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Abstract For a Markov transition kernel P and a probability distribution μ on non-
negative integers, a time-sampled Markov chain evolves according to the transition
kernel Pμ = ∑

k μ(k)Pk. In this note we obtain CLT conditions for time-sampled
Markov chains and derive a spectral formula for the asymptotic variance. Using
these results we compare efficiency of Barker’s and Metropolis algorithms in terms
of asymptotic variance.
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1 Introduction

Let P be an ergodic transition kernel of a Markov chain (Xn)n≥0 with limiting
distribution π on (X ,B(X )) and let f : X → R be in L2(π). A typical MCMC
procedure for estimating I = π f := ∫

X f (x)π(dx) would use În := 1
n

∑n−1
i=0 f (Xi).

Under appropriate assumptions on P and f a CLT holds for În, i.e.
√

n( În − I) → N (0, σ 2
f,P), (1)

where the constant σ 2
f,P < ∞ is called asymptotic variance and depends only on f

and P.
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The following theorem from Kipnis and Varadhan (1986) is a fundamental result
on conditions that guarantee Eq. 1 for reversible Markov chains.

Theorem 1 (Kipnis and Varadhan 1986) For a reversible and ergodic Markov chain,
and a function f ∈ L2(π), if

Var( f, P) := lim
n→∞ nVarπ ( În) < ∞, (2)

then Eq. 1 holds with

σ 2
f,P = Var( f, P) =

∫

[−1,1]
1 + x
1 − x

E f,P(dx), (3)

where E f,P is the spectral measure associated with f and P.

We refer to Eq. 2 as the Kipnis–Varadhan condition. Assuming that Eq. 2 holds
and P is reversible, in Section 2 we obtain conditions for the CLT and derive a
spectral formula for the asymptotic variance σ 2

f,Pμ
of a time-sampled Markov chain

of the form

Pμ :=
∞∑

k=0

μ(k)Pk, (4)

where μ is a probability distribution on the nonnegative integers. Time-sampled
Markov chains are of theoretical interest in the context of petite sets (cf. Chapter
5 of Meyn and Tweedie 1993), and also in the context of computational algorithms
(Rosenthal 2003a, b).

Next we proceed to analyze efficiency of Barker’s algorithm (Barker 1965).
Barker’s algorithm, similarly as Metropolis, uses an irreducible transition kernel Q
to draw proposals. A move form Xn = x to a proposal Yn+1 = y is then accepted with
probability

α(B)(x, y) = π(y)q(y, x)

π(y)q(y, x) + π(x)q(x, y)
, (5)

where q(x, ·) is the transition density of Q(x, ·). It is well known that with the same
proposal kernel Q, the Metropolis acceptance ratio results in a smaller asymptotic
variance then Barker’s. In Section 3 we show that the asymptotic variance of Barker’s
algorithm is not bigger then, roughly speaking, two times that of Metropolis. We also
motivate our considerations by recent advances in exact MCMC for diffusion models.
The theoretical results are illustrated by a simulation study in Section 4.

2 Time-sampled Markov Chains

In this section we work under assumptions of Theorem 1 which imply that the
asymptotic variance σ 2

f,P equals Var( f, P) defined in Eq. 2 and satisfies Eq. 3. For
other Markov chain CLT conditions we refer to Jones (2004), Roberts and Rosenthal
(2004, 2008), Meyn and Tweedie (1993) and Bednorz et al. (2008).
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Theorem 2 Let P be a reversible and ergodic transition kernel with stationary measure
π, and let f ∈ L2(π). Assume that the Kipnis–Varadhan condition (2) holds for f and
P. For a probability distribution μ on nonnegative integers, let the time-sampled kernel
Pμ be def ined by Eq. 4. Then, if any of the following conditions hold

(i) μodd := μ({1, 3, 5, . . . }) > 0,

(ii) μ(0) < 1 and P is geometrically ergodic,

the CLT holds for f and Pμ, moreover

σ 2
f,Pμ

=
∫

[−1,1]
1 + Gμ(x)

1 − Gμ(x)
E f,P(dx) < ∞, (6)

where Gμ is the probability generating function of μ, i.e. Gμ(z) := EμzK, |z| ≤ 1,
K ∼ μ, and E f,P is the spectral measure associated with f and P.

Remark 1 The condition μodd > 0 in the above result is necessary, which we show
below by means of a counterexample.

