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Abstract The finite Markov Chain Imbedding technique has been successfully ap-
plied in various fields for finding the exact or approximate distributions of runs and
patterns under independent and identically distributed or Markov dependent trials.
In this paper, we derive a new recursive equation for distribution of scan statistic
using the finite Markov chain imbedding technique. We also address the problem
of obtaining transition probabilities of the imbedded Markov chain by introducing
a notion termed Double Finite Markov Chain Imbedding where transition proba-
bilities are obtained by using the finite Markov chain imbedding technique again.
Applications for random permutation model in chemistry and coupon collector’s
problem are given to illustrate our idea.
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1 Introduction

Fu and Koutras (1994) proposed the finite Markov chain imbedding (FMCI) tech-
nique to derive the exact distributions associated with several runs statistics in either
independent and identically distributed (i.i.d.) or Markov dependent trials. It has
been shown in the literature that the FMCI technique has been successfully applied in
many areas, such as reliability (Cui et al. 2010), quality control (Chang and Wu 2011),
boundary crossing problem (Fu and Wu 2010). In particular, the FMCI technique has
been shown to be useful in some classic random permutation problems, for example
number of successions (Fu 1995) and Eulerian and Simon Newcomb numbers (Fu
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et al. 1999); however, sometimes it can be very tedious using combinatorial method.
Hence, the FMCI technique is often served as an alternative to the combinatorial
method for finding the exact distributions.

The fundamental theory of FMCI relies on the Chapman–Kolmogorov equation,
whose central idea depends on being able to imbed or turn a statistic or a random
variable into a finite Markov chain, and the distribution of the statistic is obtained
via transition matrices of the imbedded Markov chain. In many problems, the
imbedding procedures of turning non-Markov random variables into Markov chains
are implemented case by case. Fu (1996) developed a procedure called “forward
and backward principle” to systematically carry out the imbedding procedure and
obtained the exact distributions for general runs and patterns in multistate trails.
The forward and backward principle demonstrates how to construct an imbedded
Markov chain carrying all the information included in the original random variable
or statistic.

In the literature, many authors have shown how to imbed a finite Markov chain;
however, the difficulty of obtaining the transition probabilities of the imbedded
Markov chain has not been addressed and studied. Without explicit transition prob-
abilities, the FMCI technique may fail to obtain the desired distributions. To extend
the flexibility and usefulness of the FMCI technique, we introduce an extension of
the FMCI technique called double finite Markov chain imbedding (DFMCI). The
motivation of DFMCI is the desire to resolve the difficulty mentioned above and
the idea is to use the FMCI technique repeatedly to explicitly obtain the transition
probabilities of the imbedded Markov chain.

This paper is organized in the following way. Section 2 provides the formulation of
the FMCI technique. A new recursive equation for distribution of scan statistic using
the FMCI technique is obtained, demonstrating the ability of the FMCI technique.
In Section 3, we introduce the idea of DFMCI and show how to implement the
procedure for two practical problems: random permutation model in chemistry and
coupon collector’s problem.

2 Finite Markov Chain Imbedding Technique

Definition 1 (FMCI, Fu and Lou 2003) A non-negative integer-valued random
variable Xn, taking values in �Xn = {0, 1, . . . , �n}, is finite Markov chain imbeddable
if there exists a finite Markov chain {Yt} defined on a finite state space � =
{a1, a2, . . . , am} of size m with initial probability vector ξ 0 such that

P(Xn = x) = P(Yn ∈ Cx|ξ0) = ξ0MnU
′
(Cx), x ∈ �Xn , (1)

where Cx is a subset of � corresponding to x, U(Cx) = ∑
r : ar∈Cx

er, er is a 1 × m unit
row vector corresponding the state ar, and M is the transition probability matrix of
the imbedded Markov chain. Note that if the Markov chain is nonhomogeneous,
then the right hand side of Eq. 1 becomes the product of the transition probability
matrices.
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First-entry probability or absorption probability appears in many statistical prob-
lems and it is an important feature of the FMCI technique. If there is an absorbing
state α in �, then the transition matrix M can be partitioned as

M =
[

N C
0 1

]

m×m

. (2)

Define the stopping time

T = inf{t : Yt = α},
then it follows from Eq. 1 that

P(T ≤ t) = P(Yt = α) = ξ 0Mte′
m = 1 − ξ 0Nt1

′
, (3)

and the mean E(T) and the probability generating function ϕT(s) of T are, respec-
tively, given by

E(T) = ξ 0(I − N)−11
′
, (4)

ϕT(s) = 1 + (s − 1)ξ 0(I − sN)−11
′
, (5)

where 1
′
is a column vector with all elements 1.

