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Abstract Consider a sequence of n two state (success-failure) trials with outcomes
arranged on a line or on a circle. The elements of the sequence are independent
(identical or non identical distributed), exchangeable or first-order Markov depen-
dent (homogeneous or non homogeneous) random variables. The statistic denoting
the number of success runs of length at least equal to a specific length (a threshold)
is considered. Exact formulae, lower/upper bounds and approximations are obtained
for its probability distribution. The mean value and the variance of it are derived
in an exact form. The distributions and the means of an associated waiting time
and the length of the longest success run are provided. The reliability function of
certain general consecutive systems is deduced using specific probabilities of the
studied statistic. Detailed application case studies, covering a wide variety of fields,
are combined with extensive numerical experimentation to illustrate further the
theoretical results.
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1 Introduction and Preliminaries

Runs are important in applied probability and statistical inference. They are used
in many areas, such as hypothesis testing, quality control, meteorology, biology,
learning models, radar astronomy and system reliability. A detailed and systematic
exposition of past and recent developments on the theory and applications of runs
is presented in Balakrishnan and Koutras (2002) as well as in Fu and Lou (2003).
In particular, the study of the number of success runs and associated statistics,
under various enumerative schemes, defined on binary sequences of several internal
structures, have attracted the interest of many authors since de Moivre’s era. Exact
distributions of such statistics have been derived by combinatorial analysis, gener-
ating functions, recursive relations and Markov chain embedding technique. Some
recent contributions on the subject, among others, are the works of Antzoulakos
and Chadjikonstantinidis (2001), Fu et al. (2002, 2003), Sen et al. (2002, 2003),
Antzoulakos et al. (2003), Koutras (2003), Eryilmaz (2005a, b, 2006), Antzoulakos
and Boutsikas (2007), Eryilmaz and Demir (2007), Fu and Lou (2007), Makri et al.
(2007a, b) and the references therein.

In this article we concentrate on a statistic of great importance; namely the number
of success runs of length at least equal to a specific length (cf. Mood 1940 or Fu
and Koutras 1994). It is defined on sequences of independent, exchangeable and
dependent in a Markovian fashion binary random variables, ordered on a line or
on a circle. An associated waiting time defined on linear sequences as well as the
length of the longest success run defined on both linear and circular sequences are
examined as derivative statistics. In the sequel we provide the necessary definitions
and notations that are used throughout the article.

Consider a sequence X1, X2,...,Xn (n > 0) of binary trials with possible outcomes
“success” (“S” or “1”) or “failure” (“F” or “0”). The outcomes xα

i ∈ {0, 1}, i ≥ 1 may
be ordered on a line (α = �) or on a circle (α = c). In the latter case we assume that
the first outcome is adjacent to (and follows) the n-th outcome. The elements of the
sequence may be independent (identical or non-identical distributed), exchangeable
or first-order Markov dependent (homogeneous or nonhomogeneous) binary ran-
dom variables. A success run is defined to be a sequence of consecutive successes
preceded and succeeded by failures or by nothing. The number of successes in a
success run is referred to as its length.

Given a fixed length k (a threshold), 1 ≤ k ≤ n, the random variable (RV) of
interest i.e. the number of success runs of length at least k is denoted by Gα

n,k.
The support of Gα

n,k is the set Sα(n, k) = {
0, 1, . . . ,

⌊ n+1−βα

k+1

⌋}
, with βα = 0, if α = �,

1 ≤ k ≤ n or α = c, k = n; 1, if α = c, 1 ≤ k < n. We denote by �x� the greatest
integer less than or equal to x. We mention that the RVs G�

n,1 and Gc
n,1 denote

the number of success runs in a binary sequence ordered on a line and on a circle,
respectively.

Gα
n,k may be formally established as a sum of the indicator RVs Iα

j with j ∈ Jα =
{k, k + 1, . . . , n} if α = �; {0, 1, . . . , n} if α = c, n > k; and {0}, if α = c, n = k, i.e.

Gα
n,k =

∑

j∈Jα

Iα
j . (1)
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The RVs Iα
j are defined as:

(a)

I�
j =

{
1, if X j = X j−1 = ... = X j−k+1 = 1, X j−k = 0

0, otherwise.
(2)

(Convention: X0 ≡ 0).
(b)

Ic
0 =

{
1, if X1 = X2 = ... = Xn = 1

0, otherwise.
(3)

For j = 1, 2, . . . , k,

Ic
j =

{
1, if X j = X j−1 = ...= X1 =1, Xn = Xn−1 = ... = Xn−k+ j+1 =1, Xn−k+ j =0

0, otherwise.

For j = k + 1, k + 2, . . . , n,

Ic
j =

{
1, if X j = X j−1 = ... = X j−k+1 = 1, X j−k = 0

0, otherwise.

The previous setup will be very helpful for deriving results referred to the mean
value, variance and bounds of Gα

n,k.
Two RVs closely related to Gα

n,k and extensively studied in the literature, are the
length Lα

n , of the longest success run for linearly and circularly ordered trials and the
waiting time Tr,k, until the r-th, r ≥ 1, occurrence of a success run of length at least k
for trials ordered on a line. They are defined as follows:

Lα
n =

{
max

{
k ≤ n : Gα

n,k > 0
}
, if

{
k ≤ n : Gα

n,k > 0
} �= ∅

0, otherwise
(4)

and
Tr,k = min

{
n ≥ r(k + 1) − 1 : G�

n,k = r
}
. (5)

For Bernoulli trials (i.i.d. binary trials) T1,k follows the geometric distribution of
order k which was introduced by Philippou et al. (1983).

It is clear that for any n, k and r such that 1 ≤ k ≤ n, r ≥ 1 the dual relationships

Lα
n < k iff Gα

n,k < 1; Tr,k > n iff G�
n,k < r; and L�

n = k if T1,k = n (6)

always hold. Relationships (6) offer alternative ways of obtaining the exact distribu-
tions of Lα

n and Tr,k through formulae established for Gα
n,k.

The foregoing definitions are illustrated using the following example. Let the
first 10 binary trials be SSSFSFSSFS. Then, S�(10, 2)= Sc(10, 2)={0, 1, 2, 3}, G�

10,2 =
Gc

10,2 = 2; G�
10,3 =Gc

10,3 =1; G�
10,4 =0, Gc

10,4 =1; L�
10 =3, Lc

10 =4; and T1,2 = L�
2 =2,

G�
2,2 =1, T2,2 =8, G�

8,2 =2, T3,2 > 10.
Throughout the article, for integers n, m,

(n
m

)
denotes the extended binomial

coefficient; see Feller (1968, pp 50; 63). Further, in order to avoid repetitions we
note here that: δi, j denotes the Kronecker delta function of the integer arguments i
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and j; I{A} = 1 if A occurs, 0 otherwise; IA(x) = 1 if x ∈ A, 0 otherwise; and by 
x�
we denote the least integer greater than or equal to x. Also, we apply the conventions∑b

i=a = 0,
∏b

i=a = 1, for a > b . Finally, we note that by independent, exchangeable
and Markov dependent sequence, we mean that the elements of the sequence are
independent, exchangeable and first-order Markov dependent RVs, respectively.

The rest of the article is organized as follows: In Section 2, exact formulae of
the probability mass function of Gα

n,k are derived in closed form via combinatorial
analysis and/or recursively. As a byproduct, they yield, via relationships (6), the
exact distributions of Lα

n and Tr,k. The key results of the section are established in
Lemma 2.1, Theorem 2.5 and Lemma 2.2 for independent, exchangeable and first-
order Markov dependent trials, respectively. In Section 3, exact closed formulae for
the mean value and the variance of Gα

n,k are given. Their expressions are determined
by using the representation of Gα

n,k as a sum of the indicators Iα
j (cf. Eqs. 1 to 3). The

same setup is latter used (Section 4) along with the expressions of the means and the
variances for obtaining lower/upper bounds and approximations for the probability
distribution of Gα

n,k which hold for all the types of the concerned sequences. As
an engineering application the reliability function of certain general consecutive
systems is determined in Section 5. Finally, in Section 6 some indicative, widely
used in applied probability, linearly/circularly ordered sequences of independent
(identical/non-identical), exchangeable and Markov dependent RVs are considered;
e.g. the Polya-Eggenberger urn model, the fixed and random threshold models, the
record indicator model and a communications model. In addition, two examples used
in system reliability are discussed. They may represent telecommunication network-
ing and vacuum system in accelerators. The concerned binary sequences combined
with extensive numerical experimentation clarify further the theoretical results and
their applicability in a variety of fields like: forecasting in finance and gambling,
hypothesis testing, clustering in communications system and system reliability.

We end this section by noting that the vast majority of the presented formulae
are new. In addition, the findings of the article generalize, unify and/or provide
alternative formulae of recent results on RVs Gα

n,k, Lα
n , Tr,k and on the reliability

of linear/circular consecutive systems. See Antzoulakos and Chadjikonstantinidis
(2001), Eryilmaz and Tutuncu (2002), Sen et al. (2002, 2003), Eryilmaz (2005a, b,
2006), Agarwal et al. (2007), Eryilmaz and Demir (2007) and Makri et al. (2007b).

2 Exact Distributions

The exact probability mass function (PMF) of Gα
n,k depends on the internal structure

considered for the binary sequence {Xi}n
i=1. In this section we will examine cases

in which the binary trials are considered as: (I) An independent (identical/non-
identical) sequence, (II) an exchangeable sequence, and (III) a first-order Markov
dependent sequence. For this reason and for compactness and convenience too in
the presentation of the variety of the results, we use the next explicit formulation

hd
α(x; k, n; D) ≡ P

(
Gα

n,k = x
)
, x ∈ Sα(n, k) and α = � or α = c. (7)

In the above formula the superscript d denotes the type of the (possible) dependence
among the RVs of the assumed sequence, whereas D is the corresponding parameter
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set needed for the exact description of the internal structure of that sequence.
Namely, we use:

d ≡ I, D ≡ p = (p1, p2, . . . , pn) for a sequence of independent (but not neces-
sarily identically distributed) binary trials. These are called Poisson trials (see for
instance, Mitzenmacher and Upfal 2005, p 63). For such trials it holds:

P
(
X1 = x1, X2 = x2, . . . , Xn = xn

) =
n∏

i=1

P
(
Xi = xi

)
,

with pi = P(Xi = 1) = 1 − qi = 1 − P(Xi = 0), for i = 1, 2, . . . , n.
d ≡ I I, D ≡ λ = (λ1, λ2, . . . , λn) for a sequence of exchangeable trials. It holds:

P
(
X1 = xπ1 , X2 = xπ2 , . . . , Xn = xπn

) = P
(
X1 = x1, X2 = x2, . . . , Xn = xn

)

for any permutation π =(π1, π2,. . ., πn) of the index set {1, 2,. . ., n}, with λi = P(X1 =
X2 = . . . = Xi = 1), i = 1, . . . , n and λ0 ≡ 1.

d ≡ I I I and D ≡ (
P(n), p(1)

1

)
for a nonhomogeneous first-order two state Markov

chain, with transition probability matrices P(n) with elements p(n)

ij , and initial proba-
bility vector

p(1) = (
p(1)

0 , p(1)
1

)
with p(1)

0 = P(X1 = 0) = 1 − P(X1 = 1) = 1 − p(1)
1 .

The one-step transition probabilities are:

p(n)

ij = P
(
Xn = j | Xn−1 = i

)
, for n ≥ 2 and i, j ∈ {0, 1}.

For homogeneous chains p(n)

ij = pij, for any n ≥ 2.
We spend special attention, and formulation too, for the case of Bernoulli trials

(identical Poisson trials) with a common success probability p, 0 < p < 1. This is so,
because in addition to its own independent merit in studies of applied probability
and statistics, it can be considered as a special case: of independent trials with
common success probability p = P(Xi = 1) = 1 − q = 1 − P(Xi = 0), i = 1, . . . , n
or of an exchangeable sequence with λi = λi

1, i = 1, 2, . . . , n where λ1 = p or of a
first-order homogeneous Markov chain with p00 = p10 = q, p01 = p11 = p and initial
probability vector (p(1)

0 , p(1)
1 ) = (q, p), with p + q = 1.