Proof The proof is based on the functional analytic approach (see e.g. Kipnis and
Varadhan 1986; Roberts and Rosenthal 1997). Without loss of generality assume that
π f = 0. A reversible transition kernel P with invariant distribution π is a self-adjoint
operator on L2

0(π) := { f ∈ L2(π) : π f = 0} with spectral radius bounded by 1. By the
spectral decomposition theorem for self adjoint operators, for each f ∈ L2

0(π) there
exists a finite positive measure E f,P on [−1, 1], such that

〈 f, Pn f 〉 =
∫

[−1,1]
xn E f,P(dx),

for all integers n ≥ 0. Thus in particular

σ 2
f = π f 2 =

∫

[−1,1]
1E f,P(dx) < ∞, (7)

and by Kipnis and Varadhan (1986) (c.f. also Theorem 4 of Häggström and Rosenthal
2007) one obtains

σ 2
f,P =

∫

[−1,1]
1 + x
1 − x

E f,P(dx) < ∞. (8)

Since Pn
μ = (∑

k μ(k)Pk
)n

, by the spectral mapping theorem (Conway 1990), we
have

〈
f, Pn

μ f
〉 =

∫

[−1,1]
xn E f,Pμ

(dx) =
∫

[−1,1]

(∑

k

μ(k)xk
)n

E f,P(dx)

=
∫

[−1,1]

(
Gμ(x)

)n
E f,P(dx),
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and consequently, applying the same argument as Kipnis and Varadhan (1986) and
Häggström and Rosenthal (2007), we obtain

σ 2
f,Pμ

=
∫

[−1,1]
1 + x
1 − x

E f,Pμ
(dx)

=
∫

[−1,1]
1 + Gμ(x)

1 − Gμ(x)
E f,P(dx) =: ♣. (9)

Now Eq. 9 gives the claimed formula but we need to prove Eq. 9 is finite: by Kipnis
and Varadhan (1986) finiteness of the integral in Eq. 9 implies a CLT for f and Pμ.
Observe that

|G(x)| ≤ 1 for all x ∈ [−1, 1],
G(x) ≤ μ(0) + x(1 − μ(0)) for x ≥ 0.

Moreover, if (i) holds, then

G(x) ≤
∑

k even

μ(k)xk ≤ 1 − μodd for x ≤ 0,

hence we can write

♣ =
∫

[−1,0)

1 + Gμ(x)

1 − Gμ(x)
E f,P(dx) +

∫

[0,1]
1 + Gμ(x)

1 − Gμ(x)
E f,P(dx)

≤ 1
μodd

∫

[−1,0)

2E f,P(dx) + 1
1 − μ(0)

∫

[0,1]
2

1 − x
E f,P(dx). (10)

The first integral in Eq. 10 is finite by Eq. 7 and the second by Eq. 8 and we are done
with (i).

Next assume that (ii) holds. By S(P) denote the spectrum of P and let sP :=
sup{|λ| : λ ∈ S(P)} be the spectral radius. From Roberts and Rosenthal (1997) we
know that since P is reversible and geometrically ergodic, it has a spectral gap, i.e.
sP < 1. Hence for x ∈ [−sP, 0], we can write

Gμ ≤ μ(0) +
∑

k even

μ(k)xk ≤ μ(0) + sP(1 − μ(0)).

Consequently

♣ =
∫

[−sP,0)

1 + Gμ(x)

1 − Gμ(x)
E f,P(dx) +

∫

[0,sP]
1 + Gμ(x)

1 − Gμ(x)
E f,P(dx)

≤ 1
1 − μ(0)

∫

[−sP,0)

2
1 − sP

E f,P(dx) + 1
1 − μ(0)

∫

[0,sP]
2

1 − x
E f,P(dx). (11)

The first integral in Eq. 11 is finite by Eq. 7 and the second by Eq. 8. �


The most important special case of Theorem 2 is underlined and computed
explicitly in the next corollary.

Corollary 1 Let P be a reversible and ergodic transition kernel with stationary mea-
sure π, and assume that for f and P the CLT (Eq. 1) holds. For ε ∈ (0, 1) let the
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lazy version of P be def ined as Pε := εId + (1 − ε)P. Then the CLT holds for f and
Pε and

σ 2
f,Pε

= 1
1 − ε

σ 2
f,P + ε

1 − ε
σ 2

f . (12)

Proof We use Theorem 2 with μ(0) = ε, μ(1) = 1 − ε. Hence Gμ = ε + (1 − ε)x,

and consequently

σ 2
f,Pε

=
∫

[−1,1]
1 + ε + (1 − ε)x
1 − ε − (1 − ε)x

E f,P(dx)

=
∫

[−1,1]
1

1 − ε

(
1 + x
1 − x

+ ε

)

E f,P(dx)

= 1
1 − ε

∫

[−1,1]
1 + x
1 − x

E f,P(dx) + ε

1 − ε

∫

[−1,1]
1E f,P(dx)

= 1
1 − ε

σ 2
f,P + ε

1 − ε
σ 2

f .

