

{
(Xi(t) − μi(t))

2
}
, t > 0, have the

form, similar to (2.13):

σ 0(t) =b0(t) +
∫ t

0
σ 1(t − u)f0(u)du,

σ 1(t) =b1(t) +
∫ t

0
σ 0(t − u)f1(u)du,

(2.23)

where

bi(t) :=F̄i (t)(l̄i(t) − μi(t))
2

+
∫ t

0
(l̄i (u) + hi(u) + μ1−i (t − u) − μi(t))

2fi(u)du, i = 0, 1.
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In the special case of exponential distributions (2.19) the solution of (2.23) reads similar to
(2.20).

More specifically, the solution of (2.23) is given by

σ (t) = b(t) +
∫ t

0
(I + ϕλ(t − u)�)Lb(u)du, (2.24)

where σ = (σ 0, σ 1)
′, b = (b0, b1)

′. We use also the notations of (2.20) and (2.21).

Remark 2 Let 0 = τ0 < τ1 < τ2 < . . . be a Poisson univariate point process with deter-
ministic constant intensity 2λ, λ > 0. Let Yn, n ≥ 1 be a sequence of the i. i. d. random
variables with two values, Yn ∈ {0, 1}. We may then consider two counting processes

N(0)(t) :=
∑

n≥1

1{τn≤t}1{Yn=0}, N(1)(t) :=
∑

n≥1

1{τn≤t}1{Yn=1}.

It is easy to see that N(i)(t), t ≥ 0 is a univariate point process with intensity λi, i = 0, 1.
Here λ0 = 2λ(1 − p) and λ1 = 2λp, where p = P(Yn = 1). In the special case (2.19) the
Markov flow T is the bivariate point process (N(0)(t),N(1)(t)). See Brémaud (1981).

3 Martingales

Let X = X(t) be integrated jump-telegraph process defined by (2.7) on the filtered
probability space (�,F , {Ft }t≥0,P).

Theorem 1 Process X isFt -martingale if and only if (2.16) holds.

Proof We need to show that (2.16) is necessary and sufficient for

E{X(t) | Fs} = X(s), 0 < s < t. (3.1)

First, notice that for any stopping times t and s such that, s < t , we have

Ei{X(t) − X(s) | Fs} = Ei

⎧
⎨

⎩

∫ t

s

T (u; c0, c1)du +
N(t)∑

k=N(s)+1

hε(τk)(Tk) | Fs

⎫
⎬

⎭

= Ei

⎧
⎨

⎩

∫ t−s

0
T (s + u)du +

N(t)−N(s)∑

k=1

hε(τk+N(s))(Tk+N(s)) | Fs

⎫
⎬

⎭

on the set 0 ≤ s ≤ t .
Let s, s ≥ 0 be a switching time, s = τn (in this case the proof is similar to Ratanov

(2013)). According to the Markov property by definition of the processes ε = ε(t), N =
N(t) and τk we have the following identities in (conditional) distribution

ε(τn + u)|{ε(τn)=i}
D=ε̃(u)|{ε̃(0)=i}, u ≥ 0,

N(t)|{ε(τn)=i}
D=n + Ñ(t − τn)|{ε̃(0)=i}, t ≥ τn ≥ 0,

τk+n|{ε(τn)=i}
D=τ̃k |{ε̃(0)=i}, Tk+n|{ε(τn)=i}

D= T̃k |{ε̃(0)=i}, k ≥ 0,

where ε̃(s), Ñ(s), τ̃k and T̃k are copies of ε(s), N(s), τk and Tk respectively, independent
ofFτn . Hence, we obtain

E{X(t) − X(τn) | Fτn } = Ei{X̃(t − τn)},
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if ε(τn) = i. Here X̃ denotes the integrated jump-telegraph process, which is based on
ε̃, Ñ , τ̃k and T̃k , starting from the state ε̃(0) = i. The latter expectation is equal to zero,
Ei{X̃(t − τn)} ≡ 0, if and only if (2.16) holds. Thus, equality (3.1) is proved, if s is the
switching time, s = τn.

