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Abstract In this paper we introduce decompositions of diffusion measure which are
used to construct an algorithm for the exact simulation of diffusion sample paths
and of diffusion hitting times of smooth boundaries. We consider general classes of
scalar time-inhomogeneous diffusions and certain classes of multivariate diffusions.
The methodology presented in this paper is based on a novel construction of the
Brownian bridge with known range for its extrema, which is of interest on its own
right.
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Boundary hitting times
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1 Introduction

In this paper, we shall give explicit and a.s. finite constructions for diffusion processes.
Our methods give rise to efficient algorithms which can simulate exactly (i.e. free of
any time discretisation error and subject only to finite computer precision) from any

A. Beskos · G. O. Roberts
Department of Statistics, University of Warwick, Coventry CV4 7AL, UK

A. Beskos
e-mail: A.Beskos@warwick.ac.uk

G. O. Roberts
e-mail: Gareth.O.Roberts@warwick.ac.uk

O. Papaspiliopoulos (B)
Department of Economics, Universitat Pompeu Fabra, Ramon Trias Fargas 25-27,
Barcelona 08005, Spain
e-mail: omiros.papaspiliopoulos@upf.edu



86 Methodol Comput Appl Probab (2008) 10:85–104

finite-dimensional distribution of the diffusion. Moreover, we devise an algorithm
for the simulation of diffusion hitting times of smooth boundaries. The methodology
presented in this paper is based on a novel construction of the Brownian bridge with
known range for its extrema.

For ease of exposition, we commence by considering the one-dimensional diffu-
sion process X = {Xs; s ∈ [0, t]} defined through the stochastic differential equation
(SDE):

dXs = α(Xs) ds + dBs, X0 = x, s ∈ [0, t] , (1)

where B = {Bs; s ∈ [0, t]} is a scalar Brownian motion and α : R �→ R some drift
function. In later sections we will discuss generalizations to time-inhomogeneous and
multivariate processes.

Assume that Eq. 1 admits a unique weak and non-explosive solution. Let Q and
W denote the law of X and the Wiener measure respectively on [0, t] for the initial
condition X0 = B0 = x. In the rest of the paper we assume the following conditions.

(C0) The Radon–Nikodym derivative of Q w.r.t. W exists and it is given by
Girsanov’s formula,

dQ

dW
= exp

{∫ t

0
α(Xs)dXs −

∫ t

0

1

2
α2(Xs)ds

}
,

(C1) α ∈ C1,
(C2) α2 + α

′
is bounded below.

The aim is to perform rejection sampling from Q using candidates from W. Under
(C1), we can use Itô’s lemma to rewrite Girsanov’s formula as

dQ

dW
= exp

{
A(Xt) − A(x) −

∫ t

0

α2(Xs) + α′(Xs)

2
ds

}
, (2)

for

A(u) =
∫ u

0
α(z)dz, u ∈ R .

The theory to be presented extends the work of Beskos et al. (2006) which
provides simulation algorithms under the additional condition:

(*) lim supu→∞(α2 + α
′
)(u) < ∞, or lim supu→−∞(α2 + α

′
)(u) < ∞.

Whilst (C0)–(C2) will be naturally satisfied in many contexts, (*) is certainly
restrictive (for example is not met in the Ornstein–Uhlenbeck case). In this paper we
remove (*). With small modifications, the resulted algorithm can also provide exact
draws from the distribution of the hitting time of one-sided smooth boundaries for
the Brownian motion and other diffusions. In comparison with our previous work
in Beskos and Roberts (2005) and Beskos et al. (2006), the methodology is now
much more advanced and includes: probabilistic results on the absolute maximum
of Brownian paths and the maximum of Bessel process paths; a novel rejection
sampling algorithm for the simulation of Brownian paths with known range. In the
cited papers, the methodology required only a known result for the decomposition
of a Brownian path at its minimum.
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The paper is organised as follows. In Section 2 we introduce the diffusion law
factorization which gives rise to the explicit diffusion construction, and we provide
two classes of processes for which this factorization has already been used for their
exact simulation in Beskos et al. (2006). Section 3 provides a general construction for
one-dimensional homogeneous diffusions made possible under the new methodology
presented in this paper. This is generalised in Section 4 to multivariate and time-
inhomogeneous diffusions. Section 5 gives an explicit construction for the hitting
time of Brownian motion to an arbitrary smooth boundary. This construction extends
naturally to non-linear diffusions. Section 6 concludes with some remarks about
possible extensions and future work.

2 The Wiener–Poisson Factorisation of QQ

Additionally to (C0)–(C2), we assume that the following condition holds for the rest
of the paper:

(C3) The function h(u) = exp{−(u − x)2/(2t) + A(u)} is integrable.

This is a weak assumption, since for example it is satisfied (at least for sufficiently
small t) when a linear growth bound is assumed for the drift. Then, we define the
probability measure Z through its Radon–Nikodym derivative with respect to W:

dZ

dW
∝ exp {A(Xt) − A(x)} . (3)

Note that conditionally on the ending point Xt the two laws coincide. So to simulate
paths from Z one should draw first the ending point Xt ∼ h and then use Brownian
bridge dynamics for the rest of the path.

Let L denote the law of a unit rate Poisson process on [0, t] × [0, ∞) (see
Kingman 1993, for a formal definition) and define the extended law Z ⊗ L with
typical realisation (X, �). When necessary, we write � = {(χ j, ψ j)} j≥1, with {ψ j} non-
decreasing. We define the non-negative drift functional,

φ(u) := α2(u) + α′(u)

2
− �, where � = inf

z∈R

α2(z) + α′(z)

2
,

and consider the epigraph of s �→ φ(Xs),

epi φ(X) := { (s, u) ∈ [0, t] × R+ : φ(Xs) ≤ u } ,

and the event

� := {� ⊂ epi φ(X)} =
⋂
j≥1

{φ(Xχ j) < ψj} . (4)

Theorem 1 (Wiener–Poisson factorization) Q is the marginal distribution of X when
(X,�) ∼ Z ⊗ L | �.
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Proof Equations 2 and 3 yield that

dQ

dZ
∝ exp

{
−

∫ t

0
φ(Xs)ds

}
.

