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Abstract We investigate an optimal portfolio selection problem in a continuous-
time Markov-modulated financial market when an economic agent faces model
uncertainty and seeks a robust optimal portfolio strategy. The key market parameters
are assumed to be modulated by a continuous-time, finite-state Markov chain whose
states are interpreted as different states of an economy. The goal of the agent
is to maximize the minimal expected utility of terminal wealth over a family of
probability measures in a finite time horizon. The problem is then formulated as a
Markovian regime-switching version of a two-player, zero-sum stochastic differential
game between the agent and the market. We solve the problem by the Hamilton-
Jacobi-Bellman approach.
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1 Introduction and Summary

The optimal portfolio allocation problem is an important one in quantitative fi-
nance and financial economics. Its root can be traced back to the seminal work of
Markowitz (1952), in which an elegant mathematical formulation to the problem is
first provided. In particular, he considers a single-period model and uses variance
(or standard deviation) as a measure of risk from the portfolio. The problem is
formulated as a mean-variance optimization problem. The novelty of the Markowitz
approach is that it simplifies the optimal portfolio selection problem to the one where
only the mean and the variance of the rate of return are involved under the normality
assumption. Despite its importance, the Markowitz paradigm is a static one-period
model, which cannot incorporate the dynamic nature of optimal portfolio allocation
in practice.

Merton (1969, 1971) pioneered the study of the optimal portfolio allocation
problem in a continuous-time economy. He first explored the state of the art of the
stochastic optimal control theory to develop an elegant (closed-form) solution to the
problem. His work not only provides a theoretically sound and practical solution
to the optimal portfolio allocation problem, but also stimulates the development of
an important field in modern finance, namely, the continuous-time finance. Since
the seminal works of Merton (1969, 1971), there have been numerous works on
extending the basic paradigm of the Merton model. Recently, the spotlight seems to
have turned to the optimal portfolio selection problem in the context of Markovian
regime-switching models. These models allow the flexibility that one set of the
model parameters switches to another set of the model parameters according to an
underlying Markov chain. Empirically, Markovian regime-switching models provide
better fit to many economic and financial time series compared with their non-
regime-switching counterparts. From an economic perspective, the investment op-
portunity set varies stochastically over time in Markovian regime-switching models.
Some novel and interesting economic insights into the optimal portfolio allocation
problem can be gained when one moves from the constant opportunity set in a
constant-coefficient model to the stochastic investment set described by a Markovian
regime-switching model. Zhou and Yin (2003) and Yin and Zhou (2004) consider
the Markowitz mean-variance portfolio selection problem under Markovian regime-
switching models in a continuous-time setting and a discrete-time setting, respec-
tively. They formulate the problem as a linear-quadratic optimization problem. Jang
et al. (2007) investigate the optimal consumption/investment problem in a Markovian
regime-switching model when transaction costs are present. They obtain some
new insights into understanding the effect of transaction costs on liquidity premia
under the assumption of the stochastic investment opportunity set described by the
Markovian regime-switching model. Elliott and Siu (2007) consider the problem of
minimizing portfolio risk under a Markovian regime-switching model. In particular,
the portfolio risk is measured by a convex risk measure introduced by Föllmer and
Schied (2002). The problem is formulated as a stochastic differential game and a
verification of the Hamilton-Jacobi-Bellman (HJB) solution is provided.

In practice, there is no general agreement on which probability model or measure
should be used for the optimal portfolio allocation problem. So, model uncertainty
does exist and it is important to incorporate such uncertainty when considering
the problem. In fact, model uncertainty is an important issue for any modelling
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exercises in finance. See Derman (1996) and Roma (2006) for excellent discussions
for the impact of model uncertainty on financial modelling and derivatives pricing,
respectively. Cvitanic and Karatzas (1999) adopt a family of real-world probability
measures to incorporate model uncertainty in a continuous-time financial model and
to generate a dynamic measure of risk from the family of probability measures, which
resembles the representation of coherent risk measures introduced by Artzner et al.
(1999). Model uncertainty may be related to a well-known paradox in economics,
namely, the Ellsberg paradox, which is first proposed in the seminal work of Ellsberg
(1961). It is noted in Ellsberg (1961) that economic agents behave differently under
ambiguity and risk aversion and that the distinction between risk aversion and
ambiguity aversion is important for economic analysis from a behavioral economics
perspective. Different axiomatic frameworks of ambiguity aversion have been pro-
posed in the literature (see, for example, Gilboa and Schmeidler (1989), Epstein and
Schmeidler (2003), Hansen et al. (1999), Anderson et al. (2003), and others). These
models for ambiguity aversion are based on various forms of max-min expected
utility over a set of multiple distributions. See Leippold et al. (2007) for an excellent
discussion. In the context of optimal portfolio selection, ambiguity aversion can be
incorporated by considering the maximization of the minimal expected utility.

