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Abstract The distances between flats of a Poisson k-flat process in the d-dimensional
Euclidean space with k < d/2 are discussed. Continuing an approach originally due
to Rolf Schneider, the number of pairs of flats having distance less than a given
threshold and midpoint in a fixed compact and convex set is considered. For a family
of increasing convex subsets, the asymptotic variance is computed and a central limit
theorem with an explicit rate of convergence is proven. Moreover, the asymptotic
distribution of the m-th smallest distance between two flats is investigated and it
is shown that the ordered distances form asymptotically after suitable rescaling an
inhomogeneous Poisson point process on the positive real half-axis. A similar result
with a homogeneous limiting process is derived for distances around a fixed, strictly
positive value. Our proofs rely on recent findings based on the Wiener–Itô chaos
decomposition and the Malliavin–Stein method.
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1 Introduction

Point processes of k-dimensional flats in R
d, especially Poisson point processes,

are one of the most classical topics considered in stochastic geometry; cf. Mecke
(1991), Mecke and Thomas (1986) and Weil (1987) for early works, Baumstark
and Last (2009), Hug et al. (2003) and Spodarev (2001, 2003) for more recent
papers and the book Schneider and Weil (2008) for an exhaustive reference. One
of the problems considered in the theory of (Poisson) k-flat processes, the so-called
proximity problem, is to describe the closeness or denseness of the arrangement of
the flats in the case k < d/2, where the flats do not intersect each other (at least
under suitable additional assumptions on their distribution). The notion of proximity
generalizes the well-known second-order intersection density for k-flat processes
in R

d with k ≥ d/2 to the case k < d/2 and was originally introduced in Schneider
(1999). There, only mean values of the proximity functional were considered, but no
higher-order moments, limit theory or extreme values.

In this paper, we focus our attention to the Poisson case, for which we compute
the asymptotic variance of the classical proximity as considered in Schneider (1999)
and establish a Berry-Esseen-type central limit theorem. Moreover, we will not only
deal with a cumulative proximity functional, but also investigate the order statistics
induced by all distances between pairs of distinct flats, in particular the minimal
distance, and the behaviour of the distances around a given positive value. This
alternative approach to the proximity problem gives new insight into the geometry
of Poisson k-flat processes.

The proofs of our limit theorems make use of a general central limit theorem
from Schulte (2012) and a result about point process convergence and extreme
value theory in Schulte and Thäle (2012). They are based on Berry-Esseen type
inequalities in Peccati (2011) and Peccati et al. (2010) that were derived by combining
the Malliavin calculus of variations on the Poisson space with Stein’s method.
The backbone of these methods is the fact that each square integrable Poisson
functional can be represented as orthogonal sum of multiple Wiener–Itô integrals;
see Last and Penrose (2011) and the references therein. It has recently turned out
that this so-called Wiener–Itô chaos decomposition and related limit theorems can
successfully be applied to problems in stochastic geometry. For example, in Reitzner
and Schulte (2012) a general set-up was investigated as well as central limit theorems
for Poisson hyperplanes, Last et al. (2012) deals with moment formulas and very
general geometric functionals of intersection processes of Poisson k-flats, Lachièze-
Rey and Peccati (2011, 2012) consider fine Gaussian fluctuations on the Poisson
space and geometric random graphs. In all these works a crucial role is played by
a special class of Poisson functionals, the so-called Poisson U-statistics.

The text is structured as follows: In Section 2, we introduce the proximity of a
Poisson k-flat process and present our main results, Theorems 1–5. Their proofs rely
on the Wiener–Itô chaos decomposition of Poisson functionals, whose background
is briefly introduced in Section 3. The remaining three sections are devoted to the
detailed proofs of our theorems.
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2 Statement of the Main Results

2.1 Framework

A Poisson process of k-dimensional flats inRd is a Poisson point process on the space
A

d
k of k-dimensional affine subspaces ofRd, where k ∈ {1, 2, . . . ,d− 1} and d ≥ 1.Ad

k
can be equipped with its Borel σ -field as in Schneider and Weil (2008). We let ηt be
such a Poisson process of k-flats having its intensity measure�t given by

∫
A

d
k

f (E) �t(dE) = t
∫
G

d
k

∫
L⊥

f (L+ x) �E⊥ (dx)Q(dE). (1)

Here, f : Ad
k → R is a non-negative measurable function, t > 0, G

d
k is the

Grassmannian of k-dimensional linear subspaces ofRd, �E⊥ is the Lebesgue measure
on E⊥ and Q is a probability measure on G

d
k. The Poisson k-flat process ηt is

stationary, i.e., its distribution is invariant under all translations. In case thatQ is the
invariant probability measure (Haar measure) νk on G

d
k, the distribution of ηt is also

invariant under rotations and we call ηt isotropic. Two subspaces L,M ∈ G
d
k are

said to be in general position if dim(L ∩ M) = max(0,2k− d). Through the paper
we make the following assumption on Q.

(A1) Two independent random subspaces M,L ∈ G
d
k with distribution Q are in

general position with probability one.

Assumption (A1) is for example fulfilled if Q is absolutely continuous with respect
to νk, see Schneider and Weil (2008, Theorem 4.4.5). We note that under (A1) the
flats of ηt are almost surely in general position (which means that the translates to
the origin of any two flats are in general position). We also assume henceforth that

(A2) 1 ≤ k < d/2

holds, which ensures that the flats of ηt do not intersect each other with probability
one (also notice that (A2) implies d ≥ 3).