2.1 A New Recursive Equation for Scan Statistic

Let {Xi} be a sequence of i.i.d. two-state {0, 1}-valued trials with probabilities p0 and
p1, respectively. The scan statistic Sn(w) of window size w is defined by

Sn(w) = max
1≤t≤n−w+1

S(w, t),

where S(w, t) = ∑t+w−1
i=t Xi.

Fu (2001) studied the exact distribution of scan statistic where the probability
P(Sn(w) < s) is expressed as the tail probability of waiting time variable of a
compound pattern which has been shown to be finite Markov chain imbeddable and
studied extensively. Here, we propose another imbedding procedure which leads to
a recursive equation for distribution of scan statistic. In order to construct a Markov
chain {Yt} carrying all the information for a scan statistic of window size w, we choose
to keep track of locations of successes (1’s) counting backward in a window of size w

at each time t. Given window size w, we define a state space

� = {0} ∪ {x1 · · · x j : x j = 1, 2, . . . , w, x1 < · · · < x j and j = 1, 2, . . . , w}.
We further define a finite Markov chain {Yt} on the state space �. It is clear that Yt

includes the locations of successes and total number of successes in the window of size
w at time t. For example, given n = 10 and w = 4 with outcomes 0100001101, it fol-
lows the state space � = {0, 1, 2, 12, 3, 13, 23, 123, 4, 14, 24, 124, 34, 134, 234, 1234}
and the realization of the Markov chain {Yt : t = 0, . . . , 10} is {Y0 = 0, Y1 = 0, Y2 =
1, Y3 = 2, Y4 = 3, Y5 = 4, Y6 = 0, Y7 = 1, Y8 = 12, Y9 = 23, Y10 = 134}. We say that
state 134 is of length 3 denoted by �(134) = 3 and other states apply by analogy
except for state 0 which is defined to be of length zero.
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In order to derive the recursive formula, we consider each state being a base-2
number and we attach each state a label obtained by transforming the base-2 number
into a base-10 number plus one. For example, state 13 is attached a label 21−1 +
23−1 + 1 = 6 and state 24 is assigned with a label 22−1 + 24−1 + 1 = 11. In particular,
state 0 receives a label 1; i.e.

state: 0 1 2 12 3 13 23 123 4 14 24 124 34 134 234 1234
label: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

By such labeling, the transition probabilities of the finite Markov chain {Yt} are
given by

P(Yt = v|Yt−1 = u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p0 if vL = 2uL − 1 and u does not contain the character w,

p1 if vL = 2uL and u does not contain the character w,

p0 if vL = 2(uL − 2w−1)−1 and u contains the character w,

p1 if vL = 2(uL − 2w−1) and u contains the character w,

0 otherwise,

(6)

where uL and vL are labels associated with states u and v, respectively. It follows
from Eq. 6 that the transition matrix of {Yt} has the form as follows: for example
w = 4,

M =

0
1
2

12
3

13
23

123
4

14
24

124
34

134
234

1234

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p0 p1 0
p0 p1

p0 p1
p0 p1

p0 p1
p0 p1

p0 p1
0 p0 p1

p0 p1
p0 p1

p0 p1
p0 p1

p0 p1
p0 p1

0 p0 p1
p0 p1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (7)

Let at(vL) = P(Yt = v), it follows from Eqs. 6 and 7 that we have the following
recursive equations for at(vL): t = 1, . . . , n, and vL = 1, . . . , 2w,

if vL = odd,

at(vL) = p0at−1

(
vL + 1

2

)