In this article we investigate an optimal portfolio selection problem in a
continuous-time Markov-modulated financial market when an economic agent faces
model uncertainty and seeks a robust optimal portfolio strategy. We consider a
market with two primitive assets, namely, a bank account and a risky stock. The key
market parameters, including the market interest rate, the appreciation rate and the
volatility of the stock are modulated by a continuous-time, finite-state Markov chain.
We suppose that the agent is to maximize the minimal expected utility of terminal
wealth over a family of (real-world) probability measures in a finite time horizon.
The problem is then formulated as a Markovian regime-switching version of a two-
player, zero-sum stochastic differential game between the agent and the market. We
solve the problem using the HJB approach.

The article is structured as follows. The next section presents the model dynam-
ics in the Markovian regime-switching financial market. We describe the robust
portfolio selection problem and formulate it as the stochastic differential game in
Section 3. In Section 4, we provide a verification theorem for the HJB solution to the
game corresponding to the robust optimal portfolio selection problem and derive its
solution in terms of a system of first-order nonlinear ordinary differential equations.

2 The Model Dynamics

We consider a continuous-time financial market with two primitive assets, namely,
a bank account and a risky stock, that are tradable continuously over time on a
fixed horizon T := [0, T], where T ∈ (0,∞). These are the available investment
assets of an economic agent. We suppose that the market is frictionless; that is,
there are no transaction costs and taxes. We also assume that assets are divisible
so that fractional units of assets can be traded. Fix a complete probability space
(�,F ,P). Here,P represents a reference probability measure from which a family of
absolutely continuous real-world probability measures are generated. In the sequel,
we describe an observable continuous-time, finite-state Markov chain whose states
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represent states of an economy. Throughout the paper, we use bold-face letters to
denote matrices (or vectors).

Let X := {X(t)|t ∈ T } denote a continuous-time, finite-state Markov chain on
(�,F ,P) with state space X := {x1, x2 . . . , xN}. Without loss of generality, we
identify the state space X with a finite set of unit vectors E := {e1, e2, . . . , eN},
where ei ∈ �N and the j th component of ei is the Kronecker delta δij, for each
i, j = 1, 2, . . . , N. We call E the canonical state space of X. With this, a representation
to the chain, which describes its evolution over time, can be derived. To specify
the statistical properties of the chain X, we define a family of generators, or rate
matrices, A(t) = [aij(t)]i, j=1,2,...,N , t ∈ T , of X under P , where, for i �= j, aij(t) is the
instantaneous intensity of the transition of X from state j to state i at time t. Here,
for each t ∈ T , aij(t) ≥ 0, for i �= j and

∑N
i=1 aij(t) = 0, so aii(t) ≤ 0. We suppose that

aij(t) > 0, for each i, j = 1, 2, . . . , N and each t ∈ T . With the canonical state space,
Elliott et al. (1994) provide the following semimartingale representation for X:

X(t) = X(0) +
∫ t

0
A(u)X(u)du + M(t) , (1)

where {M(t)|t ∈ T } is an �N-valued martingale with respect to the filtration gener-
ated by X under P .

Write y′ for the transpose of a matrix (or a vector) y and 〈·, ·〉 for the scalar product
in �N . The instantaneous market interest rate r(t) of the bank account is determined
by the chain as:

r(t) = 〈r, X(t)〉 ,

where r := (r1, r2, . . . , rN)′ ∈ �N with ri > 0, for each i = 1, 2, . . . , N. We assume that
the ri’s are all distinct.

