
Methodol Comput Appl Probab (2006) 8: 409–426
DOI 10.1007/s11009-006-9754-z

Improving the Performance of the Chi-square
Control Chart via Runs Rules

Markos V. Koutras · Sotirios Bersimis ·
Demetrios L. Antzoulakos

Received: 7 February 2005 / Revised: 8 August 2005 / Accepted: 13 September 2005
© Springer Science + Business Media, LLC 2006

Abstract The most popular multivariate process monitoring and control procedure
used in the industry is the chi-square control chart. As with most Shewhart-type
control charts, the major disadvantage of the chi-square control chart, is that it
only uses the information contained in the most recently inspected sample; as a
consequence, it is not very efficient in detecting gradual or small shifts in the process
mean vector. During the last decades, the performance improvement of the chi-
square control chart has attracted continuous research interest. In this paper we
introduce a simple modification of the chi-square control chart which makes use of
the notion of runs to improve the sensitivity of the chart in the case of small and
moderate process mean vector shifts.

Keywords Multivariate statistical quality control · Chi-square control chart ·
Average run length · Runs rules
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1 Introduction

Process-monitoring pertaining to the simultaneous control of two or more dependent
variables (quality characteristics) is usually referred in the literature as multivariate
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quality control. The area of multivariate quality control was initiated by the pioneer-
ing work of Hotelling (1947) who applied several novel procedures to bombsight
data during World War II. Since then many papers dealing with multivariate quality
control problems appeared in the literature, see e.g., Alt and Smith (1988), Crosier
(1988), Pignatiello and Runger (1990), Lowry and Montgomery (1995).

The most popular multivariate quality control schemes are the multivariate
Shewhart, CU SU M and EW MA control charts. For specific applications of these
charts, as well as applications of other multivariate methods in quality improvement,
the interested reader may consult Crosier (1988), Pignatiello and Runger (1990),
Hawkins (1991), Lowry and Montgomery (1995), Ryan (2000).

In the literature of statistical process control and monitoring, two distinct phases
of control charting practice have been discussed. In Phase I, charts are used for
retrospectively testing whether the process was in control when the first subgroups
were being drawn. In general, in this phase the charts are used as aids to the
practitioner, in bringing a process into a state of statistical in-control. Once this is
accomplished, the control chart is used to define what is meant by statistical in-
control. This is referred to as the retrospective use of control charts. During this
phase the practitioner is studying the process very intensively. In Phase II, control
charts are used for testing whether the process remains in control when future
subgroups are drawn. In this phase, the charts are used as aids to the practitioner,
in monitoring the process for any change from an in-control state (for more details
we refer to Montgomery 2001).

As already mentioned, the interest in the present article is focused in the simul-
taneous monitoring of m distinct quality characteristics (variables) x1, x2, ..., xm (in
the case of Phase II). Thus, we shall be assuming that the in-control joint probability
distribution of the vector x = (x1, x2, ..., xm)t follows the m-variate Normal distribu-
tion with mean vector µ0 and variance-covariance matrix �0, that is x ∼ Nm(µ0,�0).
Rational subgroups of size n > 1 are inspected and the mean sample vector xi of the
ith subgroup is calculated. In a chi-square control chart (the term CSCC will be used
hereafter) for monitoring the process mean, the test statistic

D2
i = n(xi−µ0)

t�−1
0 (xi−µ0), i ≥ 1

is plotted in the chart; this statistic represents the weighted distance (Mahalanobis
distance) between xi and µ0 in the Euclidean space Rm and follows a (central) chi-
square distribution with m degrees of freedom (D2

i ∼ χ2
m). The upper control limit of

the CSCC is given by UCL = χ2
m,a where χ2

m,a denotes the upper a percentage point
of the chi-square distribution, i.e., Pr[D2

i > χ2
m,a] = a. If D2

i > χ2
m,a there is evidence

that the process is out-of-control due to assignable causes, otherwise the process is
assumed to be in-control and no action is deemed necessary.

It is worth noting that, in a CSCC there is no need for a lower control limit since
the discrimination between the in-control and out-of-control states is determined by
the magnitude of D2

i ≥ 0; extreme values of the statistic D2
i indicate that the point

xi is far away from µ0 and therefore the process can be declared out-of-control,
while small values of D2

i indicate that the point xi is close to µ0 and therefore it
is reasonable to assume that the process is in-control. Apparently, the performance
of the CSCC depends solely on the distance of the out-of-control mean from the
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in-control mean and not on the particular direction where the former is placed as
compared to the latter (directional invariance).

It goes without saying that, for single (individual) observations (n = 1) the quan-
tity xi should be replaced by xi in the evaluation of the statistic D2

i . Another point
of interest is that, in real life applications, the parameters µ0 and �0 are unknown,
so they have to be estimated from the analysis of preliminary samples. Then the
appropriate control chart leads to the celebrated Hotelling T2 control chart in which
the upper control limit depends on percentiles of an appropriate F distribution (for
more details we refer to Alt and Smith (1988) and Lowry and Montgomery (1995)).