In general, for any s, s < t the martingale property (3.1) is proved by using (2.18),
Remark 1.

Remark 3 Notice that if X is the martingale, so identities (2.16) hold, then the direction of
each jump should be opposite to the respective (mean) velocity value.

Remark 4 In the special case of process X with exponential distributions of interarrival
times (2.19) the set of equalities (2.16) is equivalent to

c̄0(t) + λ0h0(t) = 0, c̄1(t) + λ1h1(t) = 0,

see also Theorem 1 in Ratanov (2007a).

Theorem 2 Let the jump-telegraph process X be defined by (2.7), and hi �= 0, i = 0, 1. If
X is the martingale, then

c̄i (t)

hi(t)
<0 ∀t > 0, (3.2)

∫ ∞

0

c̄i (s)

hi(s)
ds = − ∞, i = 0, 1. (3.3)

Moreover, X is the martingale, if and only if the the hazard rate functions αi(t) ( see the
definition in (2.17)) of interarrival times are expressed by

αi(t) = −c̄i (t)/hi(t), t ≥ 0. (3.4)

Therefore, the distribution densities of interarrival times satisfy the following set of integral
equations:

fi(t) = αi(t) exp

{

−
∫ t

0
αi(s)ds

}

≡ − c̄i (t)

hi(t)
exp

{∫ t

0

c̄i (s)

hi(s)
ds

}

, t > 0, i = 0, 1.

(3.5)

Proof Equations (3.4) are derived, see Theorem 1. By these equations

− c̄i (t)

hi (t)
= αi(t) = fi(t)

F̄i(t)
≡ −(ln F̄i (t))

′, t ≥ 0, i = 0, 1. (3.6)

Thus the survival probability is

F̄i(t) = exp

{∫ t

0

c̄i (s)

hi(s)
ds

}

, t ≥ 0, i = 0, 1.

So, the density is given by (3.5).
Inequality (3.2) follows from (2.16). Notice that by definition lim

t→+∞ F̄i(t) = 0, hence

(3.3) is valid.

Consider the following example. Assume that functions c̄i (t) and hi(t) are proportional:

c̄i (t)

hi (t)
≡ −λi, λi > 0, i = 0, 1. (3.7)
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Therefore, by (3.5) the respective integrated jump-telegraph process is the martingale if
the distributions of interarrival times are exponential with densities fi(t) = λi exp(−λit),

t > 0, i = 0, 1.
Identities (3.7) can be written in detail as follows. Let X be the jump-telegraph process

with regimes of velocities c0, c1 and the regimes of jumps h0, h1, which are connected by
means of the relations

λ1

∫ ∞

0
e−λ1τ c0(τ, t)dτ = −λ0h0(t), λ0

∫ ∞

0
e−λ0τ c1(τ, t)dτ = −λ1h1(t).

Here λ0 and λ1 are some positive constants. Hence the jump-telegraph process X is the
martingale with exponentially distributed interarrival times. Parameters of these alternated
exponential distributions are λ0 and λ1.

Equations (3.7) permit to interpret the switching intensities λ0 and λ1 by using the
(observable) proportion between velocity and jump values. On the other hand, if the average
velocity regimes are given, c̄0 and c̄1, and X0 and X1 are martingales, then we can observe
the details of comportment of process X = X(t). For example, the martingale possesses
small jumps with high frequency, while the big jumps are rare. The direction of jump should
be opposite to the velocity sign, see also Remark 3.

Other useful examples are presented in Ratanov (2013), see Examples 1-4, pp.2289-
2290.

Proposition 1 Let T = {τn} be the Markov flow of switching times, and X be a jump-
telegraph process defined by (2.7). Suppose that the increments Tn = τn − τn−1, n ≥ 1 are
exponentially distributed with alternated parameters μ0, μ1 > 0.

Assume that the velocity regimes ci = ci(T , t) and the jump amplitudes hi = hi(t) are
proportional satisfying (3.7) with some positive coefficients λ0 and λ1.