+ p0at−1

(

2w−1 + vL + 1

2

)

, (8)

if vL = even,

at(vL) = p1at−1

(vL

2

)
+ p1at−1

(
2w−1 + vL

2

)
, (9)

with initial conditions a0(1) = 1 and a0(vL) = 0 if vL �= 1.
For given s ≤ w, the probability P(Sn(w) < s) can be obtained from the above

recursive equations with some modification. The event {Sn(w) < s} represents that
the Markov chain {Yt} never attains states of length greater than or equal to s. Thus,
from Eqs. 8 and 9, it yields the following theorem.
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Theorem 1 Given n, window size w and s, we have

P(Sn(w) < s) =
∑

vL∈As

an(vL),

where As is a set of labels associated with states of length less than s, and an(vL) satisf ies
the following recursive equations: t = 1, . . . , n, and vL = 1, . . . , 2w,

if vL = odd,

at(vL) = p0at−1

(
vL + 1

2

)

+ p0at−1

(

2w−1 + vL + 1

2

)

, (10)

if vL = even,

at(vL) = p1at−1

(vL

2

)
+ p1at−1

(
2w−1 + vL

2

)
, (11)

with initial conditions a0(1) = 1 and a0(vL) = 0 if vL �= 1, and at(vL) = 0 if vL /∈ As

for all 0 < t ≤ n.

From the above recursive equations, we can derive the recursive equation for
P(Sn(w) < s). A state of length s − 1 at time n may be entered from a state of length
s with w in it at time n − 1, combined with Xn = 0. It follows that the later in our
recursive equations has probability 0 and should be excluded from the probability
P(Sn(w) < s − 1). This yields the following corollary.

Corollary 1 For s ≥ 1, we have

P(Sn(w) < s) = P(Sn−1(w) < s) − p1

∑

vL∈Bs

an−1(vL),

where Bs is a set of labels associated with states of length s − 1 without w in the states.

Remark 1 Table 1 provides the probabilities P(Sn(w) < s) for n = 200, w = 25 and
s = 1, 2, . . . , 24, under p0 = p1 = 0.5. Our result can be easily extended to Markov
dependent sequences by simply replacing p0 and p1 by the transition probabilities
of the underlying Markov chains including nonhomogeneous Markov chains. The
probability generating function for P(Sn(w) < s) is not provided since it can be
derived straightforward from the definition of probability generating function and
our recursive equations.

Table 1 Probabilities P(Sn(w) < s) for n = 200, w = 25 and s = 1, 2, . . . , 24, under p0 = p1 = 0.5

s P(S200(25) < s) s P(S200(25) < s) s P(S200(25) < s) s P(S200(25) < s)

1 6.2230 ×10−61 7 4.1149 ×10−22 13 4.5828 ×10−5 19 7.7126 ×10−1

2 4.0210 ×10−52 8 4.3051 ×10−18 14 1.1503 ×10−3 20 9.1690 ×10−1

3 1.7588 ×10−44 9 1.3730 ×10−14 15 1.3381 ×10−2 21 9.7722 ×10−1

4 8.6885 ×10−38 10 1.4531 ×10−11 16 7.8447 ×10−2 22 9.9536 ×10−1

5 6.8185 ×10−32 11 5.4854 ×10−9 17 2.5636 ×10−1 23 9.9933 ×10−1

6 1.0801 ×10−26 12 7.8800 ×10−7 18 5.2588 ×10−1 24 9.9994 ×10−1
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3 Double Finite Markov Chain Imbedding

In the previous section, we introduce some basic results for the FMCI technique.
The transition matrix of the imbedded Markov chain plays an important role of
this technique, as in the scan statistic problem, it is completely characterized by the
transition probabilities of the imbedded Markov chain {Yt}, p0 and p1. However,
there are problems suffering from the difficulty of finding the transition probabilities,
or finding the transition probabilities is not as easy as it is in the above scan statistic
problem. We introduce a notion of DFMCI in the following. Each row of transition
matrix of an imbedded Markov chain sums to one and can be considered as a
distribution of some random variable. If the random variable possesses Markov
property or is finite Markov chain imbeddable, then the distribution of the random
variable or transition probabilities of the imbedded Markov chain can be obtained
by using the FMCI technique again. In this section, we will show the details to
implement FMCI and DFMCI procedures for a random permutation model in
chemistry and three variations of coupon collector’s problem.