From the explicit calculation of the zero probability of a Poisson random variable:

L(� | X) = exp

{
−

∫ t

0
φ(Xs)ds

}
.

Thus the result holds by Bayes’s theorem. �

Theorem 1 suggests a rejection sampling for the simulation of sample paths
from Q: propose X from Z, simulate �, and if � has occurred then return X. This
algorithm can be seen as a construction on the space C[0, t] × ([0, t] × [0, ∞))N.
However, the aim of this paper is to provide exact but finite constructions of X. This
can be done, under the following general scheme. We construct a finite-dimensional
random variable ϒ , and a positive function r with the properties that:

1. r(ϒ) < ∞ a.s.,
2. sups∈[0,t] φ(Xs) ≤ r(ϒ) a.s..

In Section 5 we will allow ϒ to be constructed on an enlargement of the canonical
probability space for X. However, for immediate application we shall just use
ϒ = ϒ(X). Hence, under the scenario described in 1., 2. above, the event � in Eq. 4
occurs if and only if the points of � which lie in the domain [0, t] × [0, r(ϒ)] are also
in the epigraph of s �→ φ(Xs). That is

� ≡ �r(ϒ) :=
⋂

j:ψj<r(ϒ)

{φ(Xχ j) < ψj} .

We define

�r(ϒ) = � ∩ ([0, t] × [0, r(ϒ)]) ,

which is easy to construct as a Poisson process on [0, t] × [0, r(ϒ)].

Exact Algorithm (EA)

1. Simulate Xt ∼ h.
2. Simulate ϒ conditionally on Xt.
3. Simulate �r(ϒ).
4. Simulate {Xχi ; 1 ≤ i ≤ |�r(ϒ)|}} from Z | Xt, ϒ.
5. If �r(ϒ) has occurred output {Xχi ; 1 ≤ i ≤ |�r(ϒ)|}}, otherwise

goto 1.

When �r(ϒ) has occurred, {Xχi ; 1 ≤ i ≤ |�r(ϒ)|} ∼ Q. Thus, the only remaining
challenge is to characterise the conditional distributions at steps 2. and 4. of the
algorithm. The two steps are carried out conditionally on the ending point Xt. From
the definition of Z, this implies that we will actually work with Brownian bridge
dynamics. In the rest of this Section we describe two special cases of EA already
presented in Beskos et al. (2006). We present novel applications of EA in the sections
that follow.
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2.1 Exact Algorithm 1 (EA1)

In Beskos et al. (2006) the Exact Algorithm (EA) was developed under the strong
condition

(**) the function φ is bounded above.

In this simplified setting, additional information about the proposed path is not
required to determine the restricted Poisson process, since it suffices to take

r(u) ≡ r = sup
z∈R

φ(z) .

Thus, step 4. merely involves Brownian bridge simulation. We define the skeleton

S = {(0, X0), (t, Xt)} ∪ {(χi, Xχi); 1 ≤ i ≤ |�r|} .

An important feature of the method, stated in Theorem 2 below, is that the distribu-
tion of X |S, � is derived solely from the proposal measure Z. Let BB(s1, s2; u1, u2)

denote the law of a Brownian bridge starting at time s1 at u1 and ending at time s2

at u2. When s1 = 0 we write BB(s2; u1, u2); we simplify the notation to BB when the
parameters specifying the bridge are clearly understood from the context.

Theorem 2 Under (C0)–(C3) and (**),

X |S, � ∼
|�r |+1⊗

i=1

BB(si−1, si; Xsi−1 , Xsi)

where {si; 0 ≤ i ≤ |�r| + 1} is an increasing ordering of the set {0, t} ∪ {χi; 1 ≤
i ≤ |�r|}.

Proof Notice that X |S, �
d= X |S . �

2.2 EA2 and Decomposition of the Brownian Path at its Minimum

Beskos et al. (2006) replaced condition (**) with the weaker (*). Without loss of
generality, assume that lim supu→∞(α2 + α

′
)(u) < ∞, so the function φ is bounded

above on [u,∞) for any real u. Let m = inf{Xs; s ∈ [0, t]}. It suffices to set

ϒ = m, and r(u) = sup
z∈[u,∞)

φ(z), u ∈ R .

The law of the minimum of a Brownian bridge is known (Shepp 1979) and it can
be easily simulated using the inverse CDF method (see Proposition 2 of Beskos
et al. 2006). Step 4. of EA requires the simulation of a Brownian bridge with a given
minimum. This conditioned process can be represented in terms of two independent
Bessel bridges (see for example Asmussen et al. 1995). The construction proceeds as
follows.

We will need the instance of the minimum τ = sup{s ∈ (0, t) : Xs = m}. We denote
by S(s1, s2; u1, u2) the law of a (3-dimensional) Bessel bridge starting at time s1

at u1 ≥ 0 and finishing at time s2 at u2 ≥ 0. We simplify to S(s2; u1, u2) when
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s1 = 0. Assume that Xt = y. Let R1 ∼ S(τ ; x − m, 0) and R2 ∼ S(t − τ ; 0, y − m)

independently. The process

m + Rs,1 I [0 ≤ s < τ ] + Rs−τ,2 I [τ ≤ s ≤ t], s ∈ [0, t] ,

has law BB(t; x, y). Simulation of τ conditionally on m can be carried out following
the algorithm given in Beskos et al. (2006). Also, Bessel bridges starting or finishing
at 0 can be easily constructed in terms of three independent Brownian bridges. The
explicit formula is stated in Section 5.