Therefore the martingale measure for X exists and it is unique. Under the martingale
measure the interarrival times are exponential with parameters λ0 and λ1.

Proof For the integrated jump-telegraph process defined by (2.7) we define the Radon-
Nikodym derivative of the form, see Ratanov (2007a)

dQ

dP
= Et {X∗} = exp

{∫ t

0
T (u; c∗

0 , c
∗
1)du

}

κ∗(t). (3.8)

Here X∗ = X∗(t) is the jump-telegraph process driven by the Markov flow T (with param-
eters μ0 > 0 and μ1 > 0). Process X∗ is defined by the constant velocities c∗

0 = μ0 − λ0
and c∗

1 = μ1 − λ1 and the constant jump parameters h∗
0 = −c∗

0/μ0, h∗
1 = −c∗

1/μ1. The

jump part κ∗(t) =∏N(t)
n=1

(
1 + h∗

ε(τn−1)

)
follows from the exponential formula, Runggaldier

(2003), and
∫ t

0 T (u; c∗
0 , c

∗
1)du is the integrated telegraph process.

Since Theorem 2 and Theorem 3 in Ratanov (2007a), under the new measure Q the
underlying Markov flow takes the intensities λi instead of μi, i = 0, 1, see also Cheang
and Chiarella (2011) (Lemma1) and Runggaldier (2003) (Theorem 2.5).

Since, due to (3.7), condition (2.16) is fulfilled. By Theorem 2 the process X(t) becomes
the Q-martingale.
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4 Market Model and Fundamental Equation

Let the price process S = S(t) be defined by stochastic exponential of generalised jump-
telegraph processX. The velocity and jump regimes are established in accordance with time
spent by the process in the previous state (see the definition in (2.7)).

Precisely, let ε = ε(t) ∈ {0, 1}, t ∈ [0, U ] be the Markov process describing the
evolution of market states. Let T = {τn} be the flow of switching times. Consider the
integrated jump-telegraph process X = X(t) based on ε and T, which is defined by (2.7)
with velocity regimes c0 = c0(T , t), c1 = c1(T , t) and jump amplitudes h0(T ), h1(T ) >

−1, ∀T ≥ 0.
Consider a market model of one risky asset associated with price process S = S(t),

which is the stochastic exponential,

S(t) = S(0)Et{X} = S(0) exp

{∫ t

0
T (s; c0, c1)ds

}

κ(t), t ∈ [0, U ]. (4.1)

Here κ(t) = ∏N(t)
n=1

(
1 + hε(τn−1)(Tn)

)
is the jump component of stochastic exponen-

tial Et {X}, see the exponential formula of Stieltjes-Lebesgue calculus (Brémaud (1981),
Theorem T4 in Appendix A4; see also (Runggaldier 2003), formula (17)).

Let r0 = r0(T , t) ≥ 0, r1 = r1(T , t) ≥ 0, T , t ≥ 0 be piecewise continuous
deterministic functions. The bond price is assumed to be

B(t) = exp

{∫ t

0
T (u; r0, r1)du

}

. (4.2)

Here T (·; r0, r1) is the telegraph process driven by the same Markov process ε (see (2.2))
and r0, r1 are the interest rate functions. Thus, the discounted price process is of the same
structure as S(t), (4.1),

B(t)−1S(t) = S(0) exp

{∫ t

0
T (u; c0 − r0, c1 − r1)du

}

κ(t).

Hence, without loss of generality we assume the interest rates to be 0.
Let Q be the martingale measure for process S, (4.1).
Consider an option with the payoff function H = H (x), H (x) ≥ 0 at the maturity

time U, U > 0.
Let Ai(t |s,ds) := {ε(t) = i, t − τN(t) ∈ (s, s + ds)}, t ∈ (0, U), i = 0, 1. Here

s ∈ (0, t), and τN(t) is the last switching time. Notice that Ai(t |s, ds) ∈ Ft . Consider the
functions


i(x, t |s, ds) =EQ

{
H
(
xe
∫ U
t T (u;c0,c1)duκ(U)/κ(t)

)
| Ai(t |s,ds)

}
Q(Ai(t |s,ds))

=
∫

Ai(t |s,ds)
H
(
xe
∫ U
t T (u;c0,c1)duκ(U)/κ(t)

)
dQ,

0 ≤ s < t ≤ U, i = 0, 1,

see (2.1). Further, let 
i(x, t |s) = lim
ds↓0
i(x, t |s, ds).

