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Abstract An analytical framework for investigating the finite-time dynamics of ant
colony optimization (ACO) under a fitness-proportional pheromone update rule on
arbitrary construction graphs is developed. A limit theorem on the approximation of
the stochastic ACO process by a deterministic process is demonstrated, and a
system of ordinary differential equations governing the process dynamics is
identified. As an example for the application of the presented theory, the behavior
of ACO on three different construction graphs for subset selection problems is
analyzed and compared for some basic test functions. The theory enables first rough
theoretical predictions of the convergence speed of ACO.
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1. Introduction

The aim of this work is to provide an analytical framework for investigating the
dynamics of the Ant Colony Optimization (ACO) metaheuristic, and to illustrate the
applicability of this framework by comparing different strategies for applying ACO
to the special family of subset selection problems. ACO is an optimization technique
inspired by observations on the behavior of biological ant colonies; it has been
introduced by Dorigo et al. (1991, 1996), and developed later into a metaheuristic
for combinatorial optimization problems (Dorigo and Di Caro, 1999; Dorigo et al.,
1999; Dorigo and Strützle, 2004). Recently, ACO algorithms have also turned out as
competitive in a discrete stochastic optimization context (Bianchi et al., 2002;
Gutjahr 2003b, 2004; Rauner et al., 2005; Birattari et al., 2005).
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From a more abstract point of view, ACO can be considered as reinforcement
learning on a graph that encodes the problem instance, the so-called construction
graph, as it has been formally defined in Gutjahr (2000). A solution to the given
combinatorial optimization problem is encoded as a feasible walk on the construction
graph.

A feasible walk starts in a fixed initial node of the construction graph and has to
satisfy the constraint that each node is visited at most once, i.e., already visited nodes
are Btabu.’’ There may be additional, problem-specific rules defining certain nodes as
tabu in certain cirumstances. When there is no neighbor anymore that is not tabu, the
walk stops and is decoded as a solution to the given problem.

The probability pkl to go from a node k to an allowed neighbor node l is chosen
proportional to the so-called pheromone �kl, a memory value storing how good
transition ðk; lÞ has been in previous walks. Pheromone is initialized by a constant
value. After the walk has finished, pheromone is updated. There are several possible
ways to do that. The Bclassical’’ update rule is the following: First, set �kl ¼ ð1� �Þ�kl

for each arc ðk; lÞ , where � 2�0; 1½ is the so-called evaporation factor. Then, in-
crease the pheromone on the arcs of the chosen walk x by a factor proportional
to the fitness f ðxÞ of the walk. In this way, the partial construction steps of solu-
tions with good objective function values are reinforced. The process of random
walk construction and pheromone update is iterated. Instead of a single walk
(B1 ant’’), also s > 1walks may be constructed sequentially (Bsants’’) in each iter-
ation (Bround’’).

In general, the procedure above needs not to converge. For an alternative
pheromone update rule where only the best walk seen so far is reinforced (BGlobal
Best’’), results on convergence both of solutions and of pheromone to the global
optimum have been obtained (Gutjahr, 2000, 2002, 2003a). Convergence of so-
lutions only can also be shown for the MAX-MIN Ant System developed by Stützle
and Hoos (2000), as demonstrated by Stützle and Dorigo in (2002). For most other
usual update rules, the convergence question is still open. What is even more, the
finite-time behavior of the ACO algorithm is widely unexplored in theoretical
research. As a remarkable exception, we mention the articles by Merkle and
Middendorf (2002, 2004), who analyze the ACO dynamics by means of the so-
called ACO model for a specific problem under an update rule where the best walk
of each round is reinforced.

In the present article, we study the finite-time ACO dynamics under the classical
update rule described above. For this purpose, the ACO process is approximated in
Section 2 by its behavior in the case of a sufficiently large number of ants (the
resulting process resembles the ACO model process by Merkle and Middendorf),
and the validity of this approximation is demonstrated by a mathematical con-
vergence result. Furthermore, it is shown that in an asymptotic case where �! 0,
compensated by a suitable re-scaling of the time axis, the approximating process can
be described by a system of ordinary differential equations. Section 3 indicates how
to compute the dynamics of the expected fitness in the approximating process. In
Section 4, three types of construction graphs for the application of ACO to the class
of subset problems (including, e.g., knapsack problems or max-clique problems) are
introduced. Section 5 compares the behavior of the approximating process on these
construction graphs for a few basic test functions. Section 6, finally, gives some
concluding remarks.
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2. The Asymptotic Dynamics and its Basic Law

2.1. ACO Algorithm in Formal Terms

We start with a formal presentation of the ACO algorithm investigated in this work.
Let us mention that for our purpose, the algorithm has been simplified by omitting
visibility values (see, e.g., Dorigo and Di Caro, 1999), an additional feature often
applied in practice to further improve the performance of ACO. However, since
visibility values are based on problem-specific domain knowledge, an analysis of
their influence should take into account the specific features of the optimization
problem under consideration. The general properties of ACO dynamics show in a
clearer way if the visibility concept is put aside.

As mentioned in the Introduction, ACO can be considered as a learning procedure
working on a construction graph C which encodes the given instance of the combi-
natorial optimization problem under consideration. Examples for such encodings
will be presented in Section 4. C is a directed graph with a distinguished node, the
start node v0. Let S denote the set of directed paths x ¼ ðvð1Þ ¼ v0; v

ð2Þ; . . . ; vðmÞÞ in C
starting in v0. The integer m does not need to be a constant, i.e., different paths in S
can have different lengths. Observe that the property of x being a path implies that
each node of C is contained in x at most once. Optionally, a set of conditions on the
path x can be given, specifying for each possible path u ¼ ðvð1Þ ¼ v0; v

ð2Þ; . . . ; vðiÞÞ a
subset VðuÞof NðvðiÞÞÞ, where NðvÞ is the set of immediate successor nodes of v in
the directed graph C, as the set of feasible continuation nodes of path u . The set
VðuÞmust satisfy the property that it does not contain any node already contained in
u. In the presence of such conditions, S is defined in a more restrictive way as the set of
all directed paths x ¼ ðvð1Þ; vð2Þ; . . . ; vðmÞÞ with the property that vð1Þ ¼ v0 and that
vðiþ1Þ 2 Vððvð1Þ; . . . ; vðiÞÞÞ for all i ¼ 1; . . . ;m� 1. Also the case where there are no
specific conditions on path x can be captured in this notation by setting in this case
VðuÞ equal to the set of all those nodes in NðlastðuÞÞ that are not already contained
in u , where lastðuÞ is the last node of u.

We define S as the set of paths in S that cannot be prolonged without vio-
lating feasibility: Formally, S is the subset of S containing all those paths x ¼
ðvð1Þ; vð2Þ; . . . ; vðmÞÞ 2 S for which VðxÞ ¼ ;. Throughout the paper, we assume that
Vðv0Þ 6¼ ; , i.e., that the start node has always a feasible successor. (Otherwise, the
empty path would be the only feasible path.) As a consequence, each path x 2 S
contains at least one node different from the start node.

It is assumed that each path x 2 S encodes a feasible solution of the given
combinatorial optimization problem. More precisely: There exists a mapping 6
which assigns to each x 2 S a unique feasible solution y of the optimization problem
in such a way that to each feasible solution y, there exists an x 2 S such that y ¼ 6ðxÞ.
It is not required that 6 is one-to-one, so a situation where for a feasible solution y,
two different paths x1 2 S, x2 2 S with 6ðx1Þ ¼ 6ðx2Þ ¼ y exist, is allowed.

In the sequel, the given combinatorial optimization problem will always be
formulated as a maximization problem with objective function f . We shall call f ðyÞ
the fitness of solution y. Since the solution space is finite, f is a bounded function. We
restrict ourselves to nonnegative fitness functions. Evidently, each optimization
problem on a finite feasible set can be transformed in an equivalent problem of the
considered form.
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The fitness of a path x 2 S is defined as f ðFðxÞÞ. By this definition, we may just as
well consider the given problem as an optimization problem on the set S. For
shortness, we abuse notation by simply writing f ðxÞ instead of f ð6ðxÞÞðx 2 SÞ.

The simplest example of a construction graph encoding is that for a travelling
salesperson problem (TSP) on m nodes 1; . . . ;m : In this case, C is the complete
directed graph on node set f1; . . . ;mg, the start node v0 is given as v0 ¼ 1, and
additional conditions on x do not exist, such that S is the set of all permuta-
tions ðx1; . . . ; xmÞ of the indices 1; . . . ;m with x1 ¼ 1. The function 6 is given as
Fðx1; . . . ; xmÞ¼ðx1; . . . ; xm; x1Þ, the last specifying a closed tour on node setf1; . . . ;mg.

