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Abstract In this paper, we propose a stratified sampling algorithm in which the
random drawings made in the strata to compute the expectation of interest are also
used to adaptively modify the proportion of further drawings in each stratum. These
proportions converge to the optimal allocation in terms of variance reduction and
our stratified estimator is asymptotically normal with asymptotic variance equal to
the minimal one. Numerical experiments confirm the efficiency of our algorithm. For
the pricing of arithmetic average Asian options in the Black and Scholes model, the
variance is divided by a factor going from 1.1 to 50.4 (depending on the option type
and the moneyness) in comparison with the standard allocation procedure, while the
increase in computation time does not overcome 1%.
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1 Introduction

Let X be a R
d-valued random variable and f : R

d → R a measurable function such
that E( f 2(X)) < ∞. We are interested in the computation of c = E( f (X)) using a
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stratified sampling Monte-Carlo estimator. We suppose that (Ai)1≤i≤I is a partition of
R

d into I strata such that pi = P[X ∈ Ai] is known explicitly for i ∈ {1, . . . , I}. Up to
removing some strata, we assume from now on that pi is positive for all i ∈ {1, . . . , I}.
The stratified Monte-Carlo estimator of c (see Glasserman (2004) p. 209–235 and the
references therein for a presentation more detailed than the current introduction)
is based on the equality E( f (X)) = ∑I

i=1 piE( f (Xi)) where Xi denotes a random
variable distributed according to the conditional law of X given X ∈ Ai. Indeed,
when the variables Xi are simulable, it is possible to estimate each expectation in the
right-hand-side using Ni i.i.d drawings of Xi. Let N = ∑I

i=1 Ni be the total number of
drawings (in all the strata) and qi = Ni/N denote the proportion of drawings made
in stratum i.

Then ĉ is defined by

ĉ =
I∑

i=1

pi

Ni

Ni∑

j=1

f
(

X j
i

)
= 1

N

I∑

i=1

pi

qi

qi N∑

j=1

f
(

X j
i

)
,

where for each i the X j
i ’s, 1 ≤ j ≤ Ni, are distributed as Xi, and all the X j

i ’s, for
1 ≤ i ≤ I, 1 ≤ j ≤ Ni are drawn independently. This stratified sampling estimator can
be implemented for instance when X is distributed according to the Normal law on
R

d, Ai = {x ∈ R
d : yi−1 < u′x ≤ yi} where −∞ = y0 < y1 < . . . < yI−1 < yI = +∞

and u ∈ R
d is such that |u| = 1. Indeed, then one has pi = N(yi) − N(yi−1) with N(.)

denoting the cumulative distribution function of the one dimensional normal law and
it is easy to simulate according to the conditional law of X given yi−1 < u′ X ≤ yi (see
Section 4.2 for a numerical example in the context of options pricing).

We have E( ĉ ) = c and

V( ĉ ) =
I∑

i=1

p2
i σ

2
i

Ni
= 1

N

I∑

i=1

p2
i σ

2
i

qi
= 1

N

I∑

i=1

(
piσi

qi

)2

qi ≥ 1

N

(
I∑

i=1

piσi

qi
qi

)2

, (1.1)

where σ 2
i = V( f (Xi)) = V( f (X)|X ∈ Ai) for all 1 ≤ i ≤ I.

During all the sequel we consider that

(H) σi > 0 for at least one index i.

The brute force Monte Carlo estimator of E f (X) is 1
N

∑N
j=1 f (X j), with the X j’s

i.i.d. drawings of X. Its variance is

1

N

⎛

⎝
I∑

i=1

pi(σ
2
i + E

2( f (Xi))) −
(

I∑

i=1

piE( f (Xi))

)2
⎞

⎠ ≥ 1

N

I∑

i=1

piσ
2
i .

For given strata the stratified estimator achieves variance reduction if the alloca-
tions Ni or equivalently the proportions qi are properly chosen. For instance, for the
so-called proportional allocation qi = pi, ∀i, the variance of the stratified estimator
is equal to the previous lower bound of the variance of the brute force Monte Carlo
estimator. For the choice

qi = piσi
∑I

j=1 pjσ j

=: q∗
i , ∀ 1 ≤ i ≤ I,
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the lower-bound in Eq. 1.1 is reached. We speak of optimal allocation. We then have

V( ĉ ) = 1

N

(
I∑

i=1

piσi

)2

=: σ 2∗
N

,

and no choice of the qi’s can achieve a smaller variance of ĉ.
In general when the conditional expectations E( f (X)|X ∈ Ai) = E( f (Xi)) are

unknown, then so are the conditional variances σ 2
i . Therefore optimal allocation

of the drawings is not feasible at once. One can of course estimate the conditional
variances and the optimal proportions by a first Monte Carlo algorithm and run
a second Monte Carlo procedure with drawings independent from the first one
to compute the stratified estimator corresponding to these estimated proportions.
But, as suggested in Arouna (2004), in the different context of importance sampling
methods, it is a pity not to use the drawings made in the first Monte Carlo procedure
also for the final computation of the conditional expectations.

Instead of running two successive Monte Carlo procedures, we can think to obtain
a first estimation of the σi’s, using the first drawings of the Xi’s made to compute the
stratified estimator. We could then estimate the optimal allocations before making
further drawings allocated in the strata according to these estimated proportions.
We can next obtain another estimation of the σi’s, compute again the allocations
and so on. Our goal is thus to design and study such an adaptive stratified estimator.
The estimator is described in Section 2. In particular, we propose a version of the
algorithm such that at each step, the allocation of the new drawings in the strata is not
simply proportional to the current estimation of the optimal proportions but chosen
in order to minimize the variance of the stratified estimator at the end of the step.
A Central Limit Theorem for this estimator is shown in Section 3. The asymptotic
variance is equal to the optimal variance σ 2∗ and our estimator is asymptotically
optimal. In Section 4, we confirm the efficiency of our algorithm by numerical
experiments. We first deal with a toy example before considering the pricing of an
arithmetic average Asian option in the Black–Scholes model.

Another stratified sampling algorithm in which the optimal proportions and
the conditional expectations are estimated using the same drawings has been very
recently proposed in Cannamela et al. (2008) for quantile estimation. More precisely,
for a total number of drawings equal to N, the authors suggest to allocate the Nγ with
0 < γ < 1 first ones proportionally to the probabilities of the strata and then use the
estimation of the optimal proportions obtained from these first drawings to allocate
the N − Nγ remaining ones. Their stratified estimator is also asymptotically normal
with asymptotic variance equal to the optimal one. In practice, N is finite and it is
better to take advantage of all the drawings and not only the Nγ first ones to modify
adaptively the allocation between the strata. Our algorithm works in this spirit.

2 The Algorithm

Basically, to run the algorithm we give ourselves an increasing sequence (Nk)k≥0 of
integers with N0 = 0. For k ≥ 1, Nk stands for the total number of random drawings
X j

i made in the strata up to the end of step k of the algorithm and Nk − Nk−1 for the
number of random drawings made at step k. At the first step, the N1 first drawings
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are allocated in the strata according to the proportional rule mentioned in Section 1.
One takes advantage of these N1 drawings to compute the empirical standard
deviations (σ̂ 1

i )1≤i≤I in the strata. Then, the N2 − N1 random drawings made at step
two are allocated in the strata either proportionally to the piσ̂

1
i (rule a)) or in order

to minimize
∑I

i=1
(pi σ̂

1
i )2

N2
i

(rule b)) where Nk
i denotes the total number of drawings

made in stratum i up to the end of step k (N0
i = 0 for all 1 ≤ i ≤ I). The previous

minimization problem is constrained by the inequalities N2
i ≥ N1

i for 1 ≤ i ≤ I.
Nevertheless, it is possible to solve this problem explicitly (see Proposition A.1) and
one does not need to resort to some costly numerical optimization procedure when
using allocation rule b). More generally the Nk − Nk−1 random drawings made at
step k ≥ 3 are allocated in the strata either proportionally to the piσ̂

k−1
i (rule a))

or in order to minimize
∑I

i=1
(piσ̂

k−1
i )2

Nk
i

(rule b)) where σ̂ k−1
i is the empirical standard

deviation in stratum i computed on the Nk−1
i drawings made in this stratum up to the

end of step k − 1.
Unfortunately, in their basic formulation, the allocation rules a) and b) lead to

allocate no drawing after step one in a stratum such that σ̂ 1
i = 0. But since N1

i is
finite, it may happen that σ̂ 1

i = 0 even when σ1 > 0 and then, in general, our stratified

estimator ĉk = ∑I
i=1

pi

Nk
i

∑Nk
i

j=1 f (X j
i ) will not converge to c = E( f (X)) as k tends to

infinity. To prevent this problem, one has to ensure that Nk
i tends to infinity with k

so that σ̂ k
i converges to σi. That is why we choose the sequence Nk such that Nk −