Notice that the strategy value at time t ∈ (0, U) equals to

V (t |s) = 
ε(t)(S(t), t |s),
where s = t − τN(t) is the elapsed time since the last switching.
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Fig. 1 Historical volatility under the constant velocities and jump amplitudes (symmetric case): c0 =
1, h0 = −0.05; c1 = −1, h1 = 0.05; λ0 = λ1 = 5
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Fig. 2 Historical volatility under the constant velocities and jump amplitudes (symmetric case): c0 =
1, h0 = −0.05; c1 = −1, h1 = 0.05; λ0 = λ1 = 80
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Conditioning on the first reversal after time t , we see the explicit expressions for
functions 
0(x, t |s) and 
1(x, t |s),


0(x, t |s) =F̄0(U − t + s)E
{
H
(
xel0(τ ;t,U)

)}

+ E

{∫ U

t

f0(u − t + s)
1

(
xel0(τ ;t,u)(1 + h0(u − t + s)), u

)
du

}

,


1(x, t |s) =F̄1(U − t + s)E
{
H
(
xel1(τ ;t,U)

)}

+ E

{∫ U

t

f1(u − t + s)
0

(
xel1(τ ;t,u)(1 + h1(u − t + s)), u

)
du

}

.

(4.3)

Here 
0(·, t) and 
1(·, t) are defined by 
i(x, t) = lim
s↓0 
i(x, t |s), i = 0, 1. Functions


i(·, t), i = 0, 1 correspond to the market process initiated exactly at the switching time.

Fig. 3 Historical volatility under the constant velocities and jump amplitudes: c0 = 1.2, h0 = −0.05;
c1 = 0.6, h1 = −0.02; λ0 = λ1 = 15
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Finally, notice that functions 
0(·, t) and 
1(·, t) solve the following Volterra system:


0(x, t) =F̄0(U − t)E
{
H
(
xel0(τ ;t,U)

}

+ E

{∫ U

t

f0(u − t)
1

(
xel0(τ ;t,u)(1 + h1(u − t)), u

)
du

}

,


1(x, t) =F̄1(U − t)E
{
H
(
xel1(τ ;t,U)

}

+ E

{∫ U

t

f1(u − t)
0

(
xel1(τ ;t,u)(1 + h0(u − t)), u

)
du

}

.

(4.4)

The set of integral (4.3)–(4.4) can be interpreted as the fundamental equation of the mar-
ket model (4.1)–(4.2). In the case of deterministic and constant velocities and jumps these
equations are equivalent to a hyperbolic PDE-system, see in Ratanov (2007a), equation (36).

Remark 5 Consider the model (4.1)–(4.2) with constant ci, hi and ri , i = 0, 1 in the special
case of exponentially distributed iterarrival times, (2.19). The fundamental equations (4.3)–
(4.4) take the form of PDE-system:

∂
i

∂t
(t, x) + cix

∂
i

∂x
(t, x) = (ri + λi)
i(t, x) − λi
1−i (t, x(1+ hi)),

0 < t < T , i = 0, 1.
(4.5)

Fig. 4 Historical volatility under the constant velocities and jump amplitudes: c0 = 1.2, h0 = −0.05;
c1 = 0.6, h1 = −0.02; λ0 = 24, λ1 = 30

Methodol Comput Appl Probab (2015) 17: – 5677 69 691



Equation (4.5) is supplied with the terminal condition


i(x, T ) = H (x). (4.6)

5 Memory Effects. Numerical Results

We demonstrate the memory effects related to the jump-telegraph model by means of the
historical volatility HV(·) defined by

HV(t) :=
√
Var{log S(t)}

t
. (5.1)

