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Abstract. Waiting time random variables and related scan statistics have a wide variety of interesting and

useful applications. In this paper, exact distribution of discrete scan statistics for the cases of homogeneous two-

state Markov dependent trials as well as i.i.d. Bernoulli trials are discussed by utilizing probability generating

functions. A simple algorithm has been developed to calculate the distributions. Numerical results show that the

algorithm is very efficient and is capable of handling large problems.
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1. Introduction

Waiting time random variables and related scan statistics have been studied extensively

during the last four decades. There are four recent books in the area of runs, scan sta-

tistics, and their applications. They provide excellent and comprehensive review of his-

torical as well as current developments in the distribution theory of runs and scan

statistics. They are in order of publications: Scan Statistics and Applications by Glaz and

Balakrishnan (1999), Scan Statistics by Glaz et al. (2001), Runs and Scans with Ap-

plications by Balakrishnan and Koutras (2002), and Distribution Theory of Runs and

Patterns and its Applications by Fu and Lou (2003). In these books chapters are devoted

to discrete scan statistics and many of their interesting and useful applications. They also

provide excellent references in this research area. Due to complexity of computations of

exact distribution of discrete scan statistics, most attention has been given to providing

bounds, inequalities, and approximations for the distributions. There are several methods

for investigating exact distribution of discrete scan statistics. Most notably, the com-

binatorial method [e.g., Naus (1974)] and the finite Markov chain imbedding method

[e.g., Fu (2001)]. To the best of our knowledge, the leading algorithm up to date for
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calculating exact distribution of scan statistics is the one given in Fu (2001) and Fu et al.

(2003).

In this paper, we will apply the probability generating function (pgf) method to

calculate exact distribution of discrete scan statistics. The pgf method has many other

interesting applications [e.g., Balakrishnan et al. (1997), Ebneshahrashoob and Sobel

(1990) and Ebneshahrashoob et al. (2005)]. In Section 2, we formally define discrete

scan statistic Sn(w) and waiting time random variable WT(w, s) and discuss relationship

between their distributions. Then we explain how to apply the pgf method to obtain the

pgf of WT(w, s) by symbolically solving a system of conditional probability generating

functions and how to calculate the exact distribution of WT(w, s) from its pgf. A special

example is given to explain the pgf method. Due to the difficulty of symbolically

obtaining the pgf of WT(w, s), in Section 3, a new approach is proposed to directly

calculate the distribution of WT(w, s) without symbolically obtaining the pgf. We first

provide an efficient method to generate all conditional probability generating functions

related to the random variable WT(w, s). Then we show that the exact distribution of

WT(w, s) can be obtained by simple multiplications of sparse matrices and vectors, which

leads to an efficient algorithm for calculating the exact distribution of the scan statistic

Sn(w). Other scan statistics closely related to Sn(w) and WT(w, s) are also briefly

discussed. In Section 4, numerical results are given to show that our algorithm is very

efficient and is capable of handling large problems.

2. Probability Generating Function Method

Let {Xi}i =1
n be either a sequence of independent identically distributed (i.i.d.) Bernoulli

trials, with outcomes success (or 1) and failure (or 0) and probabilities P(Xi = 1) = p and

P(Xi = 0) = q = 1 j p, or a sequence of homogeneous two-state Markov dependent trials

with initial probabilities

p ¼ PðX1 ¼ 1Þ; q ¼ PðX1 ¼ 0Þ ð1Þ

and transition probabilities

pij ¼ PðXk ¼ j j Xk�1 ¼ iÞ; k � 2; 0 � i; j � 1 ð2Þ

with p11 + p10 = p01 + p00 = 1. The scan statistic Sn(w) of window size w for the sequence

