
Methodol Comput Appl Probab (2008) 10:409–433
DOI 10.1007/s11009-007-9047-1

Runtime Analysis of Ant Colony Optimization
with Best-So-Far Reinforcement

Walter J. Gutjahr · Giovanni Sebastiani

Received: 2 April 2007 / Accepted: 23 July 2007 /
Published online: 10 November 2007
© Springer Science + Business Media, LLC 2007

Abstract The paper provides some theoretical results on the analysis of the expected
time needed by a class of Ant Colony Optimization algorithms to solve combinatorial
optimization problems. A part of the study refers to some general results on the
expected runtime of the considered class of algorithms. These results are then
specialized to the case of pseudo-Boolean functions. In particular, three well known
functions and a combination of two of them are considered: the OneMax, the
Needle-in-a-Haystack, the LeadingOnes, and the OneMax-Needle-in-a-Haystack.
The results obtained for these functions are also compared to those from the well-
investigated (1+1)-Evolutionary Algorithm. The results shed light on a suitable
parameter choice for the considered class of algorithms. Furthermore, it turns out
that for two of the four studied problems, the expected runtime for the considered
class, expressed in terms of the problem size, is of the same order as that for (1+1)-
Evolutionary Algorithm. For the other two problems, the results are significantly in
favour of the considered class of Ant Colony Optimization algorithms.

Keywords Analysis of algorithms · Combinatorial optimization ·
Stochastic algorithms · Hitting times · Markov processes

AMS 2000 Subject Classification Primary 68W40; Secondary 60J20 · 68W20

W. J. Gutjahr
Department of Statistics and Decision Support Systems, University of Vienna,
Universitaetsstrasse 5/9, 1010 Vienna, Austria

G. Sebastiani (B)
Istituto per le Applicazioni del Calcolo “Mauro Picone”, CNR,
Viale del Policlinico 137, 00161 Rome, Italy
e-mail: sebast@iac.rm.cnr.it

G. Sebastiani
Mathematics Department, “Sapienza” University of Rome,
Piazzale Aldo Moro 5, 00185 Rome, Italy

410 Methodol Comput Appl Probab (2008) 10:409–433

1 Introduction

Ant Colony Optimization (ACO) has developed in the last fifteen years to one of the
most frequently used metaheuristic techniques for solving “hard” combinatorial op-
timization problems. Numerous publications in a large variety of fields demonstrate
the broad applicability and the good performance of this approach, see Dorigo and
Di Caro (1999), Dorigo et al. (1991, 1996), Dorigo and Stützle (2004).

Despite a huge number of experimental investigations on ACO, much less has
been done in the field of ACO theory. Since the year 2000, convergence proofs for
some specific types of ACO algorithms to the optimal solution with probability one
appeared, see Gutjahr (2000, 2002, 2003), Stützle and Dorigo (2002), and Sebastiani
and Torrisi (2005). However, results concerning convergence quantification are still
scarce in the ACO area.

In the present paper, we study the runtime behavior of the MAX -MIN Ant
System (MMAS) developed by Stützle and Hoos (1997, 2000) in the version where
it uses best-so-far reinforcement. The expected value of the runtime is investigated
in dependence of the problem size, n, for four specific example problems. Three
of them, the OneMax problem, the LeadingOnes problem and the Needle-in-a-
Haystack (NH) problem, are well-known and well-analyzed test problems in the
Genetic Algorithms literature. OneMax is a typical example for a problem where
the fitness function gives helpful (and never misleading) information supporting
the search for the optimal solution. Contrary to that, in the NH problem, no infor-
mation of this type is provided. We also analyze a combination of NH with OneMax
(NH-OneMax).

Some first results on the runtime of a variant of ACO closely related to the one
studied here are available for the OneMax problem, see Gutjahr (2005, 2007). There,
it was shown that for values sufficiently close to one of an important ACO parameter
called evaporation factor, the algorithm runtime is of order O(n log n), which is the
same order as that of the (1+1)-Evolutionary Algorithm (short: (1+1)-EA), which is
intensely studied in the literature, see Droste et al. (2002), and Ladret (2005).

Neumann and Witt (2006) studied the behavior of the so called 1-ANT. The au-
thors showed that 1-ANT behaves identically to the (1+1)-EA on all pseudo-Boolean
fitness functions, provided that the evaporation factor ρ is chosen sufficiently large
(basically, larger than about 1/3). Moreover, some probabilistic bounds for the be-
havior of 1-ANTS on OneMax for small evaporation factor were given; in particular,
these bounds show that the runtime behavior is exponential for evaporation factor
values close enough to zero.

In this paper, the investigation in Gutjahr (2007) will be extended in several
directions. First of all, we give a complete picture of the behavior of the considered
algorithm for the whole range of possible evaporation factor values. It will turn out
that, as for the 1-ANT, high evaporation factor values lead to a degeneration of
the algorithm to the (1+1)-EA. In the described circumstances, however, this only
happens if evaporation factor values are chosen in a small neighborhood of 1. For
the main part of the range of possible evaporation factor values, the behavior of
the algorithm will turn out to be essentially different from (1+1)-EA. There, our
ACO variant also shows a O(n log n) runtime behavior on OneMax, provided that
the evaporation factor is chosen as constant in n. This is also true for very small
evaporation factor values, indicating that keeping the evaporation factor rather close

Methodol Comput Appl Probab (2008) 10:409–433 411

to zero than close to one needs not to be a poor choice for the considered ACO
variant. This observation will be confirmed at the LeadingOnes example, where
even schemes letting the evaporation factor tend to zero as n → ∞ can be shown
to provide the O(n2) runtime behavior of (1+1)-EA.

Furthermore, we shall show that using high values of the evaporation factor has
even distinct disadvantages as soon as fitness functions are considered that do not
“guide” the search to a sufficient extent: For the NH and the NH-OneMax problem,
we will demonstrate that the performance of both (1+1)-EA and the ACO with high
evaporation factor is very poor. In particular, we are able to show that (1+1)-EA
has a lower bound for the expected runtime of (exponential) order (n/2)log2 n on NH-
OneMax, whereas a suitable scheme for ACO where the evaporation factor is chosen
of order n−3 ensures an upper bound for the expected runtime of (polynomial) order
n4 log n.

2 The Algorithm

An ACO algorithm is an iterative and stochastic procedure, containing three basic
elements. The first element is a construction graph G= (V,A), where V is the set of
vertices and A the set of oriented edges (arcs), furnished with some rules to construct
paths on G and to make them correspond to the feasible solutions of the search
space S. The second element is a probabilistic mechanism to build such paths. This
mechanism is parametrized by two vectors τ and η whose elements are associated
to the elements of A, called pheromone vector and visibility vector, respectively.
Contrary to the visibility vector, the pheromone vector changes along iterations by
means of a recursive rule, which is the third element of an ACO algorithm. Each
of these three elements is important and influences the properties of the ACO
algorithm. ACO algorithms are named and classified mainly based on the specific
form of the updating rule for the pheromone vector.

2.1 The Construction Graph

Definition 1 Let an instance of a combinatorial optimization problem f (·) →
arg max

x∈S
f (x) with finite feasible set S be given. Following Gutjahr (2000), by a

construction graph for this problem, we mean a directed graph G = (V,A) together
with a solution decoding function � and the following rules to build paths:

(1) In V , a unique node is marked as the so–called start node.
(2) Let W be the set of directed paths w in G satisfying the following conditions:

(i) w starts at the start node of G;
(ii) w contains each node of G at most once;

(iii) the last node on w has no successor node in G that is not already contained
in w (i.e., w cannot be prolonged without violating (ii)).

The function � maps a subset W̄ of the set W onto the set of feasible
solutions of the given problem instance: To each path w ∈ W̄ , there corresponds
a feasible solution x = �(w) ∈ S, and to each feasible solution x ∈ S, there
corresponds at least one path in W̄ such that �(w) = x.

412 Methodol Comput Appl Probab (2008) 10:409–433

The objective function value (fitness value) assigned to a complete path w is
always that of �(w), i.e., of the corresponding feasible solution x. Each path w ∈ W̄
is considered as a separate solution. For this reason, we use the symbol x also for
paths in the sequel. If an edge (i, j) is contained in a path x, we shall write (i, j) ∈ x.

For a given problem, different kinds of construction graphs can be considered, see
Dorigo and Stützle (2004), and Gutjahr (2006). The construction graph for pseudo-
Boolean functions known as chain graph will be illustrated in details in Section 4, see
Gutjahr (2006).