Nk−1 ≥ I for all k ≥ 1 and make at least one drawing in each stratum at each step
k : Nk

i ≥ Nk−1
i + 1, ∀1 ≤ i ≤ I (in this way, ∀1 ≤ i ≤ I, ∀k ≥ 1, Nk

i ≥ k). Then, at
step k, the Nk − Nk−1 − I remaining drawings are allocated in the strata according
to rule a) or b). This complicates the mathematical description of the algorithm below
but not its numerical implementation.

We now describe precisely the algorithm and introduce further notations. The de-
terministic sequence (Nk)k≥0 is chosen in advance in order to satisfy Nk − Nk−1 ≥ I.
The increments Mk

i = Nk
i − Nk−1

i ’s are computed at the beginning of step k using the
information contained in the Nk−1 first drawings.

STEP k ≥ 1.
Computation of the empirical variances.
If k = 1, set σ̂ 0

i = 1 for 1 ≤ i ≤ I.
If k > 1, for all 1 ≤ i ≤ I compute

σ̂ k−1
i =

√
√
√
√
√
√

1
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⎠

2
⎞
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Computation of the allocations Mk
i = Nk

i − Nk−1
i .

As discussed above we make at least one drawing in each stratum.
That is to say we have,

∀ 1 ≤ i ≤ I, Mk
i = 1 + m̃k

i , with m̃k
i ∈ N, (2.1)

and we now seek the m̃k
i ’s. We have

∑I
i=1 m̃k

i = Nk − Nk−1 − I, and possibly
m̃k

i = 0 for some indexes.
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We present two possible ways to compute the m̃k
i ’s.

a) We know that the optimal proportion of total drawings in stratum i for the
stratified estimator is q∗

i = piσi∑I
j=1 p jσ j

, which at this stage can be estimated by

pi σ̂
k−1
i∑I

j=1 p jσ̂
k−1
j

.

So we may want to choose the vector (m̃k
1, . . . , m̃k

I ) ∈ N
I equal to the vector

(mk
1, . . . , mk

I ) defined by

mk
i = piσ̂

k−1
i

∑I
j=1 p ĵσ

k−1
j

(Nk − Nk−1 − I) for 1 ≤ i ≤ I.

Unfortunately, in general, the mk
i ’s are not integers. One has to resort to

some rounding procedure which ensures that (m̃k
1, . . . , m̃k

I ) is a vector close to
(mk

1, . . . , mk
I ) and such that

∑I
i=1 m̃k

i = ∑I
i=1 mk

i = Nk − Nk−1 − I.
Denoting by 
.� the integer part of a real number, this can be achieved by setting

m̃k
i = 
mk

1 + . . . + mk
i � − 
mk

1 + . . . + mk
i−1�, (2.2)

with the convention that the second term is zero for i = 1. This systematic
sampling procedure ensures that mk

i − 1 < m̃k
i < mk

i + 1 for all 1 ≤ i ≤ I. In case
σ̂ k−1

i = 0 for all 1 ≤ i ≤ I, the above definition of mk
i does not make sense and

we set mk
i = pi(Nk − Nk−1 − I) for 1 ≤ i ≤ I before applying the systematic

sampling procedure. Note that thanks to (H) and the convergence of the σ̂ k
i

(see Proposition 2.1 below), this asymptotically will never be the case.
b) In case σ̂ k−1

i = 0 for all 1 ≤ i ≤ I, we do as before. Otherwise, we may think to
the expression of the variance of the stratified estimator with allocation Ni for
all i, which is given by Eq. 1.1, and find (mk

1, . . . , mk
I ) ∈ R

I+ that minimizes

I∑

i=1

p2
i

(
σ̂ k−1

i

)2

Nk−1
i + 1 + mk

i

,

under the constraint
∑I

i=1 mk
i = Nk − Nk−1 − I.

This can be done in the following manner (see in the Appendix for the proof):
For the indexes i such that σ̂ k−1

i = 0, we set mk
i = 0.

We denote by Ik the number of indexes such that σ̂ k−1
i > 0. We renumber the

corresponding strata from 1 to Ik. We now find (mk
1, . . . , mk

Ik) ∈ R
Ik

+ that minimizes
∑Ik

i=1
p2

i (̂σ
k−1
i )2

Nk−1
i +1+mk

i
, under the constraint

∑Ik

i=1 mk
i = Nk − Nk−1 − I, by applying the

three following points:

i) Compute the quantities
(

Nk−1
i +1

pi σ̂
k−1
i

)

1≤i≤Ik
and sort them in decreasing order.

Denote by
(

Nk−1
(i) +1

p(i)σ̂
k−1
(i)

)

1≤i≤Ik
the ordered quantities.



340 Methodol Comput Appl Probab (2010) 12:335–360

In the whole paper we use the following convention: (i) ∈ (1, . . . , Ik
)

stands for
τ(i), where τ is a permutation of (1, . . . , Ik) s.t.

Nk−1
τ(1) + 1

pτ(1)σ̂
k−1
τ(1)

≥ Nk−1
τ(2) + 1

pτ(2)σ̂
k−1
τ(2)

≥ . . . ≥ Nk−1
τ(Ik)

+ 1

pτ(Ik)σ̂
k−1
τ(Ik)

.

ii) For i = 1, . . . , Ik − 1 compute the quantities

Nk − Nk−1 − I +
Ik
∑

j=i+1

(
Nk−1

( j) + 1
)

Ik
∑

j=i+1

p( j)σ̂
k−1
( j)

.

Denote by i∗ the last i ≤ Ik − 1 such that

Nk−1
(i) + 1

p(i)σ̂
k−1
(i)

≥
Nk − Nk−1 − I +

Ik
∑

j=i+1

(
Nk−1

( j) + 1
)

Ik
∑

j=i+1

p( j)σ̂
k−1
( j)

. (2.3)

If this inequality is false for all i, then by convention i∗ = 0.
iii) Then for i ≤ i∗ set mk

(i) = 0 and for i > i∗,

mk
(i) = p(i)σ̂

k−1
(i) .

Nk − Nk−1 − I +
Ik
∑

j=i∗+1

(
Nk−1

( j) + 1
)

Ik
∑

j=i∗+1

p( j)σ̂
k−1
( j)

− Nk−1
(i) − 1.

This quantity is non-negative according to the proof of Proposition A.1.

We then build (mk
1, . . . , mk

I ) by reincluding the I − Ik zero valued mk
i ’s and

using the initial indexation. Finally we deduce (m̃k
1, . . . , m̃k

I ) ∈ N
I by the rounding

procedure described in a).
Drawings of the Xi’s. Draw Mk

i i.i.d. realizations of Xi in each stratum i and set
Nk

i = Nk−1
i + Mk

i .
Computation of the estimator
Compute

ĉk :=
I∑

i=1

pi

Nk
i

Nk
i∑

j=1

f (X j
i ). (2.4)

Square integrability of f (X) is not necessary in order to ensure that the estimator
ĉ k is strongly consistent. Indeed thanks to Eq. 2.1, we have Nk

i → ∞ as k → ∞ and
the strong law of large numbers ensures the following Proposition.
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Proposition 2.1 If E| f (X)| < +∞, then

ĉ k −−−→
k→∞

c a.s..

If moreover, E( f 2(X)) < +∞, then a.s.,

∀1 ≤ i ≤ I, σ̂ k
i −−−→

k→∞
σi and

I∑

i=1

piσ̂
k
i −−−→

k→∞
σ∗.