Then, the evolution of the balance of the bank account over time is:

B(t) = exp

( ∫ t

0
r(u)du

)

, B(0) = 1 .

We further suppose that the appreciation rate μ(t) and the volatility σ(t) of the stock
are, respectively, determined by the chain as:

μ(t) = 〈μ, X(t)〉 , σ (t) = 〈σ , X(t)〉 ,

where μ := (μ1, μ2, . . . , μN)′ ∈ �N and σ := (σ1, σ2, . . . , σN)′ ∈ �N with μi > ri and
σi > 0, for each i = 1, 2, . . . , N. We further assume that the components of μ and σ

are all distinct.
Let W := {W(t)|t ∈ T } denote a standard Brownian motion on (�,F ,P) with

respect to the P-augmentation of its natural filtration. We suppose that W and X are
stochastically independent under the measure P . The evolution of the price process
of the stock over time follows a Markovian regime-switching GBM:

dS(t) = μ(t)S(t)dt + σ(t)S(t)dW(t) ,

S(0) = s > 0 . (2)

Under the assumption that the σi’s are all distinct, there is no loss of generality to
assume that the chain X is observable since X(t) is identified exactly by the (local)
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quadratic variation of the price process of the stock in any small time duration to the
left of t, (see Guo (2001)).

We then describe the information structure of the model. Let FX and FS denote
the right-continuous, complete filtration generated by the values of the chain and the
stock price process, respectively. Write, for each t ∈ T , G(t) := FX(t) ∨ F S(t), the
enlarged σ -field generated by FX(t) and F S(t). Note that at each time t ∈ T , G(t) is
known to the economic agent. Write G := {G(t)|t ∈ T }.

Now, we describe the wealth of the agent. Suppose π(t) represents the proportion
of the total wealth invested in the stock at time t ∈ T , so 1 − π(t) is the proportion
invested in the bank account. Here, we assume that the portfolio process π :=
{π(t)|t ∈ T } is G-progressively measurable and cadlag (i.e. right continuous with left
limit). We further impose two standard assumptions for the portfolio process π .

1. π is self-financing; that is, there is no income and consumption;
2.

∫ T

0
π2(t)dt < ∞ , P-a.s.

We denote the space of all such processes as A. A portfolio process π ∈ A is said to
be admissible.

Suppose

Vπ (t) := π(t)S(t) + (1 − π(t))B(t)

denotes the total wealth of the portfolio process π at time t. Then, it can be shown
that the evolution of the wealth process V := {V(t)|t ∈ T } over time is governed by:

dVπ (t) = Vπ (t){[r(t) + π(t)(μ(t) − r(t))]dt + π(t)σ (t)dW(t)} ,

Vπ (0) = v > 0 . (3)

3 The Portfolio Selection Problem

In this section we present the robust optimal portfolio selection problem of the
economic agent who selects the portfolio process to maximize the minimal expected
utility of terminal wealth over a family of real-world probability measures. We
suppose that the agent has a power utility function:

U(v) = v1−γ

1 − γ
, v ∈ [0, ∞) . (4)

Here, γ is the risk aversion parameter. The relative risk aversion of the agent is γ .
In the sequel, we generate a family Pa of real-world probability measures by a

product of two density processes, one for the Brownian motion W and one for the
Markov chain X. This allows us to incorporate model uncertainty in both the stock
price process and the Markov chain describing the states of the economy. A product
of two density processes is also considered in Elliott and Siu (2007). However,
we simplify the parametrisation of the product of two density processes of Elliott
and Siu (2007) and introduce a new parametrisation for instantaneous intensities
of transitions of the chain under the family of real-world probability measures. In
particular, we suppose that all instantaneous intensities of transitions of the chain
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are scaled or rotated by the same amount when changing the probability measures.
This provides a more parsimonious result.

Firstly, we define a family of density processes for the Brownian motion. Let
{θ(t)|t ∈ T } denote a Markovian regime-switching process such that for each t ∈ T ,

θ(t) = 〈θ(t), X(t)〉 ,

where θ(t) := (θ1(t), θ2(t), . . . , θN(t))′ ∈ �N , for some functions θi(t) (i = 1, 2, . . . , N)
with θi(t) ≥ 0 and θ(N)(t) := max1≤i≤N θi(t) < ∞, ∀t ∈ T . Write � for the space of all
such processes {θ(t)|t ∈ T }.