2.2 The Probabilistic Mechanism

In ACO, to each arc (i, j) ∈ A, a pheromone value τij(t) is assigned, which can change
with the iteration number t of the algorithm. The pheromone values are combined to
a vector τ (t), each component of which corresponds to an arc of A.

In each iteration of ACO, the same probabilistic mechanism is applied to generate
independently N paths in the construction graph G. The conceptual unit generating
a path is called an ant. Serially (or, on a parallel processor, in parallel), each of the N
ants constructs a path, starting the construction process in the start node of G. Given
that an ant has already constructed the partial path u with last added node i, the path
is prolonged via edge (i, j) with probability pij given by

pij = τij(t)∑

r∈S(u)

τir(t)
, (1)

where only feasible continuation edges (i, j) for u are taken into consideration. In
Eq. 1, the set of nodes r with the property that (i, r) is a feasible continuation of
partial path u is denoted by S(u). Therein, feasibility of a continuation (i, r) of a
current partial path u is defined by property (2) of Definition 1: The complete path
must be an element of W̄ , so the continuation obtained by appending edge (i, r) to
partial path u must be such that a path w ∈ W̄ starting with u and traversing then
edge (i, r) exists.

Often, a more general rule is used in practice which replaces the one in Eq. 1 by

pij = (τij(t))α (ηij(u))β
∑

r∈S(u)

(τir(t))α (ηir(u))β
,

where α, β are non-negative real numbers and the visibility vector η(u) (which is
allowed to depend on the current partial path u, but not on the iteration number t)
also appears. For the sake of simplicity, in the following sections we will not consider
the visibility, i.e., we will set α = 1 and β = 0.

2.3 The Pheromone Update

The algorithm is usually initialized by setting each τij(0) to an identical initial value
τ (0). For some problems, this produces a uniform distribution on the set S of solutions
in the first iteration, but in general this needs not to be the case.

The principle of pheromone update in ACO is that a certain share ρ ∈ [0, 1]
of pheromone “evaporates” on each edge, which is compensated by increasing

Methodol Comput Appl Probab (2008) 10:409–433 413

pheromone as a “reward” on the edges of the “best” found path. We say then that
this path has been reinforced in the current iteration. The parameter ρ is called
the evaporation factor. A rather general form of the pheromone update rule is the
following:

τij(m + 1) = ψ((1 − ρ(m)) · τij(m) + ρ(m) · I((i, j) ∈ x̂(m))), (i, j) ∈ A, (2)

where I denotes the indicator function, a general time varying evaporation factor
is considered, ψ is a non-decreasing function which assumes positive values, and
x̂(m) denotes a “best” path in some sense of the word “best” (cf. Dorigo and Stützle
(2004)). Here, we focus on the best path among all paths generated by some ant in
some of the iterations 1, . . . , m (best-so-far reinforcement). The best path is replaced
as soon as some ant generates a path with a strictly higher objective function value
than that of the current one.

The MMAS algorithm considered in the following uses a best-so-far reinforce-
ment rule:

τij(m + 1) = ψ((1 − ρ) · τij(m) + ρ · I((i, j) ∈ x̂(m))), (i, j) ∈ A , (3)

where the evaporation factor is constant along time, the path x̂(m) is the best seen
up to iteration m (included). The function ψ is the identity in the interval [τmin, τmax],
while ψ(τ) = τmin (= τmax) if τ < τmin (> τmax), where 0 < τmin.

More frequently, in MMAS, the reward for reinforced arcs is not chosen simply
as a constant ρ, but as a number ρ · c(x̂(m)) that is allowed to depend on x̂(m) (usually
in a fitness-proportional manner). Instead of Eq. 3, in this case we apply

τij(m + 1) = ψ
([1 − ρ · c(x̂(m))] · τij(m) + ρ · c(x̂(m)) · I((i, j) ∈ x̂(m))

)
, (4)

where (i, j) ∈ A. The function c(·) must be chosen in such a way that 1 − ρ · c(x) is
always non-negative. We shall call c(·) the reward function.

In this paper, we restrict ourselves to the special case N = 1 of one single ant. Our
derivations can be generalized to the case of N > 1, but providing them for N = 1
gives a more transparent picture.

3 General Lemmas

The results provided in this section for the considered MMAS ACO algorithm
are general for the treatment of arbitrary combinatorial optimization problems.
The proofs of these lemmas can be found in Gutjahr and Sebastiani (2007). In the
subsequent Sections 4–7, we will use these lemmas for the treatment of pseudo-
Boolean functions as objective functions. For the sake of simplicity, we shall refer
here to the investigated algorithm usually simply by ACO. We start first describing a
relevant property of the ACO.

Definition 2 For an arbitrary fitness function, assume that the elements f1, . . . , fM

of the finite set { f (x) | x ∈ S} are sorted in such a way that f1 < f2 < . . . < fM. Then
we call

L j = {x ∈ S | f (x) = f j} (5)

414 Methodol Comput Appl Probab (2008) 10:409–433

the level set with index j (1 ≤ j ≤ M). The number M of level sets can be as small
as one, as in the case of the constant function, and as large as the cardinality of S,
as in the case where there are no pairs of solutions in S with the same value of the
objective function.

We now consider the stochastic process Xm = (X̂(m), τ (m)), m = 0, 1, . . ., where
X̂(m) is the best-so-far solution in iteration m and τ (m) is the vector of pheromone
values in iteration m. We assume that the evaporation factor ρ, the initial value τ (0)

of the pheromone and the lower and upper pheromone bounds τmin and τmax are
rational numbers. This assumption is not at all restrictive from a practical point of
view. In fact, ACO algorithms are run on digital computers where real numbers are
approximated by rational numbers. Since the set Q of rational numbers is closed
under addition, subtraction, multiplication and division, it follows that under the
considered assumption all pheromone values assumed during the process evolution
are rational. The set Q is countably infinite, and therefore the realizations of Xm at
any time m belong to the same countably infinite state space S × Q|A|. A partition of
the state space S × Q|A| into sets satisfying the conditions of the following Lemmas
1 and 2 is given by

S × Q|A| =
M⋃

k=1

Lk × Q|A| =
M⋃

k=1

(
Lk × Q|A|) =

M⋃

k=1

Xk ,

where Lk is the level set with index k, and Xk = Lk × Q|A|.
It is easy to see that Xm, m = 0, 1, . . . is a homogeneous Markov process. Note

that if at iteration m, the best-so-far solution x̂(m) belongs to L j for some j ∈
{1, . . . , M − 1}, then x̂(m′) remains identical to x̂(m) in the subsequent iterations
m′ = m + 1, . . . , m̄ − 1, until at some iteration m̄ some solution x(m̄) ∈ Lk with k > j
is found; in the last case, x̂(m̄) = x(m̄) ∈ Lk, and so on. Therefore, at any iteration m,
the vector x̂(m) ∈ L j is allowed to have transitions only towards points of the level
sets Lk, with k ≥ j. Furthermore, because of the lower bound on the pheromone, it
is easy to see that there is a strictly positive transition probability from x̂(m) ∈ L j

towards each point x ∈ Lk, for any k > j. In terms of the process Xm, m = 0, 1, . . .,
we have that, for each k �= j

p
(
Xm+1 = y|Xm = x

)
> 0 ∀y ∈ Xk, and ∀x ∈ X j ⇔ k > j , (6)

After stating the above property, we will now present the general lemmas. The proofs
of these lemmas can be found in Gutjahr and Sebastiani (2007).

Lemma 1 Let X0, X1, . . . denote a homogeneous Markov process on a countably
infinite state space X , partitioned into the sets X1, . . . ,XM, each of which is also
countably infinite, such that for each k �= j

p
(
Xt+1 = y|Xt = x

)
> 0 ∀y ∈ Xk, and ∀x ∈ X j ⇔ k > j ,

and let E[Tx→XM] denote the expected value of the time to reach the set XM, starting
from x /∈ XM, that is

E[Tx→XM] :=
∞∑

t=1

t p
(
Xt ∈ XM, Xs /∈ XM, 1 ≤ s ≤ t − 1 | X0 = x

)
.

Methodol Comput Appl Probab (2008) 10:409–433 415

Then, for x ∈ X j, and j = 1, . . . , M − 1, it follows

E[Tx→XM] ≤ E[Tx→X̄ j
] +

M−1∑

k= j+1

∞∑

	=1

E[Tx	,k→XM] p(x → x	,k) ,

where
∞⋃

	=1

{x	,k} = Xk,

E[Tx→X̄ j
] :=

∞∑

t=1

t p
(
Xt /∈ X j, Xs ∈ X j, 1 ≤ s ≤ t − 1 | X0 = x

)
,

and

p(x → x	,k) :=
∞∑

t=1

p
(
Xt = x	,k, Xs ∈ X j, 1 ≤ s ≤ t − 1 | X0 = x

)
.