In this setting,

S = {(0, X0), (t, Xt), (τ, Xτ )} ∪ {(χi, Xχi); 1 ≤ i ≤ |�r(ϒ)|} .

As in EA1, the conditional law of X given all simulated variables is easily identified.

Theorem 3 Under (C0)–(C3), and (*),

X − ϒ |S, ϒ, � ∼
|�r(ϒ)|+2⊗

i=1

S(si−1, si; Xsi−1 − ϒ, Xsi − ϒ)

where {si; 0 ≤ i ≤ |�r(ϒ)| + 2} is an increasing ordering of {0, t, τ } ∪ {χi; 1 ≤
i ≤ |�r(ϒ)|}.

3 Exact Algorithm 3 (EA3)

In this section we demonstrate how to apply EA when only (C0)–(C3) are assumed.
Thus, we now make no upper bound assumptions on the function φ. Recall that the
random element ϒ = ϒ(X) should be selected in way that sups∈[0,t] φ(Xs) ≤ r(ϒ) <

∞ so it should now contain information for the whole range of the path X, not just
the minimum as for EA2. We will define ϒ as the label to an appropriate partition
of the path space. Each set in the partition contains paths that move within a known
interval. Thus, conditionally on ϒ = ϒ(X) we will be in position to obtain a superset
of [min(X), max(X)] and, then, the required upper bound on s �→ φ(Xs). Recall that
the construction should respect steps 2 and 4. of EA, that is allow for the simulation
of ϒ and, then, of X given ϒ at any given time instances (of finite number).

We begin with the definition of the above-mentioned partition of the path space.
Let {ai}i≥1 and {bi}i≥1 be two increasing sequence of positive real numbers, and a0 =
b0 = 0. Given X0 = x, Xt = y, we set x̄ = x ∧ y, ȳ = x ∨ y, and define the following
events:

Ui =
{

sup
0≤s≤t

Xs ∈ [ȳ + bi−1, ȳ + bi)

}
∩

{
inf

0≤s≤t
Xs > x̄ − ai

}
,

Li =
{

inf
0≤s≤t

Xs ∈ (x̄ − ai, x̄ − ai−1]
}

∩
{

sup
0≤s≤t

Xs < ȳ + bi

}
,

and

Di = Ui ∪ Li, i ≥ 1 . (5)
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Fig. 1 A sample path from X0 = x to Xt = y, with x < y. In this example we have used symmetric
layers, ai = bi, i ≥ 1. For the specific choice of {ai} illustrated in the graph, the event U4 has occurred.
Thus, in this case I(X) = 4

The required partition of the sample space consists of the sets Di, i ≥ 1. We introduce
the discrete random variable I = I(X) such that {I = i} = Di. Note that {I ≤ i} is
equivalent to {x̄ − ai < Xs < ȳ + bi, for all s ∈ [0, t]}. Thus, we set

ϒ = I, and r(i) = sup { φ(z); z ∈ (x̄ − ai, ȳ + bi) }, i ∈ N .

Figure 1 demonstrates the construction. In the remainder of the section we exploit a
representation of the CDF of I in terms of monotone alternating series, to develop
a novel algorithm for its simulation. We then show how to simulate the Brownian
bridge conditioned on I. In the sequel, we will sometimes call I the layer of the
Brownian bridge. Accordingly, we refer to a Brownian bridge conditioned on some
value of I as layered Brownian bridge. The algorithm devised for the simulation of
I can be readily modified to develop a rejection sampler of the layered Brownian
bridge using Brownian bridge proposals. However, the number of proposed paths
until the first acceptance has infinite expectation, where the expectation is taken
w.r.t. proposed paths and I. This problem is alleviated by introducing an alternative
rejection sampler for the simulation of the layered Brownian bridge.

3.1 Some Auxiliary Results

In the following subsections we identify events relevant to the construction of the
layered Brownian bridge whose probability, p say, is not known explicitly but it can
be expressed as the limit of the following series of over/under-estimations:

0 < S2 < S4 < S6 < · · · < p < · · · < S5 < S3 < S1 ,

for some explicitly known {Sj}. To simplify exposition we consider the following
definition.
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Definition 1 Let T be the subset of Cauchy sequences with values in R+, such that
{S j} ∈ T if and only if

S2 j < S2 j+2 < S2 j+1 < S2 j−1, for all j ≥ 1 . (6)

For our constructions we will require simulation of events of probability p =
lim j→∞ S j, where {S j} ∈ T. Thus, we need to simulate the binary random variable
I [U < p], where U ∼ Un [0, 1]. This is accomplished in the following way. Let

J = inf{ j : j even, S j > U or j odd, S j < U} .

Then

I [U < p] = I [J is even] .

Thus, one needs to consider only J terms of {S j} to simulate the event of probability
p. The specific alternating series that appear in our algorithms and are presented
in the sequel, are converging in their limit faster than exponentially, so J will be
typically of a very small value.

In the sequel we will need to simulate events whose probabilities are linear
transformations or ratios of alternating sequences in T. The following proposition
illustrates that, for the case of these simple transformations, such probabilities can
be also expressed as the limit of some easily identifiable sequences in T, therefore
the corresponding events can be simulated as described above.

Proposition 1 Let f : Rm+ → R+, for some m ∈ N, be a C1 function with

∣∣∣∣ ∂ f
∂ui

(u)

∣∣∣∣ > 0 for all 1 ≤ i ≤ m, and u ∈ Rm
+ .

Let {S i
j} ∈ T, for all 1 ≤ i ≤ m, with pi = lim j→∞ S i

j, and set p = f (p1, . . . , pm).
Consider the sequences {T i

j } defined for each 1 ≤ i ≤ m as follows:

T i ≡ S i if
∂ f
∂ui

> 0 , whereas T i
· = S i

· +1 if
∂ f
∂ui

< 0 .