For the Black-Scholes model the historical volatility is constant, HV(t) ≡ σ .
The models that capture the memory effects of the market, possess a variable historical

volatility. Consider a moving-average type model, which is described by the log-price

log S(t)/S(0) =at + σw(t) − σ

∫ t

0
dτ
∫ τ

−∞
λ0e−(λ0+λ1)(τ−u)dw(u),

σ , λ1, λ0 > 0,

Fig. 5 Historical volatility under the variable velocities and jump amplitudes: c0(t) = 1.2
1+1.2t , h0 = −0.05

1+1.2t ;
c1 = 0.6

1+0.6t , h1 = −0.02
1+0.6t ; λ0 = 24, λ1 = 30.
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see Anh and Inoue (2005). This model is specially designed for the description of
exponentially decaying memory. The historical volatility is exactly described by

HV(t) = σ

λ0 + λ1

√
λ21 + λ0(2λ1 + λ0)ϕλ(t)/t, (5.2)

where ϕλ is defined by (2.21). See formula (4.8) in Anh and Inoue (2005).
Consider the market model, based on the stochastic exponential of jump-telegraph pro-

cess X = X(t), t ∈ [0, U ], see (4.1). Surprisingly, the historical volatility of this
model agrees with the models of a moving-average type, see Anh and Inoue (2005). For
convenience, we define the historical volatility in jump-telegraph model by HVi (t) :=√

σ i (t)/t, i = 0, 1 instead of (5.1). Here σ 0(t) = Var{X0(t)} and σ1(t) = Var{X1(t)}
solve system (2.23). The explicit formulae for HVi (t) are rather cumbersome, even if the
case of constant and deterministic velocities and jumps. Nevertheless, it is easy to compute
the limits of HVi (t) as t → 0 and as t → ∞:

lim
t→0

HVi (t) = √λi |hi |,

lim
t→∞HVi (t) =

√
λ0λ1

2λ3
[
(λ0B + c)2 + (λ1B − c)2

]
, i = 0, 1,

see (4.5)-(4.6) in Ratanov (2007b). Here the jump-telegraph process X is defined with the
constant velocities c0, c1, c0 > c1 and with the constant jumps h0, h1 > −1; λ = (λ0 +
λ1)/2, B = (h0 + h1)/2 and c = (c0 − c1)/2; the subscript i = ε(0) indicates the initial
market state.

Fig. 6 Historical volatility under the variable velocities and jump amplitudes: c0(t) = −0.5t, h0 = 0.02t;
c1 = −t, h1 = 0.05t; λ0 = 25, λ1 = 20.
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In the symmetric case, λ0 = λ1 = λ, the historical volatility HVi (t), t ≥ 0 can be
expressed by

HVi (t) =
√

c2

λ
+ λB2 + (c + λb)2

ϕ2λ(t)

λt
+ γi

ϕλ(t)

t
+ (−1)i2B(c + λb)e−2λt ,

i = 0, 1,

(5.3)

where b = (h0−h1)/2, γi = −2c
(
c/λ + (−1)ihi

)
, i = 0, 1, see formula (4.2) in Ratanov

(2007b). In particular, if in this symmetric case the jumps are also symmetric, h0 = −h1 =
h, and X is the martingale, c + λh = 0, then B = 0, c + λb = 0 and γ0 = γ1 = 0.
So (5.3) gives the constant historical volatility, HV0 = HV1 ≡ c/

√
λ. In general, formula

(5.3) comports with formulae for historical volatility of the history dependent model with
memory (5.2).

Figures 1–2 contain the plots in the symmetric case. Here HV0 ≡ HV1. Figures 3–4 also
represent the model with constant parameters. In these cases we use directly formula (5.3).

Some other computations and plots of historical and implied volatilities with constant
parameters ci, hi, i = 0, 1, see also in Ratanov (2008).

We compute the historical volatility for the variable (deterministic) velocities and jumps
as the solution of system (2.23) by formula (2.24). Figures 5 and 6 show the result.
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