3 Rate of Convergence

In this section we prove the following result.

Theorem 3.1 Assume (H), E( f 2(X)) < +∞ and k/Nk → 0 as k → ∞. Then, using
either procedure a) or procedure b) for the computation of allocations, one has

√
Nk
(
ĉk − c

) inlaw−−−→
k→∞

N (0, σ 2
∗ ).

Remark 3.1 As explained in Section 2, we make at least one drawing in each stratum
at each step of the algorithm in order to ensure the convergence of our stratified
estimator even if σ̂ 1

i = 0 < σi for some i ∈ {1, . . . , I}. So k forced drawings are made
in each stratum until the end of step k. The condition limk→+∞ k

Nk = 0 guaranties
that in spite of these k forced drawings, and the rounding procedure Eq. 2.2 the

proportions Nk
i

Nk converge to the optimal ones when k → +∞ as seen in the next

Proposition. This condition is also necessary in the sense that we need that Nk
i

Nk → 0
as k → +∞ when σi = 0. This assumption is not restrictive since we may choose any
sequence of integers (Nk)k≥0 with N0 = 0 and Nk ≥ Nk−1 + I for all k ≥ 1 in order to
run the algorithm. Moreover, it is natural to choose a sequence such that Nk − Nk−1

is increasing with k since our estimations of the standard deviations and therefore of
the optimal proportions become more and more precise when k grows.

With Proposition 2.1, one deduces that
√

Nk
∑I

i=1 pi σ̂
k
i

(
ĉk − c

) inlaw−−−→
k→∞

N (0, 1), which en-

ables the easy construction of confidence intervals. More precisely, for instance,

P

(

c ∈
[

ĉk − 1.96
∑I

i=1 piσ̂
k
i√

Nk
, ĉk + 1.96

∑I
i=1 piσ̂

k
i√

Nk

])

−−−→
k→∞

0.95

(see Section 4.1 for an application).
The theorem is a direct consequence of the two following propositions.

Proposition 3.1 If E( f 2(X)) < +∞ and

∀1 ≤ i ≤ I,
Nk

i

Nk
−−−→
k→∞

q∗
i a.s., (3.1)

then
√

Nk
(
ĉk − c

) inlaw−−−→
k→∞

N (0, σ 2
∗ ).
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Proposition 3.2 Under the assumptions of Theorem 3.1, using either procedure a) or
procedure b) for the computation of allocations, Eq. 3.1 holds.

We prove Proposition 3.1 and 3.2 in the following subsections.

3.1 Proof of Proposition 3.1

The main tool of the proof of this proposition will be the CLT for martingales that
we recall below.

Theorem 3.2 (Central Limit Theorem) Let (μn)n∈N be a square-integrable (Fn)n∈N-
vector martingale with value in R

d. Suppose that for a deterministic sequence (γn)

increasing to +∞ we have,

i)

〈μ〉n

γn

P−−−→
n→∞ �,

where � ∈ R
d×d is a symmetric positive semidefinite matrix.

ii) The Lindeberg condition is satisfied, i.e. for all ε > 0

1

γn

n∑

k=1

E

[
||μk − μk−1||21{||μk−μk−1||≥ε

√
γn}|Fk−1

]
P−−−→

n→∞ 0.

Then

μn√
γn

inlaw−−−→
n→∞ N (0, �).

As we can write

√
Nk
(
ĉk − c

) =
(

p1
Nk

Nk
1
, . . . , pI

Nk

Nk
I

) 1
√

Nk

⎛

⎜
⎜
⎝

∑Nk
1

j=1( f (X j
1) − E f (X1))

...
∑Nk

I
j=1( f (X j

I) − E f (XI))

⎞

⎟
⎟
⎠ ,

we could think to set μk :=
(∑Nk

1
j=1( f (X j

1) − E f (X1)), . . . ,
∑Nk

I
j=1( f (X j

I) − E f (XI))
)′

and try to use Theorem 3.2. Indeed if we define the filtration (Gk)k∈N by Gk =
σ(1 j≤Nk

i
X j

i , 1 ≤ i ≤ I, 1 ≤ j), it can be shown that (μk) is a (Gk)-martingale. This
is thanks to the fact that the Nk

i ’s are Gk−1-measurable. Then easy computations
show that

1

Nk
〈μ〉k = diag

((
Nk

1

Nk
σ 2

1 , . . . ,
Nk

I

Nk
σ 2

I

))

where diag(v) denotes the diagonal matrix with vector v on the diagonal. Thanks to
Eq. 3.1 we thus have

1

Nk
〈μ〉k

a.s.−−−→
k→∞

diag
((

q∗
1σ

2
1 , . . . , q∗

Iσ
2
I

))
,
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and if we could use Theorem 3.2 we would have

μk√
Nk

inlaw−−−→
n→∞ N

(
0, diag

(
(q∗

1σ
2
1 , . . . , q∗

Iσ
2
I )
))

.

As by Proposition 3.1
(

p1
Nk

Nk
1

, . . . , pI
Nk

Nk
I

)

−−−→
k→∞

(
p1

q∗
1

, . . . ,
pI

q∗
I

)

a.s.,

and the scalar product is a bicontinuous function, by Slutsky’s theorem we would
deduce that

√
Nk(ĉk − c) converges in law to the one-dimensional gaussian law with

mean zero and variance

(
p1

q∗
1

, . . . ,
pI

q∗
I

)

diag
((

q∗
1σ

2
1 , . . . , q∗

Iσ
2
I

))

⎛

⎜
⎜
⎝

p1

q∗
1

...
pI
q∗

I

⎞

⎟
⎟
⎠ =

(
I∑

i=1

piσi

)2

= σ 2
∗ .

The trouble is that Lindeberg’s condition cannot be verified in this context, and
we will not be able to apply Theorem 3.2. Indeed the quantity ||μk − μk−1||2 involves
Nk − Nk−1 random variables of the type f (X j

i ) − E f (Xi) and we cannot control it
without making some growth assumption on Nk − Nk−1.

In order to handle the problem, we are going to introduce a microscopic scale.
From the sequence of estimators (ĉk) we will build a sequence (c̃n) of estimators of
c, such that ĉk = c̃Nk

, and for which we will show a CLT using Theorem 3.2. It will
be possible because it involves a new martingale (μn) such that μn − μn−1 is equal
to a vector with one coordinate equal to a single random f (X j

i ) − E f (Xi) and all
the others equal to zero. Then the Lindeberg condition will be easily verified, but
this time we will have to work a little more to check the bracket condition. As the
sequence (ĉk) is a subsequence of (c̃n), Proposition 3.1 will follow. This is done in the
following way.

Let n ∈ N
∗. In the setting of the Algorithm of Section 2, let k ∈ N be such that

Nk−1 < n ≤ Nk. Given the allocations (Nl
i )

I
i=1, for 0 ≤ l ≤ k, we define for each 1 ≤

i ≤ I a quantity νn
i with the inductive rule below. Each νn

i is the number of drawings
in the i-th strata among the first n drawings and we have

∑I
i=1 νn

i = n. We then define

c̃ n :=
I∑

i=1

pi

νn
i

νn
i∑

j=1

f (X j
i ).

Rule for the νn
i ’s

For n = 0, νn
i = 0, for all 1 ≤ i ≤ I.

1. For k > 0 set rk
i := Nk

i −Nk−1
i

Nk−Nk−1 for 1 ≤ i ≤ I.
2. For Nk−1 < n ≤ Nk, and given the νn−1

i ’s find

in = argmax
1≤i≤I

(

rk
i − νn−1

i − Nk−1
i

n − Nk−1

)

.
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If several i realize the maximum choose in to be the one for which rk
i is the

greatest. If there are still ex aequo’s choose the greatest i.
3. Set νn

in = νn−1
in + 1, and νn

i = νn−1
i if i �= in.

There is always an index i for which rk
i − νn−1

i −Nk−1
i

n−Nk−1 > 0, since

I∑

i=1

νn−1
i − Nk−1

i

n − Nk−1
= n − 1 − Nk−1

n − Nk−1
< 1 =

I∑

i=1

rk
i .

