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Abstract. The purpose of this paper is to present a survey on Yor’s formula on the probability densities of the

exponential functionals represented as integrals in time of geometric Brownian motions and to present results

on numerical computations for the densities. We perform the computations via another formula for the densities

obtained by Dufresne and we show numerically the desired coincidence in some cases. As an application, we

compute the price of an Asian option.
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1. Introduction

Let B = {Bt, t Q 0} be a standard Brownian motion and, for � 2 R; Bð�Þ ¼fBð�Þt ¼
Bt þ �t; t � 0g be a Brownian motion with constant drift m. In this paper, we are concerned

with a Brownian functional A
ð�Þ
t defined by

A
ð�Þ
t ¼

Z t

0

expð2Bð�Þs Þds; t � 0:

Such exponential type functionals play important roles in the theory of mathematical

finance, in study of diffusion processes in random media and in stochastic analysis on the

hyperbolic spaces. See, e.g., Alili et al. (2001), Dufresne (2001), Yor (1992b, 2000), and the

references cited therein.

In particular, in mathematical finance, to study A
ð�Þ
t is equivalent to study the mean in

time of the stock process fexpð2B
ð�Þ
s Þ; 0 � s � tg in the Black-Scholes model. The

functional A
ð�Þ
t plays a major role in study of Asian options, where it is important to

evaluate E½ðAð�Þt � KÞþ�;K > 0. For this purpose, we need an explicit expression for the

density of A
ð�Þ
t .

In the celebrated paper, Yor (1992b) has derived an explicit expression for the density

of the joint distribution of ðAð�Þt ;B
ð�Þ
t Þ for fixed t, given by (1) below. By integration with

respect to the second component, we obtain an expression for the density of A
ð�Þ
t .

However, in this expression, we have an oscillatory integral and a double integral.
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Hence, it is natural to ask whether we can carry out numerical computations efficiently.

One of the main results in this paper is to give an affirmative answer to this question

when t is not small. In the course of our study, we see that the mode of the density of the

distribution of A
ð�Þ
t does not change fast as t or m varies. This fact by itself might be of

independent interest.

When m < 0, it is easy to see that A
ð�Þ
t converges as t Y V. It is known (cf. Dufresne,

2001; Yor, 1992a) that, letting �� be a gamma random variable with parameter b > 0,

A
ð�Þ
t converges in law to ð2���Þ�1

. As a byproduct, we obtain numerically the cor-

responding convergence of the densities.

In order to carry out the numerical computations, we have to evaluate the function

q(r, t) given by (2) below. This function is closely related to the so-called Hartman-Watson

distribution and comes from the modified Bessel function I�ðxÞ(see Barrieu et al., 2004;

Yor, 1980). For the positive function q(r, t), only an integral representation is known and

the integral is an oscillatory one. As we see in Figure 2, when t is small, the function q(r, t)

seems to be negative, from our computations. We have not obtained a nice result for the

density of A
ð�Þ
t in this case. A similar result on the numerical computations has been made

by Barrieu et al. (2004).

Since the expression due to Yor is a little complicated, some authors have been trying

to obtain simpler expressions (see, e.g., Dufresne, 2000, 2001; Schröder, 2003). In

particular, Dufresne (2001) has derived other expressions for the density of A
ð�Þ
t , which

are simpler in the case of m = 0 and m = 1. The coincidence between Yor’s and

Dufresne’s expressions has been confirmed in Matsumoto and Yor (2003) and, for the

cases m = 0 or m = 1, we see the coincidence by numerical computations.

As is mentioned above, numerical studies on the functonal A
ð�Þ
t are important in the

study of Asian options. As an application of our computations for the density of A
ð�Þ
t , we

evaluate numerically the price of an Asian option, which Rogers and Shi (1995) have

done by using a numerical solution for a Cauchy problem.

This paper is organized as follows. In Section 2, we recall Yor’s and Dufresne’s

expressions and sketch a proof of Yor’s formula. We see that all the integrals in Yor’s

formula are obtained from the properties of modified Bessel functions. In Sections 3 and

4, we present the results of our numerical computations for the densities of A
ð�Þ
t and for

the pricing formula on Asian options, respectively.