Lemma 2 Under the hypotheses of Lemma 1, it follows that the expected value of the
time TM to reach the set XM, that is

E[TM] :=
∞∑

t=1

t p
(
Xt ∈ XM, Xs /∈ XM, 0 ≤ s ≤ t − 1

)

is bounded from above by

E[TM] ≤
M−1∑

j=1

p
(
X0 ∈ X j

) M−1∑

k= j

sup
y ∈Xk

{E[Ty→X̄k
]} ≤

M−1∑

k=1

sup
y ∈Xk

{E[Ty→X̄k
]} .

We now state another relevant property of the considered ACO algorithm: Let
x̂(0) = ŷ ∈ Lk. Let us assume that τmax < 1, and 1 − ρ · c(x) < 1 ∀x ∈ S. Since ρ > 0,
the last inequality always holds if min

x∈S
c(x) > 0. Then, there is a time t
 = t
(k),

independent on the specific initial pheromone vector τ (0) = τ̃ and on the influence
of randomness (i.e., on the actual trajectory), such that, if x̂(t
) = ŷ ∈ Lk, for all
following times t ≥ t
 for which x̂(t) still remains unchanged before leaving Lk, the
pheromone vector τ (t) also remains constant along time and equal to τ (t
) = τ
(ŷ)

where τ

i, j(ŷ) = τmax on arcs (i, j) belonging to ŷ, and τ

i, j(ŷ) = τmin otherwise. In fact,

if X̂s = ŷ ∈ Lk, for 0 ≤ s ≤ t, then the pheromone values τij(s) of arcs not belonging
to ŷ will never be reinforced and will evolve in time as τij(s) = ψ(τ̃ij(1 − ρc(ŷ))s). It is
easy to verify that after at most

t1 =
⌈

log τmin − log τmax

log(1 − ρc(ŷ))

⌉
(7)

time steps, τ̃ij(s) has reached the minimum value τmin and will then not change
anymore before the set Lk is left.

In a similar way, the pheromone values τij(s) of arcs belonging to ŷ will be
reinforced at each time step and will evolve as

τij(s) = ψ

(
τ̃ij(1 − ρc(ŷ))s + ρc(ŷ)

s−1∑

k=0

(1 − ρc(ŷ))k

)
= ψ(1 − (1 − τ̃ij)(1 − ρc(ŷ))s) .

416 Methodol Comput Appl Probab (2008) 10:409–433

After at most

t2 =
⌈

log(1 − τmax) − log(1 − τmin)

log(1 − ρc(ŷ))

⌉
(8)

time steps, τij(s) has reached the maximum value τmax and will then not change
anymore before the set Lk is left. After the time tmax = max{t1, t2}, the whole
pheromone vector will remain unchanged until we leave Lk.

For variable reward function c(·), the integers t1 and t2 given by Eq. 7 resp. Eq. 8
still depend on ŷ, and hence also tmax depends on ŷ, which we can write as tmax =
tmax(ŷ). Let us define

t
(k) = max
{
tmax(ŷ) | ŷ ∈ Lk

}
. (9)

Since the set Lk contains only finitely many elements, the integers t
(k) are finite.
In terms of the process Xt, it holds that, conditionally to the event X0 = y =

(ŷ, τ̃), with y ∈ Xk, if the event {Xs ∈ Xk, 1 ≤ s ≤ t} happens for t > t
(k), then,
independently on y, the event {Xs = xt
(k), t
(k) ≤ s ≤ t} happens with probability
one. In other words, the specific state the process assumes within Xk does not change
anymore after time t
(k), until the set Xk is left.

Lemma 3 For the considered type of ACO algorithms and for τmax < 1, it holds that

sup
y ∈Xk

{E[Ty→X̄k
]} ≤ t
(k) + 1/ p̄k, (10)

where t
(k) is given by Eq. 9, and

p̄k := inf
y∈Lk

p
(
X1 /∈ Xk | X0 = (y, τ
(y))

)
> 0 (1 ≤ k < M). (11)

Finally, by using Lemmas 2 and 3, we obtain that the expected value of the time
TM to reach the set XM is bounded from above by

E[TM] ≤
M−1∑

k=1

(t
(k) + 1/ p̄k) =
M−1∑

k=1

t
(k) +
M−1∑

k=1

1/ p̄k, (12)

which we will use in the following sections.

4 Optimization of Pseudo-Boolean Functions

Since at the moment, the majority of analytical results on the runtime of evolutionary
algorithms refer to test functions to be optimized that belong to the class of pseudo-
Boolean functions, we restrict our analysis in the present paper to this type of
functions. A pseudo-Boolean function is a function f mapping the set S = {0, 1}n

of binary vectors of length n into the set of real numbers. All kinds of subset selection
problems, as they frequently occur in the field of combinatorial optimization, can
be interpreted as optimization problems for pseudo-Boolean functions by inter-
preting {1, . . . , n} as a set of items and the binary vector x = (x1, . . . , xn) with xi ∈
{0, 1} (i = 1, . . . , n) as the encoding of the subset {i | xi = 1} ⊆ {1, . . . , n}.

Methodol Comput Appl Probab (2008) 10:409–433 417

For optimizing pseudo-Boolean or subset selection problems by an ACO
approach, different construction graphs have been proposed, see Dorigo and Stützle
(2004), and Gutjahr (2006). In this article, we consider the most simple of them,
the chain construction graph introduced in Gutjahr (2006). It is given as follows:
The node set V consists of the nodes 1, . . . , n, the nodes −1, . . . , −n and auxiliary
nodes 0, . . . , n. The arc set A consists of the arcs (i − 1, i), (i − 1,−i), (i, i) and
(−i, i) (i = 1, . . . , n). Given a possible path w, the corresponding feasible solution
x ∈ S = {0, 1}n is obtained by means of the function �(w), as follows. If the (2 i)-th
node of w is i (−i), then xi = 1 (xi = 0). An example is shown in Fig. 1 for the case
n = 4. Note that only the pheromone values on the arcs (i − 1, i) and (i − 1, −i) are
relevant: Since, after passing through node i or node −i, the agent can only proceed
to node i, the pheromone values on the arcs (i, i) and (−i, i) need not to be taken into
account.

For shorter notation, we shall use the following abbreviations in the sequel:

τ 1
i = τi−1,i τ 0

i = τi−1,−i (i = 1, . . . , n),

p1
i = pi−1,i p0

i = pi−1,−i (i = 1, . . . , n).

Thus, τ 1
i and τ 0

i are the pheromone values for an up-move resp. for a down-move
in the i-th rhombus of the chain, and p1

i resp. p0
i are the corresponding transition

probabilities. We write τ 1
i (m), τ 0

i (m), p1
i (m) resp. p0

i (m) if we refer to the state in
iteration m.

With the notation above, the general pheromone update rule Eq. 4 takes the
following special form for the chain graph:

τ k
i (m + 1) = ψ([1 − ρ · c(x̂(m))] · τ k

i (m) + ρ · c(x̂(m)) · I(x̂i(m) = k)) , (13)

where i = 1, . . . , n, and k = 0, 1.
Throughout this paper, lower and upper pheromone bound are always chosen

in a symmetric fashion within the interval [0, 1]: We choose τmin ∈ (0, 1
2] and set

τmax = 1 − τmin. It can be shown that on this condition, if the sum of the pheromone
values is chosen as equal to one on all links of the chain initially, then this property
is preserved through all iterations:

Proposition 1 Let, in the general case Eq. 13, the initial pheromone values be
normalized in such a way that for m = 0,

τ 0
i (m) + τ 1

i (m) = 1 (i = 1, . . . , n) (14)

holds. Then Eq. 14 holds also for each m ≥ 1.

Fig. 1 Chain construction
graph for n = 4

0 1

1

-1

2

-2

3

-3

4

-4

2 3 4

418 Methodol Comput Appl Probab (2008) 10:409–433

Proof The statement is shown by induction w.r.t. m. By assumption, it is true for
m = 0. Assume that it is true for some m ≥ 0. For abbreviation, set ρm = ρ · c(x̂(m)).
From Eq. 13, we have

τ 1
i (m + 1) = ψ([1 − ρm] · τ 1

i (m) + ρm · I(x̂i(m) = 1)) = ψ(a) ,

τ 0
i (m + 1) = ψ([1 − ρm] · τ 0

i (m) + ρm · I(x̂i(m) = 0))

= ψ([1 − ρm] · (
1 − τ 1

i (m)
) + ρm · (1 − I(x̂i(m) = 1))) = ψ(1 − a) .