3.1 Random Permutation in Chemistry

A classic hat-check problem is well-known and various variations have been pro-
posed and studied in the literature, for example see Ross and Peköz (2007) and
Scoville (1966). Brown et al. (2008) studied a variation: a model for chemical bonding
process arising in chemistry. The problem can be formulated as follows: n elements
are numbered from 1 to n, and randomly permuted. If the element k + 1 is located
to the right of the element k, then elements k and k + 1 are bonded and form a
cluster. Similarly, if a cluster ending with number k is followed by a cluster starting
with number k + 1, then they form a new cluster. This process is repeated until there
is only one cluster remaining. A random variable Tn is defined as the number of
random permutations such that only one cluster is left. We study the distribution of
Tn by using DFMCI in the following.

First we define Ym to be the number of clusters after m permutations. Clearly,
{Ym} is a finite Markov chain defined on a state space � = {1, 2, . . . , n}. In the
beginning, each number is considered as a cluster, hence state n is the initial state,
and state 1 is regarded as an absorbing state α. Utilizing the FMCI technique,
we have

P(Tn > t) = P(Y1 �= α, Y2 �= α, . . . , Yt �= α) = ξ 0Nt1
′
, (12)

where ξ 0 = (0, 0, . . . , 0, 1), N is the transition sub-matrix in Eq. 2. Intuitively, the
transition probabilities are not easy to obtain and complicated, but we will show the
transition probabilities are finite Markov chain imbeddable and can be computed
using the FMCI technique again. Define a random variable Ci to be the number of
clusters formed after a new permutation starting from state i and it follows that with
k = i − j ≥ 0,

P(Yt = j|Yt−1 = i) = P(Ci = k), t ≤ n. (13)

It is not difficult to discover that the random variable Ci is also the number
of successions of size 2 in a random permutation problem. Let Pn = {π : π =
(π1, . . . , πn), πi ∈ {1, . . . , n}, i = 1, . . . , n} be the set of all permutations generated by



Methodol Comput Appl Probab (2013) 15:453–465 459

integers 1, . . . , n. Any pair (πi, πi+1) is said to be a succession of size 2 in a random
permutation π if πi+1 = πi + 1. The number of successions of size 2 is defined by

Xn(π) =
n−1∑

i=1

In(i, π),

where

In(i, π) =
{

1 if πi+1 = πi + 1,

0 otherwise.
(14)

It has been shown in Fu (1995) that by insertion procedure Xn(π) is finite Markov
chain imbeddable, and there exists a finite Markov chain {YC

t } defined on a state
space �C = {0, 1, . . . , n − 1} having transition probabilities as follows:

P(YC
t = j|YC

t−1 = i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
t

if j = i − 1,

t − i − 1

t
if j = i,

1

t
if j = i + 1.

(15)

It can be seen from Eq. 15 that {YC
t } is a nonhomogeneous Markov chain having

transition matrices of the form

MC
t =

0

1

2

...

t − 3

t − 2

t − 1
...

n − 1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t − 1

t
1

t
0

1

t
t − 2

t
1

t
2

t
t − 3

t
1

t
0

. . .
. . .

. . .

0
t − 3

t
2

t
1

t
t − 2

t
1

t
1

t

0 In−t+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (16)

where In−t+1 is the (n − t + 1) × (n − t + 1) identity matrix. It follows from the
definition of FMCI that

P(Ci = k) = ξC
0

(
i∏

t=1

MC
t

)

e
′
k, k = 0, . . . , n − 1, (17)

where ξC
0 = (1, 0, . . . , 0). Therefore, by using the FMCI technique again we have

transition probabilities given in Eq. 17 for the transition probability sub-matrix N in
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Table 2 The exact values and lower and upper bounds for E(Tn) with n = 100, 500 and 1000

n Exact Lower bound Upper bound

100 103.8292 102.6175 104.1947
500 505.4386 504.0866 505.8081
1000 1006.1318 1004.7232 1006.5018

Eq. 12 to calculate the distribution of Tn. Since {Ym} is a homogeneous Markov chain
with transition matrix of the form in Eq. 2, the mean and the probability generating
function can be obtained by Eqs. 4 and 5, respectively.