Based on the definitions above, we can now present a pseudocode formulation of
the ACO algorithm, see Fig. 1. Therein, an ant is a conceptual unit performing a
random walk on the construction graph C. Nodes are represented by node indices. A
feasible continuation of a path u ¼ ðvð1Þ; . . . ; vði�1Þ; vðiÞ ¼ kÞ is an arc ðk; lÞ in Cwith
the property that l 2 VðuÞ; if this property is not satisfied, arc ðk; lÞ is called infeasible
(as a continuation of path u).

The procedures pheromone-initialization and pheromone-update have still to be
specified:

Pheromone-initialization: Each �klðnÞ is set equal to a pre-specified initial value:

�klð1Þ ¼ � ð0Þkl for all arcs ðk; lÞ:

Fig. 1 ACO’s pseudocode
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(Note that �klðnÞ needs not to be defined if ðk; lÞ is not an arc of C.) Considering the
possibility that in some construction graphs, not every arc plays the same role, we
admit cases where the initial pheromone values are not all equal.

Pheromone-update: As stated in the Introduction, we apply the Bclassical’’ fitness-

proportional update rule: In the case s ¼ 1 of a single ant,

�klðnþ 1Þ ¼ ð1� �Þ � �klðnÞ þ � � Iððk; lÞ 2 Xð1Þn Þ � f ðXð1Þn Þ; ð1Þ

where Xn
ð�Þ

is the (random) walk traversed by ant � in round n,

IðstatementÞ ¼ 1; if statement is true;
0; otherwise

�

is the indicator function, and ðk; lÞ 2 X means that arc ðk; lÞ is contained in the path
defined by walk X .

In the case of s > 1 ants, the update contributions of each ant are averaged:

�klðnþ 1Þ ¼ ð1� �Þ � �klðnÞ þ
�

s

Xs

�¼1

Iððk; lÞ 2 Xð�Þn Þ � f ðXð�Þn Þ: ð2Þ

Taking the average instead of the sum of the contributions (i.e., multiplying the sum
by �=s instead of �) is appropriate since otherwise the process would degenerate with
growing number s of ants.

2.2. Asymptotic Approximation of the Process

Let A be the set of arcs ðk; lÞ of C. By indexing the elements of A in an arbitrary
order, the pheromone values �kl can be combined to a vector � with jAj nonnegative
components, � 2 ½0;1�jAj. By �ðnÞ, we denote the vector of pheromone values �klðnÞ
ððk; lÞ 2 AÞ in round n of the ACO process. We introduce the following definition:

DEFINITION 2.1 The passage fitness of arc ðk; lÞ under a given pheromone vector
� ¼ ð�klÞ is the random variable

Iððk; lÞ 2 XÞ � f ðXÞ; ð3Þ

where X is the random walk of a fixed ant under pheromone values �kl . Thus, the
passage fitness of ðk; lÞ is identical to the fitness of the resulting walk, provided that the
walk contains arc ðk; lÞ , and zero otherwise. The expected passage fitness of ðk; lÞ
under � is the mathematical expectation of the passage fitness, i.e., the value

Fklð�Þ ¼ E Iððk; lÞ 2 XÞ � f ðXÞð Þ ¼
X

x2S:ðk;lÞ2x

PrfX ¼ xg � f ðxÞ ð4Þ

with X as defined above. It should be noted that the r.h.s. of this equation implicitly
depends on � , as indicated on the l.h.s. Informally, the expected passage fitness of arc
ðk; lÞ describes the expected Bgain’’ obtained from the random walk of an ant on the
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assumption that a walk X not passing through arc ðk; lÞ produces no gain at all, and a
walk X passing through ðk; lÞ produces just the fitness of X as its gain.

Now we consider the sequence of vectors ��ðnÞ ¼ ð��klðnÞÞ ðn � 1Þ given by the
difference equations

�klðnþ 1Þ ¼ �klðnÞ þ �f��klðnÞ þ Fklð�ðnÞÞg ðn � 1Þ;

�klð1Þ ¼ �klð1Þ ¼ � ð0Þkl

ð5Þ

for each arc ðk; lÞ 2 A , where Fklð�ðnÞÞ is the expected passage fitness under �ðnÞ.
We call ð�ðnÞÞthe associated discrete deterministic process (ADDP). Whereas in the
original ACO process, the pheromone vectors evolve in a stochastic manner, their
evolution is described by the deterministic law (5) in the ADDP.

Our process ADDP is closely related to the so-called ACO model process in
Merkle and Middendorf (2002, 2004). However, we presuppose a fitness-propor-
tional instead of an iteration-best pheromone update rule, and we formulate the
ADDP for the very broad range of arbitrary combinatorial optimization problems
using arbitrary construction graph encodings.

We shall show now that under mild conditions, the trajectories ð�ðnÞÞ of the ACO
process converge in probability to the trajectories ð�ðnÞÞ of the ADDP within each
finite time interval, as the number sof ants tends to infinity. The symbol jj�jj will be
used for the Euclidean norm.

THEOREM 2.1 Let D � ½0;1½jAj be a domain containing all possible trajectories of
ð�ðnÞÞ and ð�ðnÞÞ. Furthermore, let Fð�Þ ¼ ðFklð�ÞÞððk; lÞ 2 AÞ be the vector of the
expected passage fitness values under pheromone vector � . Suppose that Fð�Þ is
Lipschitz-continuous on D, i.e., that there exists a constant L > 0 such that

jjFð� ð1ÞÞ � Fð� ð2ÞÞjj � Ljj� ð1Þ � � ð2Þjj

for all � ð1Þ 2 D, � ð2Þ 2 D. Then, for an arbitrary integer N* � 1, an arbitrary � > 0,
and an arbitrary � > 0, there exists an integer s* ¼ s*ðN*; �; �Þ such that for all s � s*,

jj�ðnÞ � �ðnÞjj < � for all n ¼ 1; . . . ;N*

with a probability of at least 1� �. In other words: The trajectory �ðnÞ yields, with
probability arbitrarily close to one, for any given number of rounds an arbitrarily
good approximation to the trajectory �ðnÞ, provided that the number s of ants is
chosen large enough.

Proof: Let N*, � and � be given. W.l.o.g. we assume � < 1. For abbreviation, let us
set

A
ð�Þ
kl ðnÞ ¼ Iððk; lÞ 2 Xð�Þn Þ � f ðXð�Þn Þ:

By definition of the expected passage fitness,

EðAð�Þkl ðnÞÞ ¼ Fklð�ðnÞÞ:
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Combining the random variables A
ð�Þ
kl ðnÞ to vectors Að�ÞðnÞ , we re-write Eq. 2 in

vector form as

�ðnþ 1Þ ¼ �ðnÞ þ �f��ðnÞ þ 1

s

Xs

�¼1

Að�ÞðnÞg;

or alternatively as

�ðnþ 1Þ ¼ �ðnÞ þ �f��ðnÞ þ Fð�ðnÞÞ þ TðsÞðnÞg;

where the noise term TðsÞðnÞ is given by

TðsÞðnÞ ¼ 1

s

Xs

�¼1

Að�ÞðnÞ � Fð�ðnÞÞ

and has expectation 0 ¼ ð0; . . . ; 0Þ . The random variables Að�ÞðnÞð� ¼ 1; . . . ; sÞ are
i.i.d. Therefore, by the Law of Large Numbers, to an arbitrary fixed � > 0, there
exists an s*, such that

PrfjjTðsÞðnÞjj � �g < �

4N*

for all s � s*. In other words: For s � s*, jjTðsÞðnÞjj < � holds with a probability of at
least 1� �=ð4N*Þ. Since for each n, the random variable Að�Þðnþ 1Þ is conditionally
independent of Að�ÞðnÞ, conditioned on the pheromone vector �ðnþ 1Þ in round
nþ 1; ,we can multiply the lower bounds 1� �=ð4N*Þ for the probabilities of the
events jjTðsÞðnÞjj < � to obtain a lower bound for the joint event that jjTðsÞðnÞjj < �
for all n ¼ 1; . . . ;N*. This yields the bound