The CSCC is a Shewhart-type control chart since it takes into account only
information pertaining to the most recently processed sample. This fact inherits to
the CSCC, the classical disadvantage of all Shewhart-type control charts, that is
the insensitivity to detect gradual or small shifts in the process mean vector. This
handicap was recognized at the very beginning by the Western Electric Company
who suggested in 1956 the adoption of runs and scans rules in order to make the
detection of small shifts from the target mean more efficient. For recent articles
where runs and scans rules are used in quality control, see Shmueli and Cohen (2000),
Khoo and Quah (2003), Shmueli and Cohen (2003), Shmueli (2003), and Aparisi et
al. (2004). The numerical evaluation of the performance of such rules can be easily
achieved by the aid of Markov chains, as indicated in Champ and Woodall (1987)
and Fu et al. (2002, 2003).

In this paper we consider a CSCC which signals an out-of-control process if k
consecutive values of the test statistic D2

i exceed an appropriate upper control limit
Uk (k is a positive integer). The procedure is termed as k|k CSCC, and in the special
case k = 1, it coincides with the standard one. For k ≥ 2 the new control chart has
better average run length performance than the corresponding standard one (1|1
CSCC). In addition, we introduce a combined r|r − k|k CSCC which is a control chart
with two control limits Ur and Uk that signals an out-of-control process if either k
consecutive values of the test statistic D2

i exceed Uk or r consecutive values of the test
statistic D2

i exceed Ur. Our numerical experimentation revealed that the combined
1|1 − k|k CSCC with k ≥ 2 is more effective than both 1|1 and k|k CSCCs.

The present paper is organized as follows: in “A Run Related Chi-square Control
Chart” we introduce the k|k CSCC while in “Comparing Two Runs Related Chi-
square Control Charts” we carry out a theoretical study of its characteristics focusing
mainly on its performance as compared to the standard CSCC. In “A Chi-square
Control Chart with Multiple Limits” we introduce the combined r|r − k|k CSCC and
study the special case r = 1. In “Numerical Comparisons” we conduct a systematic
numerical experimentation in order to investigate the average run length of the two
new CSCCs. Finally, “Conclusions” briefly states some concluding remarks on the
material presented in this article.

2 A Run Related Chi-square Control Chart

Consider a typical Shewhart-type control chart with one-sided upper control limit
U1. Assume also that the values of a specific statistic Wi are plotted in the chart and
the process is declared out-of-control if Wi > U1, otherwise the process is assumed
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to be in-control. It is well known that the in-control average run length of the plan
(abbr. ARLin) is given by

ARLin = 1
p1

where p1 = Pr[Wi > U1], the last probability being calculated under the assumption
that the process is in-control. Moreover, the out–of-control average run length of the
plan (abbr. ARLout) is expressed as

ARLout = 1
Pr[Wi > U1]

with the probability in the denominator being evaluated under the assumption that
the process parameter has shifted to a value different than the one specified as in-
control value (target value).

As an illustration, let us consider a CSCC with in-control mean vector µ0. Then,
the test statistic is given by

Wi = D2
i = n(xi−µ0)

t�−1
0 (xi−µ0), i ≥ 1

which follows a χ2 distribution with m degrees of freedom (Wi ∼ χ2
m). On the other

hand, if E(x) = µ1 = µ0 + δ denotes a specific out-of-control mean vector (δ �= 0),
the distribution of the same statistic follows a non-central χ2 with m degrees of
freedom and non-centrality parameter

λ = λ(µ1) = n(µ1−µ0)
t�−1

0 (µ1−µ0) = nδt�−1
0 δ (2.1)

(Wi ∼ χ2
m(λ)). In order to distinguish between the in-control and out-of-control

states, we shall be using in the sequel the symbol D2
i (λ) to denote the test statistic

when a sample comes from an out-of-control process and D2
i = D2

i (0) when it comes
from an in-control process. The probability density function (pdf) and the cumulative
distribution function (cdf) of a non-central chi-square variable with m degrees of
freedom and non-centrality parameter λ , will be denoted by fm(x; λ) and Fm(x; λ)

respectively. The corresponding pdf and cdf for a (central) chi-square variable will
be denoted by fm(x; 0) = fm(x) and Fm(x; 0) = Fm(x) respectively. Readers who
are interested in studying the aforementioned distributions in detail, may consult
Johnson et al. (1994, 1995). Making use of the previous notations, the ARLs of the
CSCC take the form

ARLin = 1
Pr[D2

i > U1] = 1
1 − Fm(U1)

, ARLout = 1
Pr[D2

i (λ) > U1] = 1
1 − Fm(U1; λ)

.

