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Abstract. In this work, we propose a stochastic algorithm for solving NP � hard combinatorial optimization

problems. The procedure is formulated within the Ant Colony Optimization (ACO) framework, and extends the

so-called Graph-based Ant System with time-dependent evaporation factor, (GBAS/tdev) studied in Gutjahr

(2002). In particular, we consider an ACO search procedure which also takes into account the objective function

value. We provide a rigorous theoretical study on the convergence of the proposed algorithm. Further, for a toy

example, we compare by simulation the rate of convergence of the proposed algorithm with those from the

Random Search (RS) and from the corresponding procedure in Gutjahr (2002).
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1. Introduction

Several stochastic algorithms have been proposed and successfully used for solving

NP � hard combinatorial optimization problems. These include Simulated Annealing

(SA), Evolutionary Algorithms (EA), among them Genetic algorithms (GA) and

Evolution Strategies (ES), Tabu search (TS), and Ant Colony (AC) based algorithms;

see, for example, Kirkpatrick et al. (1983), Geman and Geman (1984), and Hajek (1988)

for SA, Schwefel (1995) for EA and ES, Goldberg (1989) for GA, Glover and Laguna

(1997) for TS, and Dorigo et al. (1996) and Dorigo and Gambardella (1997) for AC. The

EA, ES, GA and AC algorithms rely on biological mechanisms. In particular, AC

algorithms mimic the behaviour of ant colonies. The ants of a colony succeed in finding

the shortest path between hill and food via a suitable exchange of information among

them. While walking, each ant deposits a chemical substance, called Bpheromone.’’ Of

course, during a given time interval, the concentration of pheromone along each path is a

decreasing function of the length. Since paths with high amount of pheromone are

naturally followed by the ants, such trajectories are reinforced in the sense that the

pheromone concentration on them is increased. On the other hand, since the pheromone
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evaporates according to a suitable law, the pheromone concentration on long paths

decreases with time. These two mechanisms lead the ant colony to find the shortest way

between hill and food.

The different proposed AC algorithms gave rise to the Ant Colony Optimization (ACO)

meta-heuristic algorithms introduced by Dorigo et al. (1999). Although AC algorithms

are broadly used in applications, only a few theoretical work on them has been done.

Gutjahr (2000), (2002) and (2003) was the first to prove the convergence of some special

classes of ACO algorithms. A relevant work is also that one of Rubinstein (2001), where

the so-called Bcross-entropy’’ AC algorithm is proposed and studied theoretically.

In this paper, we propose a class of ACO algorithms which generalizes the so-called

Graph-based Ant System with time-dependent evaporation factor (GBAS/tdev) studied in

Gutjahr (2002). In particular, we consider an ACO procedure where the reinforcement

mechanism is amplified by including some suitable factors involving the objective func-

tion value. In this work, we study in a rigorous way the convergence of the proposed

algorithm, and we compare by simulation the proposed algorithm with existing methods.

By the results in this paper, the set of converging GBAS/tdev algorithms in Gutjahr (2002)

is enlarged. This is true also in the case when the amplification factors are suppressed.

This paper is organized as follows. In Section 2, we describe construction algorithms for

arbitrary combinatorial optimization problems. In Section 3, we introduce the proposed

algorithm. The theoretical results are given in Section 4, where also some examples are

provided. In Section 5, we compare for a toy problem the proposed algorithm with existing

methods by simulation. Finally, in Section 6, we discuss some analogies and differences

among the proposed ACO algorithm, GBAS/tdev, SA and the BRandom Search’’ (RS); see,

for instance, Papadimitriou and Steiglitz (1982) for RS. The references included in this

paper are not exhaustive, indeed there is a huge literature on this subject.

2. Construction Algorithms for Combinatorial Optimization Problems

Let V be a finite set of positive integers. A combinatorial optimization problem consists

of minimizing or equivalently maximizing, under some constraints, a given objective

function H of x = (x1,..., xn) 2 Vn. In this paper, we consider the minimization problem.