1� �

4N*

� �N*
� 1� �;

where the last inequality follows from the assumption � < 1 and from

ð1� yÞk � expð�4kyÞ � 1� 4ky

for 0 < y < 1=2 and k � 1.
Let us now define the function

<ð�Þ ¼ � þ � f�� þ Fð�Þg:

Since ð1 � �Þ � and Fð�Þ are Lipschitz-continuous on D, also Yð�Þ is Lipschitz-
continuous, say with a Lipschitz constant L0. Hence, with a probability of at least
1� �, for all xn ¼ 2; . . . ;N*,

jj�ðnÞ � �ðnÞjj ¼ jj<ð�ðn� 1ÞÞ þ �TðsÞðn� 1Þ �<ð�ðn� 1ÞÞjj

� � � jjTðsÞðn� 1Þjj þ L0 � jj�ðn� 1Þ � ��ðn� 1Þjj � �þ L0 � jj�ðn� 1Þ � ��ðn� 1Þjj:

Iterating this estimation and using the initial condition �ð1Þ ¼ ��ð1Þ yields that with a
probability of at least 1� �, for all n � N*,

jj�ðnÞ � �ðnÞjj � � � Ln�1
0 � 1

L0 � 1
� � � LN*�1

0 � 1

L0 � 1
:
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By the special choice � ¼ �ðL0 � 1Þ=ðLN*�1
0 � 1Þ, we obtain the assertion of the

theorem. Í
For the application of Theorem 2.1, an important question is how the Lipschitz

condition can be verified. As it will be seen in the following sections, Fklð�Þ typically
turns out as a continuously differentiable function on

D0 ¼ f� 2 ½0;1½jAjj
X

l2NðkÞ
�kl > 0 for all k with NðkÞ 6¼ ;g: ð6Þ

Now, if Fklð�Þ is continuously differentiable on some compact set D, then the
Lipschitz property follows. Thus, the crucial question is whether or not the natural
domain D0 of Fklð�Þ can be restricted to a compact (i.e., bounded and closed) subset
D containing all possible trajectories of original ACO process and of the ADDP.
For the trajectories �ðnÞand �ðnÞðn ¼ 1; . . . ;N*Þwithin a fixed bounded time inter-
val of N* rounds, this question can be answered by yes: From (2), it is easy to show
by induction that �klðnÞ is bounded above by

�max ¼ max
ðk;lÞ2A

�
ð0Þ
kl þmax

x2S
f ðxÞ:

Furthermore, �klðnÞ is bounded below by

�minðN*Þ ¼ min
ðk;lÞ2A

�
ð0Þ
kl � ð1� �ÞN* > 0:

as long as n � N*. Therefore, the compact set

D ¼ ½�minðN*Þ; �max�jAj

satisfies the requirements above. It would be desirable to have a compact restriction
D of D0 not depending on N*, but the existence of such a restriction can only be
shown for special construction graphs as, e.g., the Bchain’’ graph defined in the next
section.

To give a clearer picture of the fundamental dynamics of the ADDP, we consider
the asymptotic case of an evaporation factor � near zero. This asymptotics is mo-
tivated by the fact that in theoretical convergence results, decreasing � increases the
probability that convergence to the optimal solution takes place (see Gutjahr 2000,
2002, 2003a). It is obvious that if � is reduced, such that pheromone changes in each
round become small, a comparably larger number of rounds must be executed to get
substantial changes. Therefore, in order to be able to plot the asymptotic behavior,
it is convenient to re-scale the time axis in such a way that the product of � and
the number M of rounds per time unit remains constant. Without loss of generality,
we can assume that it is one, i.e., we assume that � ¼ 1=M. In this scaling, a round
takes dt ¼ 1=M ¼ � time units.

We now define the associated continuous deterministic process (ACDP) as the
limit of the (re-scaled) ADDP as dt! 0: With ~�ðtÞ denoting the pheromone vector
at time t in the re-scaled process, (5) yields:

~�klðt þ dtÞ ¼ ~�klðtÞ þ dt � f�~�klðtÞ þ Fklð~�ðtÞÞg:
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Letting dt! 0, we obtain that the ACDP is given by the system

d~�kl

dt
¼ Fklð~�Þ �~�kl ððk; lÞ 2 AÞ ð7Þ

of ordinary differential equations, where ~� ¼ ð~�klÞ is the pheromone vector at time t,
and Fklð~�Þ is the expected passage fitness of arc ðk; lÞ under ~� . We call (7) the basic
law of the ACDP.

REMARK 1 We do not make any assertion on convergence of the trajectories of the
ACO process to those of the ACDP. Such a result would require a deeper analysis:
In Theorem 2.1, we have assumed that the number of rounds is bounded by
some fixed N*. For investigating the asymptotic case dt! 0, it would be necessary
to estimate the tradeoff between a growing number of rounds on the one hand (for
that, the influence of N* on the accuracy of the approximation would have to be
made explicit), and the diminishing value of � on the other hand. This type of
analysis is beyond the scope of the present paper. A sort of Blocal convergence’’
could easily be derived from Theorem 2.1, but we conjecture that a stronger con-
vergence result holds without being able to prove it at the moment.

REMARK 2 The described re-scaling of the time axis allows to parallel the real ACO
process with the ACDP. E.g., if � is chosen as 0:01, and a round takes 10�5 seconds
on a given computer, then a time unit is defined as 10�5 �M ¼ 10�5 � ð1=�Þ ¼ 10�3

seconds. If it is possible to compute the process trajectory of the ACDP, it can be
used to tentatively predict the convergence speed of ACO via this scaling. For an
example, see Fig. 5 and the remarks on it in Subsection 5.2.

REMARK 3 In Theorem 2.1, we have described the ADDP (and hence finally also
the ACDP) as a limiting case for a situation where the number s of ants tends to
infinity. A closer consideration shows that for deriving the ACDP, it is probably not
necessary to have s!1; it suffices to work with a fixed number s of ants and to split
the number M of rounds per time unit into two factors M1 and M2 by combining M1

subsequent rounds to a period and executing M2 periods per time unit. By a
straightforward analysis, it can be shown that as M2 !1, pheromone changes
during each fixed period get infinitesimally small, such that the overall effect
achieved in the considered period is in a first-order approximation the same as
that of a single round with s �M1 ants. Letting M1 !1produces then again the
difference Eq. 5. We emphasize that this consideration is Bheuristic’’; a mathemat-
ical convergence result would have to make the indicated line of argumentation
more precise.

3. Expected Fitness in the Associated Continuous Deterministic Process

In this section, we derive a simple relation allowing to compute the expected fitness
of the walk of an ant, given a current pheromone vector ~�. We do this on the implicit
assumption that ~� evolves over time according to the ACDP, i.e., under the basic
law (7). Note that although the pheromone dynamics in the ACDP is deterministic,
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ants select their walks based on the current pheromone still in a stochastic fashion,
except in degenerate cases.

For the sake of a simpler notation, we shall write � instead of ~� from now on,
even though referring to the ACDP. Since the context makes it always clear whether
� is considered as a function of round index n or of time parameter t, this cannot lead
to misunderstandings.

PROPOSITION 3.1 Let k be a node of the construction graph C with the property that k
must be traversed in each feasible walk, and that k cannot be the last node of the walk.
By �ð�Þ ¼ E� ð f ðXÞÞ we denote the expected fitness of the walk chosen by a fixed ant
under pheromone vector � . Then,

�ð�Þ ¼ ’kð�Þ þ ’� kð�Þ; ð8Þ

where

’kð�Þ ¼
X

l2NðkÞ
�kl ð9Þ

is the total pheromone flow out of node k (recall that NðkÞ denotes the set of im-
mediate successor nodes of k in the directed graph C), and �’kð�Þ denotes the derivative
d’kð�ðtÞÞ=dt.

Proof: From (7), we obtain by summation over all indices l 2 NðkÞ that

d’k

dt
¼
X

l2NðkÞ
Fklð�Þ � ’kð�Þ: ð10Þ

Since k is traversed in each walk and must have a successor on each walk, the set of
all walks x can be classified according to the node l 2 NðkÞ traversed after k on x.
Hence by (4),

�ð�Þ ¼ E�ð f ðXÞÞ ¼ E�

X
l2NðkÞ

Iððk; lÞ 2 XÞ � f ðXÞ

0
@

1
A

¼
X

l2NðkÞ
E� Iððk; lÞ 2 XÞ � f ðXÞð Þ

¼
X

l2NðkÞ
Fklð�Þ:

Therefore (10) yields

’� kð�Þ ¼ �ð�Þ � ’kð�Þ: Í
REMARK The start node v0, shortly denoted as node 0, is guaranteed to be traversed
by each feasible walk, and we have assumed that it always has at least one feasible
successor. Therefore, the equation

�ð�Þ ¼ ’0ð�Þ þ ’� 0ð�Þ ð11Þ

must hold.
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PROPOSITION 3.2 In a situation where pheromone has become stationary, i.e., where
�� kl ¼ 0 for each ðk; lÞ, one has

�ð�Þ ¼ ’kð�Þ ð12Þ

for each node k with the property that it is traversed by each feasible walk, and that k
cannot be the last node on the walk. In particular, the expected passage fitness in a
stationary situation is equal to the total pheromone flow out of the start node v0.