By the graph of ψ(x) versus x when τmax = 1 − τmin, it is evident that ψ(a) +
ψ(1 − a) = 1 (0 ≤ a ≤ 1). Therefore, it follows τ 0

i (m + 1) + τ 1
i (m + 1) = 1. Hence,

Eq. 14 holds for all m. �

From now on, we shall always suppose that the sum of the pheromone values
is chosen as equal to one on all links initially. Since the values have to be chosen
as equal on all links, this gives the initialization τ k

i (0) = 1/2 (i = 1, . . . , n, k = 0, 1).
Then, as a consequence of Proposition 1, in each iteration m,

pk
i (m) = τ k

i (m)

τ 0
i (m) + τ 1

i (m)
= τ k

i (m) (i = 1, . . . , n; k = 0, 1),

i.e., the pheromone value τ 1
i (m) is identical to the probability p1

i (m) of having a
1-bit in position i of the solution x, and the pheromone value τ 0

i (m) is identical to
the probability p0

i (m) = 1 − p1
i (m) of having a 0-bit in position i of the solution x.

In other words: Within our framework, the pheromone values can be interpreted
immediately as probabilities. As a further consequence, we can also interpret the
pheromone bounds τmin and τmax as probability bounds pmin and pmax, respectively.
The recursions for the pheromone values Eq. 13 can be transformed to recursions for
the probability values (with pi(m) = p1

i (m)):

pi(m + 1) = ψ([1 − ρ · c(x̂(m))] · pi(m) + ρ · c(x̂(m)) · x̂i(m)) (i = 1, . . . , n).

(15)

(Note that I(xi = 1) = xi for xi ∈ {0, 1}.) Because of p0
i (m) = 1 − p1

i (m), the corre-
sponding equations for k = 0 (down-moves) are redundant.

Let us mention that for initial pheromone values that are not normalized to a sum
of unity on each link, a more complicated dynamic occurs, where, however, the sums
τ 1

i (m) + τ 1
0 (m) tend to 1 as m grows. In other words, a kind of “self-normalization”

takes place. (For the sake of brevity, we omit the details.) Since this scaling aspect for
pheromone values is not the focus of interest in the runtime analysis, but may rather
be seen as a marginal phenomenon of the process, we consider it as appropriate to
assume normalized pheromone values from the beginning.

The behavior of the process (p(m)) = (p1(m), . . . , pn(m)) (m = 0, 1, . . .) is essen-
tially influenced by the size of the evaporation factor ρ. The following proposition
describes two marginal cases for the specific situation of constant reward.

Proposition 2 Let c(x) = 1 for all x ∈ S (case of constant reward).

(a) For ρ = 0, all pheromone values (and therefore also all transition probabilities)
remain unchanged throughout the process. In this case, the investigated ACO

Methodol Comput Appl Probab (2008) 10:409–433 419

variant degenerates to random search, i.e., each configuration of S has the same
probability 2−n.

(b) For ρ ≥ (1 − 2pmin)/(1 − pmin) = 1 − pmin/pmax, only the two extremal proba-
bility values are possible in each iteration:

pi(m + 1) = pmax x̂i(m) + pmin (1 − x̂i(m)) (i = 1, . . . , n; m ≥ 0).

Proof (a) follows immediately from Eq. 15. As to (b), observe that pi(m) ∈
[pmin, pmax] for all m. Let m ≥ 0. By Eq. 15, pi(m + 1) = ψ((1 − ρ) pi(m) + ρ x̂i(m)).
If x̂i(m) = 1, by the monotonicity of the function ψ , we have

pi(m + 1) = ψ((1 − ρ) pi(m) + ρ) ≥ ψ((1 − ρ) pmin + ρ) = ψ(pmin + ρ(1 − pmin))

≥ ψ(pmin + (1 − 2pmin)) = ψ(1 − pmin) = 1 − pmin ,

so pi(m + 1) = 1 − pmin = pmax. If x̂i(m) = 0, again by the monotonicity of ψ , it holds

pi(m + 1) = ψ((1 − ρ) pi(m)) ≤ ψ((1 − ρ)pmax) ≤ ψ((1 − (1 − pmin/pmax))pmax)

= ψ(pmin) = pmin ,

so pi(m + 1) = pmin. In a compact way:

pi(m + 1) = pmax x̂i(m) + pmin (1 − x̂i(m)) .

We observe that in situation (b), the algorithm sets the probability of preserving a
reinforced bit to pmax = 1 − pmin, and hence the probability of switching it to pmin.

�

We see that for small pmin, the range of ρ values for which the degeneration of
type (b) takes place is a rather small domain near the maximum value 1 of ρ. In
the open interval ρ ∈ (0, 1 − pmin/pmax), the investigated ACO variant behaves as
a “true” ACO algorithm with a potentially infinite number of pheromone values
resp. transition probabilities. We note that the degenerate ACO algorithm obtained
under the premises of condition (b) in Proposition 2 is a generalization of a standard
technique for solving problems with pseudo-Boolean objective functions known as
(1+1)-EA), see Droste et al. (2002), and Borisovsky and Eremeev (2003). In the
present paper, we shall use the (1+1)-EA as the main comparison yardstick for ACO.
It is given by the following procedure, see Droste et al. (2002):
(1+1)-EA:

1. Set p = 1/n.
2. Choose randomly an initial bit string x ∈ {0, 1}n.
3. Repeat the following mutation step: Compute x′ by flipping independently each

bit xi with probability p. If f (x′) is better than f (x), replace x by x′.

The degenerate ACO algorithm resulting under condition (b) in Proposition 2 is
a generalization of the (1+1)-EA obtained by setting the probability p of flipping a
component of x′ to p = pmin.

420 Methodol Comput Appl Probab (2008) 10:409–433

5 Behavior of ACO on OneMax

In this section, we analyze the behavior of the investigated ACO variant on the well-
known OneMax problem

f (x) =
n∑

i=1

xi, xi ∈ {0, 1} (i = 1, . . . , n). (16)

It is a special problem from a broader class of single-mode optimization problems
with objective function f (x) = d(x, x∗) for some fixed x∗ ∈ {0, 1}n, where d denotes
the Hamming distance (for OneMax, x∗ = (0, . . . , 0)). Since ACO with the chain con-
struction graph shows equivalent behavior on each of these problems by symmetry,
and since the same holds for (1+1)-EA, it is sufficient to investigate OneMax.

In the special case of OneMax, the level set L j is just the set

L j = {x ∈ {0, 1}n | f (x) = j − 1} (j = 1, . . . , n + 1).

In particular, we have M = n + 1.

5.1 Constant Reward

First, we analyze the ACO behavior on the assumption of constant reward, i.e., for
the case c(x) = 1 for all x ∈ S = {0, 1}n.

Proposition 3 Expressed by the expected number of function evaluations until reach-
ing the optimal solution, the expected runtime of the non-degenerate MMAS with
constant reward, symmetric upper and lower pheromone bounds and the chain
construction graph, applied to OneMax, is bounded from above by

n t
(pmin, ρ) + Hn

pmin (1 − pmin)n−1
, (17)

where

t
(pmin, ρ) =
⌈

log pmin − log(1 − pmin)

log(1 − ρ)

⌉
, (18)

and Hn =
n∑

j=1

j−1 is the n-th harmonic number.

Proof By Eq. 12, in general for MMAS we have E[TM] ≤
M−1∑

k=1

t
(k) +
M−1∑

k=1

1/ p̄k,

where t
(k) is given by Eq. 9, and p̄k is given by Eq. 11. In the case of constant
reward, t
(k) = t
 is independent on the level set index k and then

E[TM] ≤ (M − 1) t
 +
M−1∑

k=1

1/ p̄k .

Methodol Comput Appl Probab (2008) 10:409–433 421

Furthermore, if as in our case τmin + τmax = 1, it follows that

t
 = t1 = t2 =
⌈

log pmin − log(1 − pmin)

log(1 − ρ)

⌉
.