Let us go back to the typical Shewhart-type control chart with one-sided upper
control limit U1. As already explained in the introduction, the main disadvantage of
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the Shewhart-type control charts is the lack of sensitivity in case of gradual or slight
shifts from the in-control parameter value. To a certain extent, this handicap stems
from the fact that, to reach a decision, only the most recently processed sample is
taken into account. In light of this evidence, a remedial measure would be to couch
our decision on information carried over by consecutive samples.

A reasonable approach toward these lines is to consider modified control charts
which declare a process out-of-control if k ≥ 1 consecutive values of the test statistic
Wi exceed the upper control limit, say Uk, of the chart. Manifestly, for k = 1, the
above rule leads to the classical (Shewhart) control chart without supplementary
sensitizing rules.

In order to study the ARLin of the modified plan let us introduce the binary
variables

Yi =
⎧⎨
⎩

1, if Wi > Uk

0, if Wi ≤ Uk

for i = 1, 2, ... Assuming that the samples are independent and come from the
same distribution, we conclude that Y1, Y2, ... consist a sequence of independent
Bernoulli trials with common success (failure) probability p = Pr[Wi > Uk] (q =
1 − p = Pr[Wi ≤ Uk]). Then, the point at which the process will be declared out-of-
control (while in fact it is in-control), will be described by the waiting time Tk for the
first occurrence of a success run of length k.

The expected value of Tk (see, e.g., Balakrishnan and Koutras (2002) or Fu and
Lou (2003)) is given by

E(Tk) = hk(p) = 1 − pk

pk (1 − p)
(2.2)

with hk(p) being a monotonically decreasing function of p. Moreover, it is clear that

lim
p→0

hk(p) = +∞, lim
p→1

hk(p) = k.

It is now evident that one can always achieve a prespecified ARLin = c > k
by adjusting appropriately the upper control limit Uk of the plan. This is easily
accomplished by calculating first the unique root pk ∈ (0, 1) of the equation

hk(pk) = 1 − (pk)
k

(pk)k (1 − pk)
= c, (c > k)

and then identifying Uk by the aid of the condition

Pr[Wi > Uk] = pk

(the evaluation of the last probability is carried out under the assumption that the
process is in-control).
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In the sequel, the control chart resulting from the aforementioned procedure
will be referred to as “a k|k Shewhart-type control chart” with ARLin = c. An
algorithmic description of this chart in discrete steps is as follows:

Step 1: Choose a positive integer k.

Step 2: Set the desired in-control ARLin = c, c > k.

Step 3: Calculate the unique root pk of the equation c = 1−(pk)k

(pk)k(1−pk)
in the interval

(0, 1).

Step 4: Calculate the upper control limit Uk by the aid of the equality pk = Pr[Wi >

Uk].
Step 5: Declare the process out-of-control if k consecutive points are plotted above

Uk, that is if at the examination of the ith (i ≥ k) sample the inequality W j >

Uk turns out to be valid for all j = i − k + 1, i − k + 2, ..., i.

It is noteworthy that the ARLout of the k|k Shewhart-type control chart can be
evaluated through hk(p) as well by replacing p with the probability of the event
{Wi > Uk} under the assumption that the process parameter has shifted from its in-
control value.

Let us next examine the application of the k|k Shewhart-type control chart in a
CSCC (the term k|k CSCC will be used hereafter). In this case we have

ARLin = E(Tk) = hk(pk)

with hk(·) given by Eq. 2.2 and

pk = Pr[D2
i > Uk] = 1 − Fm(Uk).

Therefore, in order to achieve a prespecified ARLin level, say c, it suffices to calculate
the unique root pk ∈ (0, 1) of the equation hk(pk) = c and then set Uk = χ2

m,pk
.

By way of example let us consider a multivariate normal process with m = 3,

variance-covariance matrix �0 and mean vector µ0 = (100, 100, 100). In Fig. 1 we
have plotted the value of the test statistic Wi = D2

i for 30 simulated individual obser-

Fig. 1 1|1, 2|2 and 3|3 chi-square control charts
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vations from the process, assuming that it stays in-control for the first 20 individual
observations and shifts to an out-of-control mean µ1 = µ0 + δ = (105, 105, 105) at
the 21st observation (matrix �0 remains constant for all 30 observations). Three
different control limits U1, U2, U3 are drawn, corresponding to the 1|1, 2|2 and 3|3
CSCCs with common ARLin = 250.

From Fig. 1, we observe that the standard 1|1 CSCC gives an out-of-control signal
at sample 30, while the 2|2 and 3|3 CSCCs give an earlier detection at samples 29 and
23 respectively.

In the next paragraph we give a number of theoretical results regarding to the
behavior and the performance of the k|k CSCC.

3 Comparing Two Runs Related Chi-square Control Charts

Before stating the core of the results pertaining to the performance of the k|k CSCC,
we shall develop some auxiliary tools that will be proved useful in achieving our goal.