Proof: Follows immediately from (8) and from the fact that �� ¼ 0 entails ’�k ¼ 0.

Í
EXAMPLE 3.1 Consider the special case of a problem where all feasible paths x 2 S
have identical fitness f ðxÞ ¼ �0 ¼ const . In this case, �ð�Þ ¼ �0 for all � , such that
(11) yields the inhomogeneous linear differential equation

y0 þ y� 0 ¼ �0 ð13Þ

for the function y0 ¼ y0ðtÞ ¼ ’0ð�ðtÞÞ. The general solution of (13) is

y0 ¼ �0 þ ce�t;

and for the initial value y0ð0Þ ¼ y
ð0Þ
0 , one gets the special solution

y0 ¼ �0 þ ðyð0Þ0 � �0Þe�t:

Thus, the pheromone flow y0 ¼ ’0ð�ðtÞÞout of the start node converges to the con-
stant fitness �0 according to a negative-exponential function.

4. Three Types of Construction Graphs for Subset Problems

The theory developed above can be applied for several purposes. For example, the
convergence rate of ACO for specific test functions, depending on the problem
instance size, can be investigated. We leave this issue outside the scope of the present
paper (results of this type will be presented in Gutjahr (2006), but focus instead on
another possible application: a comparative theoretical evaluation of diverse
construction graphs. To outline this application, let us consider the wide class of
problems of subset selection type, i.e., problems where the feasible set is the set
f0; 1gm of binary vectors of length m, or, in other terms, the set of all subsets of a
given collection of m items 1; . . . ;m. Examples are (linear or nonlinear) knapsack
problems, max-clique problems, or binary portfolio selection problems.

Different types of construction graphs can be designed for the application of
ACO to such problems. A main criterion for the decision on a suitable construction
graph is whether or not there is an a-priori order between the items 1; . . . ;m among
which a choice has to be made. If there is no such a-priori order, it is arbitrary which
item gets which of the labels 1; . . . ;m, provided that item characteristics are assigned
correctly to the labels. E.g., the three problem types mentioned above have this
symmetry property. (An example for a problem lacking it is obtained in the case
where the binary vector of length m is a binary encoding of an integer between 0 and
2m � 1; here, bit positions have a pre-defined order.) In this paper, we restrict
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ourselves to the case where an a-priori order in which the items are arranged does
not exist. In this case, also the construction graph encoding should be such that re-
arrangements of the items (together with their characteristics) leave the results
essentially invariant. More precisely, if item i is re-named as item �ðiÞði ¼ 1; . . . ;mÞ,
where � is some permutation of 1; . . . ;m, then the distribution of the states at time t
of the resulting ACO process should differ from that in the original process only by
the assignment between item labels and items. In the sequel, we describe three types
of construction graphs satisfying this invariance condition. In each case, a solution is
represented as a vector x ¼ ðx1; . . . ; xmÞ with xi 2 f0; 1gði ¼ 1; . . . ;mÞ, and the start
node v0 of C is the node 0.

1. Chains: The node set of C consists of the nodes 1; . . . ;m, the nodes :1; . . . ;:m
and auxiliary nodes 0; . . . ;m. The arc set consists of the arcs ði� 1; iÞ, ði� 1;:iÞ,
ði; iÞ and ð:i; iÞði ¼ 1; . . . ;mÞ. The choice of node i resp. node :i means that xi ¼ 1
resp. xi ¼ 0. An example is shown in Fig. 2.

2. Disks: The node set of C consists of the nodes 0, 1 and the nodes 1; . . . ;m. The
arc set consists of the arcs ð0; iÞ, the arcs ði; 1Þði ¼ 1; . . . ;mÞ, the arcs ði; jÞði 6¼ jÞ,
and the arc ð0; 1Þ. Choice of node i means that xi ¼ 1. If i is not chosen during
the walk, xi ¼ 0. An example is shown in Fig. 3.

3. Drums: The node set of C consists of the node 0, the nodes 1; . . . ;m and the nodes
:1; . . . ;:m. The arc set consists of the arcs ð0; iÞ, the arcs ð0;:iÞði ¼ 1; . . . ;mÞ, the
arcs ði; jÞði 6¼ jÞ, the arcs ð:i;:jÞði 6¼ jÞ, the arcs ði;:jÞði 6¼ jÞ and the arcs ð:i; jÞ

Fig. 2 Chain construction graph for m ¼ 4

Fig. 3 Disk construction graph for m ¼ 4.

Undirected links are bidirectional, i.e., each of

them corresponds to two directed arcs with

opposite orientation
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ði 6¼ jÞ. As an additional constraint, both node i and :i are forbidden after node i
or :i has been visited, i.e., VðuÞ contains only those nodes i and :i that do not
occur in u , neither in their positive form i nor in their negated form :i (cf.
Subsection 2.1). Interpretations are as in the chain case. An example is shown
in Fig. 4.

5. Comparisons of the Construction Graphs on Test Functions

In this section, we compare the three construction graphs introduced in Section 4 on
some basic test functions: indicator functions with one or two optima, and the well-
known OneMax test function (see, e.g., Prügel-Bennett and Rogers, 2001). All
statements refer to the ACDP.

5.1. Indicator Functions

One of the most elementary fitness functions that can be imagined as a test function
is an indicator function

f ðxÞ ¼ Iðx 2 S*Þ

stating whether a solution x from a given set S* � S of Bgood solutions’’ has been
found or not. We will derive results on the expected fitness �ð�Þ ¼ E� ð f ðXÞÞ for some
test functions from this class on the three construction graphs. Let us remark that
the emphasis in this context is not on how fast a Bgood’’ solution will eventually be
found (without additional hint, a heuristic can perform this task only by trial and
error anyway), but rather on how efficient the heuristic is in sticking to already seen
good solutions. The reason why the last-mentioned aspect is important lies in the
fact that good overall solutions are often composed of good partial solutions: If, e.g.,
f is given as f ðxÞ ¼ gð f 1ðxjA1Þ; . . . ; fKðxjAKÞÞ, where g is an increasing function of K
real variables, A1; . . . ;AK forms a partition of the set f1; . . . ;mg of bit positions,

Fig. 4 Drum construction graph for m ¼ 4.

Undirected links are bidirectional,

i.e., each of them corresponds to two

directed arcs with opposite orientation
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xjAk 2 f0; 1gjAkj is derived from x 2 f0; 1gm by restriction to the bit positions con-
tained in Ak , and f k : f0; 1gjAkj ! ½0;1½ is a fitness function on the binary vectors
defined on the block Ak ðk ¼ 1; . . . ;KÞ, then for approaching the optimum of f
quickly, it is not sufficient that the partial optimizers ðxkjAkÞ* of Fkðk ¼ 1; . . . ;KÞ are
found at some times by chance, unless they are preserved after having been found.
So, ideally, the expected fitness on each block Ak should continually increase and
converge (quickly) to its maximum possible value.

5.1.1. Indicator Functions with a Single Optimizer

In Subsection 5.1.1, we assume that jS*j ¼ 1, i.e., that S* consists of a single optimal
solution x*, and choose the test function as f ðxÞ ¼ Iðx ¼ x*Þ.