Hence, for Bernoulli trials ordered on a line (α = �) or on a circle (� = c) we
denote

hα(x; k, n; p) ≡ P
(
Gα

n,k = x
)
, x ∈ Sα(n, k), 0 < p < 1 and α = �, α = c. (8)

We mention that when no confusion is likely to arise, formulae referring to a type
of the concerned sequences will be presented without the use of the superscript d or
the explicit consideration of the internal parameter set D.

2.1 Independent Trials (Poisson and Bernoulli Trials)

Let G(k; r, s) be a RV denoting the number of success runs of length at least k in
the window Xr, Xr+1,...,Xs of n Poisson trials, X1, X2,...,Xn, ordered on a line with
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n ≥ s ≥ r ≥ 1. The support of G(k; r, s) is SG(k;r,s) = {
0, 1, . . . ,

⌊ s−r+2
k+1

⌋}
. By this setup

we establish the following basic result.

Lemma 2.1 The PMF g(x; k, r, s)= P(G(k; r, s)=x), x∈ SG(k;r,s), satisfies the recursive
scheme

g(x; k, r, s) =
s−r∑

i=0

βig
(
x − IA(i); k, r + i + 1, s

) + βδx,1, s − r + 1 ≥ k;

where βi = qr+i
(∏r+i−1

j=r p j
)
, i=0, 1, . . . , s − r, β =∏s

j=r p j, A={k, k + 1, . . . , s − r};
with initial conditions

g(x; k, r, s) = 0, if x < 0 or x >

⌊
s − r + 2

k + 1

⌋
,

g(x; k, r, s) =
{

1, if x = 0

0, if x > 0
, for 0 ≤ s − r + 1 < k.

Proof Obviously, for x < 0 or x >
⌊ s−r+2

k+1

⌋
and for 0 ≤ s − r + 1 < k the lemma

holds. We define the events

Ai = {
Xr = Xr+1 = . . . = Xr+i−1 = 1, Xr+i = 0

}
, i = 0, 1, . . . , s − r

and

As−r+1 = {
Xr = Xr+1 = . . . = Xs = 1

}
.

Then, for s − r + 1 ≥ k, x = 0, 1, . . . ,
⌊ s−r+2

k+1

⌋
we have

g(x; k, r, s) = P
(∪s−r+1

i=0

[
(G(k; r, s) = x) ∩ Ai

])

=
k−1∑

i=0

P
(
G(k; r, s) = x | Ai

)
P
(

Ai
) +

s−r∑

i=k

P
(
G(k; r, s) = x | Ai

)
P(Ai)

+P
(
G(k; r, s) = x | As−r+1

)
P
(

As−r+1
)
.

Also, we note that P(G(k; r, s) = x | Ai) = g(x; k, r + i + 1, s), for i = 0, 1, . . . , k − 1,
P(G(k; r, s)=x | Ai)=g(x − 1; k, r + i + 1, s), for i=k, k + 1,. . ., s−r, P(G(k; r, s)=
x | As−r+1) = δx,1 and P(Ai) = pr pr+1 · · · pr+i−1qr+i, i = 0, 1, . . . , s − r, P(As−r+1) =
pr pr+1 · · · ps. The result follows. ��

Setting r = 1 and s = n we have the immediate consequence of Lemma 2.1.

Theorem 2.1 The PMF of G�
n,k is given by

hI
�(x; k, n; p) = g(x; k, 1, n), x ∈ S�(n, k). (9)
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For circularly ordered Poisson trials we have the next result.

Theorem 2.2 The PMF of Gc
n,k, x ∈ Sc(n, k), satisfies the recursive scheme:

hI
c(x; k, n; p)=

n−2∑

i=0

βi

n−2∑

j=0

γ jg
(
x − IA(i + j ); k, i + 2, n − j − 1

) + βδx,1, n ≥ k + 1;

(10)

where βi = qi+1
( ∏i

j=1 pj
)
, γi = qn−i

( ∏i−1
j=0 pn− j

)
, i = 0, 1, . . . , n − 2, γ = ∏n

j=1 pj,

β = ∑n
i=1

( ∏n
j=1
j�=i

p j
) − (n − 1)γ , A = {k, k + 1, . . . , n − 2}; with initial conditions

hI
c(x; k, n; p) = 0, if x < 0 or

(
x >

⌊
n

k + 1

⌋
, n > k

)
,

hI
c(x; k, n; p) =

{
1, if x = 0

0, if x > 0
, for n < k,

hI
c(x; k, n; p) =

{
γ, if x = 1

1 − γ, if x = 0
, for n = k.

Proof Obviously for x < 0 or (x >
⌊ n

k+1

⌋
, n > k), for n < k and for n = k the

theorem holds. Next, we define the events

Aij = {
X1 = · · · Xi = 1, Xi+1 = 0, Xn = Xn−1 = · · · = Xn− j+1 = 1, Xn− j = 0

}
,

i, j = 0, 1, . . . , n − 2,

Ar = {
X1 = · · · Xr−1 = 1, Xr = 0, Xr+1 = · · · = Xn = 1

}
, r = 1, 2, . . . , n,

A0 = {
X1 = · · · = Xn = 1

}
.

Then, for n ≥ k + 1, x = 0, 1, . . . , � n
k+1�,

P
(
Gc

n,k = x
) = P

[(
Gc

n,k = x
) ∩ [(∪i, j Ai, j

) ∪ (∪r Ar) ∪ A0
]]

=
n−2∑

i=0

n−2∑

j=0

P
(
Gc

n,k = x | Aij
)

P
(

Aij
) +

n∑

r=0

P
(
Gc

n,k = x | Ar
)

P(Ar).

Also, we note that for i, j=0, 1, . . . , n−2, P(Gc
n,k =x | Aij)=g(x; k, i+2, n− j−1),

if i + j≤k − 1, P(Gc
n,k =x | Aij)=g(x − 1; k, i + 2, n − j − 1), if i + j≥k, P(Aij)=

p1 · · · piqi+1 pn pn−1 · · · pn− j+1qn− j and P(Gc
n,k =x | Ar)=δx,1, r=0, 1, . . . , n, P(Ar)=

p1 · · · pr−1qr pr+1 · · · pn, r = 1, 2, . . . , n, P(A0) = p1 · · · pn. The result follows. ��

Next, we consider Bernoulli trials. For such trials we provide two unified expres-
sions for the PMF of Gα

n,k, α = �, c. The first is given by Corollary 2.1 recursively and
the second by Theorem 2.4 via sums of binomial coefficients. The latter expression
is obtained as a special case of the Polya-Eggenberger urn model trials with replace-
ments studied by Makri et al. (2007b).
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Corollary 2.1 For Bernoulli trials {Xi}n
i=1, with common success probability p, 0 <

p < 1, the PMF of Gα
n,k, x ∈ Sα(n, k) is given by

hα(x; k, n; p) = q
n−1−βα∑

i=0

γα(i)pih�(x − IA(i); k, n − i − 1 − βα; p)

+ (
pn + γα

)
δx,1, n ≥ k + 1 (11)

where

βα =
{

0, if α = �

1, if α = c
, γα(i) =

{
1, if α = �

q(i + 1), if α = c
, γα =

{
0, if α = �

nqpn−1, if α = c
,

with initial conditions

hα(x; k, n; p) = 0, if x < 0 or (x > � n+1−βα

k+1 �, n > k),

hα(x; k, n; p) =
{

1, if x = 0
0, if x > 0

, for n < k,

hα(x; k, n; p) =
{

pn, if x = 1
1 − pn, if x = 0

, for n = k.

Proof It is a direct consequence of Theorems 2.1 and 2.2. ��

For Bernoulli trials ordered on a line an alternative recursive scheme of P(G�
n,k =

x) is provided by Antzoulakos and Chadjikonstantinidis (2001).
If we assume that the number of successes and failures in a finite binary sequence

of length n, are fixed quantities, then the probabilities of interest become conditional
probabilities. To this end, let Sn denote the number of Ss in a sequence of n trials.
Then combining Corollaries 3.1 and 3.2 of Makri et al. (2007b) we have the following
unified result.

Theorem 2.3 The conditional PMF P
(
Gα

n,k = x | Sn = n − y
)

is given by

P
(
Gc

n,k = x | Sn = n
) = δx,1, for x ≥ 0;

P
(
Gα

n,k = x | Sn = n − y
) =

(
n − βα

y − βα

)−1

N
′
α(x, y), (12)

for y = 0, 1, . . . , n, if α = �; 1, 2, . . . , n, if a = c, and for x = 0, 1, . . . ,
⌊ n−y

k

⌋
, with

N
′
α(x, y) =

(
y + 1 − βα

x

) � n−y−kx
k �∑

j=0

(−1) j
(

y + 1 − x − βα

j

)(
n − k(x + j) − βα

y − βα

)

and βα as in Corollary 2.1.
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The conditional probabilities (12) may be used in certain nonparametric tests of
randomness. See Koutras and Alexandrou (1997) and Makri et al. (2007b) for a
recent use of the linear and the circular conditional distributions.

As a direct consequence of Theorem 2.3 and the law of total probability, we have

Theorem 2.4 It is true that

hc(0; n, n; p) = 1 − pn; hc(1; n, n; p) = pn;

and

hα(x; k, n; p) = βα pnδx,1 +
n−kx∑

y=βα

γα N
′
α(x, y)pn−yqy, (13)

for x ∈ S�(n, k), 1 ≤ k ≤ n or x ∈ Sc(n, k), 1 ≤ k < n where N
′
α(x, y) and βα are as in

Theorem 2.3 and γα = 1 if α = �; n/y if α = c.

For Bernoulli trials a single summation formula for P(G�
n,k = x) has been given

by Muselli (1996).

2.2 Exchangeable Trials

In this section we relax the strong assumption of independence of n binary trials
with the weaker one of exchangeability (cf. Heath and Sudderth 1976). For such
trials, we provide the PMF of Gα

n,k (Theorem 2.5), using the fact that the conditional
distribution of it, given the number of failures in the sequence, in the exchangeable
case is identical to the corresponding one in the i.i.d. case. This is so, because the
exchangeability implies that all finite sequences with the same length and the same
number of failures, and hence the same number of successes, are equally likely.
See Lemma 2.1 of Schuster (1991), Lemma 2.2 of Eryilmaz and Demir (2007) and
Remark 2.2 of Makri et al. (2007b).

Let Yn denote the number of Fs in a sequence of exchangeable trials X1, X2, . . . ,

Xn, n > 0 arranged on a line or on a circle. The success-failure composition of the
sequence is assumed to be fixed. Then, because of the exchangeability any sequence
with y Fs and n − y Ss has probability

pn(y) = P
(
X1 = X2 = . . . = Xn−y = 1, Xn−y+1

= Xn−y+2 = . . . = Xn = 0
)
, y = 0, 1, . . . , n.

i.e. all the sequences with the same number of failures have the same probability. By
Theorem 2.1 of George and Bowman (1995)

pn(y) =
y∑

i=0

(−1)i
(

y
i

)
λn−y+i, y = 0, 1, . . . , n (14)
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where

λi = pi(0) = P
(
X1 = X2 = . . . = Xi = 1

)
, i = 1, 2, . . . , n and λ0 = 1. (15)

Then, according to the previous discussion on pn(y) and Theorem 2.4 we have the
following unified result.

Theorem 2.5 The PMF hII
α (x; k, n; λ) of the RV Gα

n,k is

hII
c (0; n, n; λ) = 1 − λn; hII

c (1; n, n; λ) = λn

and

hII
α (x; k, n; λ) = βαλnδx,1 +

n−kx∑

y=βα

γα N
′
α(x, y)pn(y), (16)

for x ∈ S�(n, k), 1 ≤ k ≤ n or x ∈ Sc(n, k), 1 ≤ k < n. The numbers N
′
α(x, y), βα and

γα are as in Theorem 2.4 and the probability pn(y) is given by Eq. 14.