Moreover, for the first n ∈ {Nk−1 + 1, . . . , Nk} such that νn−1
i = Nk

i in the i-th

strata, rk
i − νn−1

i −Nk−1
i

n−Nk−1 ≤ 0 and νn′
i = νn

i = Nk
i for n ≤ n′ ≤ Nk.

This implies that

νNk

i = Nk
i , ∀1 ≤ i ≤ I, ∀k ∈ N,

and as a consequence,

ĉk = c̃Nk
. (3.2)

Therefore Proposition 3.1 is an easy consequence of the following one.

Proposition 3.3 Under the assumptions of Proposition 3.1,

√
n
(
c̃n − c

) inlaw−−−→
n→∞ N (0, σ 2

∗ ).

In the proof of Proposition 3.3, to verify the bracket condition of Theorem 3.2, we
will need the following result.

Lemma 3.1 When Eq. 3.1 holds, then

∀1 ≤ i ≤ I,
νn

i

n
−−−→
n→∞ q∗

i a.s.

Proof Let be 1 ≤ i ≤ I. During the sequel, for x ∈ R
∗+ or n ∈ N

∗, the integer k is
implicitly such that Nk−1 < x, n ≤ Nk.

We notice that for any n ∈ N
∗,

νn
i

n
= n − Nk−1

n
.
νn

i − Nk−1
i

n − Nk−1
+ Nk−1

n
.
Nk−1

i

Nk−1
,

and define for x ∈ R
∗+,

f (x) := x − Nk−1

x
.
Nk

i − Nk−1
i

Nk − Nk−1
+ Nk−1

x
.
Nk−1

i

Nk−1
.

We will see that, as n tends to infinity, f (n) tends to q∗
i and f (n) − νn

i
n tends

to zero.
Computing the derivative of f on any interval (Nk−1, Nk] we find that this function

is monotonic on it. Besides f (Nk−1) = Nk−1
i

Nk−1 and f (Nk) = Nk
i

Nk . So if Nk
i

Nk tends to q∗
i as

k tends to infinity, we can conclude that

f (n) −−−→
n→∞ q∗

i . (3.3)
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As rk
i = Nk

i −Nk−1
i

Nk−Nk−1 we now write

νn
i

n
− f (n) = n − Nk−1

n

(
νn

i − Nk−1
i

n − Nk−1
− rk

i

)

.

We conclude the proof by checking that

rk
i − I − 1

n − Nk−1
<

νn
i − Nk−1

i

n − Nk−1
< rk

i + 1

n − Nk−1
. (3.4)

Indeed, this inequality implies

− I − 1

n
<

νn
i

n
− f (n) <

1

n
,

which combined with Eq. 3.3 gives the desired conclusion. We first show

νn
i − Nk−1

i

n − Nk−1
< rk

i + 1

n − Nk−1
. (3.5)

We distinguish two cases. Either νn′
i = Nk−1

i for all Nk−1 < n′ ≤ n, that is to say no
drawing at all is made in stratum i between Nk−1 and n, then Eq. 3.5 is trivially
verified.

Either some drawing is made between Nk−1 and n. Let us denote by n′ the index
of the last one, i.e. we have νn

i = νn′
i = νn′−1

i + 1. As a drawing is made at n′ we have
νn′−1

i −Nk−1
i

n′−Nk−1 < rk
i .

We thus have,

νn′−1
i − Nk−1

i

n − Nk−1
≤ νn′−1

i − Nk−1
i

n′ − Nk−1
< rk

i

and

νn
i − Nk−1

i

n − Nk−1
= νn′−1

i + 1 − Nk−1
i

n − Nk−1
,

and thus we have again Eq. 3.5.

Using now the fact that 1 = ∑I
i=1 rk

i = ∑I
i=1

νn
i −Nk−1

i
n−Nk−1 we obtain

νn
i − Nk−1

i

n − Nk−1
= rk

i +
∑

j�=i

(

rk
j − νn

j − Nk−1
i

n − Nk−1

)

Using this and Eq. 3.5 we obtain Eq. 3.4. ��

Proof of Proposition 3.3 For n ≥ N1, νn
i ≥ 1 for all 1 ≤ i ≤ I and we can write

√
n
(
c̃n − c

) =
(

p1
n
νn

1

, . . . , pI
n
νn

I

)
1√
n

μn, (3.6)
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with

μn =

⎛

⎜
⎜
⎝

∑νn
1

j=1( f (X j
1) − E f (X1))

...
∑νn

I
j=1( f (X j

I) − E f (XI))

⎞

⎟
⎟
⎠ .

Note that if σi = 0 for a stratum i, then q∗
i = 0 and by Lemma 3.1, n

νn
i

a.s.−−−→
n→∞ +∞ which

may cause some trouble in the convergence analysis. In compensation, σi = 0 means
that f (Xi) − E f (Xi) = 0 a.s. Thus the component μi

n of μn makes no contribution
in c̃n − c. So we might rewrite Eq. 3.6 with μn a vector of size less than I, whose
components correspond only to indexes i with σi > 0. For the sake of simplicity we
keep the size I and consider that σi > 0 for all 1 ≤ i ≤ I.

If we define Fn := σ(1 j≤νn
i

X j
i , 1 ≤ i ≤ I, 1 ≤ j), then (μn)n≥0 is obviously a (Fn)-

martingale. Indeed, for n ∈ N
∗ let k ∈ N

∗ such that Nk−1 < n ≤ Nk. For 1 ≤ i ≤ I the
variables Nk−1

i and Nk
i are respectively FNk−2 and FNk−1 -measurable (Step k > 1 in

the Algorithm). As for each 1 ≤ i ≤ I the quantity νn
i depends on the Nk−1

i ’s and the
Nk

i ’s, it is FNk−1 -measurable. Thus μn is Fn-measurable and easy computations show
that E[μn+1|Fn] = μn.

We wish to use Theorem 3.2 with γn = n. We will denote by diag(a, i) the I × I
matrix having null coefficients except the i-th diagonal term with value a ∈ R.

We first verify the Lindeberg condition. We have, using the sequence (in) defined
in the rule for the νn

i ’s,

1

n

n∑

l=1

E
[||μl − μl−1||21{||μl−μl−1||>ε

√
n}|Fl−1

]

= 1

n

n∑

l=1

E
[| f (X

νl
il

il ) − E f (Xil )|21
{| f (X

νl
il

il
)−E f (Xil )|>ε

√
n}

|Fl−1
]

≤ 1

n

n∑

l=1

sup1≤i≤I E
[| f (Xi) − E f (Xi)|21{| f (Xi)−E f (Xi)|>ε

√
n}
]

= sup1≤i≤I E
[| f (Xi) − E f (Xi)|21{| f (Xi)−E f (Xi)|>ε

√
n}
]
.

As

sup
1≤i≤I

E
[| f (Xi) − E f (Xi)|21{| f (Xi)−E f (Xi)|>ε

√
n}
] −−−→

n→∞ 0,

the Lindeberg condition is proven.
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We now turn to the bracket condition. We have,

〈μ〉n = ∑n
k=1 E

[
(μk − μk−1)(μk − μk−1)

′|Fk−1
]

= ∑n
k=1 diag

(
E
[ (

f (X
νk

ik
ik ) − E f (Xik)

)2 ]
, ik

)

= ∑n
k=1 diag

(
σ 2

ik , ik

)
.

Thus, we have

〈μ〉n

n
= diag

((
νn

1

n
σ 2

1 , . . . ,
νn

I

n
σ 2

I

))

−−−→
n→∞ diag

(
(q∗

1σ
2
1 , . . . , q∗

Iσ
2
I )
)

a.s.,

where we have used Lemma 3.1.
Theorem 3.2 implies that

μn√
n

inlaw−−−→
n→∞ N

(
0, diag

(
(q∗

1σ
2
1 , . . . , q∗

Iσ
2
I )
))

. (3.7)

Using again Lemma 3.1 we have
(

p1
n
νn

1

, . . . , pI
n
νn

I

)

−−−→
n→∞

(
p1

q∗
1

, . . . ,
pI

q∗
I

)

a.s. (3.8)

Using finally Slutsky’s theorem, Eqs. 3.6, 3.7, 3.8, and similar computations as in
the discussion after Theorem 3.2, we obtain

√
n
(
c̃n − c

) inlaw−−−→
n→∞ N

(
0, σ 2

∗ ).