Then, for each θ ∈ �, the density process for the Brownian motion associated with
θ is defined as a G-adapted process 	θ

1 := {	θ
1(t)|t ∈ T } given as below:

	θ
1(t) := exp

(

−
∫ t

0
θ(s)dW(s) − 1

2

∫ t

0
θ2(s)ds

)

. (5)

Applying Itô’s differentiation rule to Eq. 5 gives

d	θ
1(t) = −	θ

1(t)θ(t)dW(t) ,

	θ (0) = 1 . (6)

So, 	θ
1 is a (G,P)-local-martingale.

Since θ(N)(t) < ∞, the Novikov condition

E
[

exp

(
1

2

∫ T

0
θ2(t)dt

)]

< ∞ ,

is satisfied. So, 	θ
1 is a (G,P)-martingale, and

E[	θ
1(T)] = 1 .

Now, we define a family of density processes for the Markov chain X. To begin
with, we define some notation adopted in Dufour and Elliott (1999). For any rate ma-
trix �(t), let π(t) := (π11(t), . . . , πii(t), . . . , πNN(t))∗ and �0(t) := �(t) − diag(π(t)),
where diag(y) is a diagonal matrix with the diagonal elements given by the vector y.

For each θ ∈ �, let Aθ (t) := [aθ
ij(t)]i, j=1,2,...,N denote a second family of generators,

or rate matrices, of the chain X such that for each i, j = 1, 2, . . . , N,

aθ
ij(t) = θ(t)aij(t) , t ∈ T .

We then define a real-world probability measure under which Aθ is a family of
generators of the chain X. Define, for each t ∈ T , Dθ (t) := Aθ (t)/A(t) as the matrix
Dθ (t) = [aθ

ij(t)/aij(t)]i, j=1,2,...,N . Recall that aij(t) > 0, for each t ∈ T , so Dθ (t) is well-
defined. Let 1 := (1, 1, . . . , 1)′ ∈ �N and I denote the (N × N)-identity matrix.

Consider a vector of counting processes N := {N(t)|t ∈ T } defined by:

N(t) :=
∫ t

0
(I − diag(X(u−)))dX(u) , t ∈ T , (7)

where its component Ni(t) counts the number of times the chain X jumps to state ei

in the time interval [0, t], for each i = 1, 2, . . . , N.
Then, the compensator of N is identified with the following result from Dufour

and Elliott (1999). We cite the result here without giving the proof.
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Lemma 1 Let A0(t) := A(t) − diag(a(t)), where a(t) := (a11(t), a22(t), . . . , aNN(t))′,
for each t ∈ T . Suppose

Ñ(t) := N(t) −
∫ t

0
A0(u)X(u)du , t ∈ T . (8)

Then, Ñ := {Ñ(t)|t ∈ T } is an (FX,P)-martingale.

Consider another density process 	θ
2 := {	θ

2(t)|t ∈ T }, θ ∈ �, defined by:

	θ
2(t) = 1 +

∫ t

0
	θ

2(u−)[D0(u)X(u−) − 1]′(dN(u) − A0(u)X(u)du) . (9)

From Lemma 1, 	θ
2 is an (FX,P)-martingale.

Now, for each θ ∈ �, we define a G-adapted process 	θ := {	θ(t)|t ∈ T } as the
product of the two density processes 	θ

1 and 	θ
2 :

	θ(t) := 	θ
1(t) · 	θ

2(t) .

Lemma 2 For each θ ∈ �, 	θ is a (G,P)-martingale.

Proof Let Ḡ(t) := FX(T) ∨ FW(t), for each t ∈ T . Write Ḡ := {Ḡ(t)|t ∈ T }. Then,
the result follows by noting that 	θ

1 is a (Ḡ,P)-martingale and 	θ
2 is a (FX,P)-

martingale. ��

Define, for each θ ∈ �, a real-world probability measure Qθ ∼ P on G(T) as:

dQθ

dP := 	θ(T) . (10)

So, a family of real-world probability measures is generated as follows:

Pa := Pa(�) = {Qθ |θ ∈ �} .