For α = � the result of Theorem 2.5 has also been provided in Eryilmaz and
Demir (2007, Eq. 2.3). The Polya-Eggenberger urn model produces an exchangeable
sequence with λi given by the forthcoming Eq. 42. Thus Eq. 16 for α = � and α = c
extends, through a more efficiently computable formula, the results on Gα

n,k obtained
by Sen et al. (2002, 2003), respectively.

2.3 Markov Dependent Trials

Let G(k; r, n) be a RV denoting the number of success runs of length at least k in the
window Xr, Xr+1,...,Xn of a non-homogenous two state Markov dependent sequence
X1, X2,...,Xn, n > r ≥ 1. We first present a recursive formula for the conditional
probability g(x; k, r, n) = P(G(k; r + 1, n) = x | Xr = 0).

Lemma 2.2 The conditional probabilities g(x; k, r, n), r = 1, 2, . . . , satisfy the rela-
tions, for x < 0 or x >

⌊ n−r+1
k+1

⌋
, g(x; k, r, n) = 0; for 0 ≤ n − r < k, g(0; k, r, n) = 1

and g(x; k, r, n) = 0, x �= 0; and for n − r ≥ k, x = 0, 1, . . . ,
⌊ n−r+1

k+1

⌋
,

g(x; k, r, n) = p(r+1)
00 g(x; k, r + 1, n) + p(r+1)

01

n−r−1∑

i=1

βig(x − IA(i); k, r + i + 1, n)

+ p(r+1)
01 βδx,1,

where βi = p(r+i+1)
10

∏i
j=2 p(r+ j)

11 , β = ∏n−r
j=2 p(r+ j)

11 and A = {k, . . . , n − r − 1}.
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Proof For x < 0 or x >
⌊ n−r+1

k+1

⌋
and for 0 ≤ n − r < k, the theorem obviously holds.

For n−r≥k, x=0, 1,. . .,
⌊ n−r+1

k+1

⌋
, let Ar,i ={Xr+1 = Xr+2 =· · ·= Xr+i = 1, Xr+i+1 =0},

i = 0, 1, . . . , n − r − 1 and Ar,n−r = {Xr+1 = · · · = Xn = 1}. Then,

g(x; k, r, n) =
n−r∑

i=0

P
[
(G(k; r + 1, n) = x) ∩ Ar,i | Xr = 0

]

=
n−r−1∑

i=0

P
(
G(k; r + i + 2, n) = x − IA(i) | Xr+i+1 = 0

)

× P
(
Xr+1 = · · · Xr+i = 1, Xr+i+1 = 0 | Xr = 0

)

+ δx,1 P(Xr+1 = · · · = Xn = 1 | Xr = 0)

= P
(
G(k; r + 2, n) = x | Xr+1 = 0

)
p(r+1)

00

+
n−r−1∑

i=1

P
(
G(k; r + i + 2, n)

= x − IA(i) | Xr+i+1 = 0
)

p(r+1)
01

⎛

⎝
i∏

j=2

p(r+ j)
11

⎞

⎠ p(r+i+1)
10

+ δx,1 p(r+1)
01

n−r∏

j=2

p(r+ j)
11 .

The result follows. ��

Theorem 2.6 The PMF of the RV G�
n,k for x = 0, 1, . . . ,

⌊ n+1
k+1

⌋
, is given by

hIII
�

(
x; k, n; P(n), p(1)

1

)
= p(1)

0 g(x; k, 1, n) + p(1)
1

n−1∑

i=1

γig(x − IA(i); k, i + 1, n)

+ δx,1 p(1)
1 γ, (17)

where γi = p(i+1)
10

∏i
j=2 p( j)

11 , i = 1, 2, . . . , n − 1, γ = ∏n
j=2 p( j)

11 , A = {k, . . . , n − 1}.

Proof Given the nonhomogeneous two state Markov dependent trials, X1,X2,...,Xn,
n ≥ k ≥ 1, we define the events A0 = {X1 = 0}, Ai = {X1 = . . . = Xi = 1, Xi+1 = 0},
i = 1, 2, . . . , n − 1 and An = {X1 = . . . = Xn = 1}. Then, for x = 0, 1, . . . ,

⌊ n+1
k+1

⌋
,

hIII
�

(
x; k, n; P(n), p1(1)

) = P
(∪n

i=0

[(
G�

n,k = x
) ∩ Ai

])

=
n∑

i=0

P
(
G�

n,k = x | Ai
)

P(Ai)
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= p(1)
0 g(x; k, 1, n)

+
k−1∑

i=1

g
(
x; k, i + 1, n

)
p(1)

1

⎛

⎝
i∏

j=2

p( j)
11

⎞

⎠ p(i+1)
10

+
n−1∑

i=k

g
(
x − 1; k, i + 1, n

)
p(1)

1

⎛

⎝
i∏

j=2

p( j)
11

⎞

⎠ p(i+1)
10

+ δx,1 p(1)
1

⎛

⎝
n∏

j=2

p( j)
11

⎞

⎠ .

The result follows. ��

For homogeneous Markov chains recursive schemes of the PMF of G�
n,k are

also provided by Hirano and Aki (1993) and Antzoulakos and Chadjikonstantinidis
(2001).

2.4 Exact Distributions of the Longest Success Run and the Waiting Time

The exact PMF of the derivative RVs Lα
n and Tr,k are readily obtained using relations

(6). Concretely, we have

P(Lα
n = k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P
(
Gα

n,1 = 0
)
, if k = 0

P
(
Gα

n,k+1 = 0
) − P

(
Gα

n,k = 0
)
, if k = 1, 2, . . . , n − 1

1 − P
(
Gα

n,k = 0
)
, if k = n

(18)

and

P(Tr,k = t) =
⎧
⎨

⎩

1 − P
(
G�

t,k = 0
)
, if t = k

∑r−1
x=0

{
P

(
G�

t−1,k = x
) − P

(
G�

t,k = x
)}

, if t > k.
(19)

where the probabilities P(Gα
n,k = x) = hd

α(x; k, n; D) for d = I, I I, I I I are given by
the proper Eqs. 9 to 17.

Since Sα(n, k) = {0, 1} if n ≤ 2k and α = � or n ≤ 2k + 1 and α = c, it is evident
that

P(T1,k > n) = P
(
L�

n < k
) = P

(
G�

n,k = 0
) = 1 − E

(
G�

n,k

)
, if n ≤ 2k

and

P
(
Lc

n < k
) = P

(
Gc

n,k = 0
) = 1 − E

(
Gc

n,k

)
, if n ≤ 2k + 1, (20)

where E(Gα
n,k), α = �, c, are given by the forthcoming Eqs. 22 to 28 for Poisson,

Bernoulli, exchangeable and Markov dependent trials.
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3 Mean Values and Variances

In this section we obtain exact closed formulae for the mean values and the variances
of the RVs Gα

n,k, α = l or α = c. The expressions are derived using the representation
of Gα

n,k as a sum of the indicator RVs Iα
j defined in Section 1. Hence,

E
(
Gα

n,k

) =
∑

j∈Jα

E
(
Iα

j

)
, and V

(
Gα

n,k

) =
∑

j∈Jα

V
(
Iα

j

) + 2
∑

j1< j2
j1 , j2∈Jα

Cov
(

Iα
j1 , Iα

j2

)

(21)

with

E
(
Iα

j

) = P
(
Iα

j = 1
)
, V

(
Iα

j

) = P
(
Iα

j = 1
) − {

P
(
Iα

j = 1
)}2 and

Cov
(
Iα

j1 , Iα
j2

) = P
(
Iα

j1 = 1, Iα
j2 = 1

) − P
(
Iα

j1 = 1
)
P
(
Iα

j2 = 1
)
.

The foregoing relations offer a framework to establish E
(
Gα

n,k

)
and V

(
Gα

n,k

)
for

all the under study sequences. This is done in Propositions 3.1–3.2, 3.3–3.4, and
3.5, for independent, exchangeable and Markov dependent sequences, respectively.
Corollaries 3.1 and 3.2 give the results for Bernoulli sequences.

3.1 Independent Trials

Proposition 3.1 For n ≥ k, the mean value E
(
G�

n,k

)
, and the variance V

(
G�

n,k

)
, of G�

n,k
are given by

E
(
G�

n,k

) =
n∑

j=k

μ�
j

and

V(G�
n,k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑n

j=k
μ�

j

(
1 − μ�

j

) − 2
∑n−1

j=k
μ�

j

∑n− j

i=1
μ�

j+i, for n < 2k

∑n

j=k
μ�

j

(
1 − μ�

j

) − 2
∑n−k

j=k
μ�

j

∑k

i=1
μ�

j+i

− 2
∑n−1

j=n−k+1
μ�

j

∑n− j

i=1
μ�

j+i, for n ≥ 2k;

(22)

where μ�
j = q j−k

∏ j
i= j−k+1 pi, j = k, k + 1, . . . , n, with q0 ≡ 1.

Proof It is clear that

P
(
I�

k = 1
) = P

(
X1 = X2 = . . . = Xk = 1

) = p1 p2 · · · pk = μ�
k

and for j = k + 1, . . . , n,

P(I�
j = 1) = P

(
X j−k = 0, X j−k+1 = X j−k+2 = . . . = X j = 1

)

= q j−k p j−k+1 pj−k+2 · · · pj = μ�
j.
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Next, because of the internal structure of the RVs I�
j1 , I�

j2 and the independence of
the RVs Xi’s we observe that P

(
I�

j1 = 1, I�
j2 = 1

) = 0, if 0 < j2 − j1 ≤ k, which implies
that Cov

(
I�

j1 , I�
j2

) = −μ�
j1μ

�
j2 , whereas I�

j1 and I�
j2 are independent RVs for j2 − j1 ≥

k + 1, so that Cov
(
I�

j1 , I�
j2

) = 0. The results follow. ��

Proposition 3.2 The mean value E
(
Gc

n,k

)
and the variance V

(
Gc

n,k

)
, of Gc

n,k are
given by

(a) for n = k,

E
(
Gc

n,k

) = μc
0 and V

(
Gc

n,k

) = μc
0

(
1 − μc

0

)

(b) for n ≥ k + 1

E
(
Gc

n,k

) =
n∑

j=0

μc
j (23)

and

V
(
Gc

n,k

) =
n∑

j=0

μc
j

(
1 − μc

j

)
− 2μc

0

n∑

j=1

μc
j − 2

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n−1∑

j=1

μc
j

n− j∑

i=1

μc
j+i, for n ≤ 2k + 1

n∑

j=1

μc
j

k∑

i=1

μc
j+i, for n > 2k + 1;

where μc
0 = ∏n

i=1 pi, μc
j = qn−k+ j

(∏ j
i=1 pi

)( ∏k− j−1
i=0 pn−i

)
, for j = 1, 2 . . . , k and

μc
j = q j−k

( ∏k−1
i=0 pj−i

)
, for j=k + 1, k + 2, . . . , n, with the convention μc

n+i ≡μc
i ,

i = 1, 2, . . . , k.

Proof Obviously, P
(
Ic

0 =1
)=μc

0, and for j=1, . . . , n, P
(
Ic

j =1
)=μc

j. Also, for n<

2k+2 and j=0, 1, . . . , n−1, i=1, 2, . . . , n− j, we have that P
(
Ic

j = 1, Ic
j+i = 1

) = 0,
so that Cov

(
Ic

j , Ic
j+i

) = −μc
jμ

c
j+i and

∑

0≤ j1< j2≤n

Cov
(

Ic
j1 , Ic

j2

)
= −

n−1∑

j=0

n− j∑

i=1

μc
jμ

c
j+i.