Note first that for the upper control limits U1, U2, U3 of the three CSCCs of the
previous example we have U1 > U2 > U3 (see Fig. 1). Such an ordering holds true in
general, provided that the level of ARLin is kept constant. To verify that, let r, k be
two positive integers such that r < k and consider the respective r|r and k|k CSCCs
each one having the same ARLin = c. It can be easily checked that hr(x) < hk(x) for
all x ∈ (0, 1), and therefore the unique roots pr and pk of the equations

c = hr(pr), c = hk(pk), c > k

satisfy the inequality pr < pk which in turn leads to Ur > Uk (recall that pr =
Pr[D2

i > Ur] and pk = Pr[D2
i > Uk] ). A direct consequence of the previous outcome

is that, the upper control limit Uk of a k|k CSCC with k ≥ 2 is less than the upper
control limit U1 of the standard CSCC with the same ARLin.

Let us next examine how the ARLout of a k|k CSCC can be evaluated. As already
mentioned earlier, ARLout is the mean of Tk under the condition that the control
parameter µ has shifted to an out-of-control value µ1 = µ0 + δ. Hence,

ARLout(λ) = hk(pk(λ)) = 1 − (pk(λ))k

(pk(λ))k (1 − pk(λ))

where pk(λ) = Pr[D2
i (λ) > Uk] = 1 − Fm(Uk; λ) and λ = λ(µ1) is given by Eq. 2.1.

In the sequel we adopt the notation ARLk(λ) for the ARLout of a k|k CSCC, while
the respective ARLin = ARLk(0) will be denoted simply by ARLk, k ≥ 1. In the light
of the foregone discussion we may write

ARLk(λ) = 1 − [1 − Fm(Uk; λ)]k

Fm(Uk; λ)[1 − Fm(Uk; λ)]k
= 1

1 − Hk(Fm(Uk; λ))
(3.1)

where

Hk(x) = 1 − (1 + x)(1 − x)k

1 − (1 − x)k
= 1 − x(1 − x)k

1 − (1 − x)k
.
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Consider now two r|r, k|k CSCCs with r < k and common ARLin = c (i.e.,
ARLr = ARLk = c). We observe that Eq. 3.1 yields

ARLr(λ) − ARLk(λ) = Sr,k(λ)

[1 − Hr(Fm(Ur; λ))][1 − Hk(Fm(Uk; λ))] (3.2)

where Sr,k(λ) was used to denote the difference

Sr,k(λ) = Hr(Fm(Ur; λ)) − Hk(Fm(Uk; λ)). (3.3)

In the rest of the section we focus on the problem of identifying conditions on λ

guaranteeing that

ARLr(λ) < ARLk(λ) (or ARLr(λ) > ARLk(λ)).

Should such a condition hold true for all λ > 0, one of the CSCCs will be preferable
to the other no matter how far apart is the out-of-control value from the respec-
tive in-control value. Our numerical experimentation revealed that the condition
ARLr(λ) < ARLk(λ) does not hold true for all λ values. However, for large values
of the parameter λ the r |r CSCC has always better performance (in terms of the
ARLout values) than the k |k CSCC (r < k), as the next proposition states.

Proposition 1 Let r, k be two positive integers such that r < k. Then, there exists a real
positive number λ0 such that the out-of-control ARLs of the r|r CSCC and k|k CSCC
with the same in-control ARL value c (ARLr = ARLk = c) satisfy the inequality
ARLr(λ) < ARLk(λ) for all λ > λ0.

Proof: It can be easily verified that, for any positive integer k, we have

lim
x→0

Hk(x) = 1 − 1
k

.

Therefore, recalling the well-known result (see, e.g., Johnson et al. 1995)

lim
λ→∞Fm(x; λ) = 0

we may readily conclude that

lim
λ→∞(ARLr(λ) − ARLk(λ)) = rk lim

λ→∞Sr,k(λ) = r − k < 0

which completes the proof of the proposition. �

An immediate consequence of Proposition 1 is that, for large values of λ (i.e., large
shifts from the in-control parameter value) the standard CSCC (r = 1) is superior to
the k|k CSCC with k ≥ 2.

There is still another case where the standard CSCC is better than the k|k CSCC
with k ≥ 2. More specifically we shall prove that if the prespecified ARLin value c
is small enough, then ARL1(λ) < ARLk(λ) for all λ > 0 (k ≥ 2). Before stating and
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proving this assertion we shall present a useful lemma which is instrumental in the
justification of our approach.

Lemma 1 (a) The quantity S1,k(λ) is a decreasing function of λ > 0 if and only if the
following inequality holds true

H′
k(Fm(Uk; λ)) <

fm+2(U1; λ)

fm+2(Uk; λ)
. (3.4)

(b) If k ≥ 2 we have H′
k(x) < 1 for all 0 < x < 1.