��

3.2 Proof of Proposition 3.2

Thanks to (H) and Proposition 2.1 there exists K ∈ N s.t. for all k ≥ K we have∑I
i=1 piσ̂

k
i > 0. The proportions

ρk
i = piσ̂

k
i

∑I
j=1 p ĵσ

k
j

, ∀1 ≤ i ≤ I (3.9)

are well defined for all k ≥ K and play an important role in both allocation rules a)
and b). Proposition 2.1 implies convergence of ρk

i as k → +∞.

Lemma 3.2 Under the assumptions of Theorem 3.1,

∀1 ≤ i ≤ I, ρk
i −−−→

k→∞
q∗

i a.s.

Proof of Proposition 3.2 for allocation rule a) Let 1 ≤ i ≤ I. We have Nk
i

Nk =
k+∑k

l=1 m̃l
i

Nk . Using the fact that ml
i − 1 < m̃l

i < ml
i + 1 we can write

∑k
l=1 ml

i

Nk
≤ Nk

i

Nk
≤ 2k

Nk
+
∑k

l=1 ml
i

Nk
.
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We will show that
∑k

l=1 ml
i

Nk → q∗
i , and, as k

Nk → 0, will obtain the desired result.
For k ≥ K + 1, we have

∑k
l=1 ml

i

Nk
=
∑K

l=1 ml
i

Nk
+
∑k

l=K+1 ρl
i (Nl − Nl−1 − I)

Nk

=
∑K

l=1 ml
i

Nk
+ Nk − NK

Nk
× 1

Nk − NK

Nk
∑

n=NK+1

ρ̃n
i − I(k − K)

Nk

× 1

k − K

k∑

l=K+1

ρl
i

where the sequence (ρ̃n
i ) defined by ρ̃n

i = ρl
i for Nl−1 < n ≤ Nl converges to q∗

i as n
tends to infinity. The Cesaro means which appear as factors in the second and third
terms of the right-hand side both converge a.s. to q∗

i . One easily deduce that the first,
second and third terms respectively converge to 0, q∗

i and 0. ��

Proof of Proposition 3.2 for allocation rule b) There may be some strata of zero vari-
ance. We denote by I′ the number of strata of non zero variance. By (H), I′ ≥ 1.

For a stratum i of zero variance the only drawing made at each step will be the one
forced by Eq. 2.1. Indeed σ̂ k

i = 0 for all k in this case. Thus Nk
i = k for all the strata

of zero variance and since k
Nk → 0, we obtain the desired result for them (note that

of course q∗
i = 0 in this case).

We now work on the I′ strata such that σi > 0. We renumber these strata from 1 to
I′. Let now K′ be such that σ̂ k

i > 0 for all k ≥ K′, and all 1 ≤ i ≤ I′. For k ≥ K′ + 1,
the integer Ik at step k in procedure b) is equal to I′.

Step 1. We will firstly show that

∀k ≥ K′ + 1, ∀1 ≤ i ≤ I′ Nk
i

Nk
≤ Nk−1

i + 1

Nk
∨
(

ρk−1
i + 1

Nk

)

. (3.10)

Let k ≥ K′ + 1. We use the notations (i) and i∗ respectively introduced in Point i)
and ii) of procedure b). We also set nk

i = Nk−1
i + 1 + mk

i . By Point iii), for i > i∗,

nk
(i)

p(i)σ̂
k−1
(i)

= mk
(i) + Nk−1

(i) + 1

p(i)σ̂
k−1
(i)

= Nk − Nk−1 − I +∑I′
j=i∗+1(Nk−1

( j) + 1)
∑I′

j=i∗+1 p( j)σ̂
k−1
( j)

(3.11)

Case 1: i∗ = 0. Then, in addition to the drawing forced by Eq. 2.1, there are some
drawings at step k in stratum (1), and consequently in all the strata. As the
ρk

i ’s are defined by Eq. 3.9, Eq. 3.11 leads to

nk
i = ρk−1

i

⎛

⎝Nk − Nk−1 − I + I′ +
I′
∑

j=1

Nk−1
j

⎞

⎠ , ∀1 ≤ i ≤ I′.

But Nk−1 = ∑I′
j=1 Nk−1

j + (k − 1)(I − I′) and, following the rounding pro-
cedure Eq. 2.2, we have

Nk
i < nk

i + 1, ∀1 ≤ i ≤ I′. (3.12)
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Thus, in this case,

Nk
i

Nk
≤ ρk−1

i + 1

Nk
, ∀1 ≤ i ≤ I′.

Case 2: i∗ > 0. If i ≤ i∗, Nk
(i) = Nk−1

(i) + 1 and Eq. 3.10 holds.

If i > i∗, then Eq. 3.11 leads to

nk
(i)

Nk
= ρk−1

(i)

Nk − Nk−1 − I +∑I′
j=i∗+1

(
Nk−1

( j) + 1
)

Nk
∑I′

j=i∗+1 ρk−1
( j)

.

Then, using Eq. 3.12, to prove that the left-hand side of Eq. 3.10 is smaller than the
second term in the right-hand side, it is enough to check that

Nk − Nk−1 − I +∑I′
j=i∗+1

(
Nk−1

( j) + 1
)

Nk
∑I′

j=i∗+1 ρk−1
( j)

≤ 1. (3.13)

We will then deduce that Eq. 3.10 also holds for i > i∗.

If
Nk−1

(i∗)
+1

Nkρk−1
(i∗)

≤ 1, then inequality Eq. 3.13 holds by the definition of i∗ (see inequality

Eq. 2.3).

If
Nk−1

(i∗)
+1

Nkρk−1
(i∗)

> 1 we have
Nk−1

(i) +1

Nkρk−1
(i)

> 1, ∀i ≤ i∗ and thus

i∗∑

j=1

(
Nk−1

( j) + 1
)

> Nk
i∗∑

j=1

ρk−1
( j) .

This inequality also writes

Nk−1 − (k − 1)(I − I′) + I′ −
I′
∑

j=i∗+1

(
Nk−1

( j) + 1
)

> Nk

⎛

⎝1 −
I′
∑

j=i∗+1

ρk−1
( j)

⎞

⎠ ,

and Eq. 3.13 follows.

Step 2. Let 1 ≤ i ≤ I′. We set n̄k
i := Nk

i − k (this is the number of drawings in
stratum i that have not been forced by Eq. 2.1).

Using Eq. 3.10 we have

∀k ≥ K′ + 1,
Nk

i − k
Nk

≤ Nk−1
i + 1 − k

Nk
∨
(

ρk−1
i − k − 1

Nk

)

,

and thus

∀k ≥ K′ + 1,
n̄k

i

Nk
≤ n̄k−1

i

Nk
∨
(

ρk−1
i − k − 1

Nk

)

.

Let ε > 0. Thanks to Lemma 3.2, there exists k0 ≥ K′ + 1 s.t. for all k ≥ k0, ρk−1
i −

k−1
Nk ≤ q∗

i + ε. Thus

∀k ≥ k0,
n̄k

i

Nk
≤ n̄k−1

i

Nk
∨ (q∗

i + ε). (3.14)
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Let us check by induction that

∀k ≥ k0,
n̄k

i

Nk
≤ n̄k0−1

i

Nk
∨ (q∗

i + ε).

By Eq. 3.14, this is true for k0. Suppose now that n̄k−1
i

Nk−1 ≤ n̄
k0−1
i

Nk−1 ∨ (q∗
i + ε) for some

k > k0. If n̄k−1
i

Nk−1 ≤ q∗
i + ε then n̄k−1

i
Nk ≤ q∗

i + ε and using Eq. 3.14 we obtain n̄k
i

Nk ≤ q∗
i + ε.

Otherwise n̄k−1
i = n̄k0−1

i and plugging this equality in the right-hand side of Eq. 3.14
we are done.