Further, for n ≥ 2k + 2, considering Ic
n+m ≡ Ic

m, m = 1, 2, . . . , k, we have again that
P
(
Ic

j = 1, Ic
j+i = 1

) = 0, for j = 1, 2, . . . , n and i = 1, 2, . . . , k which implies that

Cov
(
Ic

j , Ic
j+i

) = −μc
jμ

c
j+i, whereas Cov

(
Ic

0, Ic
i

) = −μc
0μ

c
i , i = 1, 2, . . . , n. Noting that,

Cov
(
Ic

j1 , Ic
j2

) = 0, for every 2-combination { j1, j2} of the n numbers of the set
{1, 2, . . . , n}, displayed on a circle possessing the property that between them there
are at least k numbers (e.g. j1 and j2 are k numbers apart) we have

∑

0≤ j1< j2≤n

Cov
(

Ic
j1 , Ic

j2

)
= −

n∑

i=1

μc
0μ

c
i −

n∑

j=1

k∑

i=1

μc
jμ

c
j+i.

The Proposition follows. ��
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For Bernoulli trials Propositions 3.1 and 3.2 imply the following corollaries.

Corollary 3.1 For Bernoulli trials the mean value and the variance of G�
n,k are

given by

E
(
G�

n,k

) = pk + (n − k)qpk, n ≥ k

and

V
(
G�

n,k

) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pk
(
1 − pk

) + (n − k)qpk − 2(n − k)qp2k

− {
(n − k)qpk

}2
, for k ≤ n < 2k

pk
(
1 − pk

) + (n − k)qpk − 2kqp2k

− {
n + 2(n − 1)k − 3k2

}
q2 p2k, for n ≥ 2k.

(24)

Corollary 3.2 For Bernoulli trials the mean value and the variance of Gc
n,k are

given by

(a) for n = k,

E
(
Gc

n,k

) = pn and V
(
Gc

n,k

) = pn(1 − pn)

(b) for n ≥ k + 1

E
(
Gc

n,k

) = pn + nqpk (25)

and

V
(
Gc

n,k

) =

⎧
⎪⎨

⎪⎩

pn
(
1 − pn

) + nqpk − 2nqpn+k − n2q2 p2k, for n ≤ 2k + 1

pn
(
1 − pn

) + nqpk − 2nqpn+k

− n(2k + 1)q2 p2k, for n > 2k + 1.

For Bernoulli trials, alternative derivations of E
(
G�

n,k

)
are in Mood (1940),

Goldstein (1990) and Hirano and Aki (1993). The last authors and Mood (1940)
provided expressions for V

(
G�

n,k

)
too. Further, Makri et al. (2007b) established the

same formulae for E
(
Gα

n,k

)
, α = �, c using a different approach.

3.2 Exchangeable Trials

Proposition 3.3 For n ≥ k, the mean value E
(
G�

n,k

)
and the variance V

(
G�

n,k

)
, of G�

n,k
are given by

(a)

E
(
G�

n,k

) = (n − k + 1)λk − (n − k)λk+1
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(b)

V
(
G�

n,k

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λk
(
1 − λk

) + (n − k)
(
λk − λk+1

)(
1 − λk + λk+1

)

− 2(n − k)λk
(
λk − λk+1

)

− (n − k)(n − k − 1)
(
λk − λk+1

)2
, for n < 2k

λk(1 − λk) + (n − k)
(
λk − λk+1

)(
1 − λk + λk+1

)

− 2kλk
(
λk − λk+1

)

+ 2(n − 2k)
{
λ2k − λ2k+1 − λk

(
λk − λk+1

)}

− (n − k)(n − k − 1)(λk − λk+1)
2

+ (n − 2k)(n − 2k − 1)
(
λ2k − 2λ2k+1 + λ2k+2

)
, for n ≥ 2k.

(26)

Proof First by using Theorem 2.1 of George and Bowman (1995), we observe that
P
(
I�

k = 1
) = P

(
X1 = . . . = Xk = 1

) = pk(0) = λk, P
(
I�

j =1
)= P

(
X1 = . . . = Xk = 1,

Xk+1 = 0
) = pk+1(1) = λk − λk+1, j = k + 1, . . . , n. Further, P

(
I�

j1 = 1, I�
j2 = 1

) = 0,
if 0 < j2 − j1 ≤ k, whereas P

(
I�

k =1, I�
j2 = 1

) = P
(
X1 = . . . = X2k = 1, X2k+1 = 0

) =
p2k+1(1)=λ2k − λ2k+1, if j2 − k ≥ k + 1, and P

(
I�

j1 =1, I�
j2 =1

)= P
(
X1 = . . .= X2k =1,

X2k+1 = 0, X2k+2 = 0
) = p2k+2(2) = λ2k − 2λ2k+1 + λ2k+2, if j2 − j1 ≥ k + 1. Next,

noting that the number of 2-combinations { j1, j2} of the n − k numbers {k + 1, . . . , n}
for which it holds j2 − j1 ≥ k + 1 equals

(n−k−(2−1)k
2

) = (n−2k
2

)
(see, Charalambides

2002, p 99), and the number of them for which it holds j2 − j1 ≤ k equals(n−k
2

) − (n−2k
2

)
the results follow after some algebraic manipulations. ��

Proposition 3.4 The mean value, E
(
Gc

n,k

)
, and the variance, V

(
Gc

n,k

)
, of Gc

n,k are
given by

(a) for n = k,

E
(
Gc

n,k

) = λn, and V
(
Gc

n,k

) = λn (1 − λn)

(b) for n ≥ k + 1,

E
(
Gc

n,k

) = λn + n (λk − λk+1) (27)

and

V
(
Gc

n,k

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λn
(
1 − λn

) + n
(
λk − λk+1

)(
1 − λk + λk+1

)

− 2nλn
(
λk − λk+1

) − n(n − 1)
(
λk − λk+1

)2
, for n ≤ 2k + 1

λn(1 − λn) + n
(
λk − λk+1

)(
1 − λk + λk+1

)

− 2nλn
(
λk − λk+1

) − n(n − 1)
(
λk − λk+1

)2

+ n
(
n − 2k − 1

)(
λ2k − 2λ2k+1 + λ2k+2

)
, for n > 2k + 1.
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Proof It is clear that P
(
Ic

0 =1
)= pn(0)=λn and for n ≥ k + 1 P

(
Ic

j =1
)= pk+1(1)=

λk+1 − λk, j = 1, 2, . . . , n. Also, for any of the n
n−2k

(n−2k
2

) = n(n−2k−1)

2 2-combinations
{ j1, j2} of the set of the n numbers {1, 2, . . . , n} displayed on a circle, for which there
are at least k points between j1 and j2, (see, Charalambides 2002, p. 99) it holds that

P
(

Ic
j1 = 1, Ic

j2 = 1
)

= p2k+2(2) = λ2k − 2λ2k+1 + λ2k+2,

whereas

P
(

Ic
j1 = 1, Ic

j2 = 1
)

= 0

for any 2-combination { j1, j2} of the
(n

2

) − n
n−2k

(n−2k
2

) = n(n−1)−n(n−2k−1)

2 ones for
which there are less than k points between j1 and j2. The results follow after some
algebraic manipulations. ��

An alternative formula for E
(
G�

n,k

)
was given by Eryilmaz and Demir (2007)

which, however, is more complicated than ours as it is expressed as a sum of n − k
algebraic expressions of λi’s.

3.3 Markov Dependent Trials

Proposition 3.5 For n ≥ k, the mean value E
(
G�

n,k

)
, and the variance V

(
G�

n,k

)
, of G�

n,k
are given by

E
(
G�

n,k

) =
n∑

j=k

μ j

and

V
(
G�

n,k

)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

j=k

μ�
j

(
1−μ�

j

)
−2

n−1∑

j=k

μ�
j

n− j∑

i=1

μ�
j+i, for n<2k

n∑

j=k

μ�
j

(
1−μ�

j

)
− 2

n−k∑

j=k

μ�
j

k∑

i=1

μ�
j+i−2

n−1∑

j=n−k+1

μ�
j

n− j∑

i=1

μ�
j+i

+ 2
n−k−1∑

j=k

n− j∑

i=k+1

(
μ j, j+i−μ jμ j+i

)
, for n≥2k;

(28)

where

μ j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p(1)
1

k∏

r=2

p(r)
11 , if j = k

φ( j − k)p( j−k+1)

01

k∏

r=2

p( j−k+r)
11 , if j = k + 1, . . . , n,



286 Methodol Comput Appl Probab (2011) 13:269–305

μk, j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p(1)
1 p(k+1)

10 p(k+2)
01

k∏

r=2

p(r)
11 p(k+1+r)

11 , if j = 2k + 1

p(1)
1 p( j−k+1)

01 θ(k, j)
k∏

r=2

p(r)
11 p( j+2−r)

11 , if j ≥ 2k + 2.

For i ≥ k + 1

μi, j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ(i − k)p(i−k+1)
01 p(i+1)

10 p(i+2)
01

k−2∏

r=0

p(i−r)
11 p(i+k+1−r)

11 , if j = i + k + 1

φ(i − k)p(i−k+1)
01 p( j−k+1)

01 θ(i, j)
k∏

r=2

p(i−k+r)
11 p( j−k+r)

11 , if j ≥ i + k + 2,

with φ( j )= P(X j =0)= p( j)
0 =(

p( j)
00 − p( j)

10

)
φ( j − 1)+ p( j)

10 , j = 2, . . . , n, φ(1) = p(1)
0 ,

θ(i, j )= P(X j−k = 0 | Xi =1) = ∑
si+1∈S · · · ∑s j−k−1∈S p(i+1)

1,si+1

(∏ j−k−2
r=i+1 p(r+1)

sr,sr+1

)
p( j−k)

s j−k−1,0
,

j ≥ i + k + 2 and S = {0, 1}.

Proof First we note that μk = P(I�
k = 1) = P(X1 = 1)P(X2 = 1 | X1 = 1) · · ·

P(Xk = 1 | Xk−1 = 1) = p(1)
1 p(2)

11 · · · p(k)
11 and for j = k + 1, . . . , n, μ j = P(I�

j =
1) = P(X j−k = 0)P(X j−k+1 = 1 | X j−k = 0)P(X j−k+2 = 1 | X j−k+1 = 1) · · · P(X j =
1 | X j−1 = 1) = φ( j − k)p( j−k+1)

01 p( j−k+2)

11 · · · p( j)
11 , because of the Markovian property.

Also, for i ≥ k + 1,

μi,i+k+1 = P(Ii = 1, Ii+k+1 = 1)

= P(Xi−k = 0, Xi−k+1 = . . . = Xi = 1, Xi+1 = 0, Xi+2 = · · · = Xi+k+1 = 1)

= P(Xi−k = 0)p(i−k+1)
01 p(i−k+2)

11 · · · p(i)
11 p(i+1)

10 p(i+2)
01 p(i+3)

11 · · · p(i+k+1)
11

= φ(i − k)p(i−k+1)
01

(
k−2∏

r=0

p(i−r)
11

)

p(i+1)
10 p(i+2)

01

(
k−2∏

r=0

p(i+k+1−r)
11

)

,

and for j ≥ i + k + 2,

μi, j = P(Ii = 1, I j = 1)

= P(Xi−k = 0, Xi−k+1 = . . . = Xi = 1, X j−k = 0, X j−k+1 = · · · = X j = 1)

=
∑

si+1∈S

· · ·
∑

s j−k−1∈S

P(Xi−k = 0, Xi−k+1 = · · · = Xi = 1,

Xi+1 = si+1, · · · , X j−k−1 = s j−k−1, X j−k = 0, X j−k+1 = · · · = X j = 1)

= φ(i − k)p(i−k+1)
01

(
k∏

r=2

p(i−k+r)
11

)

θ(i, j)p( j−k+1)

01

(
k∏

r=2

p( j−k+r)
11

)

.