(a) Behavior of the chain

Consider a chain with m links. Because of symmetry between Bup moves’’ and
Bdown moves’’ on the chain and their mutual independence, we can restrict our-
selves without loss of generality to the special case x* ¼ ð1; 1; . . . ; 1Þ, i.e., we consider
the fitness function f ðxÞ ¼ Iðx1 ¼ . . . ¼ xm ¼ 1Þ. Under these circumstances, there is
complete symmetry between the m chain links. Therefore, at each time t, all phero-
mone values �i�1;i ði ¼ 1; . . . ;mÞ will be identical; for abbreviation, we set u ¼
uðtÞ ¼ �i�1;i. Analogously, at each time t,all all pheromone values �i�1;:i ði ¼ 1; . . . ;mÞ
will be identical; we set w ¼ wðtÞ ¼ �i�1;:i . We write Fu resp. Fw instead of Fi�1;i resp.
Fi�1;:i. The expected passage fitness of arc ð0; 1Þ is immediately obtained as

Fu ¼
u

uþ w

� �m

;

and the expected passage fitness of arc ð0;:1Þ is Fw ¼ 0. Thus, the ACDP is given
by the system

u� ¼ u

uþ w

� �m

�u; w� ¼ �w ð14Þ

of ordinary differential equations. The second equation of (14) has solution w ¼
w0e�t, where w0 is the initial value for w at time t ¼ 0, hence the first equation of
(14) reduces to a differential equation in one variable,

u� ¼ 1þ w0e�tu�1
� ��m�u: ð15Þ

By Proposition 3.1, the expected fitness of an ant’s solution evolves over time
according to

� ¼ ðuþ wÞ þ ðu� þ w� Þ ¼ u

uþ w

� �m

¼ 1þ w0e�tu�1
� ��m

: ð16Þ
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By (14),

d

dt

w

u
¼ � w

u2

u

uþ w

� �m

� 0;

hence (14) yields u� � 	 � u with 	 ¼ ð1þ w0=u0Þ�m > 0, where u0 is the initial value
for u at time t ¼ 0. Thus, if u � 	=2, we have u� > 0, and therefore u cannot become
smaller than 	=2. As a consequence, (16) implies �! 1 as t!1.

We see that the chain is asymptotically efficient for the considered test function in
the sense that the expected fitness tends to its optimal value.

(b) Behavior of the disk

Interestingly, the disk construction graph already fails at the very simple test
function f ðxÞ ¼ Iðx ¼ x*Þ. To see this, let us consider the special case x*1 ¼ x*2 ¼ 1,
x*i ¼ 0 ði ¼ 3; . . . ;mÞ . (Contrary to the chain, the disk construction graph does
not treat the decisions xi ¼ 1 and xi ¼ 0 in a symmetric way, so we cannot restrict
ourselves here without loss of generality to the special case x* ¼ ð1; . . . ; 1Þ). For
abbreviation, set u ¼ �0;1 ¼ �0;2 , y ¼ �1;1 ¼ �2;1 , z ¼ �1;2 ¼ �2;1, a ¼ �0;i for i ¼
3; . . . ;m, b ¼ �i;1 for i ¼ 3; . . . ;m , c ¼ �i; j for i; j 2 f3; . . . ;mg and i 6¼ j, d ¼ �i;j for
i 2 f1; 2g and j 2 f3; . . . ;mg, e ¼ �i;j for i 2 f3; . . . ;mg and j 2 f1; 2g, and g ¼ �0;1 .
(Therein, equations between � -values hold due to symmetry.) Similarly as for the
chain under (a), we abbreviate the corresponding expected passage fitness values by
Fu, Fy, etc.

Since, as it is easily seen, Fa ¼ Fb ¼ Fc ¼ Fd ¼ Fe ¼ Fg ¼ 0, in a stationary situ-
ation, a ¼ b ¼ c ¼ d ¼ e ¼ g must hold. Therefore, Proposition 3.2 yields that

� ¼ 2uþ ðm� 2Þaþ g ¼ 2u ð17Þ

in the stationary case. Moreover, the expected passage fitness of arc ð0; 1Þ is easily
computed as

Fu ¼
u

2uþ ðm� 2Þaþ g
� z

zþ yþ ðm� 2Þd �
y

yþ ðm� 2Þd ;

which reduces to

Fu ¼
1

2
� z

zþ y
ð18Þ

in the stationary case. Similarly, it turns out that in the stationary case, the expected
passage fitness values Fz and Fy of arc ð1; 2Þ and of arc ð1; 1Þ, respectively, become
equal to the r.h.s. of (18) as well. (Note that ð0; 2; 1; 1Þ is the only path with positive
fitness containing ð1; 1Þ. Therefore, by (7), in steady state

u ¼ 1

2
� z

zþ y
; z ¼ 0 or 2ðzþ yÞ ¼ 1; and y ¼ 1

2
� z

zþ y
: ð19Þ
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From the last equation, we get z ¼ 2yðzþ yÞwhich must be equal to y by the equa-
tion before, unless z ¼ 0. The first equation of (19) and (17) leave u ¼ 1=4 and
hence � ¼ 1=2 as the only possible stationary values for which � > 0. Therefore, the
disk is asymptotically inefficient at the considered test problem: the expected fitness
needs not to converge to its optimal value.

(c) Behavior of the drum

As in the case of the chain, we can assume x* ¼ ð1; . . . ; 1Þ without loss of gener-
ality. Let u ¼ �0;i , w ¼ �0;:i ði ¼ 1; . . . ;mÞ, x ¼ �i;j , y ¼ �i;:j , z ¼ �:i;j and s ¼ �:i;:j

ði ¼ 1; . . . ;m; j ¼ 1; . . . ;m; i 6¼ jÞ. One finds

Fu ¼ Fx ¼
u

mðuþ wÞ
x

xþ y

� �m�1

; ð20Þ

and Fw ¼ Fy ¼ Fz ¼ Fs ¼ 0. The equation for Fx follows from the facts that (a) the
probability that the current walk has fitness 1 is

u

uþ w

x

xþ y

� �m�1

;

and that (b) out of all paths with fitness 1, a fraction of ðm�1Þðm�2Þ!=m!¼ 1=m
contains a fixed given arc of type ði; jÞ, say arc ð1; 2Þ. Using Fu ¼ Fx , which implies
u� � x� ¼ x� u and hence u� x ¼ ðu0 � x0Þe�t , the equations in (20) can be com-
bined to a single differential equation for u or x.

In the stationary situation, we have w ¼ y ¼ z ¼ s ¼ 0, and hence (from u� ¼ 0
and x� ¼ 0)

u ¼ 1

m
and x ¼ 1

m
:

The stationary value of � is therefore � ¼ mðuþ wÞ ¼ 1. Thus, the drum is asymp-
totically efficient for the considered test function.

5.1.2. Indicator Functions with Two Optimizers

Let us now consider the case jS*j ¼ 2 where S* consists of two (equally good) op-
timizers xð1Þ¼ðxð1Þ1 ; . . . ; xm

ð1ÞÞ and xð2Þ¼ðxð2Þ1 ; . . . ; x
ð2Þ
m Þ, such that f ðxÞ¼ Iðx ¼ xð1Þ or

x ¼ xð2ÞÞ: It turns out that in this case, the behavior of the ACDP heavily depends on
how similar the two solutions xð1Þ and xð2Þ are. Measuring similarity by the Hamming
distance

dðxð1Þ; xð2ÞÞ ¼
Xm

i¼1

Iðxð1Þi ¼ x
ð2Þ
i Þ;

we focus the analysis on the two extreme cases dðxð1Þ; xð2ÞÞ ¼ 1 and dðxð1Þ; xð2ÞÞ ¼ m.
In view of the results of the previous subsection, we restrict ourselves to chain and
drum. It is easy to see that for these types of construction graphs, no loss of
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generality is caused by the assumption that xð1Þ ¼ ð1; 1; 1; . . . ; 1Þ and xð2Þ ¼
ð0; 1; 1; . . . ; 1Þ in the case of Hamming distance 1, resp. by the assumption that
xð1Þ ¼ ð1; 1; 1; . . . ; 1Þ and xð2Þ ¼ ð0; 0; 0; . . . ; 0Þ in the case of Hamming distance m.
Our main interest will be the question whether the construction graphs are
asymptotically efficient or not.

(a) Behavior of the chain

(a1) Minimal Hamming distance

For xð1Þ and xð2Þas defined above for Hamming distance 1, the test function
becomes f ðxÞ ¼ Iðx2 ¼ x3 ¼ . . . ¼ xm ¼ 1Þ. Let a ¼ �0;1 , b ¼ �0;:1, c ¼ �i;iþ1,
d ¼ �i;:ðiþ1Þði ¼ 1; . . . ;m� 1Þ. One finds

Fa ¼
a

aþ b
� c

cþ d

� �m�1

;

Fb ¼
b

aþ b
� c

cþ d

� �m�1

;

Fc ¼
c

cþ d

� �m�1

;

and Fd ¼ 0. Therefore, in steady state, d ¼ 0, c ¼ 1, and aþ b ¼ 1, provided that
ða; bÞ 6¼ ð0; 0Þ. Because of a� þ b

� ¼ ðc=ðcþ dÞÞm�1 � ðaþ bÞ, the point ða; bÞ ¼
ð0; 0Þ is repelling. Thus, in a stable fixed point, � ¼ aþ b ¼ 1 must hold, which is
optimal.