Before presenting our main findings in the following three subsections, we intro-
duce some notions and notation used in the present paper. Let us write η2

t,�= for the
collection of pairs (E, F) of distinct k-flats of ηt, write dist(x, y) for the Euclidean
distance of two points x, y ∈ R

d and let dist(E, F) be the distance of two k-flats
E, F ∈ A

d
k, i.e., dist(E, F) = inf{dist(x, y) : x ∈ E, y ∈ F}. If E and F are in general

position, this is the distance of two uniquely determined points xE ∈ E and yF ∈ F
and we call m(E, F) := (xE + yF)/2 ∈ R

d the midpoint of E and F. For two linear
subspaces M,L ∈ G

d
k we write [M,L] for the subspace determinant of M and L,

which is the 2k-volume of a parallelepiped generated by two orthonormal bases of
M and L; cf. Schneider and Weil (2008, Chapter 14.1). Furthermore, we denote in
this paper by Vk(K) the intrinsic volume of order k ∈ {0, . . . ,d} of a compact convex
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set K ⊂ R
d; cf. Schneider and Weil (2008, Chapter 14.2). We also write κn for the

volume of the unit ball in Rn (n ≥ 1).

2.2 The Classical Proximity

After these preparations, we can now introduce the proximity functional

πt(K, δ) := 1

2

∑
(E,F)∈η2

t,�=

1{dist(E, F) ≤ δ, m(E, F) ∈ K},

where δ ∈ [0,∞) is a fixed threshold, K is a compact and convex subset of Rd with
Vd(K) > 0 (called convex body in this paper) and where 1{ · } is the usual indicator
function, which is one if the statement in brackets is fulfilled and zero otherwise. In
other words, the functional πt(K, δ) counts the number of pairs of flats in ηt with
distance at most δ and midpoint in K. Schneider has calculated in Schneider (1999)
the mean of πt(K, δ) for K being the unit ball and δ = 1; see also Schneider and
Weil (2008, Theorem 4.4.10). More generally, we have the following result, which
could also be directly deduced from Schneider (1999) or Schneider and Weil (2008,
Theorem 4.4.10).

Theorem 1 The expectation of πt(K, δ) is given by

Eπt(K, δ) = t2

2
κd−2kδ

d−2k Vd(K)

∫
G

d
k

∫
G

d
k

[M,L]Q(dL)Q(dM).

Remark 1 In the isotropic caseQ = νk, we have

ψd,k :=
∫
G

d
k

∫
G

d
k

[M,L] νk(dL) νk(dM) = κkκd−k(d
k

)
κd

, (2)

which is the content of Lemma 4.4 in Hug et al. (2008) or Corollary 4.5.5 in
Materon (1975).

In what follows, we consider a family of increasing observation windows (K�)�≥1

with K� = �K and a convex body K ⊂ R
d and are interested in the asymptotic

behaviour of πt(K�, δ) as � → ∞. We first consider the asymptotic variance of
πt(K�, δ).

Theorem 2 It holds that

lim
�→∞

Vπt(K�, δ)

�d+k
= t3κ2

d−2kδ
2(d−2k) I(K),

where

I(K) =
∫
G

d
k

∫
M⊥

Vk
(
K ∩ (M+ y)

)2
�M⊥(dy)

(∫
G

d
k

[M,L]Q(dL)

)2

Q(dM).
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Remark 2 In the caseQ = νk, I(K) has an interpretation in terms of the order k+ 1
chord-power integral of K, which is defined as

Jk+1(K) :=
∫
A

d
1

V1(K ∩G)k+1 μ1(dG),

where μ1 is the Haar measure on A
d
1 normalized as in Schneider and Weil (2008).

Indeed, we first notice that the rotational average
∫
G

d
k
[M,L] νk(dL) does not depend

on M; cf. Materon (1975, Corollary 4.5.5). Then identity (8.57) in Schneider andWeil
(2008) implies that

I(K) = κk

k+ 1
ψ2

d,k Jk+1(K)

with ψd,k as in Eq. 2.

Remark 3 Theorem 2 shows that the variance of πt(K�, δ) increases to infinity
proportional to the (d+ k)-th power of �. This expresses long-range dependencies
within the random set induced by the k-flat process ηt. A similar behaviour can also
be observed for functionals of k-flat processes with k ≥ d/2 for which we refer to
Last et al. (2012) and the references cited therein.

Having investigated the expectation and the asymptotic variance of the proximity
functional πt(K, δ), we turn now to the central limit problem. Let the family (K�)�≥1

of convex bodies be as above.

Theorem 3 Let N be a standard Gaussian random variable. Then there is a constant
C depending on K, δ and t such that

sup
x∈R

∣∣∣∣∣P
(
πt(K�, δ)− Eπt(K�, δ)√

Vπt(K�, δ)
≤ x

)
− P(N ≤ x)

∣∣∣∣∣ ≤ C �− d−k
2

for � ≥ 1. In particular, we have the convergence in distribution

πt(K�, δ)− Eπt(K�, δ)√
Vπt(K�, δ)

d−→ N as � → ∞.

2.3 Small Distances

In the previous theorems, we have considered the number of midpoints of pairs of
flats in a sequence of increasing observation windows, which have distance below
a given threshold δ. A further natural question is to ask for the shortest or, more
generally, the m-th shortest distance between two flats. To present the result, let
(K�)�≥1 be a family of convex bodies as above. We denote by

ξ (K,t)
� = {dist(E, F) : (E, F) ∈ η2

t,�= and m(E, F) ∈ K�} (3)

the set of all distances between pairs of flats having a midpoint in K� (we count each
value dist(E, F) only once, although (E, F) and (F, E) are both elements of η2

t,�=).
Formally, ξ (K,t)

� can be considered as a point process on the positive real half-line R+.
By D

(K�,t)
m we denote the m-th smallest element in ξ (K,t)

� according to the natural
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ordering on R+. The following theorem describes the asymptotic distributions of
D

(K�,t)
m and ξ (K,t)

� as the window size tends to infinity.