Next, by expressing in an similar way,

μk,k+(k+1) = P(X1 = · · · = Xk = 1, Xk+1 = 0, Xk+2 = · · · = X2k+1 = 1)
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and for j ≥ 2k + 2

μk, j = P
(
X1 = · · · = Xk = 1, X j−k = 0, X j−k+1 = · · · = X j = 1

)

and noting that

φ( j ) =
∑

s∈S

P
(
X j = 0 | X j−1 = s)P(X j−1 = s), j = 2, 3, . . . , n

and for j ≥ i + k + 2

θ(i, j) =
∑

si+1∈S

· · ·
∑

s j−k−1∈S

P
(
X j−k = 0, X j−k−1 = s j−k−1, . . . , Xi+1 = si+1 | Xi = 1

)

=
∑

si+1∈S

· · ·
∑

s j−k−1∈S

P(Xi+1 = si+1 | Xi = 1)P(Xi+2 = si+2 | Xi+1 = si+1) ×

× · · · P(X j−k = 0 | X j−k−1 = s j−k−1),

we get the result. ��

In Eryilmaz (2005b) an alternative expression of E
(
G�

n,k

)
is given. However, it

is more complicated than ours as it eventually contains two successive sums of μ j

terms instead of one sum of ours. The same is also true for homogeneous chains.
For the latter case, Antzoulakos and Chadjikonstantinidis (2001) provided a simpler
expression for the mean.

Remark 3.1 Using first principles, the following alternative expressions for the prob-
abilities φ( j) and θ(i, j) are derived

φ( j ) = p(1)

( j∏

t=2

P(t)

)

e
′
0, j = 2, 3, . . . , n, with φ(1) = 1 − p(1)

1 ;

and

θ(i, j ) = e1

⎛

⎝
j−k∏

t=i+1

P(t)

⎞

⎠ e
′
0, j − k − i ≥ 2, i ≥ 1 (29)

where e0 = (1, 0), e1 = (0, 1) and e
′
0 the transpose of e0. In Eq. 29 the probabilities

φ( j ) and θ(i, j ) are evaluated iteratively using matrices multiplication. Hence, in
some computers the required computational time may be reduced enough. For
homogeneous Markov chains with 1 − p00 + p10 �= 0 the expressions for φ( j ) and
θ(i, j ) may be simplified even more. Concretely, we have

φ( j ) = (1 − p(1)
1 )(p00 − p10)

j−1 + p10

1 − p00 + p10
[1 − (p00 − p10)

j−1], j = 1, 2 . . . , n

and

θ(i, j ) = p10

1 − p00 + p10
[1 − (p00 − p10)

j−k−i], j − k − i ≥ 2 and i ≥ 1. (30)
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3.4 Expected Longest Run Length and Waiting Time

In this section we give the mean values of RVs Lα
n and Tr,k as a direct application of

the PMF of Gα
n,k. Using elementary probability and relationships (6) we get

E
(
Lα

n

) = n −
n∑

k=1

P
(
Gα

n,k = 0
)

(31)

and

E(Tr,k) = r(k + 1) − 1 +
∞∑

t=r(k+1)−1

P(G�
t,k < r)

� r(k + 1) − 1 +
t∞∑

t=r(k+1)−1

r−1∑

x=0

P(G�
t,k = x). (32)

t∞ = t∞(ε; r, k) is a stopping time such that

r−1∑

x=0

P(G�
t∞,k = x) ≤ ε

t∞∑

t=r(k+1)−1

r−1∑

x=0

P(G�
t,k = x) (33)

where ε is a pre-specified small positive number, defined by the demanded accuracy
of the results. In relations (31) to (33) the required probabilities are determined via
Eqs. 9 to 17.

4 Bounds and Approximations

For large n, determining the exact probability hd
α(x; k, n; D) is often a hard task,

because of the computational effort needed for calculating the required recursions
or the binomial coefficients involved. Therefore, the need for easily computed sharp
bounds and approximations is apparent. In this section, computational tractable
lower and upper bounds and approximations, combined with error analysis, for
the distribution of Gα

n,k, are established. The bounds are based on the well known
Markov, Chebychev and conditional expectation inequalities and offer an additional
application of the material presented in Section 3. The concerned approximations
are derived using the obtained lower and upper bounds. Both bounds and approxi-
mations imply that similar results hold true for the RVs Lα

n and Tr,k as well. We note
in ending that the presented bounds hold for all the types of the concerned internal
structure of the under study sequences, i.e. Poisson, Bernoulli, exchangeable and
Markov dependent ones. Furthermore, extensive numerical investigations, showed
that the bounds and the approximations are well behaved even for moderate values
of n.

In the sequel, let mα = E(Gα
n,k), σ 2

α = V(Gα
n,k) and Fα(x) = P(Gα

n,k < x) =
∑x−1

y=0 hd
α(y; k, n; D), for x ∈ Sα(n, k) and d = I, I I, I I I. First, we derive a lower and

an upper bound of Fα(x), using Markov’s and one-sided Chebychev’s inequalities.
(Markov’s bound) For any x ∈ Sα(n, k) − {0}, it holds

Fα(x) ≥ lαM(x) = 1 − mα/x. (34)
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Since, P(Lα
n < k) = P(Gα

n,k < 1), Eq. 34 implies P(Lα
n < k) ≥ lαM(1) = 1 − mα .

The lower bound lαM(1) is also derived by considering the Worsley’s (1982) variant
of a Bonferroni-type inequality applied for the sets Aα

i = {Iα
i = 1}, i ∈ Jα . Specifi-

cally, we have P(∪i∈Jα
Aα

i ) ≤ ∑
i∈Jα

P(Aα
i ) − ∑max Jα−1

i=min Jα
P(Aα

i Aα
i+1). But P(Aα

i Aα
i+1) =

P(Iα
i = 1, Iα

i+1 = 1) = P(∅) = 0. Thus, Fα(1) = P(Lα
n < k) = 1 − P(Lα

n ≥ k) ≥ 1 −
mα , since mα = ∑

i∈Jα
P(Aα

i ) and P(Lα
n ≥ k) = P(∪i∈Jα

Aα
i ). Eryilmaz (2005b, 2006)

and Eryilmaz and Demir (2007) have used the Worsley’s inequality applied for
different sets to obtain the same lower bound of P(L�

n < k) for Markov dependent
and exchangeable trials, respectively.

Further, for x = 1 Eq. 34 combined with Eq. 20 provide an upper bound of the
probability of having no success run of length at least k, i.e. P(Gα

n,k = 0) = P(Lα
n <

k), 1 ≤ k ≤ n. This is true for any specific type of the considered sequences of
a fixed length n. Concretely, the relation {Lα

n < k1} ⊆ {Lα
n < k2}, 1 ≤ k1 ≤ k2 ≤ n

implies that P(Lα
n < k) ≤ P(Lα

n < k0) for 1 ≤ k ≤ k0 ≤ n with 2k0 ≥ n if α = � and
2k0 + 1 ≥ n if α = c. This means that the exact value of P(Lα

n < k0) [P(Lα
n ≥ k0)] is

always an upper [lower] bound of P(Lα
n < k) [P(Lα

n ≥ k)] for k ≤ k0. In other words,
max{0, 1 − E(Gα

n,k)} ≤ P(Lα
n < k) < 1 − E(Gα

n,k0
) for k < k0, and readily P(Lα

n <

k) = 1 − E(Gα
n,k) for k ≥ k0. Similar ideas are used in Eryilmaz (2008).

As an example, we consider n trials with outcomes ordered on a line (α = �). Let
k0 = 
n/2� and the trials be exchangeable (d = I I). Then, Eqs. 26(a) and 34 imply
l�M(1) = 1 − E(G�

n,k) = 1 − (n − k + 1)λk + (n − k)λk+1. Therefore, max{0, 1 − (n −
k + 1)λk + (n − k)λk+1} ≤ P(L�

n < k) < 1 − (n − k0 + 1)λk0 + (n − k0)λk0+1, for 1 ≤
k < k0 and P(L�

n < k) = 1 − (n − k + 1)λk + (n − k)λk+1, for k0 ≤ k ≤ n.
(Chebychev’s bounds). For x ∈ Sα(n, k) it holds

Fα(x) ≥ lαC(x) = 1 − σ 2
α /{σ 2

α + (x − mα)2}, if x > mα

Fα(x) ≤ Uα
C(x) = σ 2

α /{σ 2
α + (1 + mα − x)2}, if x < mα + 1. (35)

It is evident that lαM(x) ≥ 0 if x ≥ mα , lαC(x) > 0 for x > mα and lαC(x) > lαM(x) if
x > mα + σ 2

α /mα . Thus we have:
For any x ∈ Sα(n, k) ∩ {y ∈ N : y ≥ mα} it holds

Fα(x) ≥ Lα
MC(x), (36)

where

Lα
MC(x) =

⎧
⎨

⎩

0, if x = mα

lαM(x), if mα < x ≤ mα + σ 2
α /mα

lαC(x), x > mα + σ 2
α /mα .

Equations 35 and 36 along with the dual relationships

P(Tr,k > n) = F�(r) and P(Lα
n < k) = Fα(1)

establish lower/upper bounds for the tail probability of the waiting time Tr,k and the
probability distribution of the length of the longest success run Lα

n . Next, new upper
bounds for the latter distribution as well as for the tail probability of the waiting time
T1,k are given.
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(Conditional Expectation bound) It is true that

Fα(1) ≤ Uα
E = 1 −

∑

i∈Jα

P(Iα
i = 1)

E(Gα
n,k | Iα

i = 1)
, α = �, c. (37)

Explicitly we have,

P(T1,k > n) = P(L�
n < k) = P(G�

n,k < 1) ≤ U�
E

where

U�
E =1−

n∑

i=k

P(I�
i =1)

1+∑i−k−1
j=k P(I�

j =1 | I�
i = 1)+∑n

j=i+k+1 P(I�
j =1 | I�

i =1)
, n ≥ 2k + 1

and

P(Lc
n < k) = P(Gc

n,k < 1) ≤ Uc
E

with

Uc
E = 1 − P(Ic

0 = 1) −
k+1∑

i=1

P(Ic
i = 1)

1 + ∑n−k+i−1
j=i+k+1 P(Ic

j = 1 | Ic
i = 1)

−
n−k−1∑

i=k+2

P(Ic
i = 1)

1 + ∑i−k−1
j=1 P(Ic

j = 1 | Ic
i = 1) + ∑n

j=i+k+1 P(Ic
j = 1 | Ic

i = 1)

−
n∑

i=n−k

P(Ic
i = 1)

1 + ∑i−k−1
j=k+1−n+i P(Ic

j = 1 | Ic
i = 1)

, n ≥ 2k + 2.

We can utilize the probabilities P(Iα
i = 1), P(Iα

j = 1 | Iα
i = 1) = P(Iα

j =1,Iα
i =1)

P(Iα
i =1)

given
in the proofs of Propositions 3.1 to 3.5 to obtain explicit formulae of Uα

E for Poisson,
exchangeable and Markov dependent trials, e.g. we see that for Poisson trials

U�
E = 1 −

n∑

i=k

μ�
i

1 + ∑i−k−1
j=k μ�

j + ∑n
j=i+k+1 μ�

j

, n ≥ 2k + 1

and

Uc
E = 1 − μc

0 −
k+1∑

i=1

μc
i

1 + ∑n−k+i−1
j=i+k+1 μc

j

−
n−k−1∑

i=k+2

μc
i

1 + ∑i−k−1
j=1 μc

j + ∑n
j=i+k+1 μc

j

−
n∑

i=n−k

μc
i

1 + ∑i−k−1
j=k+1−n+i μ

c
j

, n ≥ 2k + 2.

The following relationships establish general arguments for a commonly used ap-
proximation of a certain nonnegative quantity and an upper bound of the associated
error committed by this approximation (cf. Corollary 1 of Makri and Psillakis 1997).
We emphasize that the latter error estimate does not assume the knowledge of the
exact value of the studied quantity. It depends only on the lower and upper bounds.
Therefore, it gives an advantage in cases for which the exact value is difficult to be
computed.
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Let LB and U B be a lower and an upper bound of F (≥ 0). Then, F can be
estimated by

F̂ = (LB + U B)/2,

with relative error

B =| F − F̂ | /F, F > 0. (38)

An upper bound of B, for LB > 0, is

B̂ = (U B − LB)/(2LB).