Let

Ñθ (t) := N(t) −
∫ t

0
Aθ

0(u)X(u)du , t ∈ T , θ ∈ � . (11)

Suppose Qθ , θ ∈ �, is defined by Eq. 10. Then, Dufour and Elliott (1999) show
that Ñθ := {Ñθ (t)|t ∈ T } is an (FX,Qθ )-martingale. So, we have the following result
similar to Lemma 2.3 in Dufour and Elliott (1999).

Proposition 1 Suppose, for each θ ∈ �, W and X are stochastically independent under
Qθ . Then, X is a Markov chain with a family of generators Aθ (t), t ∈ T , under Qθ .

So, from Proposition 1 and the semimartingale decomposition of the chain, X has
the following representation under Qθ :

X(t) = X(0) +
∫ t

0
Aθ (u)X(u)du + Mθ (t) , (12)

where Mθ := {Mθ (t)|t ∈ T } is an (FX,Qθ )-martingale.
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Define a process Wθ := {Wθ (t)|t ∈ T } by:

Wθ (t) = W(t) +
∫ t

0
θ(s)ds . (13)

By Girsanov’s theorem, Wθ is a standard Brownian motion under Qθ .
Let V(t) = Vπ,θ (t) denote the total wealth at time t of the portfolio π(t) when the

market selects the strategy θ(t). Then, we can rewrite the wealth process under Qθ as
follows:

dV(t) = V(t){[r(t) + π(t)(μ(t) − r(t)) − θ(t)π(t)σ (t)]dt + π(t)σ (t)dWθ (t)} . (14)

As in Mataramvura and Øksendal (2007), we define a vector-valued process Z :=
{Z(t)|t ∈ T } by

dZ(t) = (dZ0(t), dZ1(t), dZ2(t))′

= (dZ0(t), dZ π,θ
1 (t), dZθ

2(t))
′

= (dt, dVπ,θ (t), dX(t))′ ,

Z(0) = z = (s, z1, z2)
′ ,

where under P ,

dZ0(t) = dt , Z0(0) = s ∈ T ,

dZ1(t) = Z1(t){[r(t) + π(t)(μ(t) − r(t)) − θ(t)π(t)σ (t)]dt + π(t)σ (t)dWθ (t)} ,

Z1(0) = z1 > 0 ,

dZ2(t) = Aθ (t)Z2(t)dt + dMθ (t) ,

Z2(0) = z2 .

To simplify the notation, we suppress the notation π and θ in Z1(t) and Z2(t) and
write Z1(t) := Z π,θ

1 (t) and Z2(t) := Zθ
2(t).

Let Ez
θ [·] denote expectation under Qθ given that Z(0) = z. Then, conditional

on Z(0) = z, the robust utility maximization problem is to find the portfolio process
π ∈ A so as to maximize:

inf
θ∈�

{
Ez

θ [U(Vπ,θ (T))]} .

Here, the minimal utility can be thought of as the expected utility in the “worst-case”
scenario and is called a robust utility of the terminal wealth.

So, conditional on Z(0) = z, the robust utility maximization problem can be
formulated as the following two-player, zero-sum, Markovian regime-switching sto-
chastic differential game between the investor and the market.


(z) = sup
π∈A

(

inf
θ∈�

Ez
θ [U(Vπ,θ (T))]

)

= Ez
θ̂
[U(Vπ̂ ,θ̂ (T))] . (15)

Here, we need to find the value function 
(z) of the game and the optimal strategies
π̂ ∈ A and θ̂ ∈ � of the investor and the market, respectively.
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4 Solution to the Game

In this section, we first provide a verification theorem for the Markovian regime-
switching HJB solution to the stochastic differential game. Then, we derive the
optimal strategies of the investor and the market and the value function of the game.