Let us denote by S = {x1,..., xN} � Vn the set of points satisfying the constraints

(Bfeasible solutions’’). Construction algorithms provide feasible solutions for the

combinatorial optimization problem under study in the following iterative way. During

iteration t, a vector z(t) = (z1(t) ,..., zn(t)) 2 Vn is built in n steps by adding one compo-

nent at time; see Figure 1. This is done in such a way that the vector zj(t) = (z1(t) ,..., zj(t))

(1 e j e n) is compatible with the constraints, i.e. there exists a vector �zj tð Þ 2 V n�j such

that zj tð Þ; �zj tð Þ
� �

2 S: It is worthwhile to notice that alternative construction algorithms

allow z(t) to be not feasible, penalizing it depending on its degree of Binfeasibility.’’ The

iterative procedure described above can also be represented by a Bwalk’’ of length n j 1

on the graph G ¼ V ;Eð Þ, where E is the set of the ªVª2 Bedges’’ of ordered pairs of

elements of V (vertices); see Figure 1. Other graphs may be considered; see, for instance,

Gutjahr (2000) and (2002). We notice that the technique described above can be applied

250 SEBASTIANI AND TORRISI



in practice when an efficient procedure for deciding wether zj(t) is compatible with the

constraints exists. Once a feasible solution is built, the objective function is evaluated on

it. Then, the next iteration is started.

Finally, to clarify notations, we briefly describe the Traveling Salesperson Problem

(TSP); see, for instance, Papadimitriou and Steiglitz (1982). A salesperson aims to

minimize the length of a tour starting from one of n cities and visiting all the others

exactly once before coming back. Let us denote by xj 2 V = {1,..., n} the index of the j-th

city visited along a tour, which is identified by the vector x = (x1 ,..., xn) 2 Vn. By the

constraints, all the components of x must be different from each other. Therefore, the set

S of all feasible solutions is composed by the N = n! permutations of V. The component

zj(t) is chosen in the set V \{z1(t) ,..., zjj1(t).

The objective function for the TSP is given by H xð Þ ¼
Pn�1

i¼1 dxi; xiþ 1
þ dxn; x1

, where the

terms di, j are the mutual distances between two different cities.

3. The Algorithm

In this Section, we describe the proposed class of ACO algorithms, which is obtained by

generalizing the GBAS/tdev studied theoretically in Gutjahr (2002).

In ACO algorithms, some initial points in S are drawn according to an assigned

distribution. Each point is then updated independently of the others componentwise by

means of the same random mechanism, and can be interpreted as the trajectory of an ant

of a colony. This random mechanism depends on the so-called Bpheromone values’’

Figure 1. Construction of a feasible solution. A feasible solution z = (3,2,4,4,5,1) is built by adding one

element of V = {1,2,3,4,5,6} at each time step. The first component is 3, and the others are added following

directed path.
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which, in some sense, describe the common memory of the ant colony. Such pheromone

values are also updated by an iterative rule. To formalize these ideas, let us introduce

some notations. Let A be a chosen positive integer identifying the number of ants and let

xi(t) = (x1
i(t) ,..., xn

i(t)) 2 S (1 e i e A) denote the trajectory of the i-th ant at iteration t.

The feasible solution xi(t) is obtained by adding one component at time by means of a

probabilistic rule based on the Bpheromone values.’’ At iteration t, for any p, q 2 V, the

pheromone value �p,q
t quantifies the belief from common memory regarding the chances

that xj + 1
i (t) = q if xj

i (t) = p (1 e i e A, 1 < j e n j 1). Analogously, the law �t(I) refers to

the chances for the values of x1
i(t). As it will be described later, the quantities �p,q

t and

�t(I) will be initialized and then updated after each iteration.

More precisely, the components of xi(t) are updated according to the following rule.

Chose xi(0) according to an assigned initial distribution. At iteration t Q 1:

Step 1: Draw xi
1 tð Þ from the distribution�t(�); set j ¼ 1:

Step 2: For 2 � j � n; Propose xi
j tð Þ 2 V with probability

� t
xi

j� 1
tð Þ; xi

j
ðtÞ

�X
l2V�

t
xi

j� 1
tð Þ; l
:

Step 3: Accept xi
j tð Þ if the vector xi

1 tð Þ; . . . ; xi
j�1 tð Þ; xi

j tð Þ
� �

is compatible with the constraints:

Step 4: Go to step 2 and; if xi
j tð Þ is accepted; set j ¼ jþ 1:

ð1Þ

We notice that, when the set of values y such that (x1
i(t) ,..., xj j 1

i (t), y) is compatible with

the constraints can be easily determined, more efficient procedures can be developed.