Remark 2 Using DFMCI, the problem of chemical bonding process can be easily
extended to that if k consecutive integers are placed in an increasing order then they
form a cluster. The random variable Ci is then defined as the number of successions
of size k or the number of increasing k-sequences formed after a permutation starting
from state i. By the same token, we can obtain the exact distribution of number of
permutations needed until only one cluster is left, while it is not a simple task using
combinatorial method. The detail of the imbedding procedure for the number of
successions of size k can be found in Johnson and Fu (2000). Table 2 provides exact
values of E(Tn) and lower and upper bounds for E(Tn) given by Brown et al. (2008),
for n = 100, 500 and 1000.

3.2 Coupon Collector’s Problem

Generalized Coupon Collector’s Problem In probability theory, the classic coupon
collector’s problem states as follows: suppose that there are n different coupons
and the collector receives one coupon each day. Every coupon is received with
probability 1/n. What is the minimum number Tn of days required in order to have
all coupons collected at least once?

A variation studied by Johnson and Sellke (2010) generalizes the problem in such
a way that the collector will receive min(Kt, n) number of coupons at t-th day where
Kt is a random variable, taking values in {1, 2, . . .}, with pi = P(min(Kt, n) = i), the
probability of receiving i coupons at t-th day. Define Xt to be the number of different
coupons collected after t-th day. Clearly, {Xt} is a Markov chain defined on a state
space � = {0, 1, . . . , n}, where n is an absorbing state. The transition probabilities of
{Xt} are in fact weighted averages of hypergeometric distributions given as follows:

P(Xt+1 = k|Xt = j) =
n∑

i=1

pi

(n− j
k− j

)( j
i−(k− j)

)

(n
i

) . (18)

We take this example as an illustration for our method to solve the problem
without knowing the transition probabilities given in Eq. 18. We define a random
variable Dj as the number of different coupons collected in a day given j coupons
being already collected. It turns out that the distribution of Dj provides the transition
probabilities of {Xt} starting at state j. We then show that Dj is conditional finite
Markov chain imbeddable. Given that i coupons will be received on (t+1)-st day,
we define Zm(i) as the number of different coupons collected until m-th coupons
received at (t+1)-st day for m ≤ i. Then {Zm(i)} is a finite Markov chain defined on a
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state space � = {0, 1, . . . , i} having transition probabilities as follows: for m − x ≤ j
and x ≤ n − j,

P(Zm+1(i) = y|Zm(i) = x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

j − (m − x)

n − m
if y = x,

(n − j) − x
n − m

if y = x + 1.

(19)

Therefore, we have

P(Dj = d|Kt+1 = i) = ξ 0Mi
i(z)e

′
d, (20)

and

P(Dj = d) =
n∑

i=1

piξ 0Mi
i(z)e

′
d, (21)

where ξ 0 = (1, 0, . . . , 0), Mi(z) is the transition matrix of {Zm(i)} with transition
probabilities obtained from Eq. 19. Hence, it follows that

P(Xt+1 = k|Xt = j) =
n∑

i=1

piξ 0Mi
i(z)e

′
k− j, (22)

and

P(Tn ≤ t) = ξ 0Mte
′
n or P(Tn > t) = ξ 0Nt1

′
,

where en is an unit row vector corresponding to state n and M is the transition
probability matrix of {Xt}, whose transition probabilities are given in Eq. 22. By the
same token, we can obtain the mean and probability generating function of Tn from
Eqs. 4 and 5.