For instance, if 
mα� > 1, we set LB = Lα
MC(
mα�) and U B = Uα

C(
mα�) in Eq. 38
to obtain an approximation F̂α(
mα�) of Fα(
mα�) and an upper bound B̂α(
mα�) of
the accompanied error Bα(
mα�) of this approximation. Furthermore, for 
mα� = 1,
Eq. 38 with LB = Lα

MC(1) and U B = min{Uα
E, Uα

c (1)} gives analogous results for the
probabilities F�(1) = P(L�

n < k) = P(T1,k > n) and Fc(1) = P(Lc
n < k). Numerical

investigations indicated that Uα
E is at most equal to Uα

C(1).
Next, we consider a lower bound �α , an upper bound uα , an approximation êα , and

an upper bound b̂α of the associated error of êα , of the expected length of the longest
success run eα = E(Lα

n), for α = �, c and d = I, I I, I I I.
Let kα = 
n/2� for α = �, 
(n − 1)/2� for α = c; then it is true by Eq. 20 that∑n
k=kα

Fα(1) = ∑n
k=kα

(1 − E(Gα
n,k)). Since, E(Lα

n) = n − {∑kα−1
k=1 Fα(1) + ∑n

k=kα
(1 −

E(Gα
n,k))

}
, using the bounds Lα

MC(1) and Uα
EC(1) of Fα(1), for 1 ≤ k ≤ kα − 1 and

Eq. 38 we have:

�α ≤ eα � êα = (�α + uα)/2 ≤ uα

and for eα > 0,

bα =| eα − êα | /eα ≤ b̂α = (uα − �α)/(2�α), for �α > 0,

where

�α = Cα −
kα−1∑

k=1

Uα
EC(1), uα = Cα −

kα−1∑

k=1

Lα
MC(1),

with

Cα = kα − 1 +
n∑

k=kα

E(Gα
n,k), and Uα

EC(1) = min{Uα
E, Uα

C(1)}.

5 Reliability of Consecutive Systems

The statistic Gα
n,k is useful to study the reliability of a general class of consecu-

tive systems; namely the linear/circular r-consecutive-at-least-k-out-of-n:F systems
denoted by C+

α (r; k, n : F). Such a system consists of n (n ≥ 1) components. Each
component and the system itself is either good (working, “0”) or not-good (failed,
“1”). The system’s components are ordered linearly (α = �) or circularly (α = c).
The system fails if and only if there are at least r (1 ≤ r ≤ rα = � n+1−βα

k+1 �) runs of at
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least k consecutive failed components. We mention that the system C+
α (r; k, n : F)

generalizes the well known consecutive-k-out-n:F system denoted by Cα(k, n; F);
i.e. C+

α (1; k, n : F) ≡ Cα(k, n : F). The C+
� (r; k, n : F) was introduced by Agarwal

et al. (2007) under the assumption that the states of the components are Bernoulli
random variables. Since Kontoleon (1980) and Derman et al. (1982) introduced
C+

� (1; k, n : F) and C+
c (1; k, n : F), respectively, and studied them for the Bernoulli

case, a great deal of research has been produced on this subject. We refer to Kuo
and Zuo (2003) as well as to Balakrishnan and Koutras (2002), for a review on
the literature on such systems whenever the components are independent (identical-
nonidentical), exchangeable or dependent in a Markovian fashion.

Assume that the component states are binary RVs, {Xi}n
i=1, with P(Xi = 0)

and P(Xi = 1) = 1 − P(Xi = 0) considered as the reliability and the unreliability
of the i-th component, i = 1, 2, . . . , n; then Gα

n,k counts the number of runs of at
least k consecutive failed components. Therefore, the reliability Rd

α(r; k, n; D) of
a C+

α (r; k, n : F) consisting of independent (Poisson or Bernoulli), exchangeable or
Markov dependent components, is defined as

Rd
α(r; k, n; D)≡ P(Gα

n,k < r)−Pd
n =1−P(Gα

n,k ≥ r)−Pd
n = 1− R̃d

α(r; k, n; D) (39)

where Pd
n = P

( n∏

i=1
Xi = 1

)
, if r > 1; 0 if r = 1, and

R̃d
α(r; k, n; D) =

rα∑

x=r

hd
α(x; k, n; D) + Pd

n

is the failure probability (unreliability) of a C+
α (r; k, n : F). The reliability and the

unreliability of a C+
α (r; k, n : F) with i.i.d. components with common component

unreliability p = P(Xi = 1) = 1 − P(Xi = 0) = 1 − q, are denoted by Rα(r; k, n; p)

and R̃α(r; k, n; p), respectively.
Alternatively, Rd

α is written

Rd
α(r; k, n; D) =

r−1∑

x=0

hd
α(x; k, n; D) − Pd

n.

Hence, depending on the position of r in the sequence 1, 2, . . . , rα we can use the
next formula for efficient computation of Rd

α(r; k, n; D),

Rd
α(r; k, n; D) =

⎧
⎨

⎩

∑r−1
x=0 hd

α(x; k, n; D) − Pd
n, if 2r ≤ rα + 1

1 − ∑rα

x=r hd
α(x; k, n; D) − Pd

n, otherwise.
(40)

In many applications, exact system reliability is not necessary. Reasonably good
bounds or approximations that can be easily computed are usually sufficient. Next,
bounds and approximations of Rd

α(r; k, n; D) are derived directly using the material
of Section 4. More specifically, we have:

For given α, n, k let Rα(r) = Rd
α(r; k, n; D), 1 ≤ r ≤ rα and mα = E(Gα

n,k). Then it
is true that

Rα(r) ≥ LRα(r) = Lα
MC(r) − Pd

n, for r ≥ max{1, mα} (41)

Rα(r) ≤ U Rα(r) =
{

Uα
C(r) − Pd

n, for 1 < r < mα + 1

min{Uα
C(1), Uα

E}, for r = 1.



Methodol Comput Appl Probab (2011) 13:269–305 293

Specifically, for r = 
mα� with mα > 0,

LRα(r) ≤ Rα(r) � R̂α(r) = (LRα(r) + U Rα(r))/2 ≤ U Rα(r)

and if Rα(r) > 0, LRα(r) > 0 we have

BRα(r) =| Rα(r) − R̂α(r) | /Rα(r) ≤ B̂Rα(r) = (U Rα(r) − LRα(r))/(2LRα(r)).

The bounds Lα
MC(r), Uα

C(r) and Uα
E are given by Eqs. 35 to 37.

We mention that the error bound B̂Rα(r), is a very conservative one. Although,
it is several times larger than BRα(r), its use in cases in which the exact reliability
is difficult to evaluate -due to computer limitations, is inestimable. Further, if
B̂Rα(r) ≤ 0.5 × 10−m, then R̂α(r) and the (unknown) Rα(r) have to agree in at least
m significant decimal digits.

For systems with i.i.d. components Agarwal et al. (2007) obtained an alternative
formula of R�(r; k, n; p) using a graphical evaluation and review technique. Hwang
(1986), Muselli (2000a, b) and Fu et al. (2003) provided formulae of R�(1; k, n; p)

along with lower/upper bounds, whereas Charalambides (1994), Makri and Philippou
(1994) gave expressions of Rc(1; k, n; p). Lambiris and Papastavridis (1985) derived
Rα(1; k, n; p) for both α = � and α = c.

6 Applications and Numerics

In this section some examples of binary sequences (independent, exchangeable and
Markov dependent ones) are considered. They are indicative of real situations and
they have appeared in numerous fields of application of run related statistics. For
these sequences we present a summary of the involved concepts and the necessary
notation. For details the interested reader may consult the quoted references. After
that, we select some parametric configurations which we use in indicative case
studies. These give to someone a sense of the involved numerics and a gain of insight
into the formulae presented in Sections 2 to 5. Further, the use of the concerned
sequences as models on which the RVs Gα

n,k, Lα
n and Tr,k are defined, imply some

attractive applications of these RVs.

6.1 Application Binary Sequences

6.1.1 Polya-Eggenberger urn Model

We start with an example of an exchangeable sequence of special interest in applied
probability; namely, the Poya-Eggenberger sampling scheme (cf. Johnson and Kotz
1977, pp 176–178). In this scheme a ball is drawn at random from an urn initially
containing w white balls and b black balls, its color is observed, and it is then returned
to the urn along with s additional balls of the same color as the ball drawn. Drawing
a white ball is considered as a success and drawing a black ball is considered as a
failure. We denote this scheme as PE(w, b , s). A finite number of n repetitions of
the scheme derives an exchangeable binary sequence with

λi =
i−1∏

j=0

w + js
w + b + js

, i = 0, 1, . . . , n. (42)
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For w = b = s = 1, Eq. 42 reduces to λi = 1
1+i , i = 0, 1, . . . , n.

For Bernoulli trials which correspond to a Polya-Eggenberger sampling scheme
with replacements, i.e. s = 0, Eq. 42 gives

λi = λi
1, i = 1, 2, . . . , n and λ0 = 1, (43)

with

λ1 = w/(w + b) = p

where p, 0 < p < 1, is the common success probability of the trials. For such trials
pn(y) reduces to

pn(y) = pn−yqy, p + q = 1.

A Bernoulli sequence, that may be used as an example of threshold exceedances
in a diverse field of applications, is the fixed truncation or fixed threshold model (see,
Sen 1991; Boutsikas and Koutras 2002; Eryilmaz 2005a). In this model let {Yi}n

i=1
be i.i.d. RVs with P(Yi ≤ y) = FY(y), carrying some crucial information about a
studied quantity. FY is a continuous distribution function. If t is a given threshold
value then the Bernoulli sequence associated with the fixed threshold model (FTM) is
defined as

Xi =
{

1, if Yi > t
0, otherwise,

i = 1, 2 . . . , n, (44)

with a common exceedance (success) probability p= E(Xi)= P(Xi =1)= P(Yi > t).
Another type of truncation which may be viewed as a random truncation or

random threshold model is defined as follows (see, Sarkadi 1957; Eryilmaz 2005a).
Suppose that we have m + n independent observations regarded as two samples of
sizes m (≥ 1) and n (≥ 1), respectively, from a population with a continuous distrib-
ution function, say F; specifically the samples Y1, Y2,...,Ym and Ym+1, Ym+2,...,Ym+n.
The j-th smallest element with 1 ≤ j ≤ m, i.e. the j-th order statistic Y j:m of the first
sample is chosen as a random threshold. Then, the sequence associated with the
random threshold model (RTM)

Xi =
{

1, if Ym+i > Y j:m
0, otherwise,

i = 1, 2 . . . , n, (45)

is exchangeable. This is so, since the random threshold model corresponds to n
repetitions of a Polya-Eggenberger sampling scheme with s = 1, w = m + 1 − j and
b = j, and links the latter scheme with the study of the order statistics (cf. Johnson
and Kotz 1977, p 181 or David and Nagaraja 2003). In this model

λ1 = P(Ym+i > Y j:m) = 1 − j
m + 1

= w

w + b
(46)

represents the exceedance (success) probability.
We note that both FTM and RTM are derived by a PE(w, b , s) urn model with

initial composition w and b such that λ1 = w
w+b . However, FTM corresponds to s = 0

(drawings with replacements such that the urn composition remains always constant)
whereas RTM corresponds to s = 1 (drawings such that the urn composition in-
creases). Hence, the sequence {Xi}n

i=1 is an exchangeable one in both cases. Thus,
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the behavior of RVs Gα
n,k, Tr,k and Lα

n is reasonable to be different whenever they
are defined on a sequence derived by using a FTM and a RTM with the same λ1. It
clearly explains why the findings of Sen (1991) and Eryilmaz (2005a) with λ1 = 0.5,
concerning the expected length of the longest success run in a linear sequence are
different.

6.1.2 Record Indicator Model

A known example of independent but not identically distributed RVs is the record
indicator model (RIM). Let {Yi}i≥1 be a sequence of RVs with continuous distribu-
tion function F and we consider the nondecreasing sequence

Mj = max{Y1, Y2, . . . , Y j}, j = 1, 2, . . . .