Proof: (a) The well known formula for the cdf of the non-central chi-square
distribution

∂

∂λ
Fm(x; λ)) = − fm+2(x; λ),

(see, e.g., Johnson et al. 1995) may be used in conjuction with the chain rule of
calculus to write

∂

∂λ
Hk(Fm(Uk; λ)) = − fm+2(Uk; λ) · H′

k(x) |x=Fm(Uk;λ)) .

Differentiating Eq. 3.3 with respect to λ we deduce

S′
r,k(λ) = ∂

∂λ
[Hr(Fm(Ur; λ)) − Hk(Fm(Uk; λ))]

= fm+2(Uk; λ) · H′
k(Fm(Uk; λ)) − fm+2(Ur; λ) · H′

r(Fm(Ur; λ))

and taking into account that H′
1(x) = 1 for all 0 < x < 1, the following expression for

S′
1,k(λ) is established

S′
1,k(λ) = fm+2(Uk; λ)

(
H′

k(Fm(Uk; λ)) − fm+2(U1; λ)

fm+2(Uk; λ)

)
. (3.5)

In view of the last expression, condition (3.4) implies that S′
1,k(λ) < 0, which in turn

guarantees that S1,k(λ) is monotonically decreasing (and vise versa).
(b) Let k ≥ 2. Since

H′
k(x) = (1 − x)k−1[(1 − x)k+1 + x(k + 1) − 1]

(1 − (1 − x)k)2 ,

the condition H′
k(x) < 1 for 0 < x < 1 is equivalent to

(1 − x)k−1[x(k − 1) + 1] < 1.

The last inequality is valid for k = 2 and it may be checked by induction with respect
to k that it holds true as well for any positive integer k > 2. This completes the proof
of part (b). �
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We are now ready to prove the superiority of the standard CSCC over k|k CSCC
with k ≥ 2 for small ARLin values.

Proposition 2 Let c be a positive number such that χ2
m,1/c ≤ m. Then for all k ≥ 2

the out-of-control ARLs of the 1|1 CSCC and k|k CSCC with the same in-control
ARL value c (ARL1 = ARLk = c) satisfy the inequality ARL1(λ) < ARLk(λ), for
all λ > 0.

Proof: Let Mλ be the mode of the distribution χ2
m+2(λ). The pdf fm+2(x; λ) is in-

creasing for x < Mλ, while Mλ is an increasing function of λ (see, e.g., Johnson et al.
1995). Moreover, the mode of the central chi-square distribution with m + 2 degrees
of freedom equals m = M0. In the light of the foregoing arguments we conclude
that fm+2(x; λ) is an increasing function of x for x < m = M0 < Mλ. Observe next
that, the condition χ2

m,1/c ≤ m leads to U1 < m and make use of the monotonicity of
fm+2(x; λ) with respect to x to yield the inequality

fm+2(U1; λ)

fm+2(Uk; λ)
> 1

(recall also that Uk < U1). By virtue of Lemma 3.1(b) we obtain

H′
k(Fm(Uk; λ)) < 1 <

fm+2(U1; λ)

fm+2(Uk; λ)

and therefore (c.f. Lemma 1(a)) S1,k(λ) is decreasing in λ. The desired result is now
easily derived if we take into account that S1,k(λ) is a continuous decreasing function
with S1,k(0) = 0, lim

λ→∞S1,k(λ) = 1
k − 1 < 0 (note that lim

λ→∞Fm(x; λ) = 0) and that the

sign of S1,k(λ) coincides to that of ARL1(λ) − ARLk(λ). �

Although the outcome of Proposition 2 seems to attribute to the standard CSCC
uniformly better performance, this is not quite so, at least as far as situations of
practical importance are concerned. The condition χ2

m,1/c ≤ m is in fact fulfilled only
for extremely low values of c (close to 2) which are of no interest for the quality
control practitioners (as a matter of fact, it is intuitively clear that if you want a
signal within an average of a single point (c < 2), k = 1 will be the only rule that
can do it). It should also be stressed that the condition χ2

m,1/c ≤ m is not necessary
and sufficient and therefore one might suspect that the (uniform) superiority of the
standard CSCC could emerge even for large values of c; however, as our extensive
numerical experimentation revealed, this situation does not appear for c values of
practical importance (c ≥ 200).

In view of Propositions 1, 2 and the above discussion, should we wish to construct
appropriate k|k CSCCs (with k ≥ 2) that will improve the standard CSCC, we should
further elucidate the performance of ARL1(λ) − ARLk(λ) for small values of λ
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and/or large ARLin values. The next two results provide some insight towards this
direction.

Proposition 3 If the following inequality holds true for a prespecified k ≥ 2

H′
k(Fm(Uk)) >

(
U1

Uk

)m/2

exp[(Uk − U1)/2] (3.6)

then there exists a real positive number λ0 such that ARL1(λ) > ARLk(λ) for all
λ < λ0.