Theorem 4 Def ine

β = t2

2
κd−2kVd(K)

∫
G

d
k

∫
G

d
k

[M,L]Q(dL)Q(dM).

For every u ≥ 0, there exists a constant Cu also depending on K and t such that∣∣∣∣∣P
(
�d/(d−2k)D(K�,t)

m > u
)
− e−βu(d−2k)

m−1∑
i=0

(
βu(d−2k)

)i
i!

∣∣∣∣∣ ≤ Cu �
− d−k

2

for m ∈ {1, 2, 3, . . .} and � ∈ [1,∞). Moreover, the family
(
�d/(d−2k)ξ (K,t)

�

)
�≥1

of
rescaled point processes converges in distribution to a Poisson point process on R+
with the intensity measure

ν(A) = β(d− 2k)
∫
A
ud−2k−1 du, A ⊂ R+ a Borel set.

Remark 4 We notice that

β = t2

2
κd−2k ψd,k Vd(K)

with ψd,k given by Eq. 2 in the case whereQ = νk is the invariant probability measure
on G

d
k.

Remark 5 We notice that e−βu(d−2k)
m−1∑
i=0

(βu(d−2k))i

i! is the tail of the distance from the

origin to the m-th point of a Poisson point processes on R+ with intensity measure ν
as in Theorem 4 above. A similar comment also applies to Theorem 5 below.

Remark 6 In Schulte and Thäle (2012) a similar problem was considered. Namely,
for a pair (E, F) of flats of a stationary and isotropic Poisson k-flat process hitting a
convex body K, the distance distK(E, F) was defined as

distK(E, F) := min
x∈E∩K,y∈F∩K

dist(x, y)

and it was shown that for increasing intensity the ordered distances converge to an
inhomogeneous Poisson point process similar to that in Theorem 4. The fact that
increasing the intensity is up to a factor the same as increasing the window size
implies that that the normalization �d/(d−2k) in Theorem 4 is the same as in Schulte
and Thäle (2012). The constants β , however, are different in both settings since
different pairs of flats and different approaches to measure the distance between
two flats are considered.

2.4 Distances Around a Positive Value

The previous result describes the behaviour of very small distances and it is natural
also to consider large distances. However, the maximal distance (and thus also the
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m-th maximal distance for anym ∈ {1, 2, 3, . . .}) of two flats having their midpoint in
a test set K is not well defined since

sup
(E,F)∈η2

t,�=
m(E,F)∈K

dist(E, F) = ∞ almost surely; (4)

see Section 6 for a proof.
To overcome this difficulty and in order to complete the picture, we fix some σ > 0

and consider the asymptotic behaviour of the point process ξ (K,t)
� defined by Eq. 3

around σ . By D
(K�,t,σ )
m and D

(K�,t,σ )
m , m ∈ {1, 2, 3, . . .}, we denote the m-th element of

ξ (K,t)
� greater or less than σ , respectively.

Theorem 5 Let σ > 0 and def ine

β = t2

2
(d− 2k)κd−2k σ

d−2k−1 Vd(K)

∫
Gd

k

∫
Gd

k

[M,L]Q(dL)Q(dM). (5)

For every u ≥ 0, there is a constant Cu also depending on K, t and σ such that

∣∣∣∣∣P
(
�d

(
D

(K�,t,σ )
m − σ

)
> u

)
− e−βu

m−1∑
i=0

(βu)i

i!

∣∣∣∣∣ ≤ Cu �
− d−k

2

and
∣∣∣∣∣P

(
−�d

(
D

(K�,t,σ )
m − σ

)
> u

)
− e−βu

m−1∑
i=0

(βu)i

i!

∣∣∣∣∣ ≤ Cu �
− d−k

2

for m ∈ {1, 2, 3, . . .} and � ∈ [1,∞). Moreover, the family
(
�d (ξ (K,t)

� − σ)
)
�≥1

of
rescaled and shifted point processes converges in distribution to a homogeneous
Poisson point process on R with intensity β .

Remark 7 In the case where Q is the invariant probability measure νk on G
d
k we

have that

β = t2

2
(d− 2k)κd−2k σ

d−2k−1 ψd,k Vd(K)

with ψd,k given by Eq. 2.

Theorems 4 and 5 show the remarkable fact that very small distances near zero
behave quite different compared with the distances around (i.e., above or below)
every positive value σ . Indeed, in Theorem 4 an inhomogeneous Poisson point
process on R+ appears after normalization with �d/(d−2k), whereas in Theorem 5 a
homogeneous Poisson point process on the whole real line shows up in the limit
after rescaling with �d and the latter can be interpreted as the superposition of two
independent homogeneous Poisson point process on R+ (for the distances greater
than σ ) and on R− (for the distances less than σ ).
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3 Background Material on Chaos Decompositions

We let ηt be a Poisson point process on A
d
k with intensity measure �t given by Eq. 1

and assume that (A1) and (A2) are satisfied. Given n ∈ N we write L2(�n
t ) for the

collection of measurable functions f : (Ad
k)

n → R such that

|| f ||n :=
(∫

(Ad
k)

n
f 2 d�n

t

)1/2

< ∞

and L2
sym(�

n
t ) for the subspace of L2(�n

t ) consisting of functions that are invariant
under permutation of their arguments, so called symmetric functions. We denote the
inner product in L2(�n

t ) by 〈 · , · 〉n.
For f ∈ L2

sym(�
n
t ) we let In( f ) be the (multiple) Wiener–Itô integral of f with

respect to the compensated Poisson process η̂t := ηt −�t (to make sense of the
definition of η̂t, ηt has to be interpreted here as a random point measure so that
the difference ηt −�t is well defined). These stochastic integrals satisfy the following
properties: for n ∈ N and f ∈ L2(�n

t ),

EIn( f ) = 0 (6)

and for n1,n2 ∈ N and f1 ∈ L2
sym(�

n1
t ) and f2 ∈ L2

sym(�
n2
t ) it holds that

E
[
In1 ( f1) In2 ( f2)

] = n1! 〈 f1, f2〉n1 1{n1 = n2}. (7)

For further details on Wiener–Itô integrals we refer the reader to Last and Penrose
(2011), Peccati and Taqqu (2008) and Peccati et al. (2010).