Then, we define the sequence (cf. Nevzorov 2001, pp 57–58 or Eryilmaz and Tutuncu
2002, p 76)

X1 = 1 and X j = I{Mj > Mj−1}, j = 2, 3, . . . . (47)

That is X j = 1, if Y j is a record and X j = 0, otherwise. X j’s are called record
indicators. For sequences of independent and identically distributed RVs Y j the
record indicators X j have two important properties (cf. Renyi 1962 or Lemma 13.1
of Nevzorov 2001). First, they are independent RVs and second

P(X j = 1) = 1/j, j = 1, 2, . . . . (48)

Similar properties also hold for the record indicators defined on a sequence of
exchangeable (symmetrically dependent) RVs. See, Theorem 28.2 of Nevzorov
(2001) and the discussion on the subject in Eryilmaz and Tutuncu (2002, pp 76, 80).

6.1.3 Communications Model

An useful example of a homogeneous Markov chain is the following (cf. Ross 2002,
p 104). Consider a communication system that transmits the digits 0 and 1. Each digit
transmitted must pass through several stages, at each of which there is a probability
p (0 < p < 1) that the digit entered will be unchanged when it leaves. Letting Xn

denote the digit entering the n-th stage, then Xn, n ≥ 1 is a two-state Markov chain
having a one-step transition probability matrix

P =
(

p 1 − p
1 − p p

)
. (49)

6.2 Case Studies and Numerics

Before we proceed in applied case studies, let us consider an example dealing with
the formulae presented in the Sections 2 to 4.

6.2.1 Numerical Comparisons

In this example we give some numerics concerning several model sequences of vari-
ous length, which belong to the different kinds of the binary sequences considered in
the article. They show a variety of possible configurations and also shed some light



296 Methodol Comput Appl Probab (2011) 13:269–305

to the similarities and discrepancies among the corresponding probabilities, means
and variances of the RV Gα

n,k, defined on a linear (α = �) or on a circular (α = c)
sequence. The used sequences are:

Case I: A Bernoulli sequence with a common success probability p = 1/2.
Case II: A sequence of Poisson trials with pi = 1/(1 + i) (Table 1) or pi = 1/ i

(Table 2), i = 1, 2, . . . , n.
Case III: An exchangeable sequence with λi = 1/(1 + i), i = 1, 2, . . . , n.
Case IV: An homogeneous Markov chain with p00 = 3/4 and p10 = 1/4.
Case V: An non-homogeneous Markov chain with p(t)

00 = 1/t2 and p(t)
10 = 1 − 1/t,

t ≥ 2.

The initial probability vector used in cases IV and V is p(1) = (1/2, 1/2).
Table 1 gives exact probabilities, means and variances of Gα

5,2 defined on the
sequences quoted in cases I to V. The value n = 5 was chosen small so that the
required computations can also be carried out by hand, and thus it is possible to
gain insight in to formulae (9) to (11), (13) to (17) and (22) to (30) presented in the
text.

The results of Table 1 can be used further to mine some information—via the
given means and variances, about bounds and approximations of Fα(x) = P(Gα

5,2 <

x). As an indicative example we consider the case II, α = � and x = 1. We assume that
the exact probability F�(1) is difficult to evaluate but we know in advance E(G�

5,2)

and V(G�
5,2). Since, x = 
E(G�

5,2)� = 1, the remarks after Eq. 38 along with Eqs. 34 to

36 imply that L�
MC(1) = l�M(1) = 0.7333, U�

C(1) = 0.7414, F̂�(1) = 0.7374 and B̂�(1) =
0.0055 ≤ 0.5 × 10−1. Therefore, B̂�(1) suggests that F̂�(1) has to agree with respect
to the (unknown) exact value F�(1), in at least 1 significant decimal digits. In fact,
they agree in 3 digits since B�(1) = 0.00014 ≤ 0.5 × 10−3. Similar analysis may be
useful in cases in which P(Gα

n,k < x) is really difficult to evaluate but the mean and
the variance of Gα

n,k are efficiently computed.
In Table 2 we present means and variances of Gα

n,k for α = �, c, for various values
of n and for the sequences I to V. The chosen values of n range from small (n = 10) to
large (n = 1000). The selected values of k are such that to have the same percentages,
k/n, of the success threshold length k in different values of n. They are k/n = 0.5%,

Table 1 Exact probabilities,
means and variances of Gα

5,2

Case α E(Gα
5,2) V(Gα

5,2) x P(Gα
5,2 < x)

I � 0.62500 0.29688 1 0.4063
2 0.9688

c 0.65625 0.22559 1 0.3438
II � 0.26667 0.20389 1 0.7375

2 0.9958
c 0.30694 0.21273 1 0.6931

III � 0.58333 0.30972 1 0.4500
2 0.9667

c 0.58333 0.24306 1 0.4167
IV � 0.65625 0.26074 1 0.3613

2 0.9824
V � 0.54427 0.31054 1 0.4870

2 0.9688
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Table 2 Means and variances of Gα
n,k, α = �, c

n k k/n case E(G�
n,k) V(G�

n,k) E(Gc
n,k) V(Gc

n,k)

10 1 10% I 2.750 0.688 2.501 0.621
II 2.029 0.649 1.929 0.579
III 2.000 1.200 1.758 1.002
IV 1.625 0.547
V 4.363 0.366

100 1 1% I 25.250 6.313 25.000 6.250
II 4.197 2.582 4.187 2.572
III 17.000 61.200 16.677 61.902
IV 12.875 4.766
V 48.754 0.665

5 5% I 1.516 1.262 1.563 1.294
II 0.009 0.009 0.009 0.009
III 2.429 7.230 2.391 7.048
IV 3.916 1.952
V 0.006 0.006

10 10% I 0.045 0.044 0.049 0.048
II 2.79×10−7 2.79×10−7 3.06×10−7 3.06×10−7

III 0.773 1.711 0.767 1.665
IV 0.882 0.703
V 1.63×10−7 1.63×10−7

1000 5 0.5% I 15.578 12.907 15.625 12.939
II 0.009 0.009 0.009 0.009
III 23.857 610.848 23.811 609.550
IV 39.511 19.246
V 0.006 0.006

10 1% I 0.484 0.479 0.488 0.483
II 2.79×10−7 2.79×10−7 2.81×10−7 2.81×10−7

III 7.591 134.791 7.577 134.435
IV 9.329 7.326
V 1.63 × 10−7 1.63 × 10−7

1%, 5% and 10%. The depicted values give a sense of feeling of the variation of
the means and the variances of Gα

n,k, defined on different in structure and in length
sequences and of how these values variate with a pre-specified threshold k. To derive
the results of the Table Eqs. 22 to 30 have been used.

In the sequel, we consider some case studies which show potential uses of Gα
n,k

and its associated statistics Lα
n and Tr,k in applied research.

6.2.2 Forecasting in Gambling and Finance

A. (Avoid ruin in a roulette) Consider a player who bets in a Las Vegas roulette
wheel. The Vegas wheel is divided in 38 congruent (and supposedly equal likely)
sectors numbered 1 through 36, 0, and 00. The numbers 1 through 36 consist
of 18 red numbers and 18 black (0 and 00 are green). We prefer to consider
a Las Vegas wheel instead of a European roulette wheel used by Binswanger
and Embrechts (1994) because in the latter roulette a wager referring to an even
money bet (for instance, red) is a little more complicated than the corresponding
wager in a Vegas roulette (cf. Packell 1981, pp 17, 25, 78–79, 84). Let the player
bets only on red with win probability p = P(win) = P(red) = P(“success”) =
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18/38. Although the latter authors recommend that a player is better not to play,
the answering to some reasonable questions of the kind that are listed below,
allows the player to estimate certain risk probabilities. Further, the results may
be applied in the famous Martingale or “double when you loose” strategy to
help a gambler to estimate the financial reserves needed in order to avoid ruin.

(I) What is the probability to appear 2 streaks of at least 3 consecutive reds
in a sequence of 20 games? How this probability is changed if the player
has the willing to bet 80 additional times?

(II) What is the expected number of streaks of at least 3 consecutive wins
each in a sequence of n = 20, 100 games? How much on the average the
number of streaks variate around its mean value?

(III) What is the longest streak of consecutive wins that the player expects to
see in n = 20 and 100 games?

(IV) How long on the average does the player has to wait until 2 win streaks,
each of length at least 3, occur?

(V) Let the player decide to abandon the game after a specific number, say n,
of spins of the wheel. If we suppose that n is determined by the probability
P(Tr,k > n) ≤ 0.5, how long the player has to wait until abandons for k =
3 and r = 1, 2, 3, 4?

Denoting by G�
n,k, L�

n and Tr,k the number of streaks, each of at least k
consecutive wins, the length of the longest winning run in n games, and the
waiting time until r streaks each of at least k consecutive wins occur one gets
using formulae (11) or (13), (24) and (31) to (33), with p = 18/38, the following
answers:

(I) P(G�
20,3 = 2) = 0.2368 and P(G�

100,3 = 2) = 0.0341.
(II) E(G�

20,3) = 1.0572, V(G�
20,3) = 0.6755 and E(G�

100,3) = 5.5323,
V(G�

100,3) = 3.3982.
(III) E(L�

20) = 3.4923 and E(L�
100) = 5.5907.

(IV) E(T2,3) = 33.85.
(V) For r = 1, 2, 3, 4 we have n = 12, 29, 47, 65 games, respectively.

B. (Predicting in capital markets) Consider a trader at a certain capital market (a
stock market, a commodity market, an exchange market, etc). Suppose that the
trader makes transactions on an individual security or on an index defined on
that market at time units i (days, weeks, months, etc), i = 1, 2, . . . , m + n. Let
the respective prices of the security be Yi. We assume that the samples {Yi}m

i=1
and {Ym+i}n

i=1 are independent from each other and represent the past and the
future prices of the security. We consider as a “success” (“1”) the attribute that
a certain future value exceeds Y j:m, i.e. the j-th smallest value of the sample
of the past values Y1, Y2, . . . , Ym. The occurrence Xi = 1, or the not occurrence
Xi = 0, of this attribute is defined by the exchangeable sequence given by Eq. 45.
Therefore, the probabilistic analysis of the RVs G�

n,k, L�
n and Tr,k defined on the

sequence {Xi}n
i=1 may be helpful in predicting recurrences of successes within a

certain time horizon of n units. It helps the trader, mainly, to avoid ruin or even
hopefully to evaluate risk probabilities in order to design profitable strategies.
As a practical example we note that in stock markets samples of size m =
9, 21 and 39 weeks are of common use in representing the “short-term”, the
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“mid-term” and the “long-term” past behavior of a stock or a stock index. Next,
some indicative questions of the same sense of the ones quoted in part A are
presented.

(I) What is the probability that in the next 9 weeks will occur 2 clumps each
of which contains at least 2 consecutive exceedances of the median price
that a stock attained during the past 21 weeks?

(II) How the previous probability changes if the predicting time horizon
increases by 6 additional weeks?

(III) How much the probability (II) is affected if our predictions are based on
a larger set of past data, for instance 39 weeks?

(IV) What is the probability that in the next 21 weeks will occur 2 clumps each
of which contains at least 2 consecutive exceedances of the third smallest
price that a stock attained during the past 39 weeks?

(V) Which is the respective probability to the one quoted in (IV), if the
trader uses FTM with the same exceedance probability?

(VI) How long on the average the trader has to wait until two consecutive
exceedances of the smallest value of a stock of the past 39 weeks occur?
Which is the respective predicting time that the trader has to wait if he
uses FTM?

(VII) Suppose that a trader wants to design a buy-sell strategic based on the
expected length of the longest success run. A success is defined as an
exceedance over the third smallest price of a data set consisting of 39
past prices. Which are the predictions of a RTM for the next n = 10 and
20 weeks? Which are the analogous predictions if the trader prefers to
use FTM, with the same exceedance probability, instead of RTM?

Using formulae (11) or (13), (16), (31) to (33) and (44) to (46) the respective
answers are:
A RTM with m = 21 and j = 11 gives:

(I) P(G�
9,2 = 2) = 0.2709 and

(II) P(G�
15,2 = 2) = 0.4029.

(III) A RTM with m = 39 and j = 20 implies: P(G�
15,2 = 2) = 0.4168.