2. Expressions for the Density

2.1. Yor’s Results

For the joint density of ðAð�Þt ;B
ð�Þ
t Þ, Yor (1992b) has obtained the following result:

THEOREM 2.1 For a > 0 and x 2 R, it holds that

PðAð�Þt 2 da;B
ð�Þ
t 2 dxÞ ¼ e�x��2t=2exp � 1þ e2x

2a

� �
�ðex=a; tÞ da

a
dx; ð1Þ

272 ISHIYAMA



where

�ðr; tÞ ¼ r

ð2�3tÞ1=2

Z 1
0

eð�
2��2Þ=2te�r coshð�Þsinhð�Þsinð��

t
Þd�: ð2Þ

Recall that q(r, t) is related to the modified Bessel function I�ðrÞ (for details, see Yor,

1980):
Z 1

0

e��t�ðr; tÞdt ¼ I ffiffiffiffi2�
p ðrÞ; � � 0: ð3Þ

We give a proof of this theorem, following Alili et al. (2001), which shows that we

indeed live in the world of modified Bessel functions.

Proof: For � > 0, we consider the fundamental solution q(t, x, h) of the heat equation

@u

@t
¼ 1

2

@2u

@�2
� �

2

2
e2�u: ð3Þ

It is easy to show by the general theory of the Sturm-Liouville operators that the Green

function G is given by

Gð�; 	;

2

2
Þ �

Z 1
0

e�

2t=2qðt; �; 	Þdt ¼ 2I
ð�e�ÞK
ð�e	Þ; � < 	; ð3Þ

where I�ðrÞ and K�ðrÞ are the usual modified Bessel functions. For the product of the

modified Bessel functions, the following integral representation is known (cf. Gradshteyn

and Ryzhik, 2000 6.653 at page 705):

I
ðaÞK
ðbÞ ¼
1

2

Z 1
0

exp � 1

2
u� a2 þ b2

2u

� �
I


ab

u

� �
du

u
; 0 < a < b: ð4Þ

From (3) and (4), we get for 
 > 0,

Z 1
0

e�

2t=2qðt; �; 	Þdt ¼

Z 1
0

e�

2t=2dt

�
Z 1

0

exp � u

2
� �

2ðe2� þ e2	Þ
2u

� �
� �2e�þ	=u; t
� � du

u
:

ð4Þ

From the uniquness of Laplace transform, we get

qðt; �; 	Þ ¼
Z 1

0

exp � �
2u

2
� e2� þ e2	

2u

� �
� e�þ	=u; t
� � du

u
: ð4Þ
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On the other hand, the fundamental solution q(t, x, h) is written, in a probabilistic way,

as

qðt; �; 	Þ ¼ E½e��2e2�At=2jBt ¼ 	 � � �
1ffiffiffiffiffiffiffi
2�t
p e�ð	��Þ

2=2t

¼
Z 1

0

e��
2e2�u=2P At 2 dujBt ¼ 	 � �ð Þ 1ffiffiffiffiffiffiffi

2�t
p e�ð	��Þ

2=2t: ð4Þ

Letting x = 0 and applying the uniquness of Laplace transform again, we get

P At 2 dujBt ¼ xð Þ 1ffiffiffiffiffiffiffi
2�t
p e�x2=2t ¼ exp � 1þ e2x

2u

� �
� ex=u; tð Þ du

u
; ð4Þ

which is equivalent to (1) in the case m = 0. The general formula is easily shown by

combining the result in the case m = 0 with the Cameron-Martin theorem. Ì

For later use, we denote the integral of (1) with respect to x by g
ð�Þ
Y ða; tÞda:

g
ð�Þ
Y ða; tÞ ¼ PðAð�Þt 2 daÞ=da

¼
Z þ1
�1

e�x��2t=2 1

a
exp � 1þ e2x

2a

� �
�ðex=a; tÞdx: ð5Þ

2.2. Dufresne’s Results

Next we present the expression f
ð�Þ

D ða; tÞ for the density of 1=2A
ð�Þ
t due to Dufresne

(2001). In particular, f D
(0) and f D

(1) are quite simple:

f
ð0Þ

D ða; tÞ ¼ Ct

1ffiffiffi
a
p

Z 1
0

exp½�aðcoshð	ÞÞ2�e�	2=2tcoshð	Þcosð�	
2t
Þd	; ð6Þ

f
ð1Þ

D ða; tÞ ¼ e�t=2Ct

1ffiffiffi
a
p

�
Z 1

0

exp½�aðcoshð	ÞÞ2�e�	2=2tcoshð	Þsinhð	Þcosð�	
2t
Þd	; ð7Þ

where Ct ¼
ffiffiffi
2
p
ð�

ffiffi
t
p
Þ�1

e�
2=8t. After showing some interesting recursion relations with

respect to the drift m (see also Matsumoto and Yor, 2003), Dufresne has given the

following expressions for a general m: if m m j1, j3, . . .,

f
ð�Þ

D ða; tÞ ¼
Ctffiffiffi
�
p e��

2t=2�ð�þ 1

2
Þa�ð�þ1Þ=2

Z 1
0

exp½�aðcoshð	ÞÞ2�e�	2=2t

� coshð	Þcosð�	
2t
Þ 1F1ð�

�

2
;
1

2
; aðsinhð	ÞÞ2Þd	;
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if m m j2, j4, . . .,

f
ð�Þ

D ða; tÞ ¼
2Ctffiffiffi
�
p e��

2t=2�ð�þ 2

2
Þa��=2

Z 1
0

exp½�aðcoshð	ÞÞ2�e�	2=2t

� coshð	Þ sinhð	Þ sinð�	
2t
Þ 1F1ð

1� �
2

;
3

2
; a ðsinhð	ÞÞ2Þd	;

where 1F1 is the (Kummer) confluent hypergeometric function (see Lebedev, 1972).

3. Numerical Computations

In the numerical computations we employ the software package of NetNUMPAC (http://

netnumpac.fuis.fukui-u.ac.jp/ ). We use a subroutine AQOSCD which is used to compute

finite Fourier integrals.

3.1. The Function q(r, t)

First, we draw the graphs of the function t [ q(r, t). For the computations of infinite

integrals, we have the subroutine INFIND in NetNUMPAC. However, as is mentioned in

its instruction (http://netnumpac.fuis.fukui-u.ac.jp/ ), it is inadequate for functions that

oscillate violently near the origin, and therefore it is inappropriate for our purposes.

Therefore we use AQOSCD.

We draw the graphs of the function t [ q(r, t) for various fixed values of r in Figure 1.

The integral on the right hand side of (2) is an oscillatory integral and, in Figure 1, we

see unstableness near t = 0. The detailed numerical computation near t = 0 when r = 0.5

is given in Figure 2, where we see some error. The probability density q(r, t) looks

negative for some small values of t.

By integrating both hand sides of (1) with respect to da, we get the density of B
ð�Þ
t . We

know that the density of B
ð�Þ
t is ð2�tÞ�1=2

expð�ðx� �tÞ2=2tÞ, and we carry out

numerical computations and draw the graphs of them. In Figure 3, we present the result

in the case of m = 0. We obtain similar results in the cases m or t takes other values, but

we omit them.

3.2. Densities of A
ð�Þð�Þð�Þð�Þð�Þð�Þð�Þð�Þð�Þ
t

Next, we draw the graphs of the probability densities g
ð�Þ
Y ða; tÞ of A

ð�Þ
t given by (5).

We have computed g
ð�Þ
Y ða; tÞ by trapezoidal rule, using the numerical computations for

q(r, t) presented in the previous subsection. In Figure 4, we draw the graphs of the

densities of At
(0) for various fixed values of t. Similarly, we draw the graphs of the

densities of At
(1) and At

(j1) in Figures 5 and 6, respectively. When m < 0, A
ð�Þ
t converges

in law as t Y V to 1=2��� (see Dufresne, 1990; Yor, 1992a). We put the graph of the
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Figure 1. The function t [ q(r, t).

Figure 2. The function t [ q(0.5, t) for t e 0.15.

276 ISHIYAMA



density of 1/2g1 together in Figure 6. We can see the convergence of gY
(j1)(a,t) to the

density of 1/2g1 as t Y V. We also draw the graphs of densities of A
ð�Þ
1 for various values

of m in Figure 7.

When m = 0 and m = 1, Dufresne (2001) has derived some other simple expressions (6)

and (7). Formula (6) is an expression for the density fD
(0)(a, t ) of 1/2At

(0). We draw the

graphs of (2a2)j1fD
(0)(1/2a,1), the density of A1

(0), in Figure 8 and compare with the

graphs of gY
(0)(a, 1) presented in Figure 4. We also obtain a similar result in the case m = 1,

but we omit it.