Let g : (Ad
k)

2 → R be integrable with respect to �2
t and be invariant under

permutation of its two arguments. We define

U := 1

2

∑
(E,F)∈η2

t,�=

g(E, F)

and assume that U is square integrable with respect to the distribution of ηt. In this
case, the random variable U is a so-called Poisson U-statistic of order two. It is a
crucial fact that U can be written as

U = EU + I1 ( f1)+ I2 ( f2) (8)

with

EU = 1

2

∫
(Ad

k)
2
g(E, F)�2

t (d(E, F)) (9)

by the classical Slivnyak–Mecke formula (Schneider and Weil 2008, Theorem 3.2.5)
and with f1 ∈ L2

sym(�t) and f2 ∈ L2
sym(�

2
t ) given by

f1(E) =
∫
A

d
k

g(E, F)�t(dF),

f2(E, F) = 1

2
g(E, F);

cf. Lemma 3.5 in Reitzner and Schulte (2012), which is a consequence of the results
in Last and Penrose (2011). The representation Eq. 8 is called the Wiener–Itô chaos
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decomposition of U and we call f1 and f2 its kernels. This decomposition is a very
powerful tool, which will be used extensively in our proofs below. In particular,
squaring the expression in Eq. 8 and using the computation rules (Eqs. 6 and 7),
we find the variance formula

VU = ‖ f1‖2
1 + 2 ‖ f2‖2

2 . (10)

This will be essential in the proof of Theorem 2.
For more details on Poisson U-statistics (of arbitrary order) we refer to Lachièze-

Rey and Peccati (2011, 2012), Last et al. (2012) and Reitzner and Schulte (2012).
Poisson functionals that are a sum of a first and a second order Wiener–Itô integral,
such as the functional U above, were also investigated in Peccati and Taqqu (2008).

4 Proof of Theorems 1 and 2

4.1 A Preparatory Lemma

In order to simplify our notation, we define for E, F ∈ A
d
k,

h(E, F) = 1{m(E, F) ∈ K, dist(E, F) ≤ δ},
where K is a convex body and where δ > 0.

Lemma 1 Let M,L ∈ G
d
k be in general position and def ine W = M+ L. Then

∫
L⊥

h(M,L + x) �L⊥ (dx)

= [M,L]
∫
W⊥

1{‖x‖ ≤ δ}Vk((K− (x/2))∩ M) �W⊥ (dx). (11)

Proof By decomposing x ∈ L⊥ in x = x1 + x2 with x1 ∈ L⊥ ∩ W⊥ = W⊥ and x2 ∈
L⊥ ∩ W, we obtain∫

L⊥
h(M,L + x) �L⊥ (dx)

=
∫
W⊥

∫
L⊥∩W

h (M,L+ x1 + x2) �L⊥∩W (dx2) �W⊥ (dx1) . (12)

By the definition of x1 and x2, M and L+ x2 intersect in a unique point z ∈ W,
m(M,L + x1 + x2) = z+ (x1/2) and dist(M,L+ x1 + x2) = ‖x1‖.

Let BM and BL⊥∩W be matrices whose columns form orthonormal bases of M
and L⊥ ∩W, respectively. Rewrite x2 as x2 = BL⊥∩Wx̃ with x̃ ∈ R

k and replace
integration over L⊥ ∩W in Eq. 12 by integration over Rk. Moreover, we notice that
the intersection point z of M and L + x2 has the representation z = BMz̃, where
z̃ ∈ Rk is the solution of

BT
L⊥∩WBMz̃ = BT

L⊥∩Wx2 = BT
L⊥∩WBL⊥∩Wx̃ = x̃.

This implies that

z̃ = (
BT

L⊥∩WBM
)−1

x̃. (13)
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Using the representation of x2, we now write the inner integral in Eq. 12 as
∫
L⊥∩W

h (M,L+ x1 + x2) �L⊥∩W (dx2)

= 1 {‖x1‖ ≤ δ}
∫
Rk

1
{
m (M,L+ x1 + BMx̃) ∈ K

}
dx̃. (14)

Continuing by using Eq. 13, we find
∫
Rk

1
{
m (M,L+ x1 + BMx̃) ∈ K

}
dx̃

=
∫
Rk

1
{
BM

(
BT

L⊥∩WBM
)−1

x̃ ∈ (K − (x1/2)) ∩ M
}
dx̃

=
∫
Rk

1
{
x̃ ∈ BT

L⊥∩WBMB−1
M (K − (x1/2)) ∩ M

}
dx̃

= Vk
(
BT

L⊥∩WBMB−1
M (K − (x1/2)) ∩ M

)
. (15)

Combining Eq. 14 with Eq. 15 and using the fact that det(BT
L⊥∩WBM) = [M,L], we

arrive at
∫
L⊥∩W

h (M,L+ x1 + x2) �L⊥∩W (dx2)

= [M,L] 1{‖x1‖ ≤ δ}Vk ((K − (x1/2)) ∩ M) .

Integration with respect to W⊥ finally yields Eq. 11. ��

4.2 Proof of Theorem 1

By Eq. 9, the expectation of πt(K, δ) is given by

Eπt(K, δ) = 1

2

∫
A

d
k

∫
A

d
k

h(E, F)�t(dF)�t(dE).