Consider the sequence {S j} defined as follows:

S j = f
(

T 1
j , T 2

j , . . . , T m
j

)
.

Then {S j} ∈ T and p = lim j→∞ S j.

Proof We need to prove that Eq. 6 holds for {S j} given that it holds for each of {S i
j}.

Such a conclusion is obvious when one considers the monotonicity structure of f .
For the statement S2 j+1 < S2 j−1, simply note that, when calculating S2 j−1, f takes as
input higher values (compared to S2 j+1) along the directions that f is increasing and
lower values along the directions that f is decreasing. Similar considerations give the
complete proof. �
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3.1.1 The Absolute Maximum of a Brownian Bridge

For K > |u1| ∨ |u2|, let γ (s, u1, u2, K) denote the probability under BB(s; u1, u2) that
a path does not leave the interval [−K, K]. This probability has a known expression
in terms of an infinite series, a result which can be traced back to Doob (1949),
although see Pötzelberger and Wang (2001) for a more recent reference. We define
for j ≥ 1,

σ̄ j(s, u1, u2, K) = exp

{
−2

s
[2Kj − (K + u1)] [2Kj − (K + u2)]

}
,

τ̄ j(s, u1, u2, K) = exp

{
−2 j

s
[4K2 j + 2K(u1 − u2)]

}
.

Then, Theorem 3 of Pötzelberger and Wang (2001) yields

γ (s, u1, u2, K) = 1 −
∞∑
j=1

{
σ j(s, u1, u2, K) − τ j(s, u1, u2, K)

}
, (7)

where

σj = σ̄ j(s, u1, u2, K) + σ̄ j(s,−u1,−u2, K), τ j = τ̄ j(s, u1, u2, K) + τ̄ j(s,−u1,−u2, K) .

Notice that due to symmetry properties of the Brownian bridge, Eq. 7 can be used
to compute the probability that an arbitrary Brownian bridge does not escape any
given interval. Simulation of events of probability (7) can be achieved as described
earlier due to Proposition 2 below.

Proposition 2 Let {Sj} be constructed as follows:

S2 j−1 =
j−1∑
k=1

(σk − τk) + σj, S2 j = S2 j−1 − τ j, j ≥ 1 ,

where σj = σj(s, u1, u2, K), τ j = τ j(s, u1, u2, K). Then {Sj} ∈ T for any u1, u2 ∈ R,
s > 0, and K > |u1| ∨ |u2|.

Proof Routine calculation reveals that σ̄ j > τ̄ j > σ̄ j+1 , for all j ≥ 1. The result follows
directly. �

3.1.2 Hitting Probabilities of the Bessel Bridge

Consider some u1 ≥ 0, u2 > 0 and K > u1 ∨ u2. Let δ(s, u1, u2, K) denote the prob-
ability under the Bessel bridge law S(s; u1, u2) that a path does not exceed K.
Similarly, for K < L we let δ(s, u1, u2, K; L) denote the probability under S(s; u1, u2)

that a path conditioned to remain below L, does not exceed K. The derivation
of these probabilities exploits the representation of a Bessel bridge as a Brownian
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bridge conditioned to stay positive. Thus, for u1 > 0 and omitting the arguments of
the Brownian bridge measure,

δ(s, u1, u2, K; L)= BB [X does not leave (0, K)]
BB [X does not leave (0, L)] = γ (s, u1 − K/2, u2 − K/2, K/2)

γ (s, u1 − L/2, u2 − L/2, L/2)
,

δ(s, u1, u2, K) = lim
L→∞

δ(s, u1, u2, K; L) = γ (s, u1 − K/2, u2 − K/2, K/2)

1 − exp{−2u1u2/s} .

In this setting, BB ≡ BB(s; u1, u2). For the special case u1 = 0, we take the limit
u1 → 0 in the above expressions and find that,

δ(s, 0, u2, K; L) = u2 − ∑∞
j=1

{
ζ j(s, u2, K) − ξ j(s, u2, K)

}
u2 − ∑∞

j=1

{
ζ j(s, u2, L) − ξ j(s, u2, L)

} ,

δ(s, 0, u2, K) = 1 − 1

u2

∞∑
j=1

{
ζ j(s, u2, K) − ξ j(s, u2, K)

}
,

where

ξ j(s, u2, K) = (2Kj + u2) exp {−2Kj(Kj + u2)/s} , ζ j(s, u2, K) = ξ j(s,−u2, K) .

Simulation of events of probability δ(s, u1, u2, K; L) and δ(s, u1, u2, K) can be easily
achieved for any u1, u2 > 0, L > K > u1 ∨ u2, exploiting Proposition 1. For the
limiting case, u1 = 0, we additionally require the following result.

Proposition 3 Let {S j} be constructed as follows:

S2 j−1 =
j−1∑
k=1

(ζk − ξk) + ζ j, S2 j = S2 j−1 − ξ j, j ≥ 1,

where ζ j =ζ j(s, u2, K), ξ j =ξ j(s, u2, K), with K>u2 >0. If 3K2 − s>0, then {S j} ∈ T.