3.3. Change of Modes

In the graphs of the densities of A
ð�Þ
t given in Subsection 3.2, we find that the modes of

the densities do not change fast as t or m varies. When m < 0, it is easy to understand that

the mode converges because A
ð�Þ
t converges in law to 1=2��� as t tends to V.

We consider only the case m Q 0 and denote the mode of the density of A
ð�Þ
t by 
�;t:

g
ð�Þ
Y ð
�;t; tÞ ¼ max

a
g
ð�Þ
Y ða; tÞ:

We draw the graphs of t 7!
�;t in Figure 9 and the graphs of t 7!maxag
ð�Þ
Y ða; tÞ in

Figure 10.

Figure 3. The density of B1
(0) by integration of Yor’s expression and the density of N(0,1).
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Figure 4. The densities of At
(0) from Yor’s expression.

Figure 5. The densities of At
(1) from Yor’s expression.
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Figure 6. The densities of At
(j1) from Yor’s expression and the density of (2g1)j1.

Figure 7. The densities of A
ð�Þ
1 from Yor’s expression.
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Figure 8. Comparison of Yor’s expression of the density of A1
(0) with Dufresne’s.

Figure 9. The mode of the density of A
ð�Þ
t (Graphs of t 7!
�;t).
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4. Pricing of an Asian Option

In mathematical finance, the process fAð�Þt ; t � 0g is related to an Asian option. In the

Black-Scholes model, the theoretical price of an Asian option can be obtained from the

density of A
ð�Þ
t for fixed t.

We consider a financial market following the Black-Scholes model with maturity T.

One asset is a riskless asset whose price at time t 2 [0, T] is equal to St
0 = ert. Letting {St =

Figure 10. The maximum of the density of A
ð�Þ
t (Graphs of t 7!maxa2Rg

ð�Þ
Y ða; tÞ).

Table 1. The price of Asian option where K = 100, S0 = 100, T = 1.

Voratility s Interest rate r Asian option price V0

0.7 0.06 17.52

0.10 18.01

0.14 18.52

0.9 0.06 21.96

0.10 22.33

0.14 22.69

1.1 0.06 26.29

0.10 26.53

0.14 26.77
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S0 exp (s Bt + (r j s2/2)t), 0 e t e T}, s > 0, be a geometric Brownian motion which

gives the stock price process, we consider the option whose payoff is equal to

h ¼ 1

T

Z T

0

Stdt � K

� �
þ
;

where K > 0. We can show that the price of this Asian option is given by

Vt ¼ e�rðT�tÞStFðt; �tÞ
(see Rogers and Shi, 1995), where

Fðt; �Þ ¼ E � þ 1

T

Z T

t

Su=Stdu

� �
þ

� �

and

�t ¼
1

St

� 1

T

Z t

0

Sudu� K
	
:

It is easy to see that

Fðt; �Þ ¼
Z þ1

0

� þ 4

�2T
a

� �
þ

g
ð 2r

�2�1Þ
Y a;

�2

4
ðT � tÞ

� �
da: ð8Þ

We compute the price of this Asian option by using (8) and our numerical

computations for g
ð�Þ
Y . We present the results in Tables 1 and 2.

5. Conclusions

For the densities of exponential Brownian functionals represented as integrals in time of

geometric Brownian motions, several kinds of integral representations are known. We

Table 2. The price of Asian option where r = 0.10, S0 = 100, T = 1.

Voratility s Strike price K Asian option price V0

0.7 90 22.34

100 18.02

110 14.62

0.9 90 26.19

100 22.33

110 19.19

1.1 90 30.00

100 26.53

110 23.54
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have carried out numerical computations for the representations due to Yor and

Dufresne. Although oscillatory integrals appear, we have succeeded in drawing the

graphs of the densities when time parameter is not small. By applying the numerical

computations, we present a new method of computing the price of an Asian option.

Acknowledgments

A part of the results presented in this article are included in the author’s master thesis,

Graduate School of Human Informatics, Nagoya University. He would like to thank

Professors Marc Yor and Hiroyuki Matsumoto for their interest in the topics of this paper

and for valuable suggestions.

References

L. Alili, H. Matsumoto, and T. Shiraishi, BOn a triplet of exponential Brownian functionals,^ Séminaire de
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