A glance at Eq. 1 shows that this equals

t2

2

∫
G

d
k

∫
G

d
k

∫
M⊥

∫
L⊥

h(M+ y,L+ x) �L⊥(dx) �M⊥(dy)Q(dL)Q(dM). (16)

We evaluate now the inner double integral in Eq. 16. Translating M and L by −y,
substituting x− y and using Lemma 1 thereafter, we obtain

∫
M⊥

∫
L⊥

h(M+ y,L+ x) �L⊥(dx) �M⊥(dy)

=
∫
M⊥

∫
L⊥

1{m(M,L + x) ∈ K − y, dist(M,L+ x) ≤ δ} �L⊥ (dx) �M⊥(dy)

= [M,L]
∫
M⊥

∫
W⊥

Vk
(
(K− y− (x/2)) ∩ M

)
1{‖x‖ ≤ δ} �W⊥ (dx) �M⊥(dy),
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where W = L+ M. Fubini’s theorem further implies that

[M,L]
∫
M⊥

∫
W⊥

Vk
(
(K− y− (x/2)) ∩ M

)
1{‖x‖ ≤ δ} �W⊥ (dx) �M⊥(dy)

= [M,L]
∫
W⊥

∫
M⊥

Vk
(
(K − y− (x/2)) ∩ M

)
1{‖x‖ ≤ δ} �M⊥(dy) �W⊥ (dx)

= [M,L]Vd(K) κd−2kδ
d−2k,

which in view of Eq. 16 completes the proof. ��

Remark 8 The above proofs of Lemma 1 and Theorem 1 are very similar to that of
the main result in Schneider (1999) and use the same ideas, generalized to a slightly
more general setting. We decided to state the first part as lemma since Eq. 11 is
applied several times below.

4.3 Proof of Theorem 2

First, Eq. 8 implies that the proximity functional πt(K, δ) has chaos decomposition

πt(K, δ) = Eπt(K, δ)+ I1( f
(K,δ,t)
1 )+ I2( f

(K,δ,t)
2 ).

Here, the kernels f (Kδ,t)
n (n = 1, 2) are given by

f (K,δ,t)
1 (M+ y) =

∫
A

d
k

h(M + y, F)�t(dF) (17)

for M ∈ G
d
k and y ∈ M⊥ and

f (K,δ,t)
2 (E, F) = 1

2
1{m(E, F) ∈ K, dist(E, F) ≤ δ} (18)

for E, F ∈ A
d
k, respectively. Now, the variance formula in Eq. 10 implies that

Vπt(K, δ) = ‖ f (K,δ,t)
1 ‖2

1 + 2‖ f (K,δ,t)
2 ‖2

2. (19)

We determine the asymptotic behaviour of the right hand side in Eq. 19. For the
second term we find

‖ f (K,δ,t)
2 ‖2

2 = 1

4

∫
A

d
k

∫
A

d
k

1{m(E, F) ∈ K, dist(E, F) ≤ δ}2 �t(dE) �t(dF)

= t2

4
κd−2k δ

d−2k Vd(K)

∫
G

d
k

∫
G

d
k

[L, M]Q(dL)Q(dM)

by using the formula for Eπt(K, δ) in Theorem 1. Thus,

lim
�→∞

‖ f (K� ,δ,t)
2 ‖2

2

�d+k
= lim

�→∞
t2

4
κd−2k δ

d−2kVd(K)�−k

×
∫
G

d
k

∫
G

d
k

[M,L]Q(dL)Q(dM) = 0. (20)
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We continue with the first term in Eq. 19 and observe that Eq. 1 and Lemma 1 imply
that

f (K,δ,t)
1 (M+ y)

=
∫
Ad

k

h(M + y, F)�t(dF)

= t
∫
G

d
k

∫
L⊥

h(M+ y, L+ x) �L⊥(dx)Q(dL)

= t
∫
G

d
k

∫
W⊥

Vk
(
(K − y− (x/2)) ∩ M

)
1{‖x‖ ≤ δ} �W⊥ (dx) [M,L]Q(dL),

where, as before, W = L+ M. We now observe that the scaling relation

f
(K� ,δ,t)
1 (M+ y) = �d−k f (K,δ/�,t)

1 (M+ (y/�)) (21)

holds. Indeed, from a simple change of variables and from the fact that dimW⊥ =
d− 2k it follows that∫

W⊥
Vk

(
(K� − y− (x/2)) ∩ M

)
1{‖x‖ ≤ δ} �W⊥ (dx)

= �k
∫
W⊥

Vk
(
(K− (y/�)− (x/2�)) ∩ M

)
1{‖x‖ ≤ δ} �W⊥ (dx)

= �d−k
∫
W⊥

Vk
(
(K− (y/�)− (x/2))∩ M

)
1{‖x‖ ≤ δ/�} �W⊥ (dx),

which shows Eq. 21. As a consequence, we have

‖ f (K� ,δ,t)
1 ‖2

1 = �2(d−k) t
∫
Gd

k

∫
M⊥

f (K,δ/�,t)
1 (M+ (y/�))2 �M⊥(dy)Q(dM)

= �3(d−k) t
∫
G

d
k

∫
M⊥

f (K,δ/�,t)
1 (M+ y)2 �M⊥(dy)Q(dM). (22)

Moreover, the dominated convergence theorem implies that

lim
�→∞ �d−2k f (K,δ/�,t)

1 (M+ y)

= t
∫
Gd

k

lim
�→∞ �d−2k

∫
W⊥

Vk
(
(K− y− (x/2)) ∩ M

)

× 1{‖x‖ ≤ δ/�} �W⊥ (dx) [M,L]Q(dL)

= t κd−2k δ
d−2k Vk

(
(K− y) ∩ M

) ∫
G

d
k

[M,L]Q(dL)

= t κd−2k δ
d−2k Vk

(
K ∩ (M+ y)