Proof: Applying Eq. 3.5 for λ = 0 and replacing fm+2(x; 0) by

fm+2(x) = 1
2(m/2)+1�((m/2) + 1)

xm/2e−x/2

we have

S′
1,k(0) = fm+2(Uk)

(
H′

k(Fm(Uk)) − fm+2(U1)

fm+2(Uk)

)

= fm+2(Uk)

(
H′

k(Fm(Uk)) −
(

U1

Uk

)m/2

exp[(Uk − U1)/2]
)

and making use of condition (3.6) we conclude that S′
1,k(0) > 0. The continuity of

S1,k(λ) as a function of λ guarantees that there exists an interval of the form (0, λ0),
λ0 > 0, such that for λ ∈ (0, λ0) the function S1,k(λ) is an increasing function of
λ. Since S1,k(0) = 0, it follows that S1,k(λ) > 0 for λ ∈ (0, λ0), that is ARL1(λ) >

ARLk(λ) for λ ∈ (0, λ0). This completes the proof of the proposition. �

Corollary 1 Let c be a positive number such that

1 − 1
(1 + s)2 >

(
χ2

m,1/c

χ2
m,s

)m/2

exp[(χ2
m,s − χ2

m,1/c)/2]

where s = (1 + √
1 + 4c)/2c. Then there exists a real positive number λ0 such that

ARL1(λ) > ARL2(λ) for all λ < λ0.

Proof: Note that, in the special case k = 2, s is the solution of the equation h2(s) =
c in the interval (0, 1) and that H′

2(x) = 1 − 1/(x − 2)2. The proof of the corollary
follows immediately by applying Proposition 3. �

The obvious conclusion to be drawn from the foregone analysis is that, if the
practitioner wishes to work with large ARLin values (which is usually the case) and/or
expects only small shifts of the control parameter from the in-control level, he/she
should initiate a k|k CSCC with k ≥ 2 instead of a standard CSCC. In the opposite
case a standard CSCC is a better choice.
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4 A Chi-square Control Chart with Multiple Limits

A technique commonly used in applied quality control when two non-uniformly
ordered procedures are available, is to consider a combined chart which exploits the
control limits of both procedures. Such a chart results in improved performance, as
compared to the performances of each individual procedure. This will be the subject
of the present section.

Let us consider two r|r and k|k CSCCs (r < k) with the same in-control ARL value
c (ARLr = ARLk = c) and respective control limits Ur and Uk (Ur > Uk). The term
r|r − k|k chi-square control chart (abbr. r|r − k|k CSCC) will be used to indicate a
control chart which signals an out-of-control process if either k consecutive values of
the test statistic Wi = D2

i are plotted above Uk or r consecutive values are plotted
above Ur.

In an r|r − k|k CSCC three regions are defined: one consisting of the points below
the control limit Uk (region 0), one containing the points above the control limit Ur

(region 2), and a central region extending between the two limits (region 1). For an
in-control process, the probability that a single point falls in regions 0, 1, 2 are 1 − pk,

pk − pr and pr respectively, where

pk = Pr[D2
i > Uk], pr = Pr[D2

i > Ur],
while for an out-of-control process the respective probabilities become 1 − pk(λ),

pk(λ) − pr(λ) and pr(λ), where

pk(λ) = Pr[D2
i (λ) > Uk], pr(λ) = Pr[D2

i (λ) > Ur].
By way of example consider once more the process illustrated in Fig. 1 and

place the limits U2, U3 as shown in Fig. 2. Then the use of the 2|2 − 3|3 CSCC
for monitoring the process mean will give an out-of-control signal as soon as 2
consecutive plotted values of the test statistic D2

i exceed level U2 (region 2) or 3

Fig. 2 The 2|2 − 3|3 chi-square control chart
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consecutive plotted values of the test statistic D2
i exceed level U3 (regions 1 and 2).

Apparently for the data depicted in Fig. 2 this will take place at sample 23.
Consider a sequence of independent trials Y1, Y2, ... with three possible outcomes,

say 0, 1, 2 and assume that q = Pr[Yi = 0], p = Pr[Yi = 1] and p∗ = Pr[Yi = 2] for
i ≥ 1. Denote by Tr,k the waiting time for the occurrence of run of 2’s of length r, or
the occurrence of a strand of k consecutive trials consisting of 1’s or 2’s, whichever
comes sooner. Manifestly, the ARL of the combined chart coincides with the mean
value of the random variable Tr,k. Even though there are some tools in the literature
for the study of Tr,k (see, e.g., Aki 1992; Antzoulakos 2001; Fu and Chang 2003;
Koutras 1997), for typographical convenience we shall not pursue here this general
scheme. Instead, we shall restrict ourselves to the special case r = 1 (1|1 − k|k CSCC)
whose ARL can be calculated by the aid of formula

h1,k(p∗, p) = E(T1,k) =
(

p + p∗ − p − pk

1 − pk

)−1

(4.1)

(see e.g., Page 1955). More specifically, if we denote the ARLout and the ARLin of the
1|1 − k|k CSCC by ARL1,k(λ) and ARL1,k = ARL1,k(0) respectively, we may write

ARL1,k(λ) = h1,k(p1(λ), pk(λ) − p1(λ)), ARL1,k = h1,k(p1, pk − p1).