Proof Notice that when 3K2 − s > 0, then f (u) := ζ j(s, u, K)/ξ j(s, u, K) is increasing
with f (0) = 1. Thus, ζ j > ξ j for all appropriate values of their arguments. We will
now show that ξ j > ζ j+1. The ratio ξ j/ζ j+1 is increasing in j so it suffices to show that
ξ1 > ζ2. Note that when 8K2 − s > 0, then g(u) := ξ1(s, u, K)/ζ2(s, u, K) is decreasing
with g(K) = 1, thus ξ1 > ζ2. Having established the ordering ζ j > ξ j > ζ j+1, the
required result follows directly. �

The restriction 3K2 > s will not effect of general applicability of the algorithms
that follow. As we show in the sequel, the user can easily specify an upper and lower
bound on the possible range of values of K and s respectively so that it is guaranteed
that 3K2 > s.
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3.2 Construction of Layered Brownian Bridge

We return now to the setup we introduced at the beginning of Section 3. The
distribution function of I can be written as

F(i) :=P [I ≤ i]=γ

(
t,

x − y
2

+ ai − bi

2
,

y − x
2

+ ai − bi

2
,
|y − x|

2
+ ai + bi

2

)
, i≥1 ,

with F(0) = 0. Notice that P [I = i] = P [F(i − 1) < U ≤ F(i)], for a U ∼ Un[0, 1],
therefore I can be simulated as follows. For any i ≥ 1, let {S i

j} ∈ T be the alternating
sequence converging to F(i), as obtained from the representation of γ in Eq. 7. We
also define the sequence {S 0

j } with S 0
j = 0 for all j ≥ 1. Then, we set I = i when

S i−1
j < U < S i

j+1, for some odd j.
Having simulated the layer I of the Brownian bridge, we proceed to step 4. of

EA, that is to simulate the resulted layered Brownian bridge at the finite collection
of time instances determined by the Poisson process. The most obvious approach for
doing so is to use rejection sampling with candidates from BB(t; x, y): for a proposed
Brownian Bridge path we simulate its layer and reject the path if this layer is different
from the conditioned realisation of I. However this solution is theoretically and
practically unappealing since if N0 is the number of tries until (and including) the
first success then:

E [N0] = E [E [N0 | I]] =
∞∑

i=1

1

P [I = i] × P [I = i] = ∞ .

Therefore we adopt an alternative rejection sampling procedure which proposes
sample paths which are more likely to be accepted. For the proposed construction we
will consider symmetric layers, i.e. we choose ai = bi, i ≥ 1. The construction could
proceed even in the general case, however this user-specified tuning will simplify the
formulae appearing in the sequel. Also, there is no obvious reason to give different
weights to the upper and lower behaviour of the Brownian bridge.

Let BBDI
denote the law of the target layered Brownian bridge. We will propose

from a mixture of two conditioned Brownian bridges. Specifically, consider the
events

Mi =
{

sup
0≤s≤t

Xs ∈ [ȳ + ai−1, ȳ + ai)

}
, Mi =

{
inf

0≤s≤t
Xs ∈ (x̄ − ai, x̄ − ai−1]

}
, i ≥ 1 .

Let BBMI
and BBM

I
be the Brownian bridge law BB(t; x, y) restricted to MI and MI

respectively. Our rejection sampling algorithm will use candidate paths from

PDI
:= 1

2
BBMI

+ 1

2
BBM

I
.

This proposal measure forces the minimum or the maximum of the realised paths to
be in the correct interval, that is the interval where the maximum or the minimum of
the target paths also lie. More analytically, recall the definition of the conditioning
event DI from Eq. 5: DI = UI ∪ LI . The definition of the various events suggests
that Brownian bridges from MI (resp. from MI) are extremely good candidates for
bridges from UI (resp. from LI). The following theorem derives the appropriate
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acceptance probability. For a general subset of paths, say �, BB [�] is the probability
under BB(t; x, y) that a path is in �.

Theorem 4 BBDI
is absolutely continuous w.r.t. PDI

with density

dBBDI

dPDI

(X) = 2 BB [MI]
BB [DI ]

× I [X ∈ DI]
1 + I [X ∈ UI ∩ LI ]

.

Proof One only has to use the unconditioned Brownian bridge BB = BB(t; x, y) as
a reference measure. Then:

dBBDI

dPDI

(X) = dBBDI
/dBB (X)

1
2 dBBMI

/dBB (X) + 1
2 dBBM

I
/dBB (X)

= 2 I [X ∈ DI] BB [DI]−1

I [X ∈ MI] BB [MI]−1 + I [X ∈ MI] BB [MI]−1
.

From the symmetricity of the layers it is clear that BB [MI] = BB [MI], and the
required density expression then follows directly. �

Assume that N is the number of proposed paths until the first accepted one. Then,

E [N | I] = 2 BB [MI]
BB [DI ]

≤ 2 BB [MI]
BB [UI ]

≤ 2

BB [inf0≤s≤t Xs > x̄ − a1] ,

so, even for moderate a1, E [N] will be small. Note also that selecting symmetric lay-
ers (ai = bi) simplifies the expression for the acceptance probability of the rejection
sampler since, when that is the case, BB [MI] = BB [MI]; see the proof of the theorem
above. Our algorithm w.p. 1/2 proposes a path X ∼ BBMI

and with equal probability
a path X ∼ BBM

I
. Simulation from BBM

I
(and by symmetry from BBMI

) can be
easily carried out following the decomposition of a Brownian bridge at its minimum
in terms of two Bessel bridges summarized in Section 2.2. The calculation of the
probability of accepting X requires also the simulation of the indicators I [X ∈ DI]
and I [X ∈ UI ∩ LI] which will be carried out using the results about the hitting times
of a Bessel bridge given in Section 3.1.2. Analytically, we proceed as follows.

First, we simulate the minimum m of the proposed Brownian bridge X condi-
tionally on that being in (x̄ − aI , x̄ − aI−1 ], and then the time τ when the minimum is
attained. Recall that the target layered path, thus also the proposed path, needs to be
simulated only at the time instances of the Poisson process �r(ϒ). In the simple case
when �r(ϒ) has no points, the binary variable I [X ∈ DI] is easy to simulate, since it
is equal to 1 w.p.