�


Efficiency of time sampled Markov chains can be compared using the following
corollary from Theorem 2.

Corollary 2 Let P and f be as in Theorem 2. If P is positive as an operator on L2(π)

and μ1 dominates stochastically μ2 (i.e. μ1 ≥st μ2), then Pμ1 dominates Pμ2 in the
ef f iciency ordering, i.e. σ 2

f,Pμ1
≤ σ 2

f,Pμ2
.

Proof If P is positive self-adjoint then suppE f,P ⊆ [0, 1]. Moreover

μ1 ≥st μ2 ⇒ Gμ1(x) ≤ Gμ2(x) for x ∈ [−1, 1].
The conclusion follows from Eq. 6. �


In another direction of studying CLTs, the variance bounding property of Markov
chains has been introduced in Roberts and Rosenthal (2008) and is defined as fol-
lows. P is variance bounding if there exists K < ∞ such that Var( f, P) ≤ KVarπ ( f )
for all f. Here Var( f, P) is defined in Eq. 2 and Varπ ( f ) = π f 2 − (π f )2. We prove
that for time-sampled Markov chains the variance bounding property propagates the
same way the CLT does.

Theorem 3 Assume P is reversible and variance bounding. Then Pμ is variance
bounding if any of the following conditions hold

(i) μodd := μ({1, 3, 5, . . . }) > 0,

(ii) μ(0) < 1 and P is geometrically ergodic.

Proof For any f such that Varπ f < ∞, the Kipnis–Varadhan condition holds due
to variance bounding property of P and thus the assumptions of Theorem 2 are met.
Hence for every f ∈ L2(π) there is a CLT for f and Pμ. Therefore Pμ is variance
bounding by Theorem 7 of Roberts and Rosenthal (2008). �
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The next example shows that in case of Markov chains that are not geometrically
ergodic, the condition μodd > 0 is necessary.

Example 1 We set f (x) = x and give an example of an ergodic and reversible
transition kernel P on X = [−1, 1], and such that there is a CLT for P and f but
not for P2 and f. We shall rely on Theorem 4.1 of Bednorz et al. (2008) that provides
if and only if conditions for Markov chains CLTs in terms of regenerations. It will be
apparent that the condition μodd > 0 in Theorem 2 is necessary.

Set s(x) := √
1 − |x|, let U(·) be the uniform distribution on [−1, 1], and let the

kernel P be of the form

P(x, ·) = (1 − s(x))δ−x(·) + s(x)U(·), hence (13)

P2(x, ·) = (1 − s(x))2δx(·) + (2s(x) − s(x)2)U(·). (14)

To find the stationary distribution of P (and also P2), we verify reversibility with
π(x) ∝ 1/s(x).

π(dx)P(x, dy) ∝ 1
s(x)

δ−x(y) + δ−x(y) + U(dy)

= 1
s(y)

δ−y(x) + δ−y(x) + U(dx) ∝ π(dy)P(y, dx).

Hence π(x) is a reflected Beta(1, 1
2 ). Clearly π( f 2) < ∞.

Recall now the split chain construction (Nummelin 1978; Athreya and Ney 1978)
of the bivariate Markov chain {Xn, �n} on {0, 1} × X = {0, 1} × [0, 1]. If (Xn)n≥0

evolves according to P defined in Eq. 14, we have the following transition rule from
{Xn−1, �n−1} to {Xn, �n} for the split chain.

P̌ (Xn ∈ ·|�n−1 = 1, Xn−1 = x) = U(·),
P̌ (Xn ∈ ·|�n−1 = 0, Xn−1 = x) = δ−x(·),

P̌ (�n = 1|�n−1, Xn = x) = s(x),

P̌ (�n = 0|�n−1, Xn = x) = 1 − s(x).

The notation P̌ above indicates that we consider the extended probability space for
(Xn, �n), not the original one of Xn. The appropriate modification of the above holds
if the dynamics of Xn is P2, namely

P̌ (Xn ∈ ·|�n−1 = 1, Xn−1 = x) = U(·),
P̌ (Xn ∈ ·|�n−1 = 0, Xn−1 = x) = δx(·),

P̌ (�n = 1|�n−1, Xn = x) = 2s(x) − s2(x),

P̌ (�n = 0|�n−1, Xn = x) = (1 − s(x))2.