But as n̄
k0−1
i
Nk → 0 as k → ∞ we deduce that lim supk

n̄k
i

Nk ≤ q∗
i + ε. Since this is

true for any ε, and k
Nk → 0, we can conclude that lim supk

Nk
i

Nk ≤ q∗
i . Now using the

indexation on all the strata and the result for the strata with variance zero, we deduce
that for 1 ≤ i ≤ I,

lim infk
Nk

i

Nk
= lim infk

(

1 −∑I
j=1
j�=i

Nk
j

Nk

)

≥ 1 −∑I
j=1
j�=i

lim supk

Nk
j

Nk

≥ 1 −∑I
j=1
j�=i

q∗
j = q∗

i .

This concludes the proof. ��

4 Numerical Examples and Applications to Option Pricing

4.1 A First Simple Example

We compute c = EX where X ∼ N (0, 1).
Let I = 10. We choose the strata to be given by the α-quantiles yα of the normal

law with α = i/I for 0 ≤ i ≤ I. That is to say Ai = (y i−1
I
, y i

I
] for all 1 ≤ i ≤ I, with the

convention that y0 = −∞ and y1 = +∞.
In this setting we have pi = 1/10 for all 1 ≤ i ≤ I.
Let us denote by d(x) the density of the law N (0, 1). Thanks to the relation d′(x) =

−xd(x) and using integration by parts, we can establish that, for all 1 ≤ i ≤ I,

E

(
X1y i−1

I
<X≤y i

I

)
= d

(
y i−1

I

)− d
(
y i

I

)
,

and

E

(
X21y i−1

I
<X≤y i

I

)
= y i−1

I
d
(
y i−1

I

)− y i
I
d
(
y i

I

)+ pi,

with the convention that y0d(y0) = y1d(y1) = 0.
We can then compute the exact σ 2

i = V(X|X ∈ Ai)’s and the optimal standard
deviation of the non-adaptive stratified estimator,

σ∗ =
I∑

i=1

piσi � 0.1559335
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We can also for example compute

q∗
5 = 0.04685

This will give us benchmarks for our numerical tests.
We will compute ĉk for k = 1, . . . , 4. We choose N1 = 300, N2 = 1, 300, N3 =

11, 300 and N4 = 31, 300.
First for one realization of the sequence (ĉk)4

k=1 we plot the evolution of Nk
5

Nk , when
we use procedure a) or b) for the computation of allocations. This is done on Fig. 1.

We observe that the convergence of Nk
5

Nk to q∗
5 is faster with procedure b).

Second, to estimate the variance of our adaptive stratified estimator, we do L =
10, 000 runs of all the procedure leading to the sequence

(
ĉk
)4

k=1. For 1 ≤ k ≤ 4 we
compute,

v̂k = 1

L

L∑

l=1

([
ĉk]l

)2 −
(

1

L

L∑

l=1

[
ĉk]l

)2

, (4.1)

with the
([ĉk]l

)
1≤l≤L independent runs of the algorithm till step k. This estimates the

variance of the stratified estimator at step k (Nk total drawings have been used). To
compare with σ∗ we compute the quantities

ŝk =
√

Nkv̂k

(in other words we compare the standard deviation of our adaptive stratified estima-
tor with Nk total drawings with the one of the non-adaptive stratified estimator with
optimal allocation, for the same number of total drawings).

The values are plotted on Fig. 2. We observe that the convergence to σ∗ is slightly
faster with procedure b). This corresponds to the fact that the convergence of the
Nk

i
Nk ’s is faster with this later procedure (see Proposition 3.1).

Third we use Theorem 3.1 to construct confidence intervals for c.

Fig. 1 Successive values of
Nk

5
Nk

for 1 ≤ k ≤ 4, for procedure
a) (the diamond-line) and
procedure b) (the
asterisk-line), as function of
Nk. The horizontal line is at
level q∗

5

0 5000 10000 15000 20000 25000 30000 35000
0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11
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Fig. 2 Successive values of
ŝk for 1 ≤ k ≤ p, for procedure
a) (the diamond-line) and
procedure b) (the
asterisk-line), as function
of Nk (the abscissas axe).
The horizontal line is at
level σ∗

0 5000 10000 15000 20000 25000 30000 35000
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Theorem 3.1 and Proposition 2.1 imply that
√

Nk
∑I

i=1 pi σ̂
k
i

(
ĉk − c

) inlaw−−−→
k→∞

N (0, 1). To test

the derived asymptotic confidence interval with level α

CI4
α :=

[

ĉ4 − yα/2
∑I

i=1 piσ̂
4
i√

N4
, ĉ4 + yα/2

∑I
i=1 piσ̂

4
i√

N4

]

, (4.2)

we make 10, 000 independent runs of ĉ4. For each run we compute CI4
95% and test if

c = 0 belongs to CI4
95%. In our tests, this was the case 9, 505 times over 10, 000.

We now wish to compare the efficiency of our algorithm with the one of the non-
adaptive stratified estimator with proportional allocation. Indeed this is the one we
would use if we did not know the σi’s.

With the same strata as in the previous setting the stratified estimator with
proportional allocation of c for a total number of drawings N4 = 31, 300 is

c̄ = 1

N4

10∑

i=1

3,130∑

j=1

X j
i .

We will compare it to ĉ4 that was computed in the example above. As we have seen
in Section 1, the variance of c̄ is

1

N4

10∑

i=1

piσ
2
i .

We do L = 10, 000 runs of ĉ4 and c̄. We obtain an estimation v̂4 of the variance of
ĉ4 as previously. In a similar manner we obtain an approximation v̄ = 1

L

∑L
l=1([c̄]l)2 −

(
1
L

∑L
l=1[c̄]l

)2
of the variance of c̄.

As
∑10

i=1 piσ
2
i ≥ (∑10

i=1 piσi
)2 we know that we will have v̄ ≥ v̂4. But to compute

ĉ4 we do some additional computations compared to a non adaptive stratified
estimator. This has a numerical cost. We thus use the L runs to compute the average
computation times t̂ 4 and t̄, respectively of ĉ4 and c̄.



Methodol Comput Appl Probab (2010) 12:335–360 353

We have t̂4v̂4 = 6.29 ∗ 10−8 and t̄v̄ = 7.57 ∗ 10−8. This means that in this toy
example, the numerical cost of our algorithm is not that much balanced by the
achieved variance reduction.

4.2 Applications to Option Pricing

4.2.1 The Setting

We wish to compare our results with the ones of Glasserman et al. (1999).
We will work on the example of the arithmetic Asian option in the Black–Scholes

model presented in this paper. We shortly present the setting. We have a single
underlying asset, with price at time t denoted by St. Under the risk neutral measure
P, the price (St)t follows the stochastic differential equation,

dSt = V StdWt + rStdt,

with r the constant interest rate, V the constant asset’s volatility, Wt a standard
Wiener process, and S0 fixed.

Let T > 0 be the option’s maturity and
(
tm = mT

d

)
1≤m≤d the sequence of times

when the value of the underlying asset is monitored to compute the average. The
discounted payoff of the arithmetic Asian option with strike K is given by

e−rT

(
1

d

d∑

m=1

Stm − K

)+
.

Thus the price of the option is given by

c = E

⎡

⎣ e−rT

(
1

d

d∑

m=1

Stm − K

)+⎤

⎦ .

But in this Black–Scholes setting we can exactly simulate the Stm ’s by setting St0 =
S0 and

Stm = Stm−1 exp

([

r − 1

2
V2

]

(tm − tm−1) + V
√

tm − tm−1 Xm
)

, ∀1 ≤ m ≤ d, (4.3)

where X1, . . . , Xd are independent standard normals. Thus,

c = E[g(X)1D(X)],
where

g(x) = e−rT

⎛

⎝ S0

d

d∑

m=1

exp

⎛

⎝
[

r − 1

2
V2

]

tm + V
m∑

p=1

√
tp − tp−1 xp

⎞

⎠− K

⎞

⎠ ,

the xp denoting the components of x ∈ R
d, D = {x ∈ R

d : g(x) > 0}, and X is a R
d-

valued random variable with law N (0, Id).
In Glasserman et al. (1999) the authors discuss and link together two issues:

importance sampling and stratified sampling.
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Their importance sampling technique consists in a change of mean of the gaussian
vector X. Let us denote by h(x) the density of the law N (0, Id) and by hμ(x) the
density of the law N (μ, Id) for any μ ∈ R

d. We have,

c =
∫

D
g(x)

h(x)

hμ(x)
hμ(x)dx = E

[

g(X + μ)
h(X + μ)

hμ(X + μ)
1D(X + μ)

]

.