For OneMax, we have

p̄k = inf
y∈Lk

p
(
X1 /∈ Xk | X0 = (y, τ
(y))

) ≥ inf
y∈Lk

p
(
X1 ∈ Xk+1 | X0 = (y, τ
(y))

)

≥ inf
y∈Lk

p
(
X1 ∈ Q(y) | X0 = (y, τ
(y))

)
,

where Q(y) = {(z, τ
(y)) , | z ∈ Lk+1 , y ∈ Lk , zi ≥ yi ∀i}. Notice that Q(y) is a carte-
sian product with first element equal to the set of points obtained from y ∈ Lk by
flipping one of the n − (k − 1) of its 0-bits. Since τ = τ
(y), the probability of a bit
not to change value is equal to pmax = 1 − pmin, and the probability of a bit to flip is
equal to pmin. There are n − (k − 1) possibilities to choose the position of the flipping
bit, and the corresponding events are mutually exclusive. Therefore,

p
(
X1 ∈ Q(y) | X0 = (y, τ
(y))

) = (n − (k − 1)) · pmin · (1 − pmin)
n−1.

Hence p̄k ≥ (n − (k − 1)) · pmin · (1 − pmin)
n−1 , and

E[TM] ≤ n
⌈

log pmin − log(1 − pmin)

log(1 − ρ)

⌉
+

n∑

k=1

1/
[
(n − (k − 1)) · pmin · (1 − pmin)

n−1
]

= n
⌈

log pmin − log(1 − pmin)

log(1 − ρ)

⌉
+ 1

pmin · (1 − pmin)n−1

n∑

j=1

1/j .

�

Special Cases: In all three special cases below, we assume pmin = 1/n in order to
preserve comparability with (1+1)-EA (cf. Proposition 2 (b) and the remarks after
it), for which expected runtime of order O(n log n) on OneMax has been shown in
the literature.

(i) pmin = 1
n and ρ = 1 − 1

n−1 . The chosen value of ρ is the lowest value for which
ACO degenerates to (1+1)-EA, since for pmin = 1/n, the threshold for ρ given
in Proposition 2 (b) is just

1 − pmin/(1 − pmin) = 1 − 1

n − 1
.

In this case, we obtain

t
(pmin, ρ) =
⌈

log(1/n) − log(1 − 1/n)

log(1/(n − 1))

⌉
=

⌈− log(n − 1)

− log(n − 1)

⌉
= 1.

As to be expected, one single (additional) iteration suffices here to achieve
pj(m) = pmax. We obtain

1

pmin (1 − pmin)n−1
= 1 − 1

n
1
n

(
1 − 1

n

)n ∼ n
e

(n → ∞).

422 Methodol Comput Appl Probab (2008) 10:409–433

The bound Eq. 17 of Proposition 3 becomes asymptotically equal to

n + n
e

Hn = O(n log n).

Thus, in this boundary situation, the well-known O(n log n) runtime behavior
of (1+1)-EA is reproduced, which must be the case in view of Proposi-
tion 2(b).

(ii) pmin = 1
n and ρ = ρ0 = const. In this case, a similar calculation as in (i) yields

t
(pmin, ρ) =
⌈

log(n − 1)

− log(1 − ρ0)

⌉
≤ �c0 log n�

with c0 = −1/(log(1 − ρ0)), such that the bound becomes

n �c0 log n� + n
e

Hn = O(n log n).

(iii) pmin = 1
n and ρ = 1

n . In this case,

t
(pmin, ρ) =
⌈

log(n − 1)

− log(1 − 1
n)

⌉
≤

⌈
log n
1/n

⌉
= n �log n�,

such that the we obtain the bound

n2�log n� + n
e

Hn = O
(
n2 log n

)
.

Special case (ii) shows that as long as we do not decrease ρ with growing n, the
O(n log n) upper runtime bound is preserved. This is valid even for small values
of ρ. To obtain the indicated favorable runtime behavior, it is not necessary to let
ρ = ρn tend to one as n → ∞, as it is required for producing the (1+1)-EA boundary
case. Thus, the O(n log n) behavior on OneMax holds for a “standard” range of ACO
parametrizations and not only for certain extreme parameter choices where only two
pheromone values can occur.

5.2 Fitness-proportional Reward

In standard MMAS implementations according to Stützle and Hoos (2000), the
reward function c(·) for reinforced solutions is not chosen as constant, but in a
fitness-proportional way. Sebastiani and Torrisi (2005) have shown that the gen-
eral convergence property of GBAS derived in Gutjahr (2002) also extends to
the modification with fitness-proportional reward, and experiments indicated faster
convergence of the modified algorithm. For this reason, we analyze in the sequel
the runtime behavior of the investigated algorithm under the modified pheromone
update rule, assuming

c(·) = f (·) (19)

in this subsection. Note that Eq. 14 still holds in this context, and that the evolution
of the transition probabilities is described by Eq. 15, considering Eq. 19.

In order to guarantee that the factor 1 − ρ c(x̂(m)) in Eq. 15 always remains
non-negative, we have to impose the condition ρ f (x) ≤ 1, which requires ρn ≤ 1 or
ρ ≤ 1/n for the OneMax problem because of max f (x) = n. We observe that the

Methodol Comput Appl Probab (2008) 10:409–433 423

condition 1 − ρ · c(x) < 1 needed to have finite values for expressions Eq. 7, and
Eq. 8 is fulfilled for all x �= x̄ = (0, . . . , 0). Furthermore, for x = x̄, from Eq. 13 we
have that τ (m) = τ (0) until the level set L1 is left. Hence, the time t
(1), after which
we have i.i.d. sampling until the level set L1 is left, is zero.

Proposition 4 Expressed by the expected number of function evaluations until reach-
ing the optimal solution, the expected runtime of non-degenerate MMAS with fitness-
proportional reward, symmetric upper and lower pheromone bounds and the chain
construction graph, applied to OneMax, is bounded from above by

n−1∑

j=1

t
(pmin, ρ, j) + Hn

pmin (1 − pmin)n−1
, (20)

where

t
(pmin, ρ, j) =
⌈

log pmin − log(1 − pmin)

log(1 − ρ j)

⌉
(j ≥ 1), t
(pmin, ρ, 0) = 0, (21)

and Hn is the same as in Proposition 3.

Proof The proof is essentially the same that of Proposition 3, but now t
(k) is not
independent on the level set index k. Therefore, the first summation still remains
and is not equal to n t
(pmin, ρ). �

Remark Comparison between Eqs. 18 and 21 shows that

t
(pmin, ρ, j) ≤ t
(pmin, ρ) (j = 1, . . . , n). (22)

As a consequence, we obtain now a better runtime bound than in the case of constant
reward (Proposition 3). Note, however, that because of the necessary restriction ρn ≤
1/n in the case of fitness-proportional reward for OneMax (cf. the beginning of this
subsection), we cannot apply anymore the schemes indicated in special cases (i) and
(ii) of Subsection 5.1. The scheme of special case (iii) is possible. For this scheme, also
under fitness-proportional reward, we do not get a runtime bound of order O(n log n)

anymore, but a slightly worse behavior:

Corollary If pmin = 1/n and ρ = 1/n, then the upper runtime bound given in Propo-
sition 4 is of order O(n(log n)2).

Proof As in the case of fixed reward, the second term in Eq. 20 is of order O(n log n).
For the made choice on pmin and for 0 < j < n,

t
(pmin, ρ, j) =
⌈

log(n − 1)

− log(1 − j/n)

⌉
. (23)

Since − log(1 − j/n) > j/n > 0 for 0 < j/n < 1, we have

n−1∑

j=1

1

− log(1 − j/n)
<

n−1∑

j=1

1

j/n
= n Hn−1 = O(n log n).

424 Methodol Comput Appl Probab (2008) 10:409–433

It is easy to see that the order of the last bound is sharp. Considering Eq. 20, Eq. 23
and the O(n log n) behavior of the second term in Eq. 20, the assertion is obtained.

�
We see that the bound has improved compared to the O(n2 log n) bound obtained

for special case (iii) in Subsection 5.1. Nonetheless, a comparison with the special
cases (i) and (ii) may suggest that it is disadvantageous anyway to work with
evaporation factors ρn tending to zero with speed O(1/n) as n → ∞, such that fitness-
proportional reward (requiring a scheme like this) does not help. This is indeed true
for the “pure” OneMax case. However, we shall show in the next section that ρn

schemes tending quickly to zero as n → ∞ can be advantageous in more complex
optimization problems where a OneMax-type component only forms one special
aspect of the overall fitness.

6 NH Problem and Combination with OneMax

Contrary to prior theoretical results Gutjahr (2005) and (2007), and Neumann and
Witt (2006), that might be interpreted as arguments for the use of high evaporation
factor values ρ in variants of ACO with best-so-far reinforcement, we will demon-
strate in this section that applying high values of ρ to instances of some optimization
problems runs the risk of making the search too “aggressive”, with the possible effect
of a very poor performance. This effect can be avoided by letting ρ tend to zero as the
problem size n grows. Simultaneously, our investigation will, for the first time, reveal
an essential advantage of an ACO algorithm compared to the simpler evolutionary
algorithm (1+1)-EA by providing a test problem where the runtime of (1+1)-EA
has an exponential lower-bound, whereas that of a type of MMAS ACO has a
polynomial upper bound.