Firstly, we discuss the relationship between the information structure and the
control processes π and θ . Let Fθ,W := {F θ,W(t)|t ∈ T } denote the right-continuous,
complete filtration generated by the process Wθ . Write, for each t ∈ T , Gθ (t) :=
F θ,W(t) ∨ FX(t), the enlarged σ -field generated by information about the values
of the processes Wθ and X up to and including time t. Then, it is obvious that
Gθ (t) = G(t), for each t ∈ T . Since there are only two driving processes for the
vector-valued process Z, namely, Wθ and X, Z is adapted to the filtration Gθ :=
{Gθ (t)|t ∈ T }, and so, it is adapted to the filtration G as well. The vector-valued
process Z is also a Markovian process with respect to G. Under mild technical
conditions, the performance of Markovian controls may be as good as the more
general adapted controls in the “classical” stochastic optimal control theory (see
Øksendal (2003) and Øksendal and Sulem (2004)). It is also noted in Elliott (1982)
that if the state processes are Markovian, the optimal controls can be Markovian. So,
as in Mataramvura and Øksendal (2007), we impose some restrictions and consider
only Markovian controls for the robust utility maximization problem. Let O :=
(0, T) × (0,∞), which represents our solvency region. Write K1 and K2 for the sets
such that π(t) ∈ K1 and θ(t) ∈ K2, respectively. To restrict ourselves to Markovian
controls, we suppose that

π(t) := π̄(Z(t)) , θ(t) := θ̄ (Z(t)) ,

for some functions π̄ : O × E → K1 and θ̄ : O × E → K2.
With slight abuse of notation, we do not distinguish notationally between π and

π̄ , and between θ and θ̄ . So, we can simply identify the control processes with
deterministic functions π(z) and θ(z), for each z ∈ O × E . These are referred to as
feedback controls.

Let H denote the space of functions h(·, ·, ·) : T × �+ × E → � such that for each
x ∈ E , h(·, ·, x) is C1,2(T × �+). Write

H(s, z1) := (h(s, z1, e1), h(s, z1, e2), . . . , h(s, z1, eN))′ ∈ �N .

Define the Markovian regime-switching generator Lθ,π acting on a function h ∈ H
for the Markov process {Z(t)|t ∈ T } as:

Lθ,π [h(s, z1, x)]

= ∂h
∂s

+ z1[r(s) + (μ(s) − r(s))π(z) − θ(z)π(z)σ (s)] ∂h
∂z1

+ 1

2
z2

1π
2(z)σ 2(s)

∂2h

∂z2
1

+ θ(z) 〈H(s, z1), A(s)x〉 . (16)

Then, we have the following lemma.

Lemma 3 Let τ be a stopping time, where τ < ∞, P-almost surely. Assume further
that h(Z(t)) and Lθ,π [h(Z(t))] are bounded on t ∈ [0, τ ].
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Then,

Ez
θ [h(Z(τ ))] = h(z) + Ez

θ

( ∫ τ

0
Lθ,π [h(Z(t))]dt

)

. (17)

Proof The result can be established by applying Itô’s differentiation rule to h(Z(s))
and conditioning on Z(0) = z under Qθ . ��

The following proposition describes a Markovian regime-switching HJB solution
to the stochastic differential game, and so provides a verification theorem for an
optimal Markov control.

Proposition 2 Let Ō denote the closure of O. Suppose there exists a function φ such
that for each x ∈ E , φ(·, ·, x) ∈ C2(O) ∩ C(Ō) and a Markovian control (θ̂(t), π̂(t)) ∈
� × A, such that:

1. Lθ,π̂ [φ(s, z1, x)] ≥ 0, for all θ ∈ � and (s, z1, x) ∈ O × E ,
2. Lθ̂ ,π [φ(s, z1, x)] ≤ 0, for all π ∈ A and (s, z1, x) ∈ O × E ,
3. Lθ̂ ,π̂ [φ(s, z1, x)] = 0, for all (s, z1, x) ∈ O × E ,
4. for all (θ, π) ∈ � × A,

lim
t→T−

φ(t, Z θ,π
1 (t), X(t)) = U

(
Z θ,π

1 (T)
)

,

5. let K denote the set of stopping times τ ≤ T. The family {φ(Zθ,π (τ ))|τ ∈ K} is
uniformly integrable.

Write, for each z ∈ O × E and (θ, π) ∈ � × A,

Jθ,π (z) := Ez
θ

{
U

(
Z θ,π

1 (T)
)}

.