) ∫
G

d
k

[M,L]Q(dL),

where we used that Vk
(
(K − y− (x/2) ∩ M)

)
behaves like Vk

(
(K − y) ∩ M

)
when-

ever ‖x‖ is small. Combining this with Eq. 22, writing �3(d−k) as �2(d−2k)�d+k and
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applying the dominated convergence Theorem once again, yields

lim
�→∞

‖ f (K� ,δ,t)
1 ‖2

1

�d+k
= t3 κ2

d−2k δ
2(d−2k) I(K)

with I(K) as in the statement of the theorem. This together with the asymptotic
behaviour (Eq. 20) of the second term in the variance expansion (Eq. 19) of the
proximity functional proves the claim. ��

5 Proof of Theorem 3

5.1 A General Bound

For two random variables Y and Z define the Kolmogorov distance dK(Y, Z ) by

dK(Y, Z ) = sup
x∈R

|P(Y ≤ x)− P(Z ≤ x)|.

This is to say, dK(Y, Z ) is the supremum norm of the difference between the
distribution functions of Y and Z . We consider a second-order Poisson U-statistic

U = 1

2

∑
(E,F)∈η2

t,�=

g(E, F),

where we assume that g is bounded, symmetric and satisfies

�2
t

({
(E, F) ∈ A

d
k ×A

d
k : g(E, F) �= 0

})
< ∞, t > 0.

We denote the kernels of the chaos decomposition of U given in Eq. 8 by f1 and f2
and define M11 by

M11 =
∫
A

d
k

f1(E)4 �t(dE).

We also define M12 by

M12 = 8
∫
(Ad

k)
3
f1 (E1) f2 (E1, E2) f1 (E3) f2 (E2, E3) �

3
t (d (E1, E2, E3))

+ 4
∫
(Ad

k)
2
f1 (E1) f2 (E1, E2) f1 (E2) f2 (E1, E2) �

2
t (d (E1, E2))

and finally M22 by

M22 = 48
∫
(Ad

k)
4
f2 (E1, E2) f2 (E2, E3) f2 (E3, E4)

× f2 (E4, E1) �
4
t (d (E1, E2, E3, E4))

+ 96
∫
(Ad

k)
3
f2 (E1, E2) f2 (E1, E3) f2 (E1, E3)

× f2 (E2, E3) �
3
t (d (E1, E2, E3))

+ 8
∫
(Ad

k)
2
f2 (E1, E2)

4 �2
t (d (E1, E2)) .

We can now rephrase a special situation of Theorem 4.2 in Schulte (2012).
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Proposition 1 LetN be a standard Gaussian random variable. Then

dK

(
U − EU√

VU
,N

)
≤ 1088

√
M11 +

√
M12 +

√
M22

VU
. (23)

5.2 Proof of Theorem 3

Let us introduce the abbreviation

π� := πt(K�, δ) = 1

2

∑
(E,F)∈η2

t,�=

1{m(E, F) ∈ K�, dist(E, F) ≤ δ}.

Since t, K and δ are fixed in the following, we suppress this dependency in our
notation. We further let f (�)1 and f (�)2 be the kernels of the Wiener–Itô chaos
decomposition of π� given by Eqs. 17 and 18, respectively. In the following, we prove
Theorem 3 by bounding the right hand side of Eq. 23 for the Poisson U-statistic
U = π� .

Step 1: An inequality for f (�)1 . We show that

f (�)1 (E) = �t
({F ∈ A

d
k : f (�)2 (E, F) �= 0}) ≤ C�k (24)

for all E ∈ A
d
k, where C = tκkκd−2kδ

d−2k (diam(K)/2)k. To see the equality we notice
that

f (�)1 (E) =
∫
Ad

k

1{m(E, F) ∈ K�, dist(E, F) ≤ δ}�t(dF)

= �t
({F ∈ A

d
k : m(E, F) ∈ K�, dist(E, F) ≤ δ})

= �t
({F ∈ A

d
k : f (�)2 (E, F) �= 0}).

The estimate in Eq. 24 is a consequence of Eq. 17, Lemma 1 and the inequality
Vk(K̃) ≤ κk(diam(K̃)/2)k from Bonnesen and Fenchel (1934, page 76) for a convex
body K̃ ⊂ R

k. Indeed, writing E = M + x and W = M + L, it holds that

f (�)1 (E) = f (�)1 (M+ x)

= t
∫
G

d
k

[M,L]
∫
W⊥

1{‖y‖ ≤ δ}Vk
(
(K� − x− (y/2)) ∩ M

)
�W⊥ (dy)Q(dL)

≤ t
∫
G

d
k

[M,L]
∫
W⊥

1{‖y‖ ≤ δ} κk (diam(K�)/2)k �W⊥ (dy)Q(dL)

≤ tκkκd−2kδ
d−2k (diam(K)/2)k �k,

where we have used additionally the fact that [M,L] ≤ 1.

Step 2: Completing the proof. Let Bd
δ be the d-dimensional centred ball with radius

δ and denote by + the usual Minkowski sum.
All integrands occurring in M11, M12 and M22 have the structure that after

choosing the first k-flat E hitting K� + Bd
δ , the second flat must be in the set

{F ∈ A
d
k : f (�)2 (E, F) �= 0} or the integrand is zero otherwise. For the remaining flats
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there are similar conditions so that, by Step 1, the measure of the support of each
integrand is at most

�t
([K� + Bd

δ ]
)
(C�k)m−1 ≤ �t

([K + Bd
δ ]

)
Cm−1�d+(m−2)k

for � ≥ 1. Here, m ∈ {1, 2, 3, 4} is the number of k-flats the integration runs over
and for a set A ⊂ R

d, [A] stands for the collection of k-flats that have non-empty
intersection with A. Combining this with the fact that f (�)1 ≤ C�k, recall Eq. 24, and
f (�)2 ≤ 1

2 , we obtain

M11 ≤ C4 �t
([K + Bd

δ ]
)
�d+3k,

M12 ≤ 2C4 �t
([K + Bd

δ ]
)
�d+3k + C3 �t

([K + Bd
δ ]

)
�d+2k,

M22 ≤ 3C3 �t
([K + Bd

δ ]
)
�d+2k + 6C2 �t

([K + Bd
δ ]

)
�d+k

+C
2
�t

([K + Bd
δ ]

)
�d.