6.1 Needle-in-a-Haystack

The disadvantage of the (1+1)-EA lies in the vulnerability with respect to lacking
“guidance” the fitness function may give to the search process. Whereas high
guidance is provided by OneMax (this can also be quantified by measures as fitness-
distance-correlation, see Jones and Forrest (1995)), guidance is missing in the NH
problem (see, e.g., Kallel et al. (1998)) which assigns the same fitness value to all
solutions except to the optimal solution:

f (x) = I(x = x∗) ,

where x∗ ∈ {0, 1}n is the optimal solution, and x ∈ {0, 1}n. Both for (1+1)-EA
and for ACO with the chain construction graph, it can be assumed w.l.o.g. that
x∗ = (1, . . . , 1).

The following observation shows that on NH, the required runtime of (1+1)-EA
grows extremely fast with the problem instance size. This has already been proved
in Droste et al. (2002), but we repeat the (easy) argument here for the sake of
completeness.

Proposition 5 On NH, the (1+1)-EA has an expected runtime with lower bound of
order O((n/2)n).

Methodol Comput Appl Probab (2008) 10:409–433 425

Proof For this problem, we have only two level sets, and M = 2. (1+1)-EA starts with
a random initial solution x0 ∈ {0, 1}n. After that, all bits are flipped independently
from each other with probability 1/n. None of the new solutions is accepted, unless
if it is identical to x∗ = (1, . . . , 1). Therefore, we have i.i.d. sampling until we hit
x
. Hence, the expected runtime starting from x0 �= x
 is the reciprocal value of the
probability that x∗ is reached already in a single iteration, which gives

E[Tx0→LM] = 1

(1/n)d(x0, x∗) · (1 − 1/n)n−d(x0, x∗)

= nd(x0, x∗) ·
(

n
n − 1

)n−d(x0, x∗)

≥ nd(x0, x∗),

where d represents again the Hamming distance. Denoting the current solution in
iteration t by X̂t, we have

E[TM] =
∞∑

t=1

t p
(
X̂t ∈ LM, X̂s /∈ LM, 0 ≤ s ≤ t − 1

)

≥
∞∑

t=1

t p
(
X̂t ∈ LM, X̂s /∈ LM, 1 ≤ s ≤ t − 1, X̂0 = x0 /∈ LM

)

= p
(
X̂0 = x0 /∈ LM

) ∞∑

t=1

t p
(
X̂t ∈ LM, X̂s /∈ LM, 1 ≤ s ≤ t − 1|X̂0 = x0 /∈ LM

)

= p
(
X̂0 = x0 /∈ LM

)
E [Tx0→LM]

If the random initial solution is x0 = (0, . . . , 0), we have d(x0, x∗) = n. In any case,
p(X̂0 = x0 /∈ LM) = (1/2)n. Therefore,

E[TM] ≥
(

1

2

)n

· nn =
(n

2

)n
.

�

It should be mentioned that even random search behaves much better than (1+1)-
EA on NH: Since in a single trial of random search, the probability of hitting x∗ is
(1/2)n, the expected runtime is 2n.

It is easy to see that ACO with arbitrary pmin, arbitrary ρ and fitness-proportional
reward performs random search on NH, which results again in an expected runtime
of order 2n. (Note that at the beginning, all pi values are equal to 1/2, because all
pheromone values are identical initially.) This behavior becomes worse if a constant
c > 0 is added to the objective function f (x), such that it must be stated that the
comparably good behavior for c = 0 is only a chance effect.

Concerning ACO with fixed reward, the following result shows that for a suitable
parametrization where ρ decreases with n, ACO is at least distinctly faster on NH
than (1+1)-EA, although still slower than random search. We choose pmin = 1/n to
have a fair comparison with standard (1 + 1)-EA (identical behavior in the boundary
case of ρ close to one by Proposition 2 (b)).

426 Methodol Comput Appl Probab (2008) 10:409–433

Proposition 6 The expected runtime of the considered ACO variant with fixed reward,
pmin = 1/n and ρn = 5−n on NH has an upper bound of order O(5n).

Proof Let us consider the time t̄n until when a generic never reinforced component
i takes for the last time a value not smaller than 1/4. Accordingly to Eq. 15, we look
for the largest m such that it holds

pi(m) = (1 − ρ)m · 1

2
≥ 1

4
.

This happens for m equal to

t̄n =
⌊

log 2

− log(1 − ρ)

⌋
=

⌊
log 2

− log(1 − (1/5)n)

⌋
.

Similarly to what has been done in the proof of Lemma 3, one can show that

E[TM] ≤ t̄n +
∑

ŷ /∈LM

p
(

Xt̄n = y
) ∞∑

t=1

t p
(
Xt ∈ XM, Xs /∈ XM, 1 ≤ s ≤ t − 1 | X0 = y

)

= t̄n +
∑

ŷ /∈LM

p
(

Xt̄n = y
) ∞∑

t=1

t p
(
Xt ∈ XM | Xt−1 = xt−1

)

·
t−1∏

m=1

p
(
Xm = xm | Xm−1 = xm−1)

= t̄n +
∑

ŷ /∈LM

p
(

Xt̄n = y
) ∞∑

t=1

t p
(
Xt ∈ XM | Xt−1 = xt−1

)

·
t−1∏

m=1

(
1 − p

(
Xm ∈ XM | Xm−1 = xm−1

))

where y abbreviates the expression (ŷ, ψ(τ(0)[1 − ρ]t̄n) · 1), xm abbreviates the ex-
pression (ŷ, ψ(τ(0)[1 − ρ]m+t̄n) · 1), and 1 = (1, . . . , 1).

Now, we have p(Xm ∈ XM | Xm−1 = xm−1) ≥ pn
min = n−n. As shown by Lemma 6.1

of Gutjahr and Sebastiani (2007), this implies that

∞∑

t=1

t p
(
Xt ∈ XM | Xt−1 = xt−1)

t−1∏

m=1

(
1 − p

(
Xm ∈ XM | Xm−1 = xm−1)) ≤ 1/pn

min = nn .

Therefore, since the probability of not hitting x
 during the first t̄n iterations is smaller
or equal to [1 − (1/4)n]t̄n , it follows that

E[TM] ≤ t̄n +
∑

ŷ /∈LM

p
(

Xt̄n = y
)

nn = t̄n + p
(

Xt̄n /∈ XM

)
nn ≤ t̄n + [

1 − (1/4)n] t̄n nn .

It is easy to see that for 0 < z < 1/2,

z ≤ − log(1 − z) ≤ (2 log 2) · z. (24)

Methodol Comput Appl Probab (2008) 10:409–433 427

Applying this to z = 5−n, we obtain

5n · log 2 ≥ log 2

− log(1 − (1/5)n)
≥ 5n

2
. (25)

As a consequence, it follows

log
(
[1 − (1/4)n] t̄n nn

)
= t̄n log[1 − (1/4)n] + n log n ≤ 5n

2
· log

(
1 − (1/4)n) + n log n

≤ −5n

2
·
(

1

4

)n

+ n log n = −1

2
·
(

5

4

)n

+ n log n → −∞,

(26)

such that the expression [1 − (1/4)n]t̄n nn must be bounded in n. On the other hand,
again by Eq. 25, the term t̄n is of order O(5n).

We can then conclude that the upper bound t̄n + [1 − (1/4)n] t̄n nn for the expected
runtime is of order O(5n). �

In the proof of Proposition 6, only rather loose estimations were used, such that
the bound can possibly be improved. Moreover, it should be emphasized that long
strings that can only be optimized by trial-and-error (this corresponds to the NH
situation) are not typical for applications of evolutionary algorithms. Rather than
that, the string to be optimized may contain a certain, comparably small part for
which only trial-and-error works (no guidance by the fitness function), whereas for a
larger part, the fitness function provides guidance. In the next subsection, we give an
analytical result for a test function of this type.

6.2 Combining NH with OneMax

To give a precise example for a test problem of the type outlined at the end of
Subsection 6.1, we define the problem NH-OneMax, which combines the features
of NH and OneMax, as follows:

Problem NH-OneMax Let integers n and k ≤ n be given.

f (x) =
(

k∏

i=1

xi

)
·
(

n∑

i=k+1

xi + 1

)
, xi ∈ {0, 1} (i = 1, . . . , n).