Weighted Coupon Collector’s Problem Next we consider a variation—weighted
coupon collector’s problem. Suppose there are n coupons, the collector receives one
coupon a day and the chances of receiving each coupon are not equal, instead with
probability pi to receive coupon i. The ability of the FMCI technique is not only
able to derive the exact distribution through transition probability matrices, but also
able to derive other useful identities such as recursive equations. In this application,
we derive a recursive equation for the distribution of Tn through the structure of
transition probability matrix of an imbedded Markov chain. Since the chances of
receiving each coupon are different, we have to record the coupons we have already
collected to know the probability of next transition. We define a finite Markov chain
{Yt} on a state space

� = {0, 1, . . . , n, 12, 13, . . . , (n − 1)n, . . . , 123 · · · n},
where state 123 · · · n is an absorbing state. Then Yt = 1346 means that coupons 1, 3,
4 and 6 are collected until t-th day and we say the state is of length 4 denoted by
�(1346) = 4. There are total 2n states in the state space. At next day, The number
of collected coupons can be the same or increase by one, and then it follows from
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the definition that the transition probabilities from state u = i1 · · · i jt−1 at time t − 1 to
states v = i1 · · · i jt−1 or i1 · · · i jt−1 i jt at time t are given by

P(Yt = v|Yt−1 = u) =
⎧
⎨

⎩

pi jt
if �(v) = �(u) + 1,

∑ jt−1

s=1 pis if �(v) = �(u).

(23)

The transition matrix M is of the form

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 A(0, 1)

A(1, 1) A(1, 2)

A(2, 2) A(2, 3)

. . .
. . .

A(n − 1, n − 1) A(n − 1, n)

0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (24)

where the block A(x − 1, x) stands for the transition probabilities from states of
length x-1 to states of length x. Let x̃ denote the vector consisting of all states
of length x and αt(x) = (P(Yt = (x̃)1), P(Yt = (x̃)2), . . . , P(Yt = (x̃)(n

x)
)), where (x̃)i

stands for the i-th component in x̃. It is not difficult to see from backward matrix
multiplication that the following recursive equations hold: t = 1, 2, . . . ,

α0(0) = 1; α0(x) = 0;αt(0) = 0,

αt(x) = αt−1(x − 1)A(x − 1, x) + αt−1(x)A(x, x), x = 1, . . . , n − 1,

αt(n) = αt−1(n − 1)A(n − 1, n) + αt−1(n). (25)

The blocks A(x − 1, x) or A(x, x) can be easily obtained from Eq. 23. Of course, we
can use the unified formula to compute the probability

P(T > t) = P(Yt �= n) = ξ 0Nt1
′
.

Coupon Collector’s Problem with Bonus Another variation of coupon collector’s
problem with bonus is asking the following question: suppose there are b bonus
coupons and � ordinal coupons and the collector will receive only one coupon a day.
If the collector receives a bonus coupon, then he gets another coupon immediately.
In one day, the collector can get at most all bonus coupons and one ordinal
coupon. What is the minimum number T of days needed to collect all bonus and
ordinal coupons.

By the same token in the previous section, we only need to make slight
modification for this question. We define Yt = (b t, �t), where b t and �t are the
number of different bonus and ordinal coupons collected, respectively, after t-th
day. Then {Yt} is a Markov chain defined on a state space � = {(i, j) : 0 ≤ i ≤ b , 0 ≤
j ≤ �}, where (b , �) is an absorbing state. The bonus coupons make the problem
more complicated and transition probabilities hard to find. In a day, the collector
would possibly get infinitely many coupons but only maximum b + 1 different
coupons. Given that b t bonus coupons and �t ordinal coupons are collected until
t-th day, we define Zi = (Ab

i , A�
i ) where Ab

i and A�
i are the number of different

bonus and ordinal coupons collected, respectively, up to i-th coupons received
at (t + 1)-st day. Obviously, {Zi} is a Markov chain defined on a state space
�z = {(0, 0), (1, 0), . . . , (b , 0), (0, 0∗), (1, 0∗), . . . , (b , 0∗), (0, 1), (1, 1), . . . , (b , 1)}.