δ(τ, 0, x̄ − m, ȳ + aI − m) × δ(t − τ, 0, ȳ − m, ȳ + aI − m) .
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If I [X ∈ DI] = 0 the path X is rejected. In the opposite case, we proceed to
the indicator I [X ∈ UI ∩ DI]. Conditionally on I [X ∈ DI] = 1, it is true that I [X ∈
UI ∩ LI ] = 0, w.p.

δ(τ, 0, x̄ − m, ȳ + aI−1 − m; ȳ + aI − m)

× δ(t − τ, 0, ȳ − m, ȳ + aI−1 − m; ȳ + aI − m) .

If I [X ∈UI ∩LI ]=1, then the proposed path is accepted w.p. 1/2, otherwise w.p. 1.
In the general case when �r(ϒ) has a positive number of points, the procedure is

similar. We simulate, m, τ , and the location of the proposed path at the time instances
determined by �r(ϒ). Conditionally on this information, the path is retrieved as a
product of Bessel bridges. Thus, the distribution of the binary variables I [X ∈ DI]
and I [X ∈ UI ∩ LI] can be expressed in terms of products of hitting probabilities
of the Bessel bridge and can be simulated following the alternating series method
shown in Section 3.1.

For more concreteness, we can formulate a pseudo-algorithm describing step 4. of
EA3. We will need the maximum of a path m∗ := sup{Xs; s ∈ [0, t]}.

EA3 - Step 4. Simulation of {Xχi ; 1 ≤ i ≤ |�r(ϒ)|}} from Z | Xt = y, I.

4.1 For X ∼ BB(t; x, y), simulate {Xχi ; 1 ≤ i ≤ |�r(ϒ)|}} together with
either it’s minimum (τ, m), w.p. 1/2, or it’s maximum
(τ, m∗), w.p. 1/2, conditionally on m ∈ (x̄ − aI , x̄ − aI−1 ] or
m∗ ∈ [ȳ + aI−1 , ȳ + aI ).

4.2 If I [X ∈ DI] = 0 reject X and go to 4.1.
4.4 If I [X ∈ UI ∩ LI ] = 0 (resp.1) return {Xχi ; 1 ≤ i ≤ |�r(ϒ)|}} w.p.1

(resp.1/2). Otherwise reject X and go to 4.1.

For step 4.2, we note that, in the case that the minimum m is simulated at step 4.2,
I [X ∈ DI] = 1 is an event of probability

|�r(ϒ)|+2∏
i=1

δ(si − si−1, Xsi−1 − m, Xsi − m, ȳ + aI − m) ,

where {si; 0 ≤ i ≤ |�r(ϒ)| + 2} is an increasing ordering of {0, t, τ } ∪ {χi; 1 ≤ i ≤
|�r(ϒ)|}. For the case of the maximum m∗, one should only replace each of the terms
in the above product with δ(si − si−1, m∗ − Xsi−1 , m∗ − Xsi , m∗ − x̄ + aI ). Then, for
step 4.3, the event I [X ∈ UI ∩ LI ] = 0 is of probability:

|�r(ϒ)|+2∏
i=1

δ(si − si−1, Xsi−1 − m, Xsi − m, ȳ + aI−1 − m; ȳ + aI − m)

for the case of m, with δ(si − si−1, m∗ − Xsi−1 , m∗ − Xsi , m∗ − x̄ + aI−1; m∗ − x̄ + aI )

replacing the terms in the above product for the case of m∗.



98 Methodol Comput Appl Probab (2008) 10:85–104

Fig. 2 A skeleton of Eq. 8 generated by EA3. We used μ = 0.01, ν = −0.02, σ = 1 and starting
point V0 = 0.5. We applied iteratively EA3 for time increments t = 0.1 up to the time 1,000. The
increasing sequences {ai}, {bi} involved in the algorithm were chosen as ai = bi = 0.3 · i

3.3 Examples

The methodology we have developed applies easily to one-dimensional diffusions,
V say, with positive and continuously differentiable coefficient σ(·). We first apply
the standard transformation: Vs �→ ∫ Vs

v∗ σ(z)−1 dz =: Xs, for some arbitrary v∗ in the
state space of V, and then apply EA to X, provided that (C0)–(C3) hold for X.

As an illustration of EA3, we consider the following diffusion model arising in
genetics (see e.g. ch.7 of Kloeden and Platen 1992):

dVs = (μ + νVs) ds + σ Vs(1 − Vs) dWs, (8)

with σ > 0 and μ, ν assumed to satisfy the restrictions μ > 0 and μ + ν < 0 implying
that V stays in (0, 1). Under this parameter choice, straightforward calculations
show that the corresponding unit coefficient process X, which moves in R, satisfies
conditions (C0)–(C3). Thus, we can apply EA3 to simulate sample paths of X and,
equivalently, of V. Figure 2 shows a skeleton of V simulated using EA3.

4 Extensions

In this section we shall consider extensions of the results obtained and algorithms
described thus far in the paper. We shall consider both multivariate and time-
inhomogeneous generalizations.

4.1 Multivariate Diffusions

We now consider unit diffusion coefficient d-dimensional diffusions satisfying

dXs = α(Xs) ds + dBs, X0 = x, s ∈ [0, t] . (9)
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Let Q and W denote the law of X and the d-dimensional Wiener measure respec-
tively on [0, t] for the initial condition X0 = B0 = x. We will assume the following
multi-dimensional equivalents to (C0)–(C3):

(MC0) The Radon–Nikodym derivative of Q w.r.t. W exists and it is given by the
multivariate Girsanov’s formula,

dQ

dW
= exp

{∫ t

0
α(Xs) · dXs −

∫ t

0

1

2
‖α(Xs)‖2 ds

}
.

(MC1) α is continuously differentiable in all its arguments.
(MC2) There exists � > −∞ such that φ(u) := (‖α(u)‖2 + div α(u)

)
/2 − � ≥ 0.