On the other hand, Theorem 2 tells us that Vπ� is asymptotically of order �d+k,
so that

√
M11/Vπ� ,

√
M12/Vπ� and

√
M22/Vπ� are of order �−(d−k)/2 or less and

Proposition 1 implies Theorem 3. ��

6 Proofs of Theorems 4, 5 and Eq. 4

6.1 An Auxiliary Limit Theorem

We consider the following general setting. Let (g�)�≥1 be a family of symmetric
functions g� : (Ad

k)
2 → R satisfying �2

t

(
g−1
� ([−u,u])) < ∞ for all u ≥ 0 (this will

always be the case in our applications below). Next, we define a point process

ξ� = {
g�(E, F) : (E, F) ∈ η2

t,�=, m(E, F) ∈ K�

}
on R, where we count the point g�(E, F) = g�(F, E) only once and where the family
(K�)�≥1 is a family of convex bodies as in Section 2 (that ξ� is indeed a point processes

follows from our assumption on g�). By D
(�)

m we denote the m-th smallest point of ξ�
greater than zero and D(�)

m stands for the m-th largest point of ξ� less than zero (with
respect to the natural ordering). To neatly formulate a result about the asymptotic
distributions of ξ�, D

(�)

m and D(�)
m , we use the following notation. For γ > 0 and a,b ∈

R with a < b let us define

α�(a,b ) = 1

2
E

∑
(E,F)∈η2

t,�=

1
{
m(E, F) ∈ K�, �

−γ a < g�(E, F) ≤ �−γ b
}
,

which is the expected number of pairs of flats with midpoint in K� such that �−γ a <
g�(E, F) ≤ �−γb . We further define

r�(u) = sup
E∈Ad

k

�t
({
F ∈ A

d
k : m(E, F) ∈ K�, −�−γu ≤ g�(E, F) ≤ �−γu

})

for any u > 0. We are now in the position to formulate a two-sided version of
Theorem 1.1 in Schulte and Thäle (2012).
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Proposition 2 Let γ > 0 and let ν be a σ -f inite non-atomic Borel measure on R

such that

lim
�→∞α�(a,b ) = ν

(
(a,b ]) and lim

�→∞ r�(u) = 0 (25)

for any−∞ < a < b < ∞ and u > 0. Then there is a constant Cu for every u ≥ 0 such
that∣∣∣∣∣P

(
�γ D

(�)

m > u
) − e−ν((0,u])

m−1∑
i=0

ν((0,u])i
i!

∣∣∣∣∣ ≤
∣∣ν((0,u])− α�(0,u)

∣∣ + Cu

√
r�(u)

and∣∣∣∣∣P
(
�γ D(�)

m < −u
) − e−ν((−u,0])

m−1∑
i=0

ν((−u,0])i
i!

∣∣∣∣∣ ≤
∣∣ν((−u, 0])− α�(−u, 0)

∣∣+ Cu

√
r�(u)

for all m ∈ {1, 2, 3, . . .} and � ∈ [1,∞). Furthermore, the rescaled point processes(
�γ ξ�

)
�≥1 converge in distribution to a Poisson point process on R with intensity

measure ν.

Remark 9 In Schulte and Thäle (2012), it is assumed that functions (g�)�≥1 are
non-negative and that the measure ν satisfies ν(du) = β τuτ−1 1{u > 0}du for some
constants β, τ > 0. However, these assumptions—tailored to the applications in that
paper—can be relaxed so that Proposition 2 can be shown by repeating literally the
proof of Theorem 1.1 in Schulte and Thäle (2012).

The assumptions on ν in the statement of Proposition 2 ensure that a Poisson point
process on R with intensity measure ν exists; cf. Chapter 12 in Kallenberg (2002).

In contrast to α�(a,b ), it is not necessary to consider r� for arbitrary intervals
(a,b ] because (a,b ] ⊂ [−u, u] for an appropriate choice of u and lim

�→∞ r�(u) = 0 for

all u > 0 already implies the same behaviour for all (a,b ] with −∞ < a < b < ∞.

6.2 Proof of Theorem 4

We apply Proposition 2 to the functions (g�)�≥1 given by

g�(E, F) = dist(E, F).

It remains to determine γ and the measure ν as well as to check the condition of
Eq. 25. As a consequence of Theorem 1, we find that

α�(a,b ) = Eπt(K�, (�
−γb )+)− Eπt(K�, (�

−γ a)+)

= t2

2
κd−2kVd(K) �d((�−γb )d−2k

+ − (�−γ a)d−2k
+

)

×
∫
Gd

k

∫
Gd

k

[M,L]Q(dL)Q(dM)

for any reals a < b (here x+ = max{x, 0} for x ∈ R). Thus, choosing γ = d/(d− 2k)
and putting ν as in the statement of the Theorem, we obtain

α�(a,b ) = ν
(
(−∞,b ]) − ν

(
(−∞,a]) = ν

(
(a,b ])
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for all −∞ < a < b < ∞. Moreover, from Eq. 24 in Step 1 of the proof of Theorem
3 it follows that

r�(u) = sup
E∈Ad

k

�t
({
F ∈ A

d
k : m(E, F) ∈ K�, 0 ≤ dist(E, F) ≤ �−d/(d−2k)u

})