Another point of interest is that for the construction of a 1|1 − k|k CSCC we
may use different values for the in-control ARL values of the individual 1|1 and k|k
CSCCs, say c1 = ARL1 and ck = ARLk, as long as the ordering U1 > Uk remains
valid (the condition k < ck < hk(1/c1) guarantees this ordering). An algorithmic
description of the 1|1 − k|k CSCC in discrete steps is as follows:

Step 1: Choose a positive integer k ≥ 2.

Step 2: Set the desired in-control values c1 = ARL1 and ck = ARLk for the indi-
vidual 1|1 and k|k CSCCs (k < ck < hk(1/c1)) and calculate the respective
individual control limits U1 and Uk.

Step 3: Declare the process out-of-control if either k consecutive points are plotted
above Uk or a single point is plotted above U1.

One may use the min{c1, ck} as a rough estimate of the ARL1,k of the 1|1 − k|k
CSCC; as a matter of fact this is an upper bound of ARL1,k. However a much better
approximation for ARL1,k can be deduced by the aid of the classical formula

1
ARL1,k

∼= 1
ARL1

+ 1
ARLk

= 1
c1

+ 1
ck

(4.2)

which is quite commonly used by the quality control practitioners.
The superiority of the last formula is elucidated in Table 1. As formula (4.2)

implies, if one wishes to work with a prespecified ARL1,k = c, he may calculate the
values of the control limits U1, Uk by considering the individual 1|1 and k|k CSCCs
at ARL1 = ARLk = 2c.

In closing we mention that, although we focused only on the mean of the run
length, the whole distribution of the statistic in use is also available (see e.g.,
Balakrishnan and Koutras 2002). One might suspect that the price paid for the
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Table 1 In-control ARL values for the 1|1 − k|k CSCC

ARL1,k

k ARL1 ARLk min(ARL1, ARLk) Formula (4.2) Exact value

2 600 600 600 300 312
3 600 600 600 300 306
4 600 600 600 300 304
2 300 200 200 120 127
2 200 300 200 120 128
3 400 300 300 171 176
3 300 400 300 171 176
4 500 200 200 143 145
4 200 500 200 143 146
2 970 970 970 485 500
3 987 987 987 493 500
4 990 990 990 495 500

improvement of the ARL will be a less smooth behavior of the resulting run length
distribution. However, as our extensive numerical experimentation revealed, there is
no evidence of such a change; surprisingly, in most cases besides the improvement of
the ARL, a simultaneous improvement on the variance has been observed.

5 Numerical Comparisons

In the present section we are addressing some problems of practical importance.
More specifically, by the aid of numerical experimentation, we discuss some pro-
cedures which will facilitate the practitioner to choose the most reasonable control
plan for his/her needs. Assume first, that we wish to work with k|k CSCCs and the
problem we are focusing on is finding the most appropriate k value to be used. Since
there is no uniform ordering between ARL1(λ) and ARLk(λ), one will ultimately
need to compare them as a function of λ. In Fig. 3 we have graphed the percentage
of improvement of ARLout of several k|k CSCCs over the standard CSCCs (k = 1),
under the same ARLin = 500. Thus, the curve that corresponds to k = 4 is the graph
of the quantity

I(λ) = ARL1(λ) − ARL4(λ)

ARL1(λ)
, λ ≥ 0

(the same quantity has also been used for the comparison of several statistical process
control procedures by Aparisi et al. 2004).

By the aid of Eq. 3.1, four different graphs have been provided, each one refer-
ring to different data dimensionality m. Our extensive numerical experimentation
revealed that, as m increases, not only the range of λ values in which I(λ) remains
positive becomes wider, but its maximum value increases as well. Another point of
interest is that, for large m values, the curve with the maximum value, is the one that
corresponds to the largest k values (note however that this curve attains negative
values, much faster than the others).
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It is evident from the foregoing arguments, that the optimal choice of the k value
depends heavily on the magnitude of the shift we wish to detect. Should we have an
idea about that, we can resort to the corresponding graph and pick the appropriate
k value. By way of example consider the case m = 20 and ARLin = 500. Then,
according to the last graph in Fig. 3, for λ < 6.52 the best performance (among
k = 1, 2, 3, 4) is achieved by choosing k = 4, for 6.52 < λ < 9.89 the best choice
is k = 3, for 9.89 < λ < 17.71 it is advisable to use k = 2, while for λ > 17.71 the
standard CSCC offers the best performance. Similar conclusions can be stated for
the other m values included in Fig. 3. Additional graphs and the computer program
that produces the percentage of improvement curve, is available for any interested
reader from the authors upon request.