We refer to to the original papers for more details on the split chain construction and
to Bednorz et al. (2008) and Roberts and Rosenthal (2004) for central limit theorems
in this context. Denote

τ := min {k ≥ 0 : �k = 1} . (15)
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By Theorem 4.1 of Bednorz et al. (2008), the CLT for P and f holds if and only if
the following expression for the asymptotic variance is finite.

σ 2
f,P =

∫

[−1,1]
s(x)π(x)dx ĚU

(
τ∑

k=0

f (Xn)

)2

, (16)

where (Xn, �n) follow the dynamics of P. Respectively, the CLT for P2 and f holds
in our setting, if and only if

σ 2
f,P2 =

∫

[−1,1]
(2s(x) − s2(x))π(x)dx ĚU

(
τ∑

k=0

f (Xn)

)2

(17)

is finite, where (Xn, �n) follow the dynamics of P2.

Now observe that if (Xn)n≥0 evolves according to P, then (
∑τ

k=0 f (Xn))
2 equals

0 if τ is odd, or (
∑τ

k=0 f (Xn))
2 = X2

0 , if τ is even. Consequently Eq. 16 is finite.
However, if (Xn)n≥0 evolves according to P2, then (

∑τ
k=0 f (Xn))

2 = (τ + 1)2 X2
0 and

the distribution of τ is geometric with parameter 2s(X0) − s2(X0) = 1 − (1 − s(x))2.

Therefore we compute σ 2
f,P2 in Eq. 17 as

σ 2
f,P2 =

∫

[−1,1]

(
2s(x) − s2(x)

)
π(x) dx

∫

[−1,1]

2 −
(

1 − (
1 − s(x)

)2
)

2
(
1 − (1 − s(x))2

)2 x2 dx

= C
∫

[−1,1]

(
1 + (1 − s(x))2

)
x2

2
(
1 − |x| − 2

√
1 − |x|)2 dx

≥ C
∫

[−1,1]
x2

8(1 − |x|) dx = ∞.

3 Barker’s Algorithm

When assessing efficiency of Markov chain Monte Carlo algorithms, the asymptotic
variance criterion is one of natural choices. Peskun ordering (Peskun 1973) (see
also Tierney 1998; Mira and Geyer 1999) provides a tool to compare two reversible
transition kernels P1, P2 with the same limiting distribution π and is defined as
follows. P1 � P2 ⇐⇒ for π−almost every x ∈ X and all A ∈ B(X ) holds P1(x, A −
{x}) ≥ P2(x, A − {x}). If P1 � P2 then σ 2

f,P1
≤ σ 2

f,P2
for every f ∈ L2(π).

Consider now a class of algorithms where the transition kernel P is defined by
applying an irreducible proposal kernel Q and an acceptance rule α, i.e. given Xn =
x, the value of Xn+1 is a result of performing the following two steps.

1. Draw a proposal y ∼ Q(x, ·),
2. Set Xn+1 := y with probability α(x, y) and Xn+1 = x otherwise,

where α(x, y) is such that the resulting kernel P is reversible with stationary dis-
tribution π . It follows Peskun (1973) and Tierney (1998) that for a given proposal
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kernel Q the standard Metropolis–Hastings (Metropolis et al. 1953; Hastings 1970)
acceptance rule

α(MH)(x, y) = min
{

1,
π(y)q(y, x)

π(x)q(x, y)

}

(18)

yields a transition kernel P(MH) that is maximal with respect to Peskun ordering
and thus minimal with respect to asymptotic variance. In particular, the Barker’s
algorithm (Barker 1965) that uses acceptance rule

α(B)(x, y) = π(y)q(y, x)

π(y)q(y, x) + π(x)q(x, y)
(19)

is inferior to Metropolis–Hastings when the asymptotic variance is considered. In
the above notation we assume that all the involved distributions have common
denominating measure and q(x, ·) are transition densities of Q. See Tierney (1998)
for a more general statement and discussion.