≤ tκkκd−2k(diam(K)/2)kud−2k�−(d−k),

which because of k < d tends to zero, as � → ∞ for any u ≥ 0. So, Theorem 4 is a
direct consequence of Proposition 2. ��

6.3 Proof of Theorem 5

Let us apply Proposition 2 to the family of functions (g�)�≥1 given by

g�(E, F) = dist(E, F)− σ

so that the point process ξ (K,t)
� in Theorem 5 and the point process ξ� in Proposition

2 are related by ξ (K,t)
� = ξ� + σ . As a consequence of Theorem 1, we find that in this

case

α�(a,b ) = Eπt

(
K�,

(
σ + �−γb

)
+
)
− Eπt

(
K�,

(
σ + �−γ a

)
+
)

= t2

2
κd−2kVd(K)�d

((
σ + �−γb

)d−2k
+ − (

σ + �−γ a
)d−2k
+

)

×
∫
G

d
k

∫
G

d
k

[M,L]Q(dL)Q(dM)

for any reals a < b (again, x+ = max{x, 0} for x ∈ R). Since σ + �−γ a → σ and σ +
�−γb → σ as � → ∞ for all reals a < b , the measure ν is this time supported on the
whole real axis. Together with γ = d in the equation for α�(a,b ) above, we obtain
that

lim
�→∞α�(a,b ) = β (b − a) for all reals a < b ,

where β is given by Eq. 5. Moreover, there is a finite constant C(1)
a,b > 0 for any a < b

also depending on K, t and σ such that
∣∣α�(a,b )− β(b − a)

∣∣ ≤ C(1)
a,b�

−d for � ≥ 1.
Using Lemma 1 and [M,L] ≤ 1 in a similar way as in the proof of Eq. 24, we have
for any u > 0,

r�(u) = sup
E∈Ad

k

�t
({
F ∈ A

d
k : m(E, F) ∈ K�, −�−du ≤ dist(E, F)− σ ≤ �−du

})

= t sup
M∈Gd

k,y∈M⊥

∫
G

d
k

∫
(M+L)⊥

Vk
(
(K� − (x/2)− y) ∩ M

)

× 1
{
σ − �−du ≤ ‖x‖ ≤ σ + �−du

}
�(M+L)⊥(dx)[M,L]Q(dL)

≤ t κk(diam(K)/2)k�kκd−2k

((
σ + �−du

)d−2k − (
σ − �−du

)d−2k
)

≤ C(2)
u �−(d−k)
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for all � ≥ 1 with a finite constant C(2)
u > 0 depending on K, t, σ and u. Thus, the

conditions in Eq. 25 are satisfied with γ = d there and with ν equal to β times the
Lebesgue measure on R, where β is given by Eq. 5. Whence Theorem 5 is again a
consequence of Proposition 2. ��

6.4 Proof of Eq. 4

Since each convex body includes a ball with positive radius, it is sufficient to assume
that K = Bd

r , where Bd
r ⊂ R

d is a ball with fixed radius r > 0 around the origin. For
n = 1,2, 3, . . . we define Poisson U-statistics

Sn = 1

2

∑
(E,F)∈η2

t,�=

1{m(E, F) ∈ Bd
r , an < dist(E, F) ≤ bn}

with an = 2(3n− 1)r and bn = 6nr. From Theorem 1, it follows that

ESn = Eπt
(
Bd

r ,bn
) − Eπt

(
Bd

r , an
) = c1

(
bd−2k
n − ad−2k

n

)

with c1 = Eπt(Bd
r , 1). Sn has a Wiener–Itô chaos decomposition

Sn = ESn + I1( f
(n)
1 )+ I2( f

(n)
2 )

with kernels

f (n)1 (E) =
∫
A

d
k

1
{
m(E, F) ∈ Bd

r , an < dist(E, F) ≤ bn
}
�t(dF)

and

f (n)2 (E, F) = 1

2
1
{
m(E, F) ∈ Bd

r , an < dist(E, F) ≤ bn
}
.

As a consequence of Lemma 1, we have

f (n)1 (E) ≤ c2
(
bd−2k
n − ad−2k

n

)
for E ∈ A

d
k,

where c2 = tκkκd−2k rk
∫
G

d
k
[M,L]Q(dL) and where M ∈ G

d
k is E shifted to the origin.

Hence, we obtain

VSn = ‖ f (n)1 ‖2
1 + 2‖ f (n)2 ‖2

2 ≤ 2c2
(
bd−2k
n − ad−2k

n

)
ESn + ESn.

In order to belong to a pair (E, F) with an < dist(E, F) ≤ bn and m(E, F) ∈ Bd
r ,

a flat E ∈ A
d
k must satisfy an

2 − r < dist(E, 0) ≤ bn
2 + r. Since an

2 − r = (3n− 2)r and
bn
2 + r = (3n+ 1)r, the random variables (Sn)n∈N are determined by disjoint sets of
k-flats and are independent by the Poisson assumption on ηt. As a consequence,
the normalized random variables S̃n = Sn/ESn with ES̃n = 1 for any n ≥ 1 are
independent, too. Together with the fact that bd−2k

n − ad−2k
n ≥ (bn − an)d−2k, we

obtain

VS̃n = (ESn)
−2

VSn ≤ 2c2

c1
+ 1

c1

(
bd−2k
n − ad−2k

n

) ≤ 2c2

c1
+ 1

c1(2r)d−2k
< ∞.
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Now, a version of the strong law of large numbers for independent, but not identically
distributed random variables yields that

lim
N→∞

1

N

N∑
n=1

S̃n = 1 with probability one;

see Kallenberg (2002, Corollary 4.22). Since each Sn is almost surely bounded, this
means that there is almost surely a sequence (nk)k∈N with Snk > 0 for all k. This
implies Eq. 4. ��
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