{Xi}i =1
n is defined as

SnðwÞ ¼ max
Xwþ i� 1

j¼ i

Xj : 1 � i � n� wþ 1

( )
: ð2Þ
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Let WT(w, s) denote the waiting time until we first observe at least s successes (or 1’s) in

a window of size w. Then Sn(w) and WT(w, s) are related by

PðSnðwÞ � sÞ ¼ PðWTðw; sÞ � nÞ: ð3Þ

In the remainder of this paper, we will use the probability generating function (pgf )

method to obtain the exact distribution of WT(w, s) and then obtain the exact distribution

of Sn(w) according to (3). With all P(Sn(w) Q s)’s available, we can easily obtain the

expectation and variance of Sn(w) by

EðSnðwÞÞ ¼
Xw

s¼1

PðSnðwÞ � sÞ ð4Þ

and

�2ðSnðwÞÞ ¼ 2
Xw

s¼1

sPðSnðwÞ � sÞ � EðSnðwÞÞð1þ EðSnðwÞÞÞ: ð5Þ

In the pgf method, we first establish a system of linear equations consisting of con-

ditional probability generating functions. The solution of this system leads to an ex-

pression for the pgf of WT(w, s). We use the special case of s = 3, w = 5 and any 0 e p,

pij e 1 as an example to illustrate the pgf method. General rules for generating the

conditional pgf’s and for eliminating redundant conditional pgf’s are given in equations

(9) and (10) at the end of this section. In this special case we have a total of�
w

s � 1

�
þ1 ¼

�
5

2

�
þ 1 ¼ 11 equations:

� ¼ pt�1 þ qt�0;

�0 ¼ p01t�1 þ p00t�0;

�1 ¼ p11t�12 þ p10t�2;

�2 ¼ p01t�13 þ p00t�3;

�3 ¼ p01t�14 þ p00t�4 ¼ p01t�14 þ p00t�0;

�12 ¼ p11t�123 þ p10t�23 ¼ p11t þ p10t�23;

�13 ¼ p11t�124 þ p10t�24 ¼ p11t þ p10t�24;

�14 ¼ p11t�125 þ p10t�25 ¼ p11t þ p10t�2;

�23 ¼ p01t�134 þ p00t�34 ¼ p01t þ p00t�34;

�24 ¼ p01t�135 þ p00t�35 ¼ p01t þ p00t�3;

�34 ¼ p01t�145 þ p00t�45 ¼ p01t þ p00t�0;

ð6Þ

where p, q, p00, p01, p10 and p11 are defined in (1) and (2), and t acts as the parameter of

the pgf’s. In the equations above, � is the pgf of WT(w, s) which depends on the
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conditional pgf’s �1 and �0. The subscripts 1 of �1 and 0 of �0 denote the occurrence of

success and failure on the first trial respectively. In general, the subscripts from left to

right of the pgf’s denote the number of steps back when successes have occurred. For

example, �13 denotes the pgf of the conditional distribution of the waiting time WT(w, s)

given that there were two successes one step back and three steps back respectively and

no other in the window that extends w = 5 steps back. Note that �4 K �0 since we are

waiting for 3 successes in a window of size 5 and thus the success occurred at four steps

back will no longer contribute to our experiment. Similarly, �25 K �2, �35 K �3, and �45 K

�0. Also note that �123 = �124 = �125 = �134 = �135 = �145 K 1 since three successes have

occurred in a window of size w = 5. Let (using T for transpose)

� ¼ ð�; �0; �1; �2; �3; �12; �13; �14; �23; �24; �34ÞT :

Then the equations in (6) can be written in matrix form

�ðtÞ ¼ tA�ðtÞ þ tb ð7Þ

with the matrix A (omitting zeros in A except the first zero) and the vector b given by

A ¼

0 q p

p00 p01

p10 p11

p00 p01

p00 p01

p10

p10

p10

p00

p00

p00

0

BBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCA

;

b ¼

0

0

0

0

0

p11

p11

p11

p01

p01

p01

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

:

ð7Þ

(7)
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Symbolically solving (7) for �, we obtain

�ðtÞ ¼ ð ptð1� p00tÞ þ qtp01tÞ QðtÞ
DðtÞ ð8Þ

where

QðtÞ ¼ p2
11t2 þ 2p01p10p11t3 þ p2

01p2
10t4 þ 2p00p01p10p11t4

� p00p01p10p2
11t5 � p00p2

01p2
10 p2

11t7 � p2
00 p2

01p2
10 p11t7

� p00p3
01p3

10 p11t8 � p2
00 p3

01p3
10 p11t9

ð8Þ

and

DðtÞ ¼ 1� p00t � p00p01p10t3 � p00p2
01p2

10t5 � p2
00 p01p10p11t5

þ p3
00 p2

01p2
10p11t8 þ p3

00 p3
01p3

10 p11t10: ð8Þ
For the special case of i.i.d. Bernoulli trials, the first two equations in (6) become

identical. The pgf of WT(w, s) for this special case can be obtained from (8) by letting

p01 = p11 = p and p00 = p10 = q.