(a2) Maximal Hamming distance

For xð1Þ and xð2Þ as defined above for the Hamming distance m, the test
function becomes f ðxÞ¼ Iðx1¼ x2¼ . . .¼ xmÞ. With the abbreviations a¼ �i�1;i

and b ¼ �i�1;:iði ¼ 1; . . . ;mÞ, one finds

Fa ¼
a

aþ b

� �m

and Fb ¼
b

aþ b

� �m

;

such that for the stationary case a� ¼ b
� ¼ 0, the conditions

a ¼ 0 or a m�1 ¼ ðaþ bÞm;

b ¼ 0 or b m�1 ¼ ðaþ bÞm

have to be satisfied, which imply either a ¼ b ¼ 0 or a ¼ b ¼ 1=2m. As a
consequence, � ¼ aþ b ¼ 1=2m�1, except in the degenerate case a ¼ b ¼ 0 ,
where � ¼ 0. We see that the chain is here asymptotically (highly) inefficient.
The reason is that in the ACDP, the chain does not manage the symmetry break
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between the two solutions. (Although they refer to a different pheromone
update scheme, the results in Gutjahr (2003a) indicate that the original ACO
process could possibly achieve such a symmetry break by means of its random
perturbations, albeit at the price of a very slow convergence. We must skip a
discussion of this interesting question for the sake of brevity).

(b) Behavior of the drum

(b1) Minimal Hamming distance

Again, let f ðxÞ ¼ I ðx2 ¼ x3 ¼ . . . ¼ xm ¼ 1Þ, and let u¼ �0;1 ¼ �0;:1, w ¼ �0;i ,
z ¼ �0;:i, a ¼ �1;i ¼ �:1;i, b ¼ �1;:i ¼ �:1;:i, a0 ¼ �i;1 ¼ �i;:1, b0 ¼ �:i;1 ¼ � : i; : 1

ði ¼ 2; . . . ; mÞ, x ¼ �i;j, y ¼ �i;:j, y0 ¼ �:i;j, s ¼ �:i;:jði; j 2 f2; . . . ;mg; i 6¼ jÞ. We
show that the drum is asymptotically efficient, i.e., that � must take its optimal
value 1 in a stationary situation. To see this, observe that

� ¼ 2uþ ðm� 1Þðwþ zÞ:

In the stationary case, z ¼ b ¼ b0 ¼ y ¼ y0 ¼ s ¼ 0 by analogous arguments as in
Subsection 5.1.1. Distinguish two possible cases for the stationary situation:

1. u > 0: We compute Fu by considering (without loss of generality) the arc
ð0; 1Þ. Given that node 1 has been reached, the walk is continued with
probability one in such a way that the fitness value 1 is reached, since
b ¼ y ¼ 0. Therefore,

Fu ¼
u

2uþ ðm� 1Þðwþ zÞ � 1 ¼ u

�
:

From 0 ¼ u� ¼ Fu � u, we get � ¼ 1.
2. u ¼ 0 : In this case, we compute Fw by considering (without loss of gen-

erality) the arc ð0; 2Þ. We obtain

Fw ¼
w

2uþ ðm� 1Þðwþ zÞ ¼
1

m� 1
:

From 0 ¼ w� ¼ Fw � w, one gets w ¼ 1=ðm� 1Þ and hence

� ¼ 2uþ ðm� 1Þðwþ zÞ ¼ 1;

which shows the assertion.

(b2) Maximal Hamming distance

As before, let f ðxÞ ¼ Iðx1 ¼ x2 ¼ . . . ¼ xmÞ. Setting u ¼ �0;i ¼ �0;:i ,
x ¼ �i;j ¼ �:i;:j and y ¼ �i;:j ¼ �:i;j, we obtain

Fu ¼ Fx ¼
1

2m

x

xþ y

� �m�1

;

and Fy ¼ 0 . The equation for Fx follows from the fact that out of the 2m!
equiprobable paths with fitness 1, there are ðm� 1Þðm� 2Þ! ¼ ðm� 1Þ! paths
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containing a fixed arc ði; jÞ or ð:i;:jÞ, say arc ð1; 2Þ, and that the probability that
the walk has fitness 1 is ðx=ðxþ yÞÞm�1.

In the non-stationary case,

x� ¼ 1

2m

x

xþ y

� �m�1

�x;

and y� ¼ �y, such that y ¼ y0e�t , hence x satisfies the differential equation

x� ¼ 1

2m
1þ y0e�tx�1
� ��mþ1�x

similar to (15). Furthermore,

� ¼ 2mðuþ u� Þ ¼ 2mFu ¼
x

xþ y

� �m�1

¼ 1þ y0e�tx�1
� ��mþ1

:

Analogously as in Subsection 5.1.1 (a), the case x! 0 as t!1 can be excluded,
so by the last equation, �! 1 as t!1, i.e., asymptotic efficiency holds. We see
that in this setting, the drum outperforms the chain.

Fig. 5 Dynamics of the chain for OneMax, m ¼ 50 and u0 ¼ w0 ¼ 25. The current expected fitness

and the variables u and v are plotted as relative values, normalized by m ¼ 50, which is the maximum

of the objective function
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5.2. The OneMax Function

In this section, we deal with the so-called OneMax fitness function,

f ðxÞ ¼
Xm

i¼1

xi;

i.e., the aim is now to maximize the number of 1-bits. Contrary to the test functions
in Subsection 5.1, the OneMax function gives Bguidance’’ for an evolution of the
search process towards the maximizer x* ¼ ð1; . . . ; 1Þ.

As in Subsection 5.1.2, we consider only chain and drum, in view of the
elementary inefficiency of the disk detected in Subsection 5.1.1.

(a) Behavior of the chain

The OneMax function preserves symmetry between the m links of the chain, so
it suffices to consider the two values u ¼ �i�1;i and w ¼ �i�1;:i ði ¼ 1; . . . ;mÞ. The
passage fitness can be computed as follows: Let us call a bit xi with value xi ¼ 1 a hit,
such that the fitness is the number of hits. For each i , the probability of a hit is
u=ðuþ wÞ. Hence, the expected number of hits is m � u=ðuþ wÞ, the passage fitness
of arc ð0; 1Þ (i.e., the probability that ð0; 1Þ is traversed, multiplied by the expected
number of hits in this case) is

Fu ¼
u

uþ w
� u

uþ w
ðm� 1Þ þ 1

� �
¼ uðmuþ wÞ
ðuþ wÞ2

; ð21Þ

and the passage fitness of arc ð0;:1Þ is

Fw ¼
w

uþ w
� u

uþ w
ðm� 1Þ ¼ ðm� 1Þuw

ðuþ wÞ2
: ð22Þ

We have

� ¼ Fu þ Fw ¼
mu

uþ w
:

Solving u� ¼ Fu � u ¼ 0 and �w ¼ Fw � w ¼ 0 yields either u ¼ w ¼ 0 or u ¼ m and
w ¼ 0. It is easy to see that the first possible fixed point ð0; 0Þ is repelling:
Straightforward calculation shows that ðd=dtÞðw=uÞ � 0 and hence w=u � w0=u0,
where u0 and w0 are the initial values of u and w, respectively. Therefore, with

 ¼ uþ w, we obtain



� ¼ u� þ w� ¼ ðFu � FwÞ � ðuþ wÞ ¼ m

1þ w=u
� 
 � 	 � 


with 	 ¼ m=ð1þ w0=u0Þ > 0. Thus, if 
 � 	=2 , we have 

�
> 0, which means that 


cannot reach the value 0. So ðu;wÞ can only converge to the second possible fixed
point ðm; 0Þ , where � ¼ m . Since max f ðxÞ ¼ m, this means that the chain is
asymptotically efficient for the OneMax function.

Equations 21 and 22 enable a numerical solution of (7). Figure 5 shows the
resulting dynamics for m ¼ 50 over a period of 100 time units, starting with initial
values u0 ¼ w0 ¼ m=2 ¼ 25. (The initial value m=2 for each of the two variables has
been chosen since the stationary value of uþ v is m.) The uppermost curve shows
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that the expected fitness reaches 90% of its optimal value in about 80 time units.
With the numbers assumed in Remark 2 of Section 2, e.g., these would be 0:08
seconds.