This is the case for the TSP, where the steps 2 and 3 are equivalent to sample xj
i(t) in the

set V 0 = V \{x1
i (t) ,..., x jj1

i (t)} with probability � t
xi

j� 1
tð Þ; xi

j
ðtÞ=
P

l2V 0 �
t
xi

j� 1
tð Þ;l:

The updating rule for the pheromone is performed by reinforcing its value on feasible

solutions recognized as Bgood’’ and by the evaporation principle, which consists in a

global reduction of the pheromone value. To quantify these two mechanisms, let us

define the best feasible solution x̂x tð Þ visited by the colony up to time t. At iteration t,

after performing steps 1Y 4 for all ant, we set x̂x tð Þ ¼ xi tð Þ if H xi tð Þð Þ < H x̂x t � 1ð Þð Þ and

H(xi(t)) e H(x j(t)) (1 e j e A) for some ant i (if this happens for more than one ant, we

choose the ant with the smallest index). Otherwise, we keep x̂x tð Þ ¼ x̂x t � 1ð Þ. We then set

for any t Q 1 and p, q 2 V:

� tþ1
p;q ¼ 1� �t atð Þ� t

p;q þ �t ate p; q; x̂x tð Þð Þ

�tþ1 pð Þ ¼ 1� �t atð Þ�t pð Þ þ �t at 1 p ¼ x̂x1 tð Þf g: ð2Þ

Here e p; q; x̂x tð Þð Þ ¼ 1=L x̂x tð Þð Þ, if ( p,q) is one of the L x̂x tð Þð Þ distinct pairs of adjacent

components of ^̂xx̂xx tð Þ. Otherwise, we define e p; q; x̂x tð Þð Þ ¼ 0. It is worthwhile to notice that

for the TSP L x̂x tð Þð Þ ¼ n. The sequence {�t}t Q 1 of the evaporation factors is fixed in

advance and it is contained in the interval [0, 1). We also remark that, if �1(I) is a

probability distribution, then so is �t(I) for any t. In the pheromone updating rule of

Equation (2) we have introduced the factors at, which are not included in the GBAS/tdev
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studied in Gutjahr (2002). These factors are defined by at ¼ f HMax* � H x̂x tð Þð Þð Þ, where

f : Rþ !Rþ is an increasing function such that f (0) = 1, and f ($HMax* ) sup{�t : t Q 1} <

1. Here, HMax* denotes a suitable upper bound on the maximum of H. Similarly, $HMax*

is an upper bound on the difference between the maximal and minimal value of H. We

also notice that the above conditions ensure that �t at < 1 for all t. By definition, the at_s
depend on H x̂x tð Þð Þ and therefore are not a priori fixed. Moreover, since at Q 1, each

term �tat=L x̂x tð Þð Þ, which quantifies the reinforcement, is larger than or equal to

�t=L x̂x tð Þð Þ which describes the reinforcement in the GBAS/tdev algorithm. For this

reason, the at_s can be interpreted as amplification factors for the reinforcement.

As it happens in GBAS/tdev, we assume �p,q
1 > 0, �1( p) > 0 for all p, q 2 V, andP

p;q2V �
1
p;q ¼ 1: This implies, for all t, �p,q

t > 0, �t(p) > 0, and

X

p;q2V

� t
p;q ¼ 1: ð3Þ

It is worthwhile to notice that the so-called Bvisibility’’ constants can be taken into

account by replacing the probability in Equation (1) with

� t
xi

j� 1
tð Þ; xi

j
tð Þ

h i�
vxi

j� 1
tð Þ; xi

j
tð Þ

h i�
,
X

l2V

� t
xi

j� 1
tð Þ; l

h i�
vxi

j� 1
tð Þ; l

h i�
;

see for instance, Dorigo et al. (1999), and Gutjahr (2000) and (2003). Here, vp,q, p,q 2 V

are the Bvisibility’’ constants, and �, � Q 0. The constants vp,q can be choosen heu-

ristically and are related to the objective function (e.g. the mutual distances in the TSP).

In this paper, we do not consider Bvisibility’’ for the sake of simplicity. However, the proofs

in this work can be easily adapted to the case when Bvisibility’’ appears in Equation (1).

4. Results

In this Section, we give sufficient conditions for the convergence of the proposed ACO

algorithm to an optimal solution, and we provide some examples.

4.1. Convergence

Letting O denote the set of the m optimal solutions, the following Theorem holds.

THEOREM 1 Let us assume

(i)
Q

t�1 1� �t f �HMax* Þð Þ ¼ C 2 0; 1ð �ð
or

(ii) there exists a sequence {bt}t Q 1 Î (0, V) such that
P

t�1 b�n
t ¼ þ1 and

1� �t f
�
�HMax*

�
� bt

btþ 1
for all t large enough.
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Then, we have

lim
t!þ1

P X̂X tð Þ 2 O
� �

¼ 1:

This result ensures that the probability that the ant colony enters the set O of optimal

solutions tends to one as the number of iterations goes to infinity.