In general, let �(t) be the pgf of the distribution of the waiting time WT(w, s) which we

solve for, let �0 denote the probability generating function of the conditional distribution

of the waiting time given that the first trial was a failure, and let �i1,i2,. . . ,ik
(t) with k e s

and 1 e i1 < i2 < . . . < ik < w denote the probability generating function of the conditional

distribution of the waiting time given that there was one success ij steps back for each j =

1, . . . , k and no other in the window that extends w steps back. Then these pgf’s can be

obtained according to the following rules: the main rules for generating the pgf’s are

�ðtÞ ¼ pt�1ðtÞ þ qt�0ðtÞ;
�0ðtÞ ¼ p01t�1ðtÞ þ p00t�0ðtÞ;

�i1;i2; : : : ;ik ðtÞ ¼ p11t�1;i1þ1;i2þ1; : : : ;ikþ1ðtÞ þ p10t�i1þ1;i2þ1; : : : ;ikþ1ðtÞ;
if k < s; i1 ¼ 1;

�i1;i2; : : : ;ik ðtÞ ¼ p01t�1;i1þ1;i2þ1; : : : ;ikþ1ðtÞ þ p00t�i1þ1;i2þ1; : : : ;ikþ1ðtÞ;

if k < s; i1 6¼ 1;

ð9Þ

and the reduction rules for eliminating redundant pgf’s are

�i1ðtÞ ¼ �0ðtÞ; if w� i1 < s� 1;

�i1;i2; : : : ; ik ðtÞ ¼ �i1;i2; : : : ;ik�1
ðtÞ; if w� ik < s� k;

�i1;i2; : : : ; ik ðtÞ � 1; if k ¼ s

ð10Þ

Note that any information about successes that is more than w steps back will not affect

the outcome of the experiment and thus can be dropped.

(9)

(10)
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REMARK In the pgf methodology, the system of conditional pgf equations are constructed

by considering the condition of one-step ahead from every condition [e.g., see

Balakrishnan et al. (1997) and Section 4 of Chapter XIV in Feller (1957)]. Let Y be

any random variable which takes only the integer values 0, 1, 2 , . . . . The pgf of the

distribution of Y can be formally written as
P1

n¼0 PðY ¼ nÞtn which is convergent for

any 0 e t e 1. For the first equation in (9), we write the pgf’s �, �1 and �0 as

�ðtÞ ¼
X1

n¼0

PðWTðw; sÞ ¼ nÞtn;

�1ðtÞ ¼
X1

n¼0

PððWTðw; sÞ j X1 ¼ 1Þ ¼ nÞt n;

�0ðtÞ ¼
X1

n¼0

PððWTðw; sÞ j X1 ¼ 0Þ ¼ nÞt n

Due to the stopping rule of observing s successes in a window of size w, we have

PðWTðw; sÞ ¼ nþ 1Þ

¼ p PðWTðw; sÞ ¼ nþ 1 jX1 ¼ 1Þ þ q PðWTðw; sÞ ¼ nþ 1 jX1 ¼ 0Þ

¼ p PððWTðw; sÞ j X1 ¼ 1Þ ¼ nÞ þ q PððWTðw; sÞ j X1 ¼ 0Þ ¼ nÞ
which leads to the pgf equation

�ðtÞ ¼ pt�1ðtÞ þ qt�0ðtÞ
since the coefficients of t n in both sides of the equation are same for all n. The second

pgf equation in (9) is based on the fact

PððWTðw; sÞ j X1 ¼ 0Þ ¼ nþ 1Þ

¼ p01 PððWTðw; sÞ j X1 ¼ 0Þ ¼ nþ 1 jX2 ¼ 1Þ

þ p00 PððWTðw; sÞ j X1 ¼ 0Þ ¼ nþ 1 jX2 ¼ 0Þ

¼ p01 PððWTðw; sÞ j X1 ¼ 0 & X2 ¼ 1Þ ¼ nÞ

þ p00 PððWTðw; sÞ j X1 ¼ 0 & X2 ¼ 0Þ ¼ nÞ

¼ p01 PððWTðw; sÞ j X1 ¼ 1Þ ¼ nÞ

þ p00 PððWTðw; sÞ j X1 ¼ 0Þ ¼ nÞ:
Other pgf equations in (9) and (10) are constructed similarly.