In the same spirit, Fig. 4 depicts plots of the percentage of improvement in the
ARLout of the 1|1 − 2|2, 1|1 − 3|3, and 1|1 − 4|4 CSCCs over the standard CSCC
with ARLin = 500. The numerical calculations were carried out by the aid of Eq. 4.1.
To achieve the same ARLin value for the combined charts we used the results of the
last three rows of Table 1.

Note that, the ARL performance of the 1|1 − k|k CSCC has the same behavior
and similar features as the k|k CSCC. However, a comparison of Figs. 3 and 4 reveals
that the percentage of improvement achieved by 1|1 − k|k CSCC is considerably
higher than the improvement gained by the respective k|k CSCC. In addition, the
interval of the non-centrality parameter λ in which a 1|1 − k|k CSCC has better
performance is much wider. It should also be stressed that, when huge shifts in the
mean vector are likely to occur, the 1|1 − k|k CSCC is a more natural choice than the
k|k CSCC with k > 1.

Fig. 3 Percentage of improvement in the ARLout of the k|k CSCC for k = 2, 3, 4 over 1|1 CSCC
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Fig. 4 Percentage of improvement in the ARLout of the 1|1 − k|k CSCC for k = 2, 3, 4 over 1|1
CSCC

In closing, we mention that, as our extensive experimentation revealed, the new
CSCCs become much more attractive as compared to the standard CSCC, as the
value of ARLin increases.

Table 2 ARL values for
several chi-square control
charts

m λ1/2 CSCC k|k 1|1 − k|k SRR

2 0 200 200 200 200.6
1 41.93 38.54 (2) 35.16 (3) 34.16
2 6.88 6.36 (2) 5.49 (2) 5.68
3 2.16 2.71 (2) 2.01 (2) 2.21

3 0 200 200 200 199.7
1 52.64 48.25 (2) 44.49 (3) 42.01
2 8.82 7.90 (2) 6.93 (3) 7.06
3 2.55 3.01 (2) 2.30 (2) 2.52

10 0 200 200 200 199.77
1 92.70 83.69 (4) 80.80 (4) 78.06
2 20.62 17.27 (3) 15.44 (3) 14.65
3 5.21 4.99 (2) 4.23 (2) 4.56
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6 Conclusions

In the present article the combined use of the theory of runs and of the classical
Shewhart-type multivariate CSCC led to a procedure which improves the (weak)
performance of the latter in the case of relatively small mean vector shifts. The
smooth performance of the suggested variation may be attributed, on the one hand to
the increased sensitivity of the runs statistic in detecting clustering of similar results
and on the other hand to the substantial descriptive power of the CSCC.

In a recent article, Aparisi et al. (2004) investigated the performance of the CSCC
with supplementary runs rules. More specifically, besides the classical out-of-control
criterion (one point above the UCL), they suggested using three additional rules
based on two out of three scans and runs of length seven and eight. As indicated
there, for moderate shifts, the combined use of all supplementary runs rules improves
the ARLout values of the CSCC by approximately 25% (for ARLin = 200). Our
extensive numerical experimentation revealed that the simple approach suggested in
the present article leads to ARLout values very close to the ones achieved in Aparisi
et al. (2004). For ARLin = 200 and m = 2, 3, 10, Table 2 displays the ARL values
of the standard CSCC, the k|k CSCC, the 1|1 − k|k CSCC and the respective values
of Aparisi et al. (2004) (SRR column). The value in parentheses under the columns
labeled “k|k” and “1|1 − k|k” gives the k value (k = 2, 3 or 4) that produces the
largest ARL decrease.

When our data sets require the simultaneous analysis of two or more quality
characteristics, one could also use a multivariate CU SU M or a multivariate EW MA
control chart (see Alwan 1986; Lowry and Montgomery 1995). It goes without saying
that, like their univariate counterparts, these charts are more effective than the
Shewhart-type charts in detecting small to medium process shifts but worse for
large deviations. Moreover, they exhibit notable robustness to deviations from the
normality assumption. However, they are much more involved and difficult to apply
and, needless to say, the laws governing them may be so intricate as to preclude any
theoretical analysis.

On the basis of the points mentioned above, we may summarize the key features
of the new method as follows: (a) it preserves the simplicity of the standard CSCC
and offers a manageable environment for establishing results of theoretical interest
c.f. “Comparing Two Runs Related Chi-square Control Charts,” (b) it improves
significantly the performance of the standard CSCC, (c) unlike the multivariate
CU SU M and EW MA procedures, it does not require the estimation of parameters
through exhaustive mathematical search or time consuming numerical calculations
(see e.g., Crosier 1988; Hawkins 1991; Ridgon 1995).
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