The variance of g(X + μ)
h(X+μ)

hμ(X+μ)
1D(X + μ) is given by

∫

D

g2h2

hμ

(x)dx − c2.

Heuristically, this indicates that an effective choice of hμ should give weight to points
for which the product of the payoff and the density is large. In other words, if we
define G(x) = log g(x) we should look for μ ∈ R that verifies,

μ = argmax
x∈D

(

G(x) − 1

2
x′x
)

(4.4)

The most significant part of the paper (Glasserman et al. 1999) is aimed at giving
an asymptotical sense to this heuristic, using large deviations tools.

The idea is then to sample g(X + μ)
h(X+μ)

hμ(X+μ)
1D(X + μ).

Standard computations show that for any μ ∈ R
d,

c = E
[
g(X + μ)e−μ′ X−(1/2)μ′μ1D(X + μ)

]
.

Thus the problem is now to build a Monte Carlo estimator of c = E fμ(X), sampling
fμ(X) with X ∼ N (0, Id), and with fμ(x) = g(x + μ)e−μ′x−(1/2)μ′μ1D(x + μ), for the
vector μ satisfying Eq. 4.4.

The authors of Glasserman et al. (1999) then propose to use a stratified estimator
of c = E fμ(X). Indeed for u ∈ R

d with u′u = 1, and a < b real numbers, it is easy to
sample according to the conditional law of X given u′ X ∈ [a, b ].

It can be done in the following way (see Section 4.1 of Glasserman et al. (1999) for
details). We first sample Z = 
−1(V) with 
−1 the inverse of the cumulative normal
distribution, and V = 
(a) + U(
(b) − 
(a)), with U uniform on [0, 1]. Second, we
sample Y ∼ N (0, Id) independent of Z . We then compute,

X = uZ + Y − u(u′Y),

which has the desired conditional law.
Let u ∈ R

d satisfy u′u = 1. With our notation the stratified estimator ĉ in
Glasserman et al. (1999) is built in the following way. They take I = 100. As in
Section 4.1 we denote by yα the α-quantile of the law N (0, 1). For all 1 ≤ i ≤ I, they
take Ai = {x ∈ R

d : y i−1
I

< u′x ≤ y i
I
}. That is to say Xi has the conditional law of X

given y i−1
I

< u′ X ≤ y i
I
, for all 1 ≤ i ≤ I. As in this setting u′ X ∼ N (0, 1), they have

pi = 1/I for all 1 ≤ i ≤ I.
They then do proportional allocation, that is to say, Ni = pi N for all 1 ≤ i ≤ I,

where N is the total number of drawings (in other words qi = pi). Then, the variance
of their stratified estimator is

1

N

I∑

i=1

piσ
2
i .
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According to Section 1, that choice ensures variance reduction.
The question of the choice of the projection direction u arises. The authors

take u = μ/
√

μ′μ, with the vector μ satisfying Eq. 4.4 that has been used for the
importance sampling. They claim that this provides in practice a very efficient
projection direction, for their stratified estimator with proportional allocation.

As
(∑I

i=1 piσi
)2 ≤ ∑I

i=1 piσ
2
i (i.e. proportional allocation is suboptimal), if u is a

good projection direction for a stratified estimator with proportional allocation, it is
a good direction for a stratified estimator with optimal allocation.

In the sequel we take the same direction u and the same strata as in Glasserman
et al. (1999), and discuss allocation. Indeed we may wish to do optimal allocation and
take qi = q∗

i = piσi∑
j p jσ j

. The trouble is that the analytical computation of the quantities

σ 2
i = V

(
fμ(X)|u′ X ∈ (y i−1

I
, y i

I
]),

is not tractable, at least when fμ is not linear. As the pi’s are known, this is exactly
the kind of situation where our adaptive stratified estimator can be useful.

4.2.2 The Numerical Results

In all the tests we have taken S0 = 50, V = 0.1, r = 0.05 and T = 1.0. The total
number of drawings is N = 20000.

We call GHS the procedure used in Glasserman et al. (1999), that is importance
sampling plus stratified sampling with proportional allocation. We call SSAA our
procedure, that is the same importance sampling plus stratified sampling with
adaptive allocation.

More precisely in the procedure SSAA we choose N1 = 2, 000, N2 = 10, 000,
N3 = 20, 000 and compute our adaptive stratified estimator ĉ3 of c = E f (X), with the
same strata as in GHS. We have used procedure a) for the computation of allocations.
We denote by c̄ the GHS estimator of c.

We call “variance GHS” or “variance SSAA” an estimation of the variance of ĉ3

or c̄, computed using 10, 000 independent runs of the algorithm and a formula similar
to Eq. 4.1.

Tables 1 and 2 show the results respectively for a call option and a put option. We
call “ratio GHS/SSAA” the variance GHS divided by the variance SSAA. In general
the improvement is much better for a put option. Indeed the variance is often divided
by 30 in this case. Besides the improvement is often better out of the money.

To conclude on the efficiency of our algorithm in this example let us notice that
the computation times of the GHS and SSAA procedures are nearly the same (less
than 1% additional time for the SSAA procedure). Indeed, unlike in the toy example

Table 1 Results for a Call
option with S0 = 50, V = 0.1,
r = 0.05, T = 1.0 and
N = 20000 (and I = 100)

d K Price Variance SSAA Ratio GHS/SSAA

16 45 6.05 1.9 × 10−6 1.24
50 1.91 1.12 × 10−5 15.17
55 0.20 5.37 × 10−7 18.32
60 0.006 5.9 × 10−8 20.84

64 45 6.00 2.79 × 10−7 1.9
50 1.84 7.5 × 10−8 1.1
55 0.17 6.69 × 10−7 28.25
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Table 2 Results for a Put
option with S0 = 50, V = 0.1,
r = 0.05, T = 1.0 and
N = 20000 (and I = 100)

d K Price Variance SSAA Ratio GHS/SSAA

16 45 0.013 7.2 × 10−8 50.4
50 0.63 7.5 × 10−6 32
55 3.73 3.1 × 10−3 35

64 45 0.011 5.61 × 10−8 48
50 0.62 5.91 × 10−6 30.6
55 3.67 2 × 10−3 43.75

of Section 4.1, the computation time of the allocation of the drawings in the strata is
almost negligible in comparison to the other calculations (drawings etc...).

4.2.3 Analysis of the Strata with Variance Zero

A further analysis can explain the difference of performance of SSAA between Call
and Put options. We plot on Figs. 3 and 4 the values of the σ̂i’s and the estimated
values of the conditional expectations E fμ(Xi)’s, for a Call and a Put option, with
d = 64 and K = 45, a case for which the ratio GHS/SSAA is 1.9 in the Call case and
48 in the Put case.

We observe that in the case of the Put option the estimated conditional variance
of about 90% of the strata is zero, unlike in the case of the Call option.

But these strata are of non zero probability (remember that in this setting pi =
0.01, for all 1 ≤ i ≤ 100). Thus the GHS procedure with proportional allocation
will invest drawings in these strata, resulting in a loss of accuracy, while in our
SSAA procedure most of the drawings are made in the strata of non zero estimated
variance.

In the Put case, the estimated conditional expectations corresponding to the strata
with estimated conditional variance zero are equal to zero. We may wonder whether
the corresponding variables fμ(Xi) are constant and equal to zero.
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Fig. 3 On the left: value of σ̂i as function of the stratum index i in the case of a Call option. On the
right: estimated value of E fμ(Xi). (Parameters are the same as in Table 1, with d = 64 and K = 45)
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Fig. 4 On the left: value of σ̂i as function of the stratum index i in the case of a Put option. On the
right: estimated value of E fμ(Xi). (Same parameters as in Fig. 3)

We define the function s : R
d → R by

s(x) = S0

d

d∑

m=1

exp

⎛

⎝
m∑

p=1

{[

r − V2

2

]
T
d

+ V

√
T
d

xp

}⎞

⎠ , ∀x = (x1, . . . , xd)′ ∈ R
d.