If the pgf �(t) of WT(w, s) for any given values of the parameters w, s, p, p01 and p11 is

available, it is well-known that the probabilities P(WT(w, s) = k) for k = 0, 1, . . . , n satisfy

�ð0Þ ¼ PðWTðw; sÞ ¼ 0Þ;

�ðkÞð0Þ ¼ k!PðWTðw; sÞ ¼ kÞ; k ¼ 1; 2; : : : ; n;

ð11Þ

(11)
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where �(k) is the k-th derivative of �(t) [e.g., Theorem 3.4.1 in Evans and Rosenthal

(2004)].

For large values of s and w, solving the system of conditional pgf’s for �(t)

symbolically is not always feasible because of computer memory and time restriction. In

Section 3, we first discuss how to efficiently generate the conditional pgf’s and then

propose an alternative method to calculate the derivative values of �(t) at t = 0 directly

without explicitly solving for �(t).

3. The Algorithm

First, we discuss how to efficiently generate all conditional probability generating

functions �i1;i2; : : : ; ik ðtÞ of WT(w, s). With the main rules (9) and the reduction rules (10),

it can be verified that for any integer k with 1 e k < s there are exactly w�sþk
k

� �
possible

pgf’s �i1;i2; : : : ; ik with 1 e i1 < i2 < . . . < ik e w. For each fixed value of k, the indices of

the pgf’s �i1;i2; : : : ; ik ðtÞ are exactly the combinations of choosing k numbers from the

numbers 1 to w j s + k. If these w�sþk
k

� �
pgf’s are arranged according to the

lexicographical order of their indices, they can be easily generated by a computer

program. Including the pgf’s � and �0, we have the total

N ¼ 1þ w� s

0

� �
þ w� sþ 1

1

� �
þ � � � þ w� 1

s� 1

� �

¼ 1þ w

s� 1

� �

ð12Þ

possible non-constant pgf’s. Let (using T for transpose)

�ðtÞ ¼ ð�ðtÞ; �0ðtÞ; �1ðtÞ; : : : ; �w�sþ1; : : : ;w�2;w�1ðtÞÞT ð12Þ
be the vector of these pgf’s arranged according to the ascending order of their numbers

of indices and then the lexicographical order of their indices among the ones with the

same number of indices. Then for any given parameters s, w, p, p01 and p11, the system

of the pgf’s can be written in matrix form

�ðtÞ ¼ tA�ðtÞ þ tb ð13Þ
where A is an N � N (constant) matrix and b is an N-dimensional (constant) vector.

Note that because of the special ordering of the elements in �(t), the position of any

pgf �i1;i2; : : : ; ik ðtÞ with k Q 1 in the vector �(t) is determined by

1þ w� s

0

� �
þ w� sþ 1

1

� �
þ � � � þ w� sþ k � 1

k � 1

� �

þ w� sþ k

k

� �
� w� sþ k � i1

k

� �
� w� sþ k � i2

k � 1

� �

� w� sþ k � i3

k � 2

� �
� � � � � w� sþ k � ik

1

� �
ð14Þ

(12)
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with the convention that m
n

� �
¼ 0 if m < n. The entries in A and b can be easily

determined by symbolically generating the pgf’s according to the main rules (9) and then

applying the reduction rules (10) to every newly generated pgf to determine whether it is

a new pgf, a constant pgf, or equivalent to one of the previous pgf’s. For example,

consider the pgf equation

�i1;i2; : : : ;ik ðtÞ ¼ p01t�1;i1þ1;i2þ1; : : : ;ikþ1ðtÞ þ p00t�i1þ1;i2þ1; : : : ;ikþ1ðtÞ:
Let � be the position of �i1;i2; : : : ;ik ðtÞ in the vector �(t) according to (14). If