As it can be seen, for obtaining fitness values larger than zero, the first factor in the
definition of f (x) has to be given a value 1, which is only possible if all variables
x1, . . . , xk are set to 1. This corresponds to the solution of a NH problem. If this
is achieved, the second factor in the definition of f (x) has to be maximized. This
corresponds to the solution of a OneMax problem. Evidently, (i) the position of the
“NH bits”, (ii) the values the “NH bits” have to take in order to solve the NH part of
problem, and (iii) the values of the “OneMax bits” that optimize the OneMax part
of the problem, can also be chosen in another way, leading to equivalent runtime
behavior of ACO, and the same holds for (1+1)-EA. Thus, the example above is to
be considered as a representative of a more general problem class where for some
part of a string, the exact “key” has to be found by trial-and-error, and for another
part, the degree of congruence with an optimal sequence has to be maximized.

428 Methodol Comput Appl Probab (2008) 10:409–433

To make the problem relevant, one should assume that the number of bits k for
which the correct combination has to be found by trial-and-error is small compared
to n (otherwise, all heuristic algorithms will have to resort essentially to blind search).
The choice k = �log2 n� gives a meaningful ratio. Moreover, for the sake of simplicity,
we shall assume that n is a power of k, i.e., n = 2k and k = log2 n.

Proposition 7 The expected runtime of (1+1)-EA on NH-OneMax with k = log2 n has
lower bound (n/2)log2 n.

Proof For this problem, TM is the smallest t such that Xt = (1, . . . , 1). Therefore, the
time TL̄1

when Xt ∈ L̄1 = {x | x1 = . . . = xk = 1} for the first time cannot be larger
than TM, i.e. TM ≥ TL̄1

, and E[TM] ≥ E[TL̄1
]. Let us consider any starting point

x0 ∈ L′ := {x | xi = 0 , i = 1, . . . , k} ⊂ L1. As done in the proof of Proposition 5, one
can show that

E[TL̄1
] ≥ p

(
X̂0 ∈ L′) E[Tx0→L̄1

] ,
where x0 is any point in L′, and Tx0→L̄1

is the time when the first level set L1 is left
starting from x0. We note that p(X̂0 ∈ L′) = (1/2)k. As for the NH problem, when
starting from x0 ∈ L′, X̂t is never changed from x0 until the first k bits are all flipped to
1. Therefore, the expected time to leave level set L1 starting from x0 is the reciprocal
value of the probability (1/n)k that all k bits are flipped in a single iteration, which
gives E[Tx0→L̄1

] = nk . Hence, we have

E[TM] ≥ E[TL̄1
] ≥

(
1

2

)k

· nk .

As a conclusion, the expected number of steps until the NH-OneMax problem has
been solved has lower bound

(
1

2

)k

· nk =
(n

2

)k =
(n

2

)log2 n
. �

It is easy to see that the lower bound indicated in Proposition 6 is not polynomial.
Contrary to that, we show that ACO can cope with the problem within a polynomial
expected runtime. As in Sections 5 and 6.1, we choose pmin = 1/n for the sake of
comparability with (1+1)-EA.

Proposition 8 The expected runtime of the considered ACO variant with pmin =
1/n and ρn = n−3 on NH-OneMax with k = log2 n has an upper bound of order
O(n4 log n).

Proof For this problem, we have M = n − k + 2 level sets. We apply here
Lemma 2, i.e.

E[TM] ≤
n−k+1∑

i=1

sup
y ∈Xi

{
E

[
Ty→X̄i

]}
.

We note that Ty→X̄1
is the smallest time such that the first k bits of X̂t are all 1 starting

from an initial point y = (ŷ, τ (0)) with at least one 0 among the first k bits of ŷ. This

Methodol Comput Appl Probab (2008) 10:409–433 429

means that Ty→X̄1
is the first time that the NH problem on the subvector of the

first k components is solved, when starting with one 0 in the subvector. Therefore,
analogously to what has been done to prove Proposition 6, it can be shown that

sup
y ∈X1

{E[Ty→X̄1
]} ≤ t̄n + [

1 − (1/4)k] t̄n nk ,

where now

t̄n =
⌊

log 2

− log(1 − n−3)

⌋
,

with

n3 · log 2 ≥ t̄n ≥ n3

2
.

It also holds

log
([

1 − (1/4)k] t̄n nk
)

= t̄n log
[
1 − (1/4)k] + k log n

≤ (
n3/2

)
log

[
1 − (1/4)k] + log2 n log n

≤ − (
n3/2

)
(1/4)k + log2 n log n

= − (
n3/2

)
/n2 + log2 n log n

= −n/2 + log2 n log n → −∞ .

Hence, t̄n + [1 − (1/4)k] t̄n nk = O(n3).
Analogously to what has been done to prove Proposition 3, we have

n−k+1∑

i=2

sup
y ∈Xi

{
E

[
Ty→X̄i

]}

≤ (n − k)t
(pmin, ρ) +
n−k+1∑

i=2

1/ p̄i = (n − k)t
(pmin, ρ)

+
n−k+1∑

i=2

1/
[
(n − k − (i − 2)) · pmin · (1 − pmin)

n−1]

= (n − k)t
(pmin, ρ) + 1

pmin(1 − pmin)n−1

n−k∑

j=1

1/j

≤ nt
(pmin, ρ) + 1

pmin(1 − pmin)n−1
Hn

= n
⌈

log pmin − log(1 − pmin)

log(1 − ρ)

⌉
+ 1

pmin · (1 − pmin)n−1
Hn

≤ n
⌈− log(n − 1)

log(1 − n−3)

⌉
+ n Hn/e

≤ n
⌈

n3 log n
⌉ + n Hn/e .

430 Methodol Comput Appl Probab (2008) 10:409–433

Finally, we get

E[TM] ≤ t̄n + [
1 − (1/4)k] t̄n nk + n

⌈
n3 log n

⌉ + n Hn/e = O(n4 log n) .

Thus, all in all, the expected runtime has a bound of the claimed order. �

7 LeadingOnes

In this section, we consider the LeadingOnes function, given by

f (x) =
n∑

i=1

i∏

j=1

x j, xi ∈ {0, 1} (i = 1, . . . , n) (27)

If the value f (x) is returned on a generic binary string x, this means that in the first
f (x) positions of the string there are 1-bits, while in the next position there is a 0-
bit. It is known that the expected runtime of (1+1)-EA on this function is of order
O(n2). We show that an upper bound of the same order is also valid for a broad
range of ACO parametrizations, including cases where both pmin and ρ tend to zero
as n → ∞. We restrict ourselves to the case of constant reward. As for OneMax, the
level sets are given by

L j = {x ∈ {0, 1}n | f (x) = j − 1} (j = 1, . . . , n + 1).

Proposition 9 Expressed by the expected number of function evaluations until reach-
ing the optimal solution, the expected runtime of the non-degenerate MMAS with
constant reward, symmetric upper and lower pheromone bounds with pmin = 1/n, and
the chain construction graph, applied to LeadingOnes, is bounded from above by

n t
(pmin, ρ) + en2, (28)

where t
(pmin, ρ) is given by (18). In particular, for ρ = ρn of order �((log n)/n), the
expected runtime is of order O(n2). (Note that the symbol �(h(n)) denotes a lower
bound of the form constant·h(n).)

Proof The proof combines that of Proposition 3 with the standard derivation of
the O(n2) behavior of (1+1)-EA on LeadingOnes, so the presentation can be short.

As in the proof of Proposition 3, it follows that E[TM] ≤ n t
(pmin, ρ) +
M−1∑

k=1

1/ p̄k.

Moreover, in this case we have

p
(
X1 /∈ Xk | X0 = (ŷ, τ
(ŷ))

) = pmin · (1 − pmin)
k ,

where ŷ ∈ Lk. Hence pk = pmin · (1 − pmin)
k. Since pmin = 1/n, it follows

p̄k = 1

n
·
(

1 − 1

n

)k

≥ 1

n
·
(

1 − 1

n

)n

≥ 1

e
· 1

n
.

Hence,

n t
(pmin, ρ) + en2

Methodol Comput Appl Probab (2008) 10:409–433 431

is an upper bound for the expected runtime. The second part of the proof fol-
lows immediately by insertion of pmin = 1/n and ρ ≥ const · (log n)/n into Eq. 18,
considering the first inequality of Eq. 24. �

We see that for LeadingOnes, already in the case of constant reward, there exist
ρn schemes tending to zero as n → ∞ that preserve the O(n2) runtime behavior
of (1+1)-EA. Presumably, it is easy to show that if the LeadingOnes problem is
combined with NH analogously as OneMax with NH in Subsection 6.2, ACO with
a diminishing ρn scheme yields again considerably better results than (1+1)-EA or
ACO with high ρ values.