Then, analogously to the one-dimensional case, we consider the epigraph of
s �→ φ(Xs),

epi φ(X) := { (s, u) ∈ [0, t] × R+ : φ(Xs) ≤ u },
and the event

� := {� ⊂ epi φ(X)} =
⋂
j≥1

{φ(Xχ j) < ψj} .

Theorem 1 extends readily to the multivariate case, however (C3) has to be appro-
priately modified. Notice that (MC3.1) below appears frequently in applications of
multivariate diffusions.

(MC3.1) There exists a function A : Rd → R such that α(u) = ∇ A(u),
(MC3.2) The function exp{A(u) − ‖u − x‖2/(2t)} is integrable in u ∈ Rd.

We then define the probability measure Z w.r.t. the d-dimensional Wiener
measure as

dZ

dW
∝ exp {A(Xt) − A(x)} .

Theorem 5 (Multivariate Wiener–Poisson factorization) Q is the marginal law of X
when (X, �) ∼ Z ⊗ L |�.

Theorem Eq. 5 leads directly to a simulation methodology as in the one-dimen-
sional case. The most natural approach is to construct the proposed d-dimensional
paths by means of d independent Brownian bridges with some corresponding layer
choice. However, the assumption of unit diffusion coefficient is not as innocuous as
in the one-dimensional case. Unfortunately, there is no obvious way to generalize
this given the currently available methodology.

4.2 Time-inhomogeneous Diffusions

EA can also be applied to diffusion processes of the form:

dXs = α(s, Xs) ds + dBs, X0 = x, s ∈ [0, t] .

The necessary conditions for the applicability of EA are straightforward restate-
ments of (C0)–(C3), thus we do not present them here explicitly. In the sequel, (IC0)–
(IC3) will stand for the extension of (C0)–(C3) in the time-inhomogeneous context.
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In summary, we now ask that α ∈ C1,1, we define A(s, u) = ∫ u
0 α(s, z)dz, and we let Z

be the law determined through the following density:

dZ

dW
∝ exp{A(t, Xt)}.

Thus the Wiener–Poisson construction and its associated algorithms go through
unchanged, setting

φ(s, u) = 1

2

{
α2(s, u) + ∂α(s, u)

∂u
+ 2

∂ A(s, u)

∂s

}
− �

where

� = inf
s∈[0,t]

inf
z∈R

{
1

2
α2(s, z) + 1

2

∂α(s, z)

∂z
+ ∂ A(s, z)

∂s

}
.

Whereas (C2) is a standard assumption, its extension to this setting, i.e. the condition
that � > −∞ for � defined above, might not be easy to meet in great generality. A
characteristic example is when X is Brownian motion with time-varying drift, that is
Xs = Bs + f (s) for some smooth function f .

Simulation of time-inhomogeneous diffusions is an essential ingredient of the
exact simulation algorithm of one-sided boundary hitting times that we present in
the next section.

5 Simulation of Boundary Hitting Times

In this section we recast the methodology we have already developed to devise
an algorithm for the simulation of diffusion hitting times of one-sided smooth
boundaries. These problems can be equivalently stated as constant boundary crossing
times for time-inhomogeneous diffusions, hence the extension of EA3 described in
Section 4.2 will be required. We will restrict ourselves to the important special case
of Brownian motion and consider the problem of the exact simulation of the first
time that the Brownian motion exceeds a non-linear boundary f ∈ C2. Thus, we will
present a method for the simulation of the random variable

ζ = inf{s ≥ 0 : Bs = f (s)} .

where B is a standard Brownian motion. Without loss of generality we will assume
that f (0) > 0.

An attempt to simulate the time-inhomogeneous process Bs − f (s) using EA
with the objective to exploit the availability of results for crossing times of linear
boundaries for the Brownian motion would fail since (IC2) does not hold. Notice
that there are more general diffusion processes for which this inconvenience will not
appear. We get around this difficulty by re-expressing the problem in terms of an
Ornstein–Uhlenbeck process.

For an arbitrary tuning constant a ∈ R+, we consider the process

Hs := e−as/2 B(eas−1)/a ,
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which satisfies dHs = −(a/2) Hs ds + dWs, H0 = 0, for a suitable Brownian motion
W. We define the modified boundary

g(s) = e−as/2 f ((eas − 1)/a)

and consider the hitting time

η = inf{s ≥ 0 : Hs = g(s)} .

It is clear that ζ = (ea η − 1)/a a.s., thus is suffices to simulate η. We define the
time-inhomogeneous diffusion Xs := g(s) − Hs which satisfies

dXs = ( g′(s) + a g(s)/2 − a Xs/2 ) ds + dWs, X0 = g(0) > 0 .

Now, η is the first passage time of X from 0.
We will simulate η through rejection sampling on the path space, using a variation

of EA3 for time-inhomogeneous diffusions. The target diffusion will be X defined
above. It can be easily shown that conditions IC0–IC3 are satisfied. The algorithm will
exploit the fact that the crossing times of linear boundaries of the proposed Brownian
bridges are explicitly known and can be easily simulated.

We begin with the following well-known first passage time decomposition of
BB(t; x, y). Recall the definitions of m, τ and S given in Section 2.2 as the minimum of
a path, the time that the minimum occurs, and the law of a Bessel bridge, respectively.

Theorem 6 Assume that x > 0 and let η denote the first time the bridge X ∼
BB(t; x, y) hits 0, where by convention we set η = t if the hitting time does not occur
in [0, t].
1. For η < t, the law of X | η admits the decomposition

S(η; x, 0) ⊗ BB(η, t; 0, y) .

2. For η = t, the law of X − m | η = t, m, τ can be decomposed as

S(τ ; x − m, 0) ⊗ S(τ, t; 0, y − m) .