With the previous notations, in the put option case, we have fμ(Xi) = 0 a.s., and thus
E fμ(Xi) = 0, if s(Xi + μ) ≥ K a.s. (note that i denotes here the stratum index and
not the component of the random vector Xi).

Let us study, as function of z ∈ R, the range of s(x + μ) on the set {x ∈ R
d|u′x = z}.

The following facts can be shown. Whatever the value of u or z the quantity s(x + μ)

has no upper bound. Thus in the call option case no conditional expectation E fμ(Xi)

will be zero. To study the problem of the lower bound we denote by M the matrix of
size d × d given by

M =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 . . . 0

1 1
. . .

...
...

. . . 0
1 . . . . . . 1

⎞

⎟
⎟
⎟
⎟
⎠

, with inverse M−1 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 . . . 0

−1 1
. . .

...
...

. . .
. . . 0

0 . . . −1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

and by 1 the d-sized vector (1, . . . , 1)′. If we use the change of variable

y = M

([

r − V2

2

]
T
d

1 + V

√
T
d

(x + μ)

)

,

we can see that minimizing s(x + μ) for x ∈ R
d satisfying u′x = z is equivalent to

minimizing φ(y) := S0
d

∑d
m=1 1{wm �=0} exp(ym) for y ∈ R

d satisfying

w′y = v, (4.5)

where w = (M−1)′u does not vanish since u′u = 1, and

v = u′
([

r − V2

2

]
T
d

1 + V

√
T
d

(x + μ)

)

= V

√
T
d

(z + u′μ) +
[

r − V2

2

]
T
d

d∑

m=1

um.
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If all the components of w are non negative then setting W = ∑d
m=1 wm one has

φ(y) = S0W
d

d∑

m=1

1{wm>0}
wm

W
exp(ym − log wm)

≥ S0W
d

exp

(
d∑

m=1

1{wm>0}
wm

W
(ym − log wm)

)

.

Under Eq. 4.5 the right-hand side is equal to

S0W
d

exp

(
v −∑d

m=1 1{wm>0}wm log wm

W

)

.

For y s.t. ym = v−∑d
l=1 1{w>0}wl log wl

W + log wm as soon as wm > 0, this lower bound is
attained and Eq. 4.5 is satisfied. Therefore the lower bound of s(x + μ) on the set
{x ∈ R

d|u′x = z} is

s∗ = S0

d
× exp

(
v −∑d

m=1 wm log wm
∑d

m=1 wm

)

×
d∑

m=1

wm. (4.6)

If all the components of w are non positive we obtain the same kind of result by a
change of sign. Otherwise the lower bound is zero: it is possible to let the ym’s tend
to −∞ with Eq. 4.5 satisfied.

In the numerical example that we are analysing the direction vector u is the same
in the call or put option cases, and its components are strictly positive and decreasing
with the index (see Fig. 5). Thus the components of w are strictly positive and the
lower bound is given by s∗ defined by Eq. 4.6. With z taking values in the 90 last
strata we have s∗ > 45. Thus the random variables fμ(Xi) are truly zero in these
strata.

We can then wonder if it is worth stratifying the part of the real line corresponding
to these strata, in other words stratifying R

d and not only D. Maybe stratifying D and
making proportional allocation will provide a sufficient variance reduction. But this

Fig. 5 Value of the
component um of u ∈ R

d

as function of m
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would require a first analysis, while our SSAA procedure avoids automatically to
make a large number of drawings in Dc.

Appendix

We justify the use of procedure b) in the following proposition.

Proposition A.1 Assume that Nk − Nk−1 > I. When σ̂ k−1
i > 0 for some index 1 ≤ i ≤

I, the vector (mk
1, . . . , mk

I ) computed at Step k with procedure b) is the unique element
of R

I+ minimizing

I∑

i=1

p2
i (̂σ

k−1
i )2

Nk−1
i + 1 + mk

i

,

under the constraints
∑I

i=1 mk
i = Nk − Nk−1 − I and mk

i ≥ 0, ∀ 1 ≤ i ≤ I.

Proof Choosing mk
i > 0 for some i s.t. σ̂ k−1

i = 0 is clearly not optimal. Hence the
optimal choice of (mk

i ) is obtained by setting mk
i = 0 when σ̂ k−1

i = 0, and solving
the constrained optimization problem obtained by restricting the summation in the
objective function and the constraint to the indexes i such that σ̂ k−1

i > 0.
For the sake of simplicity, and without loss of generality, we consider in the sequel

that σ̂ k−1
i > 0 for all 1 ≤ i ≤ I, and thus work with the indexation {1, . . . , I}.

To simplify notations we set M = Nk − Nk−1 − I, and, for all 1 ≤ i ≤ I, ni =
Nk−1

i + 1, αi = piσ̂
k−1
i , and mi = mk

i .
Let us also denote

J(m) :=
I∑

i=1

α2
i

ni + mi
.

Our problem is to minimize J(m) under the constraints

∀1 ≤ i ≤ I , gi(m) ≤ 0 and h(m) = 0,

where g(m) := (−m1, . . . ,−mI) and h(m) := ∑
i=1 mi − M.

Let us denote by m∗ the vector that we compute by procedure b) at Step k. We
have m∗

(i) = 0 for i ≤ i∗, and for i > i∗

m∗
(i) = α(i)

M +∑I
j=i∗+1 n( j)

∑
j=i∗+1 α( j)

− n(i).

Here (see point i) and ii) in the algorithm), the (i)’s denote the indexes of the ni
αi

ordered in decreasing order and i∗ is the last index smaller than I − 1 such that n(i)

α(i)
≥

M+∑I
j=i+1 n( j)

∑
j=i+1 α( j)

, which ensures that

n(1)

α(1)

≥ . . . ≥ n(i∗)

α(i∗)
≥ M +∑I

j=i∗+1 n( j)
∑

j=i∗+1 α( j)
. (4.7)
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If i∗ ≤ I − 2, then n(i∗+1)

α(i∗+1)
<

M+∑I
j=i∗+2 n( j)

∑I
j=i∗+2 α( j)

. Multiplying both sides by
∑I

j=i∗+2 α( j), then

adding n(i∗+1), one deduces that

n(i∗+1)

α(i∗+1)

I∑

j=i∗+1

α( j) < M +
I∑

j=i∗+1

n( j).

Since i �→ n(i)

α(i)
is non decreasing this implies that m∗

(i) > 0, ∀i ≥ i∗ + 1. When i∗ =
I − 1 then m∗

I = M > 0.
As J and g are strictly convex differentiable functions and h is affine, it suffices to

prove that m∗ satisfies the Karush–Kuhn–Tucker (KKT) conditions to complete the
proof (see Theorem 3.19 and Corollary 3.20 in Pedregal (2004)).

Let us define λ :=
(∑

j=i∗+1 α( j)

)2

(
M+∑I

j=i∗+1 n( j)

)2 and μ ∈ R
I by μ(i) = λ − α2

(i)

n2
(i)

if i ≤ i∗, and μ(i) = 0

if i > i∗.
As ∇(i) J(m∗) = − α2

(i)

n2
(i)

if i ≤ i∗ and ∇(i) J(m∗) = −λ if i > i∗ we have

∇ J(m∗) +
I∑

i=1

μi∇gi(m∗) + λ∇h(m∗) = 0.

Besides, by construction, h(m∗) = 0 and μigi(m∗) = 0 for all 1 ≤ i ≤ I.
As m∗

(i) = 0 for i ≤ i∗ and m∗
(i) > 0 for i ≥ i∗ + 1 we have gi(m∗) ≤ 0 for all 1 ≤ i ≤ I.

Finally, thanks to Eq. 4.7 we have μi ≥ 0 for all 1 ≤ i ≤ I.
Thus the KKT conditions are satisfied. The proof is completed. ��
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