Then,

φ(z) = 
(z)

= inf
θ∈�

(

sup
π∈A

Jθ,π (z)
)

= sup
π∈A

(

inf
θ∈�

Jθ,π (z)
)

= sup
π∈A

J θ̂ ,π (z) = inf
θ∈�

Jθ,π̂ (z)

= J θ̂ ,π̂ (z) , z ∈ O × E , (18)

and (θ̂ , π̂) is an optimal Markovian control.
The proof of Proposition 2 is adapted from the proof of Theorem 3.2 in

Mataramvura and Øksendal (2007) to the Markovian regime-switching case and uses
Lemma 3 here.
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In the sequel, we derive explicit formulae for the optimal strategies of the investor
and the market and the value function of the game. Firstly, from the form of the
utility function in Eq. 4, we guess that the function φ has the following form:

φ(z) = z1−γ

1 (g(s, x))1−γ

1 − γ
, ∀z ∈ O × E , (19)

where, for each (s, x) ∈ (0, T) × E , g(s, x) does not vanish and g(T, x) = 1.
Write

G(s, γ ) = (
g1−γ (s, e1), g1−γ (s, e2), . . . , g1−γ (s, eN)

)′
.

From Conditions 1–3 of Proposition 2, we get

inf
θ∈�

Lθ,π̂ [φ(z)] = Lθ̂ ,π̂ [φ(z)] = 0 ,

sup
π∈A

Lθ̂ ,π [φ(z)] = Lθ̂ ,π̂ [φ(z)] = 0 . (20)

The first-order condition for a maximum point π̂ by maximizing Lθ̂ ,π [φ(z)] over
π ∈ A is given by:

z1−γ

1 [g(s, x)]1−γ (μ(s) − r(s) − θ̂ (z)σ (s) − γ π̂(z)σ 2(s)) = 0 , ∀z ∈ O × E . (21)

The first-order condition for a minimum point θ̂ by minimizing Lθ,π̂ [φ(z)] over all
θ ∈ � is:

z1−γ

1

(

− π̂(z)σ (s)g1−γ (s, x) + 1

1 − γ
〈G(s, γ ), A(s)x〉

)

= 0 . (22)

So, we have

π̂(z) = 〈G(s, γ ), A(s)x〉
(1 − γ )σ (s)g1−γ (s, x)

= π̂†(s, x) , (23)

and

θ̂ (z) = μ(s) − r(s) − γ π̂†(s, x)σ 2(s)
σ (s)

= θ̂†(s, x) . (24)

From Condition 3 of Proposition 2,

dg(s, x)

ds
+

(

r(s) + (μ(s) − r(s))π̂†(s, x) − θ̂†(s, x)π̂†(s, x)σ (s) − γ

2
(π̂†(s, x))2σ 2(s)

)

× g(s, x) + θ̂†(s, x)

(1 − γ )g1−γ (s, x)
〈G(s, γ ), A(s)x〉 = 0 . (25)

From Eqs. 23, 24 and 25, it can be shown that g(s, x) satisfies the following Markovian
regime-switching first-order nonlinear ordinary differential equation (O.D.E.):

dg(s, x)

ds
+

(

r(s) + γ

2
(π̂†(s, x))2σ 2(s)

)

g(s, x) + θ̂†(s, x)π̂†(s, x)σ (s) = 0 , (26)

where π̂†(s, x) and θ̂†(s, x) satisfy Eqs. 23 and 24, respectively.
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Let gi(s) :=g(s, ei), for each i=1, 2,. . . ,N. Write g(s) :=(g1(s), g2(s),. . . ,gN(s))′.
So, if x = ei (i = 1, 2, . . . , N), then

μ(s) = μi , r(s) = ri .

Hence, g satisfies the following system of first-order nonlinear O.D.E.s:

dgi(s)
ds

+
(

ri + γ

2
(π̂†(s, ei))

2σ 2
i

)

gi(s) + θ̂†(s, ei)π̂
†(s, ei)σi = 0 ,

where

π̂†(s, ei) = 〈G(s, γ ), A(s)ei〉
(1 − γ )σig

1−γ

i (s)
,

and

θ̂†(s, ei) = μi − ri − γ π̂†(s, ei)σ
2
i

σi
, i = 1, 2, . . . , N .
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