�1;i1þ1;i2þ1; : : : ;ikþ1ðtÞ � 1 after the reduction rules (10) applied, then the value of the �-th

component of b will be p01. If both �1;i1þ1;i2þ1; : : : ;ikþ1ðtÞ and �i1þ1;i2þ1; : : : ;ikþ1ðtÞ are non-

constant after the reduction rules (10) applied, let �1 and �2 be the positions of the two

reduced pgf’s in the vector �(t) according to (14) respectively, then the values of the

�1-th and �2-th components of the �-th row of A will be p01 and p00. The matrix A and

vector b can be very efficiently generated by a computer program. Also each row of the

matrix A has no more than two nonzero entries according to the main rules and the

reduction rules. Thus the matrix A is very sparse and can be easily handled even when its

dimension is very large [e.g., Section 3.4 of Saad (2003)]. It is also very interesting to

point out that for given w and s our matrix A from the pgf method and the matrix N w;s

from the finite Markov chain imbedding method in Fu (2001) are the same under

permutations of rows and columns.

Now, with the matrix A and vector b in (13) available, we can easily calculate the prob-

abilities P(WT(w, s) = k) for k = 0, 1, . . . , n according to (11). Since PðWTðw; sÞ ¼ kÞ ¼
1

k!
�ðkÞð0Þ, differentiating the Equation (13) up to n times, we obtain

�0ðtÞ ¼ A�ðtÞ þ tA�0ðtÞ þ b;

�ðkÞðtÞ ¼ kA�ðk�1ÞðtÞ þ tA�ðkÞðtÞ; k ¼ 2; : : : ; n:

Plugging in t = 0, these equations become

�0ð0Þ ¼ b;

�ðkÞð0Þ ¼ kA�ðk�1Þð0Þ; k ¼ 2; : : : ; n

and can be simply written as

�ðkÞð0Þ ¼ k!Ak�1b; k ¼ 1; 2; : : : ; n: ð15Þ
Note that �(t) is the first component of the vector F(t). By (11) and (15), we have

PðWTðw; sÞ ¼ 0Þ ¼ 0;

PðWTðw; sÞ ¼ kÞ ¼ the first component of Ak�1b;

for all k ¼ 1; 2; : : : ; n

ð16Þ

Since the matrix A is very sparse, the calculation of Ab can be easily done. In fact, it

involves no more than 2N multiplications of real numbers, here N ¼ 1þ w
s�1

� �
is the

dimension of the matrix A according to (12). Since Akb can be calculated from A(Akj1b)

(16)
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and P(WT(w, s) = n) equals the first component of Anj1b, the calculation of P(WT(w, s) =

k) for all k = 0, 1, . . . , n (i.e., P(WT(w, s) e n)) involves no more than 2N(n j 1)

multiplications of real numbers. Thus with w and s fixed, the complexity of our algo-

rithm for calculating P(Sn(w) Q s) = P(WT(w, s) e n) is no more than 2Nðn� 1Þ ¼
2ðn� 1Þ 1þ w

s�1

� �� �
multiplications of real numbers. This complexity dictates the

efficiency of our algorithm. Note that in our calculation of P(Sn(w) Q s) for all s =

1, . . . , w, the largest value of N happens when s equals the integer part of w/2. Another

numerical concern about calculating Akb for k = 1, . . . , n is its stability when the value of

n is large. Let A0 be the resulting matrix of deleting the first row and the first column

from the matrix A in (13). Then the matrix A0 is irreducible according to the nature of the

problem. By Taussky theorem [e.g., Theorem 2 on page 376 in Lancaster and

Tismenetsky (1985)], it can be shown that the spectral radius of A0 is less than 1 and

thus the spectral radius of A is also less than 1. This warrants the stability of the

algorithm. Though the algorithm is numerically stable, this kind of computations should

be always done in double precision to minimize accumulative errors for large n.