Exact Algorithms introduced in Beskos et al. (2006a, b, 2008) and Beskos and
Roberts (2005) allow for inference in diffusion models without Euler discretization
error. In recent advances in Exact MCMC inference for complex diffusion models
a particular setting is reoccurring, where the Metropolis–Hastings acceptance step
requires a specific Bernoulli Factory and is not possible to execute. However, in
this diffusion context the Barker’s algorithm (Eq. 19) is feasible, as well as the ‘lazy’
version of the Metropolis–Hastings kernel

P(MH)
ε := εId + (1 − ε)P(MH). (20)

We refer to Gonçalves et al. (2011) and Łatuszyński et al. (2011a, b) for the back-
ground on exact MCMC inference for diffusions and the Bernoulli Factory problem.
This motivates us to investigate performance of these alternatives in comparison to
the standard Metropolis–Hastings.

Theorem 4 Let P (B) denote the transition kernel of the Barker’s algorithm and let
P (MH) and P (MH)

ε be as def ined in Eq. 20. If the CLT (Eq. 1) holds for f and P (MH),

then it holds also for

(i) f and P (MH)
ε with

σ 2
f,P (MH)

ε
= 1

1 − ε
σ 2

f,P (MH) + ε

1 − ε
σ 2

f . (21)

(ii) f and P (B) with

σ 2
f,P (MH) ≤ σ 2

f,P (B) ≤ σ 2
f,P (MH)

1/2
= 2σ 2

f,P (MH) + σ 2
f . (22)

Proof The first claim (i) is a restatement of Corollary 1 for Metropolis–Hastings
chains. To obtain the second claim (ii), note that P(MH)

1/2 can be viewed as an algorithm
that uses proposals from Q and acceptance rule

α(x, y) = min
{

1
2
,

π(y)q(y, x)

2π(x)q(x, y)

}

.
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Now since

min
{

1,
π(y)q(y, x)

π(x)q(x, y)

}

≥ π(y)q(y, x)

π(y)q(y, x) + π(x)q(x, y)
≥ min

{
1
2
,

π(y)q(y, x)

2π(x)q(x, y)

}

,

the result follows from Peskun ordering and Corollary 1. �


4 Numerical Examples

To illustrate the theoretical findings, we consider two numerical examples. The first
focuses on time sampling, the second on efficiency of the Barker’s algorithm.

4.1 Time Sampled Contracting Normals

Consider the contracting normals example, i.e. a Markov chain with transition
probabilities

P(x, ·) = N
(
θx, 1 − θ2) (23)

for some θ ∈ (−1, 1). It is easy to check that the stationary distribution is π(·) =
N(0, 1). Moreover the transition kernel is geometrically ergodic and reversible for all
θ ∈ (−1, 1) and also positive for θ ∈ [0, 1) (Baxendale 2005; Łatuszyński and Niemiro
2011). For the target function we take f (x) = x and estimate the asymptotic variance
using the batch means estimator of Jones et al. (2006) based on a trajectories of length
107. We set θ to 0.9 and −0.9 in the following settings:

– CN: Contracting normals;
– LCN: Lazy contracting normals with ε = 0.5;
– TSCN1: Time sampled contracting normals for sampling distribution

μ = 1 + Pois(1);
– TSCN2: Time sampled contracting normals for sampling distribution

μ = 1 + Pois(5).

The first two columns of Table 1 report how laziness increases asymptotic variance
and illustrate Corollary 1. Note that the stationary variance σ 2

f = 1 is substantial
compared to the asymptotic variance of contracting normals for θ = −0.9 and thus
the lazy version LCN becomes severely inefficient compared to CN. The stochastic
ordering of the sampling distributions in the above scenarios is LCN <st CN <st

TSCN1 <st TSCN2 therefore the simulation shows how the asymptotic variance
decreases for stochastically bigger sampling distributions (Corollary 2) in case of
positive operators (θ = 0.9) and how this property fails if the operator is not positive,
i.e for θ = −0.9.

Table 1 Estimated asymptotic variance of the contracting normals Markov chain for different
sampling scenarios

CN LCN TSCN1 TSCN2

θ = 0.9 19.1 38.5 9.28 3.43
θ = −0.9 0.053 1.14 0.80 0.96
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Table 2 Estimated asymptotic variance of the Metropolis, Barker’s and lazy Metropolis algorithms

Metropolis Barker’s Lazy Metropolis

Asymptotic variance 3.69 5.67 8.32

4.2 Efficiency of the Barker’s Algorithm

We compare the estimated asymptotic variance of the random walk Metropolis
algorithm, the Barker’s algorithm and lazy version of the random walk Metropolis
with ε = 0.5 to illustrate the bounds of Theorem 4. For the stationary distribution
we take N(0, 1) and the increment proposal is U([−2, 2]). The results based on a
simulation length 107 are reported in Table 2.
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