(b) Behavior of the drum

Again using symmetry, it suffices to consider the values u ¼ �0;i and w ¼ �0;:i

ði ¼ 1; . . . ;mÞ together with the values x ¼ �i;j , y ¼ �i;:j , z ¼ �:i;j and s ¼ �:i;:j

ði ¼ 1; . . . ;m; j ¼ 1; . . . ;m; i 6¼ jÞ. Omitting the start node 0, we can describe a walk
W by a sequence ðW1; . . . ;WmÞ , where Wi 2 f�ðiÞ;:�ðiÞg with a permutation � of
f1; . . . ;mg. By the symmetry of the OneMax function, all m! permutations � occur
with the same probabilities in the walks on the drum. Let us fix a pair of different
integers from f1; . . . ;mg, say ð1; 2Þ. We classify the possible occurrences of ð1; 2Þ as
two successive elements in � by the position i of the first element 1 ð1�i�m�1Þ.
Obviously, the probability thatð�ðiÞ; �ðiþ1ÞÞ¼ð1; 2Þ is

ðm� 2Þ!
m!

¼ 1

mðm� 1Þ :

Note that in the case ð�ðiÞ; �ðiþ 1ÞÞ ¼ ð1; 2Þ, element 1 may occur in original or in
negated form (as 1 resp. as :1) in the walk W; the same holds for element 2.

To compute the expected passage fitness values of ð1; 2Þ, ð1;:2Þ, ð:1; 2Þ and
ð:1;:2Þ as well as those of ð0; 1Þ and ð0;:1Þ, we use an auxiliary graph H ¼ Hm, as
depicted in Fig. 6. Therein, the nodes of the drum are re-ordered according to the
currently chosen permutation � of node indices, such that the (irrelevant) Bnames’’ of
the items among which the algorithm selects are factored out. Node K0 in H
corresponds to node 0 in C. Transition from K0 to K

ð1Þ
1 resp. K

ð0Þ
1 in H corresponds to

transition from 0 to �ð1Þresp. to :�ð1Þ in C, transition from Ki
ð1Þ to K

ð1Þ
iþ1 resp. to K

ð0Þ
iþ1

corresponds to transition from �ðiÞ to �ðiþ 1Þ resp. to :�ðiþ 1Þ, and transition from
Ki
ð0Þ to K

ð1Þ
iþ1 resp. to K

ð0Þ
iþ1 corresponds to transition from :�ðiÞ to �ðiþ 1Þ resp. to

:�ðiþ 1Þ. To each feasible walk in C , there corresponds a complete directed walk
from K0 to Kmþ1 in H.

Fig. 6 Auxiliary graph H ¼ Hm
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We use the following abbreviations for the transition probabilities, computed from
the pheromone values u, w, x, y, z and s (cf. Fig. 6):

a ¼ u=ðuþ wÞ; b ¼ w=ðuþ wÞ ðaþ b ¼ 1Þ;

c ¼ p11 ¼ x=ðxþ yÞ; d ¼ p10 ¼ y=ðxþ yÞ ðcþ d ¼ 1Þ;

e ¼ p01 ¼ z=ðzþ sÞ; g ¼ p00 ¼ s=ðzþ sÞ ðeþ g ¼ 1Þ:

Furthermore, we introduce the following notation: For a partial walk W in H , let
UðWÞdenote the number of 1-bits in W, and let PðWÞ denote the probability that the
partial walk W is chosen, given the random walk starts in the first node of W . For
two nodes K, K0 in W , let

AðK;K0Þ ¼ set of complete walks in H that traverse arc ðK;K0Þ;

and

BðK;K0Þ ¼ set of partial walks in H starting in K and ending in K0:

We distinguish six different types of arcs in H (the two arcs not covered by this
classification are not relevant for the analysis):

& type (1): arc ðK0;K
ð1Þ
1 Þ,

& type (0): arc ðK0;K
ð0Þ
1 Þ,

& types ðk1; k2Þ with k1 2 f0; 1g, k2 2 f0; 1g: arcs ðKi
ðk1Þ;K

ðk2Þ
iþ1 Þ.

The arcs in C are classified according to the types of the corresponding arcs in H ,
e.g., arc ði;:jÞ is of type ð1; 0Þ.

By Fð1Þ, Fð0Þ and Fðk1;k2Þ, we denote the expected passage fitness (in C) of an arc of
type (1), (0) and ðk1; k2Þ, respectively. Finally, for a complete random walk W in Hi

ði � mÞ, we set:

�
½k�
i ¼ PrfW contains Ki

ðkÞg ðk ¼ 1; 0Þ;

 
½k�
i ¼ EðUðWÞ � IðW contains K

ðkÞ
i ÞÞ ðk ¼ 1; 0Þ;

�
½ j�
i ¼ EðUðWÞ jW contains K

ð jÞ
1 Þ ð j ¼ 1; 0Þ;

�
ð j;kÞ
i ¼ PrfW contains Ki

ðkÞ jW contains K
ð jÞ
1 g ð j ¼ 1; 0; k ¼ 1; 0Þ;

 
ð j;kÞ
i ¼ EðUðWÞ � IðW contains Ki

ðkÞÞ jW contains K
ð jÞ
1 Þ ð j ¼ 1; 0; k ¼ 1; 0Þ:

Obviously,

�
½k�
i ¼ a�

ð1;kÞ
i þ b�

ð0;kÞ
i ð23Þ

and

 
½k�
i ¼ a 

ð1;kÞ
i þ b 

ð0;kÞ
i : ð24Þ
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It is immediately seen that

Fð1Þ ¼
1

m
a�½1�m ; Fð0Þ ¼

1

m
b�½0�m : ð25Þ

The factor 1=m results from the fact that for a fixed arc ð0; iÞ or ð0;:iÞ of type 1 or 0,
respectively, the probability that �ð1Þ ¼ i is 1=m.

Somewhat more complicated is the computation of the remaining passage fitness
values. We fix two different indices, say 1 and 2, classify the possible occurrences of
ð1; 2Þ in � according to the (possible) position i of 1 (as described above) and recall
that the probability for ð�ðiÞ; �ðiþ 1ÞÞ ¼ ð1; 2Þ is 1=ðmðm� 1ÞÞ. By this consider-
ation, we obtain

Fðk1;k2Þ ¼
Xm�1

i¼1

1

mðm� 1Þ F
ðiÞ
ðk1;k2Þ

where

F
ðiÞ
ðk1;k2Þ ¼ E passage fitness of ðKi

ðk1Þ;K
ðk2Þ
iþ1 Þ in Hm

� �

¼
X

W2AðKi
ðk1Þ;K

ðk2Þ
iþ1
Þ

PðWÞ �UðWÞ

¼
X

W12BðK0;K
ðk1Þ
i
Þ

X
W22BðK

ðk2Þ
iþ1

;Kmþ1Þ

PðW1Þ � pk1k2
� PðW2ÞðUðW1Þ þUðW2ÞÞ

¼ pk1k2
�

X
W12BðK0;K

ðk1Þ
i
Þ

X
W22BðK

ðk2Þ
iþ1

;Kmþ1Þ

½PðW1ÞPðW2ÞUðW1ÞþPðW1ÞPðW2ÞUðW2Þ�

8><
>:

9>=
>;

¼ pk1k2
�

X
W22BðK

ðk2Þ
iþ1

;Kmþ1Þ

PðW2Þ �
X

W12BðK0;K
ðk1Þ
i
Þ

PðW1ÞUðW1Þ

8><
>:

þ
X

W12BðK0;K
ðk1Þ
i
Þ

PðW1Þ �
X

W22BðK
ðk2Þ
iþ1

;Kmþ1Þ

PðW2ÞUðW2Þ

9>=
>;

¼ pk1k2
1 �  ½k1�

1 þ �½k1�
i � �½k2�

m�i

� �
:

What remains to be done is the computation of the numbers �
½k�
i ,  

½k�
i and �

½j�
i .