(IV)–(V) A RTM with m = 39, j = 3 gives P(G�
21,2 = 2) = 0.3789 whereas a FTM

with the same exceedance probability λ1 = p = 0.925 gives P(G�
21,2 =

2) = 0.4325, respectively.
(VI) A RTM with m = 39, j = 1 and λ1 = 0.975 gives E(T1,2) = 2.0804

whereas a corresponding FTM implies E(T1,2) = 2.0776.
(VII) A RTM with m = 39 and j = 3 gives E(L�

10) = 8.1057, E(L�
20) = 14.1280

and a FTM with the same exceedance probability 0.925 implies E(L�
10) =

8.0391, E(L�
20) = 13.7842, respectively.

We mention that the expected discrepancies among the corresponding results
derived by FTM and RTM have been already explained at the end of Section 6.1.

C. (Waiting for consecutive upper or lower record stock prices) We consider a se-
quence of Poisson trials Xi with different success probabilities pi, i = 1, 2, . . . , n.
As a possible application we assume that the binary RVs {Xi}n

i=1 are derived by
applying RIM given by Eqs. 47–48, on the prices {Yi}n

i=1 of a certain stock. Then,
Xi = 1 means the achievement of a new price maximum and we identify it as
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a new upper record. The RVs L�
n and Tr,k defined on the sequence Xi admit

the following interpretation: L�
n represents the maximum number of successive

increases of the stock price (consecutive achievements of new upper record
price) in n transactions, whereas Tr,k represents the waiting time until the r-th
(≥ 1) occurrence of a group with at least k (≥ 1) successive increases of the stock
price.
Therefore, the expected values of those RVs may be helpful to a trader. As an
example we consider that the prices of a certain stock are recorded on a monthly
basis. Let a trader wonder about: the expected maximum number of successive
increases of the stock prices in the next n = 20 months and how many months
on the average has to wait until two not successive increases of the stock price
will occur?
Using RIM, Eqs. 31 to 33 give E(L�

20) = 1.8602 and E(T2,1) = 14.24.

By symmetry, price minimums (lower records) of {Yi}n
i=1 are obtained by consid-

ering the upper records of the sequence {−Yi}n
i=1. Namely, they are the Yi’s with

Xi = 1.

6.2.3 Non-parametric Test of Randomness

We consider two samples S1 and S2 of m and n elements, respectively. First, we test
the null hypothesis that the two samples have been randomly selected from the same
population. Second, we consider them as a past and a future sample, respectively.
After that, we are interested in testing for randomness the two sequences that are
derived according to: (I) a RTM and (II) a RIM. These tasks can be accomplished by
using the conditional distribution of G�

n,k, given the number of failures Un.
To become even clear we consider the following two samples of observations (for

instance, they may represent prices of a security in USD) of size m = 11 and n = 10,
respectively.

Sample S1: 26.3, 28.6, 25.4, 29.3, 27.6, 25.6, 26.4, 27.7, 28.2, 29.0, 28.9
Sample S2: 25.3, 26.5, 27.2, 27.5, 26.2, 29.2, 28.5, 30.0, 28.8, 28.4.

Using the run test for randomness of two related samples (cf. Kanji 2001, p 107)
we conclude that we do not reject at significant level of α = 0.05 the null hypothesis
that the samples S1, S2 have been randomly selected from the same population. This
is so, because the applied test statistic is found to be (using the number of runs of the
combined samples) Z = 0.91 whereas the Z -test gives Z0.05 = 1.96.

After that, we proceed to test for randomness the sequences {Xi}n
i=1 that are

derived using:

(I) RTM with m = 11, j = 6 and as {Yi}m
i=1 and {Yi+m}n

i=1, the elements of the
samples S1 and S2, respectively.

(II) RIM on the sequence {Yi}n
i=1 of the elements of sample S2.

Accordingly, we have (I) Since, Y6:11 = 27.7, X I : 0000011111 and (II) X II :
1111010100.

Let G10,k ≡ G�
10,k and Ĝ10,k be the observed value of the statistic G10,k in any of

the sequences X I and X II . We choose a significant level α, say α = 5%, and we
denote by G∗

10,k the critical values of G10,k (if there are any) such that the p-value
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α∗ = P(G10,k ≥ G∗
10,k | U10 = y) ≤ α and P(G10,k ≥ g | U10 = y) > α for every g <

G∗
10,k. The number of failures in the sequences X I and X II are yI = 5 and yII = 4,

respectively. By Eq. 12 the pairs of critical values (k, G∗
10,k) and the corresponding

probabilities α∗ are: (I) (1, 5) and (5, 1) both with α∗ = 0.0238 and (II) (1, 5), (2, 3),
(3, 2) and (6, 1) with α∗ = 0.0238, 0.0476, 0.0476 and 0.0238, respectively. Therefore:

(I) we reject the null hypothesis of randomness of the sequence X I since Ĝ10,5 =
G∗

10,5 = 1 with P(G10,5 ≥ G∗
10,5 | U10 = 5) = 0.0238 and

(II) we do not reject the same hypothesis for the sequence X II since Ĝ10,3 =
1 < G∗

10,3 = 2 with P(G10,3 ≥ G∗
10,3 | U10 = 4) = 0.0476 or since Ĝ10,2 = 1 <

G∗
10,2 = 3 with P(G10,2 ≥ G∗

10,2 | U10 = 4) = 0.0476.

We note that in the second sequence for k = 3 we followed the empirical rule
suggested by Agin and Godbole (1992), i.e. k − 1 is taken equal to the expected
length of the longest success run in a random sequence of 10 Bernoulli trias (p = 0.5).
The latter mean value is E(L�

10) = 2.79883 as it was derived by Eq. 31. Alternatively,
for k = 2 we followed the rule proposed by Koutras and Alexandrou (1997), i.e. we
choose k so that P(L�

10 = k) is maximized. By Eq. 18 we find that for k = 2 we
have the maximum probability which is 0.351563. Further, in the first sequence
we selected k = 5, that is equal to the observed longest run length, and we did
not follow the pre-mentioned rules since for k = 2, 3 there is no G∗

10,k such that
P(G10,k ≥ G∗

10,k | U10 = 5) ≤ 0.05.

6.2.4 Clustering in a Communications System

We suppose that an engineer wants to study the clustering of the binary digits
transmitted through the communications system discussed in 6.1.3. Readily, the
clustering depends on the stage probability p. The use of the RVs G�

n,k and L�
n,

defined on the Markov chain with transition probability matrix given by Eq. 49
and initial probability vector (1 − p(1)

1 , p(1)
1 ), may be proven helpful. Among the

characteristic numbers of consecutive 1’s in a binary sequence could be (a) a k that
maximizes P(L�

n = k) and (b) the nearest integer to E(L�
n).

Let us consider a detector that counts the number of “long” runs of 1’s; that
is, these with length at least equal to a threshold k. If it observes r or more such
runs, an order is given to the system- for instance, it sends an alarm signal. The
detector’s tolerance (the false alarm probability) is taken to be at most equal to γ

(0 < γ < 1). For a given γ the upper-tailed critical value of r (if there is such a value
for the selected γ and the system parameters n, k, p and p(1)

1 ), r∗ is: r∗ = min{r ≥ 1 :
P(G�

n,k ≥ r) ≤ γ }.

Table 3 Communications system: n = 20, p(1)
1 = 0.5, γ = 0.05

p E(L�
20) k max 1≤k≤n P(L�

20 = k) E(G�
20,k) V(G�

20,k) r∗ P(G�
20,k ≥ r∗)

0.75 6.03531 4 0.15198 1.05469 0.49851 3 0.01400
6 0.53394 0.33685 2 0.04395

0.90 8.53534 6 0.07129 0.70859 0.30997 3 0.00001
9 0.45199 0.25307 2 0.00269
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Table 4 Reliabilities of C+
α (r; 3, n : F) with unequal component reliabilities qi = 0.85 if i is odd, 0.95

otherwise for i = 1, 2, . . . , n

n α r LRα(r) Rα(r) R̂α(r) U Rα(r) BRα(r) B̂Rα(r)

20 � 1 0.98745625 0.98750824 0.98750789 0.98755952 0.00000036 0.000052
2 0.99684779 0.99994810

c 1 0.98612500 0.98618886 0.98618839 0.98625178 0.00000048 0.000064
2 0.99651120 0.99993625

100 � 1 0.93195625 0.93398662 0.93601699 0.002179
4 0.99563806

c 1 0.93062500 0.93273356 0.93484211 0.002266
4 0.99555044

As a numerical example let us consider that: γ = 5%, n = 20, p(1)
1 = 0.5 and

p = 0.75, 0.90. In Table 3 we present the critical values r∗ and the corresponding
probabilities P(G�

n,k ≥ r∗) for the chosen values of k according to the empirical rules
(a) and (b). The last two entries of its second row suggest that the detector sends an
alarm signal if it finds at least 2 runs of at least 6 consecutive 1’s in a system with stage
probability 0.75; whereas the last two entries of its third row suggest that the detector
sends an alarm signal if it finds at least 3 runs of at least 6 consecutive 1’s in a system
with stage probability 0.90. The respective false alarm probabilities are smaller than
or equal to 4.4% and 0.001%, respectively. Further, as we see an increasing by 1.2
times of the stage probability p, implies an increasing of the corresponding value r∗
by 1.5 times and a decreasing of the false alarm probability P(G�

20,6 ≥ r∗) by 4395
times. The latter observations are in accordance with the ones that someone expects
to find in well designed detectors of systems with varying stage probability.

In Table 3, E(G�
20,k) and V(G�

20,k) for the depicted values of k are also presented.
To get the results formulae (17), (18) and (28) to (31) have been used.

6.2.5 System Reliability

In applied reliability studies we need to work with specific systems. To this end, we
consider two possible representative examples of a C+

α (r; k, n : F) system, α = � or
α = c. Concretely in Example 1, a linear and a circular system both with independent
components with unequal reliabilities are presented and in Example 2 a circular
system with i.i.d. components is provided. The original versions of the examples have
been used by several researchers in connection with the reliability of a C+

α (1; k, n : F)

system. Kuo and Zuo (2003, pp 326–327) present some details of the initial version
of them.

Table 5 Reliabilities of C+
c (r; 3, n : F) with common component reliability q = 0.95

n r LRc(r) Rc(r) R̂c(r) U Rc(r) BRc(r) B̂Rc(r)

100 1 0.98812500 0.98819035 0.98818986 0.98825471 0.000001 0.000066
200 1 0.97625000 0.97652017 0.97651606 0.97678212 0.000004 0.000273

2 0.99396068 0.99973182
1000 1 0.88125000 0.88751291 0.89377582 0.007107

4 0.99218513
100000 16 0.58916831

32 0.97153831
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Example 1 (Telecom networks) A sequence of n (≥ 2) microwave stations relay
signals from place A to B. Stations are equally spaced between places A and B with
the 1st and nth stations identifying places A and B, respectively. Each microwave
station is able to transmit signals to a distance including k (≥ 1) other microwave
stations. We consider that such a system fails if and only if there are at least r
(≥ 1) clusters of stations each of which has at least k consecutive stations failed. The
reliabilities of the stations may be different because of differences in environmental
conditions and operational procedures among the individual microwave stations and
station failures are likely to be independent. This is an example of a C+

� (r; k, n : F)

system. If we suppose that the stations form a ring such that the first station is
adjacent to (and follows) the n-th station then a C+

c (r; k, n : F) system is derived.

Example 2 (Vacuum system in an electronic accelerator) In the vacuum system of
an electronic accelerator, the core consists of a large number of n (≥ 100) identical
components (vacuum bulbs). The vacuum system fails if a pre-specified number
of r (≥ 1) non-overlapping component blocks, each containing at least a certain
number of k (≥ 1) failed components that are adjacent to one another occurs. The
components are placed sequentially along a ring. This is an example of a C+

c (r; k, n :
F) system.

Next, in order to evaluate the reliability of the systems discussed in the previous
examples we consider some specific configurations of them. Tables 4 and 5 present
exact and approximate values as well as bounds for the reliabilities of the systems
considered in Examples 1 and 2, respectively. To obtain the results we have used
Eqs. 40 and 41.
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