Our algorithm can now efficiently and safely calculate the distribution of Sn(w) by

utilizing P(Sn(w) Q s) = P(WT(w, s) e n). The algorithm can be easily applied to many

other related statistics. Here we list a few important ones.

(1) The smallest number of consecutive trials that contain s ones, denoted by

Ws ¼ min
s�w�n

fw : SnðwÞ ¼ sg : [e.g., Glaz et al. (2001)]

PðWs � wÞ ¼ PðSnðwÞ � sÞ:
(2) The size of the longest number of consecutive trials that have at most r zeros,

denoted by Vr and the special case V0, the size of the longest run of ones: [e.g.,

Glaz et al. (2001) or Fu et al. (2003)]

PðVr � sþ rÞ ¼ PðSnðsþ rÞ � sÞ:
(3) The reliability of s-within-consecutive-w-out-of-n: F system consisting of n

linearly ordered components is given by P(Sn(w) < s) [e.g., Boutsikas and Koutras

(2000) and references therein]. The system will fail if and only if there are

w consecutive components which include among them, at least, s failed

components.

(4) Type I negative binomial random variable, WTr
I(w, s), is the r-fold convolution of

WT(w, s) [e.g., Chapter 10 of Balakrishnan and Koutras (2002)]. Here, the pgf of

WTr
I(w, s) is the r-th power of the pgf of WT(w, s) for the case of i.i.d. Bernoulli

trials.

(5) The number of non-overlapping windows of size at least w containing exactly s

successes each, observed in n Bernoulli trials is denoted by Nn,s
(w, I) where I stands

for Type I enumeration scheme: [e.g., Chapter 11 of Balakrishnan and Koutras

(2002)]

PðN ðw;IÞn;s � rÞ ¼ PðWTI
r ðw; sÞ � nÞ:
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4. Numerical Results

A computer program in C++ based on the algorithm discussed in Section 3 has been

successfully implemented and tested on various combinations of the parameters w, s, p,

p01, and p11. Our algorithm is very efficient and matches results on all examples given in

Tables 1 and 2 on page 914 in Fu (2001), results in Fu et al. (2003) and Table 4.1 on

page 48 in Glaz et al. (2001). An executable code of our algorithm for operating system

Windows NT/2000/XP or Linux is available upon request from the first author of this

paper or can be directly downloaded from http://www.csulb.edu/~mortezae/ScanStat/. In

this section, four tables of results will be given to show the efficiency of our algorithm.

The computations using double precision were carried out on a 900 MHz Intel Xeon

Pentium III with 2 Gb memory running Redhat Linux operating system. All numerical

results listed for probabilities, expectations and standard deviations are rounded to four

digits after the decimal point.

Tables 1 and 2 list our results of the two-state Markov dependent trials and i.i.d.

Bernoulli trials for w = 25 and various values of n and probabilities. The last row of each

table gives the CPU times for solving the respective given problems. The CPU times in

Table 1. Probabilities P(Sn(w) Q s), expectations E and standard deviations s for two-state Markov dependent

trials with w = 25. Last row Time stands for CPU times.

s

p = 0.5, p11 = 0.3, p01 = 0.4 p = 0.5, p11 = 0.4, p01 = 0.6

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

5 0.9999 1 1 1 1 1

6 0.9993 1 1 1 1 1

7 0.9952 1 1 1 1 1

8 0.9774 0.9998 1 1 1 1

9 0.9244 0.9972 1 0.9998 1 1

10 0.8114 0.9787 0.9997 0.9986 1 1

11 0.6347 0.9061 0.9938 0.9909 1 1

12 0.4276 0.7373 0.9445 0.9604 0.9994 1

13 0.2422 0.4931 0.7731 0.8764 0.9922 1

14 0.1136 0.2612 0.4866 0.7150 0.9486 0.9983

15 0.0437 0.1086 0.2255 0.4949 0.8074 0.9719

16 0.0137 0.0357 0.0781 0.2791 0.5540 0.8292

17 0.0035 0.0093 0.0208 0.1248 0.2865 0.5256

18 0.0007 0.0019 0.0044 0.0435 0.1091 0.2273

19 0.0001 0.0003 0.0007 0.0116 0.0307 0.0677

20 0.0001 0.0023 0.0064 0.0144

21 0.0003 0.0010 0.0022

22 0.0001 0.0002

E 11.1875 12.5292 13.5273 14.4978 15.7354 16.6368

s 1.9199 1.6036 1.3771 1.7550 1.4466 1.2360

Time 5m32s 10m55s 21m55s 5m38s 10m58s 21m36s
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Table 1 matches the result that with w fixed, the complexity of our algorithm is