8 Conclusions

We have analyzed the runtime complexity of an ACO variant that can be classified
as MMAS with best-so-far reinforcement on some well-known basic test problems
as OneMax, NH and LeadingOnes. The obtained results are twofold: First, we have
shown that the runtime complexity results for these test problems known from the
EA literature can be transferred to ACO algorithms not only for parameter choices
where ACO imitates the behavior of (1+1)-EA, but also for parametrizations where
a broad range of pheromone values is used. In particular, we demonstrated that the
O(n log n) result for OneMax and the O(n2) result for LeadingOnes also extend to
the “true” ACO case.

Secondly, our aim was to shed light on the choice of a crucial ACO parameter,
the evaporation factor ρ. Former analytical results may lead to the conjecture that
in ACO algorithms working with best-so-far reinforcement, high values of ρ are
generally more efficient than low values. Our results contradict this conclusion: Not
only is it possible to achieve a good runtime complexity on standard test functions
as OneMax or LeadingOnes also by using ρ values near to zero, but there is also
a risk connected with high ρ values: It turns out that for the efficiency obtained
on “easy” functions by choosing a large ρ, the price has to be paid that the more
aggressive search forced in this way makes the algorithm less robust with respect to
eventual “missing guidance” given by the fitness function. We were able to illustrate
this effect by a combination of a OneMax with a NH problem where ACO with
a scheme of ρ values suitably decreasing in n shows polynomial runtime behavior,
whereas both (1+1)-EA and ACO with high ρ show an exponential behavior. Our
results indicate that to ensure robustness, it may be advisable to keep ρ rather small
and even to decrease it with growing problem instance size, but also to avoid too small
values which would impair the performance on easy problems (or on easy parts of a
problem). Of course, this tradeoff deserves future investigations.

Results for (1+1)-EA as those presented in Section 3 have already been used in
other publications, although without including an explicit formal proof or a reference
to it. Furthermore, for (1+1)-EA, the involved Markov process is on a finite state
space. In the ACO context, the presence of the pheromone vector has to be taken
into account. This leads to the case of an infinite state space. We have therefore put
these assertions on a solid mathematical base by proving them explicitly in a Markov
process framework that fits with the ACO situation. Hopefully, the lemmas derived
in Section 3 will also be useful in a more general context.

432 Methodol Comput Appl Probab (2008) 10:409–433

Although the purpose of this article is not yet to provide analytical comparisons
between different metaheuristics, the simultaneous consideration of an algorithm
from the EA field with an ACO algorithm might prepare and stimulate investigations
of this type. The most urgent goal for the next future, however, is to extend available
runtime results to a broader class of test problems, especially also to NP-hard
problems, for which no results seem to be available at present in the ACO literature.

Acknowledgements The authors thank Mauro Piccioni for useful comments and suggestions.
Walter J. Gutjahr was supported by a grant of the International short-term mobility program
for scientists/researchers from Italian and foreign institutions (year 2006), awarded by the Italian
National Research Council, Rome, Italy.

References

M. Birattari, P. Pellegrini, and M. Dorigo, “On the invariance of ant colony optimization,” Res. Rept,
TR/IRIDIA/2006-025, 2006.

P. A. Borisovsky and A. V. Eremeev, “A study on performance of the (1+1)-evolutionary algorithm,”
Proceedings on Foundations of Genetic Algorithms 7, Morgan Kaufmann: San Francisco, 2003.

M. Dorigo and C. Blum, “Ant colony optimization theory: a survey,” Theoretical Computer Science
vol. 344 pp. 243–278, 2005.

M. Dorigo and G. Di Caro, “The ant colony optimization metaheuristic.” In D. Corne, M. Dorigo,
and F. Glover (eds.), New Ideas in Optimization, pp. 11–32, McGraw-Hill: New York, 1999.

M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: an autocatalytic optimization process,”
Res. Rept, pp. 91–016, Dept. of Electronics, Politecnico di Milano, Italy, 1991.

M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: optimization by a colony of cooperating
agents,” IEEE Transactions On Systems, Man, and Cybernetics vol. 26 pp. 1–13, 1996.

M. Dorigo and T. Stützle, Ant Colony Optimization, MIT Press: Cambridge, 2004.
S. Droste, T. Jansen, and I. Wegener, “On the analysis of the (1+1) evolutionary algorithm,”

Theoretical Computer Science vol. 276 pp. 51–81, 2002.
W. J. Gutjahr, “A graph–based ant system and its convergence,” Future Generations Computer

Systems vol. 16 pp. 873–888, 2000.
W. J. Gutjahr, “ACO algorithms with guaranteed convergence to the optimal solution,” Information

Processing Letters vol. 82 pp. 145–153, 2002.
W. J. Gutjahr, “A generalized convergence result for the graph–based ant system,” Probability in the

Engineering and Informational Sciences vol. 17 pp. 545–569, 2003.
W. J. Gutjahr, “Theory of ant colony optimization: status and perspectives.” In MIC ’05 (6th

Metaheuristics International Conference), Proceedings CD-ROM, 2005.
W. J. Gutjahr, “On the finite-time dynamics of ant colony optimization,” Methodology and

Computing in Applied Probability vol. 8 pp. 105–133, 2006.
W. J. Gutjahr, “First steps to the runtime complexity analysis of ant colony optimization,” Computers

& Operations Research 2007, click article in press at http://www.sciencedirect.com/science/
journal/03050548

W. J. Gutjahr and G. Sebastiani, “Runtime analysis of ant colony optimization,” Res. Rept,
2007-03, Department of Mathematics, “Sapienza” University of Rome, 2007, available at
www.mat.uniroma1.it/people/sebastiani/preprints.htm.

T. Jones and S. Forrest, “Fitness distance correlation as a measure of problem difficulty for genetic
algorithms.” In Proc. 6th Int. Conf. on Genetic Algorithms, pp. 184–192, Morgan Kaufmann:
San Mateo, 1995.

L. Kallel, B. Naudts, and C. R. Reeves, “Properties of fitness functions and search landscapes.”
In L. Kallel, B. Naudts, and A. Rogers (eds.), Theoretical Aspects of Evolutionary Computing,
pp. 174–206, Springer: Berlin, Heidelberg, New York, 1998.

V. Ladret, “Asymptotic hitting times for a simple evolutionary model of protein folding,” Journal
of Applied Probability vol. 42 pp. 39–51, 2005.

D. Merkle and M. Middendorf, “Modeling the dynamics of ant colony optimization,” Evolutionary
Computation vol. 10 pp. 235–262, 2002.

http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science/journal/03050548
www.mat.uniroma1.it/people/sebastiani/preprints.htm

Methodol Comput Appl Probab (2008) 10:409–433 433

F. Neumann and C. Witt, “Runtime analysis of a simple ant colony optimization algorithm,”
Res. Rept, CI-200/06, Dept. of Computer Science, University of Dortmund, Germany, 2006.

G. Sebastiani and G. L. Torrisi, “An extended ant colony algorithm and its convergence analysis,”
Methodology and Computing in Applied Probability vol. 7 pp. 249–263, 2005.

T. Stützle and M. Dorigo, “A short convergence proof for a class of ACO algorithms,” IEEE
Transactions on Evolutionary Computation vol. 6 pp. 358–365, 2002.

T. Stützle and H. H. Hoos, “The MAX-MIN Ant System and local search for the travelling sales-
man problem.” In T. Baeck, Z. Michalewicz, and X. Yao (eds.), Proc. ICEC ’97 Int. Conf. on
Evolutionary Computation, pp. 309–314, 1997.

T. Stützle and H. H. Hoos, “MAX-MIN Ant System,” Future Generations Computer Systems vol. 16
pp. 889–914, 2000.

I. Wegener and C. Witt, “On the analysis of a simple evolutionary algorithm on quadratic pseudo-
Boolean functions,” Journal of Discrete Algorithms vol. 3 pp. 61–78, 2005.

	Runtime Analysis of Ant Colony Optimization with Best-So-Far Reinforcement
	Abstract
	Introduction
	The Algorithm
	The Construction Graph
	The Probabilistic Mechanism
	The Pheromone Update

	General Lemmas
	Optimization of Pseudo-Boolean Functions
	Behavior of ACO on OneMax
	Constant Reward
	Fitness-proportional Reward

	NH Problem and Combination with OneMax
	Needle-in-a-Haystack
	Combining NH with OneMax

	LeadingOnes
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