Computation of the numbers �
½k�
i : We use (23). Straightforward considerations

show that the recursion

�
ð1;1Þ
i ¼ c�

ð1;1Þ
i�1 þ d�

ð0;1Þ
i�1 ; �

ð0;1Þ
i ¼ e�

ð1;1Þ
i�1 þ g�

ð0;1Þ
i�1

holds for i � 2, and that

�
ð1;1Þ
1 ¼ 1; �

ð0;1Þ
1 ¼ 0:
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By application of the theory of linear difference equations, we obtain the following
solution:

�
ð1;1Þ
i ¼ eþ dðg� dÞi�1

dþ e
; �

ð0;1Þ
i ¼ e� eðg� dÞi�1

dþ e
;

�
ð1;0Þ
i ¼ d� dðc� eÞi�1

dþ e
; �

ð0;0Þ
i ¼ dþ eðc� eÞi�1

dþ e
:

Computation of the numbers  
½k�
i : We use (24) and the recursion

 
ð1;kÞ
i ¼ c 

ð1;kÞ
i�1 þ d 

ð0;kÞ
i�1 þ �

ð1;kÞ
i ;

 
ð0;kÞ
i ¼ e 

ð1;kÞ
i�1 þ g 

ð0;kÞ
i�1

for i � 2 and k ¼ 1; 0, and

 
ð1;1Þ
1 ¼ 1;  

ð1;0Þ
1 ¼ 0;  

ð0;1Þ
1 ¼ 0;  

ð0;0Þ
1 ¼ 0:

This inhomogeneous system of difference equations seems to have no closed-form
solution, but the values  

ð j;kÞ
i can be computed iteratively by means of the formulas

for �
ð j;kÞ
i .

Fig. 7 Dynamics of the drum for OneMax, m ¼ 50 and u0 ¼ w0 ¼ x0 ¼ y0 ¼ z0 ¼ s0 ¼ 0:5. The

current expected fitness is plotted as a relative value, normalized by the maximum m ¼ 50 of the

objective function
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Computation of the numbers �
½ j�
i : From

�
½1�
i ¼ c�

½1�
i�1 þ d�

½0�
i�1 þ 1; �

½0�
i ¼ e�

½1�
i�1 þ g�

½0�
i�1

for i � 2, and

�
½1�
1 ¼ 1; �

½0�
1 ¼ 0;

one obtains, again by using the theory of linear difference equations:

�
½1�
i ¼

d

ðdþ eÞ2
1� ðc� eÞi
h i

þ ei

dþ e
;

�
½0�
i ¼

d

ðdþ eÞ2
þ e

ðdþ eÞ2
ðc� eÞi þ ei� 1

dþ e
:

In total, the formulas above allow the computation of all passage fitness values and,
as a consequence, the numerical solution of (7) for OneMax. Figure 7 shows the
resulting dynamics for m ¼ 50 over a period of 100 time units, starting with a
constant initial pheromone value �0 on each arc. To obtain results comparable with
Fig. 5, we have chosen �0 ¼ 1=2, such that the entire pheromone flow out of node 0 is
the same as in the chain case.

Comparison with Fig. 5 leads to some interesting observations:

& The curves for the (relative) expected fitness �=m are nearly identical.
& The curve for u in the drum case is nearly identical to that for u=m in the chain

case.
& The curve for w in the drum case is nearly identical to that for w=m in the chain

case.

While the corresponding curves almost coincide for m ¼ 50, decreasing the value of
m leads to growing deviations, which indicates that the congruence is not exact even
for larger m. However, the numerical results suggest the following conjecture, which
we are not able to prove formally at the moment:

CONJECTURE As m!1, the expected fitness functions �chainðtÞ and �drumðtÞ for
OneMax on chain and drum, respectively, with the initial values as given above, are
asymptotically equivalent.

To complete our analysis of the three construction graphs investigated in this
section, some bibliographical remarks on the origin of them in the ACO literature
seem to be in order: Optimization by learning in the chain fashion is more typical
for Evolution of Distribution (EDA) algorithms such as Population-Based Incre-
mental Learning (PBIL, see Baluja and Caruana, 1995) than for ACO. In the ACO
field, chain-type construction graphs have been applied rather in their k ary
generalization where from each auxiliary node i of the chain, not only two, but k
arcs originate, such that the solution is encoded in a k ary instead of a binary
alphabet. Examples of articles where the construction process is organized in this
way can be found in Bauer et al., (1999), Montgomery and Randall (2002), Gutjahr
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(2004), Rauner et al. (2005), or Gutjahr and Rauner (in press). Construction graphs
of disk type are the most commonly applied for subset selection problems in the
ACO literature, see, e.g., Leguizamón and Michalewicz (2000, unpublished data),
Hadji et al. (2000), Blum and Blesa (2005), or Fenet and Solnon (2003). It should be
noted that our theoretical analysis of the disk does not directly address the
approaches in these articles, because the problems they investigate have the
convenient special property that the considered fitness functions never decrease if
a further item is added as long as feasibility is preserved, which provides a Bnatural’’
stopping rule for the walks of the ants. In such a context, the main weakness of the
disk, the inefficiency with respect to the termination condition for the walk, does not
occur. A problem where the mentioned monotonicity property is lacking, the project
portfolio selection problem, has been treated by ACO with the disk construction
graph in Doerner et al. (2001, 2004); in these articles, the drawback of the disk has
been overcome by applying a lifespan concept for ants, which, however, requires
additional parameters to be tuned. Finally, the drum construction graph does not
seem to have been applied up to now in the experimental ACO literature.

6. Conclusions

We have developed a formal framework for analytical investigations of the finite-
time dynamics of ant colony optimization (ACO) under the Bclassical’’ pheromone
update rule. A limit theorem for the ACO process has been demonstrated, a system
of ordinary differential equations has been identified as the Bskeleton’’ of the dy-
namic process, and it has been shown how the evolution of the expected fitness
values can be derived from this system. As an example for the application of the
presented theory, the behavior of ACO on three different construction graphs for
subset selection problems has been analyzed for some basic test functions.

In particular, it has been shown that the simplest of these construction graphs, the
chain with storage requirement OðmÞ, already turns out as surprisingly efficient for
some test functions, but completely fails on others. The two other investigated types
of construction graphs, disk and drum, use storage of order Oðm2Þ. Nevertheless, the
disk fails on a very simple test function for which even the chain succeeds. Thus, our
theoretical investigation suggests that for diverse subset selection problems, the
potential of the drum construction graphs might be explored. Of course, the final
judgement of the efficiency of an encoding is a matter of empirical research.

Of course, the test functions analyzed here are still rather elementary, and future
investigations should turn to more complex types of fitness functions. Let us
mention two especially interesting classes: (a) By analyzing ACO on the class of the
so-called Royal Road fitness functions (see, e.g., Mitchell et al., 1994), the semi-
formal argumentation at the beginning of Subsection 5.1 could possibly be made
precise in a quantitative sense. (b) In contrast to Bgood-natured’’ functions as
OneMax, also deceptive fitness functions (see, e.g., Mühlenbein and Mahnig, 2001 or
Blum and Dorigo, 2005) should be investigated.

As explained at the beginning of Section 4, we have focused on subset selection
problems where there is no a-priori order between the items among which a choice
has to be made. There are other types of 0-1-problems where such an order exists.
Construction graphs that are more suitable for this situation would also deserve to
be investigated. Combinatorial problems in sequencing, routing, scheduling etc.
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need still other construction graphs; the theory presented here includes these cases,
but detailed analysis would be necessary to obtain results from which practical
conclusions could be drawn.

The pheromone update rule considered here was fitness-proportional. Other
rules, such as rank-based update Bullnheimer et al. (1999) or the update mechanism
of MAX-MIN Ant System Stützle and Hoos (2000) could be investigated along
similar lines. Perhaps this would enable an analytical comparison of update rules,
which could guide the choice between ACO design variants for new problem types
for which experimental know-how is not yet available.

From a theoretical viewpoint, on the other hand, three topics would be of special
interest: The first is the question in which sense and under which conditions the
trajectories of the real ACO process converge to those of the ACDP. For treat-
ing this question, extensive use of the theory of stochastic approximation (see, e.g.,
Kushner and Yin (2003)) could be helpful. A second challenge concerns a
refinement of the analysis in Section 2 by finite-population corrections (cf. the
related work by Prügel-Bennett and Shapiro (1997) or Rattray and Shapiro (1997)
in a genetic algorithm context). Finally, asymptotic approximations of functions
describing the process dynamics that can, at the moment, only be computed numer-
ically (cf. the end of Section 5) would be desirable. Mathematical tools as those
developed in the analysis of algorithms (see, e.g., Sedgewick and Flajolet (1996))
might be applied in this context and could possibly lead to a clearer understanding
of the dynamics triggered by particular decisions on problem encoding, design var-
iants and/or parameter choices.
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