proportional to n. For the calculation of the results in these two tables, the algorithm

requires about 200 Mb memory. And the algorithm is terminated when the condition

P(Sn(w) Q s0) < 10j6 is satisfied for some 1 e s0 e w since P(Sn(w) Q s) for s = s0 + 1, . . . ,

w will be much smaller. This explains the difference in CPU times for the cases with

same values of n and w in the tables.

Table 2. Probabilities P(Sn(w) Q s), expectations E and standard deviations s for i.i.d. Bernoulli trials with

w = 25 and n = 100. Last row Time stands for CPU times.

s p = 0.01 p = 0.05 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

1 0.6340 0.9941 1 1 1 1 1

2 0.1494 0.8962 0.9979 1 1 1 1

3 0.0172 0.5877 0.9671 1 1 1 1

4 0.0013 0.2525 0.8271 0.9995 1 1 1

5 0.0001 0.0744 0.5559 0.9933 1 1 1

6 0.0162 0.2798 0.9565 0.9999 1 1

7 0.0028 0.1071 0.8415 0.9982 1 1

8 0.0004 0.0323 0.6315 0.9865 1 1

9 0.0079 0.3875 0.9387 0.9995 1

10 0.0016 0.1926 0.8179 0.9956 1

11 0.0003 0.0782 0.6184 0.9757 0.9999

12 0.0264 0.3914 0.9105 0.9987

13 0.0075 0.2046 0.7697 0.9907

14 0.0018 0.0885 0.5610 0.9572

15 0.0004 0.0318 0.3413 0.8641

16 0.0001 0.0096 0.1708 0.6892

17 0.0024 0.0701 0.4620

18 0.0005 0.0236 0.2519

19 0.0001 0.0065 0.1098

20 0.0014 0.0378

21 0.0002 0.0101

22 0.0020

23 0.0003

E 0.8019 2.8243 4.7770 8.1166 11.0884 13.8259 16.3739

s 0.7312 1.1413 1.3888 1.6531 1.7693 1.7916 1.7379

Time 4s 2m6s 6m40s 10m12s 10m14s 10m14s 10m15s

Table 3. Probabilities P(Sn(w) Q w) for two-state Markov dependent trials with p = 0.5, p11 = 0.75, p01 = 0.25.

The second row Time stands for CPU times.

w = 40 w = 60 w = 80

n = 106 n = 107 n = 106 n = 107 n = 106 n = 107

Prob. 0.8129 1 0.0053 0.0518 0.00002 0.00017

Time 1.5s 14.7s 2.3s 22.5s 2.9s 28.5s
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Tables 3 and 4 list our results for the longest success run in a sequence of two-state

Markov dependent trials for the cases p = 0.5, p11 = 0.75, p01 = 0.25 and various values

of w and n as discussed in Fu et al. (2003). The distribution of the longest success run is

given by P(Sn(w) Q w) and the dimension of the corresponding matrix A is only N = w + 1.

With window size w and number of trials n given, the complexity of our algorithm for

calculating P(Sn(w) Q w) is no more than 2(w + 1)(n j 1) multiplications of real

numbers, which enables our algorithm to efficiently handle large problems. The CPU

times in Tables 3 and 4 reflect this complexity of our algorithm very well. It appears that

our algorithm is more efficient than the leading algorithms for exact distributions of scan

statistics developed in Fu (2001) and Fu et al. (2003). As an example, for the case w =

500 and n = 10,000 as shown in Table 4, our algorithm written in C++ takes about 0.18

second on a 900 MHz Pentium III while the algorithm in Fu et al. (2003) written in

MatLab takes about 33 seconds on a 733 MHz Pentium III as reported in the paper. But

making strict comparison of these algorithms is impossible since algorithms written in

different computer languages may result in different CPU times.
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