Therefore, the additional conditioning on the hitting time η has the effect that the
proposed paths on [0, η] are now expressed in terms of Bessel bridges. Although
simulation of I is still possible (using the Bessel bridge hitting probabilities of
Section 3.1.2), the algorithm of Section 3.2 for simulating the layered path cannot
be applied, since that construction only applies to Brownian bridges.

We will nonetheless obtain lower and upper bounds for the proposed path by
exploiting the well-known representation (see for instance Bertoin and Pitman 1994)
of the Bessel bridge starting from 0, in terms of three independent Brownian bridges.
Analytically, for some δ > 0 and a time increment v > 0, the stochastic process√

Z 2
s,1 + Z 2

s,2 + Z 2
s,3, s ∈ [0, v], where Z1 ∼ BB(v; 0, δ), Z2, Z3 ∼ BB(v; 0, 0) ,

is distributed according to S(v; 0, δ). All Bessel bridges appearing in Theorem 6 are
covered by this result due to the time-homogeneity of the Bessel bridge and its time-
reversing property.

Our approach is to determine separate layers for each of the Brownian bridges
that constitute the proposed Bessel bridge, using the techniques of Section 3. These
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layers will imply a bound on the range of the Bessel bridge. Simulation of the
Bessel bridge conditional on this information will be done via the simulation of
each constituent Brownian bridge conditional on its layer using the efficient rejection
sampler of Section 3.2.

The precise mathematical construction is as follows. We will consider ten inde-
pendent Brownian bridges. The first four

Z1 ∼ BB(η; x, 0), Z2, Z3 ∼ BB(η; 0, 0), Z ∼ BB(η, t; 0, y),

will be used in the case η < t, and the rest

Z5 ∼ BB(τ ; x − m, 0), Z6, Z7 ∼ BB(τ ; 0, 0) ,

Z8 ∼ BB(τ, t; 0, y − m), Z9, Z10 ∼ BB(τ, t; 0, 0) ,

when η = t. For each bridge Zi, we define x̄i (ȳi) to be the minimum (maximum)
between its starting and finishing point, and provide a positive increasing sequence
{a j} for the development of symmetric layers around x̄i and ȳi in the way shown
in Section 3. For simplicity, we assume the choice of an identical sequence {a j} for
all ten bridges. In greater generality, one can select a different sequence for each
bridge. Let Ii be the discrete random variable which specifies the layer of Zi and
I = {Ii; 1 ≤ i ≤ 10}. In this setting, ϒ is defined on an enlargement of the canonical
probability space for X, as

ϒ = (
η, I, m I [η = t], τ I [η = t] )

.

Then, the proposed Brownian bridge and a bound on its range are constructed as
follows.

– If η < t, then

Xs =
√

Z 2
s,1 + Z 2

s,2 + Z 2
s,3, s ∈ [0, η), Xs = Zs,4, s ∈ [η, t],

and l(I) ≤ Xx ≤ u(I) for all s ∈ [0, t], where

l(I) = x̄4 − aI4 , u(I) = max

{√
(x + aI1)

2 + a2
I2

+ a2
I3
, ȳ4 + aI4

}

– If η = t, then

Xs =m+
√

Z 2
s,5+Z 2

s,6+Z 2
s,7, s ∈ [0, τ ); Xs =m+

√
Z 2

s,8+Z 2
s,9+Z 2

s,10, s ∈ [τ, t],

and l(I) ≤ Xs ≤ u(I) for all 0 ≤ s ≤ t, where l(I) = m and

u(I) = m + max

{√
(x − m + aI5)

2 + a2
I6

+ a2
I7
,

√
(y − m + aI8)

2 + a2
I9

+ a2
I10

}
.

Given l(I), u(I) we can compute the rate of the auxiliary Poisson process as

r(ϒ) = sup
{
φ(s, z) : s ∈ [0, t], z ∈ [l(I), u(I)]}
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and, subsequently, complete the program prescribed in EA to decide whether or
not to accept the proposed path and the corresponding hitting time. Notice, that in
practice it is not necessary to find a priori ranges for all ten bridges since the specific
bridges required depend on the value of η.

Hitting times of two sided boundaries are in general not possible by this approach.

6 Discussion

In this paper we have reconstructed the law of a family of diffusions in terms of
the Wiener and the Poisson measures. Based on this representation, we devised
a simulation algorithm for un-solvable SDEs. Our algorithm, EA3, is described
in Section 3 as an explicit finite construction for exact realisations from the finite
dimensional distributions of the diffusion law. The methodology extends easily to
time-inhomogeneous and multivariate diffusions, though the latter generalization is
restricted to diffusions with gradient drift functions.

Crucial to our approach is the layered Brownian bridge construction which we
initially describe in the EA3 context. In Section 5 we show that the same device
used in a modified way can generate realisations of boundary crossing times for
diffusions. The layered Brownian bridge construction is rather versatile. For instance
it is straightforward to construct diffusion sample paths conditioned to remain within
a region, E, (compact or otherwise) by just arranging that the initial layer (I = 1)
corresponds to the sample path remaining within E. Furthermore diffusions with
finite entrance boundaries such as

dXt = − tan(Xt) dt + dBt

can be easily simulated by choosing sequences of layers with edges converging
to ±π/2.

A close inspection of the EA3 construction reveals that it allows the condition
(C0) to be relaxed. The algorithm certainly requires the diffusion to be non-explosive.
However the layered construction only requires the Radon–Nikodym derivative of Q

w.r.t. W to exist individually on each layer event {I ≤ i}. By (C1), the path s �→ α(Xs)

is bounded on the event {I ≤ i} and so Girsanov’s formula holds on each of these
truncations. Thus we can relax (C0) to the statement that

(C0)′ X is a non-explosive diffusion.
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