Methodol Comput Appl Probab (2013) 15:453–465 463

Note that in the state space we have 0 and 0∗ in order to identify that the collector
received an owned bonus coupon as 0 or an owned ordinal coupon as 0∗. For
example, starting from state (0,0), (i) if the collector receives an owned bonus
coupon, then the next state is (0,0), and the transition is denoted by (0, 0) → (0, 0);
(ii) if he receives a different bonus coupon, then the next state is (1,0); (iii) if he
receives an owned ordinal coupon, then the next state is (0,0∗); (iv) if he receives a
different ordinal coupon, then the next state is (0,1). The transition probabilities of
{Zi} are given as follows:

P(Zi+1 = (zb
i+1, z�

i+1)|Zi = (zb
i , z�

i )) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b t + zb
i

b + �
if (zb

i , 0) → (zb
i , 0),

b − b t − zb
i

b + �
if (zb

i , 0) → (zb
i + 1, 0),

�t

b + �
if (zb

i , 0) → (zb
i , 0∗),

� − �t

b + �
if (zb

i , 0) → (zb
i , 1),

1 if (zb
i , 1) → (zb

i , 1),

1 if (zb
i , 0∗) → (zb

i , 0∗),

0 otherwise,

(26)

for zb
i = 0, 1, . . . , b . It follows that the transition probabilities of {Yt} are given by

P(Yt+1 = (b t+1, �t+1)|Yt = (b t, �t))

=
⎧
⎨

⎩

limm→∞ ξ zMm
z (e

′
(b t+1−b t,0)

+ e
′
(b t+1−b t,0∗)), if �t+1 − �t = 0,

limm→∞ ξ zMm
z e

′
(b t+1−b t,1)

, if �t+1 − �t = 1,

(27)

where ξ z = (1, 0, . . . , 0), Mz is the transition probability matrix of {Zi} with transition
probabilities given in Eq. 26. It follows that

P(T ≤ t) = ξ 0Mte
′
(b ,�),

where ξ 0 = (1, 0, . . . , 0) and M is the transition matrix of {Yt} with transition proba-
bilities given in Eq. 27.

Remark 3 Selected expectations and cumulative probabilities are given in Table 3.
Using DFMCI technique, the coupon collector’s problem with bonus can be gen-
eralized to that the collector can receive a random number Ki coupons at i-th day
with some modification in the imbedded Markov chain similar to the ordinal coupon
collector’s problem in this section.
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Table 3 Expectations E(T) and cumulative probabilities P(T ≤ t) for selected b , � and t

b � t P(T ≤ t) b � t P(T ≤ t) b � E(T)

5 5 5 4.9783×10−3 10 15 15 5.6151×10−8 5 5 15.1448
6 2.1767×10−2 16 5.9453×10−7 5 10 33.5156
7 5.4742×10−2 17 3.3405×10−6 5 15 54.2161
8 1.0432×10−1 18 1.3248×10−5 5 20 76.5192
9 1.6771×10−1 19 4.1628×10−5 10 10 36.4774

10 2.4051×10−1 20 1.1031×10−4 10 20 80.2331
11 3.1801×10−1 21 2.5630×10−4 10 50 234.1602
12 3.9606×10−1 22 5.3608×10−4 20 10 40.6165
13 4.7147×10−1 23 1.0287×10−3 20 50 241.9276
14 5.4204×10−1 24 1.8369×10−3 30 50 248.6490
15 6.0649×10−1 25 3.0860×10−3 50 50 259.8689

4 Summary

We have demonstrated the ability of the FMCI technique by showing that the FMCI
technique can be used to derive other useful identities, for example a new recursive
equation for distribution of scan statistic in Section 2.1. Our recursive equations are
efficient and we can compute the probabilities for moderate large window size w and
s and large n.

It does not receive much attention on how to obtain transition probabilities of
the imbedded Markov chain in the literature. A notion called DFMCI is introduced
to compute the transition probabilities of the imbedded Markov chain by using the
FMCI technique repeatedly. Two common applications are used to illustrate our
idea and it also shows the flexibility of the FMCI technique in such a way that
under different settings, the imbedding procedure can be applied with some minor
modifications, for example the three variations of coupon collector’s problems.
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