We notice that, after the colony has hit an optimal solution ~oo 2 O; x̂x tð Þ becomes

constant, while the xi(t)_s may vary. Furthermore, under suitable conditions, the phero-

mone values converge as stated by the following Theorem.

THEOREM 2 Under conditions (ii) of Theorem 1, if moreover
P

t�1 �t ¼ þ1 , then

P
[

o2O

\

p;q

T t
p;q! e p; q; oð Þ

n o
 !

¼ 1 and P
[

o2O

\

p

��t pð Þ ! 1 p ¼ o1f gf g
 !

¼ 1;

where Tp,q
t and 66t( p) are random variables whose values are � p,q

t and �t( p), respectively.

Theorem 2 provides further insight about the convergence analysis of the proposed

ACO algorithm. Indeed, from a practical point of view, we can be confident to have

found an optimal solution when x̂x tð Þ remains constant in t and the pheromone values �p,q
t

approach more and more the values e p; q; x̂x tð Þð Þ, for all p,q 2 V.

Proof of Theorem 1: By the definition of X̂X tð Þ and the following inclusion between

events: X̂X tð Þ 2 O
� �

� X̂X t þ 1ð Þ 2 O
� �

, we have

P

�[

t�1

X̂X tð Þ 2 O
� �	

¼ lim
t!þ1

P X̂X tð Þ 2 O
� �

¼ lim
t!þ1

P
[

1� i�A

[

1� s� t

Xi sð Þ 2 O
� �

 !

:

Therefore, the conclusion follows if we show that the probability

p tð Þ ¼ P
\

1� i�A

\

1� s� t

Xi sð Þ=2O
� �

 !

goes to zero as t goes to infinity. For this, we start noticing that, by Lemma 1, proved in

the Appendix, for any fixed o* 2 O, the following inequality holds

p tð Þ � exp ��n o*ð Þ
Xt

j¼ 2

�Yj�1

s¼ 1

1� �s f ð�HMax* Þ
		n� 


;

(

ð4Þ

where �n o*ð Þ ¼ �1 o1*ð Þ
Qn

j¼ 2 �1
o*j� 1;oj*

:

Now, we first show that, under assumption (i), the r.h.s. of Equation (4) goes to zero as

t tends to infinity. We notice that, for all j Q 2, we have

Yj�1

t¼1

�
1� �t f

�
�HMax

*
��
�
Y

t�1

�
1� �t f

�
�HMax

*
��
¼ C 2 0; 1ð �:
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Therefore,

p tð Þ � exp ��n o*ð Þ t � 1ð ÞCn½ �: ð5Þ

Since �n(o*) > 0, the conclusion follows by letting t tend to infinity.

Finally, we prove that, under assumption (ii), the r.h.s. of Equation (4) goes to zero as t

tends to infinity. For this, we notice that, for some t0 and and all j > t0, it holds

Yj�1

t¼ 1

�
1� �t f

�
�HMax

*
�	
�
Yt0�1

t¼ 1

�
1� �t f �HMax

*
� �	Yj�1

t¼ t0

bt

btþ1

¼ K

bj

; ð5Þ

where K ¼ bt0

Qt0�1

t¼ 1

1� �t f �HMax
*

� �� �
: Therefore,

p tð Þ � exp ��n o*ð Þ
Xt

j¼ t0 þ 1

Yj�1

s¼ 1

1� �s f �HMax
*

� �� �
 !n( )

� exp ��n o*ð ÞKn
Xt

j¼ t0 þ 1

b�n
j

" #

:

The conclusion follows by letting t tend to infinity. Í
REMARK 1 We point out that, assuming (i) or (ii) of Theorem 1, it follows inf t� 1�t ¼ 0:

Indeed, reasoning by contradiction if inf t�1�t ¼ � > 0 , we have
Qt

s¼1 1��s f �HMax
*

� �� �
<

1� � f �HMax
*

� �� �t
for all t, which is impossible under condition (i). On the other hand,

when (ii) holds, we have bt

btþ 1

� �n

� 1� �t f �HMax
*

� �� �n� 1� � f �HMax
*

� �� �n
< 1;

which implies the convergence of
P

t� 1 b�n
t :

Proof of Theorem 2: By the definition of the updating rule for the best feasible solution

X̂X tð Þ up to time t, it follows

� �
[

k�1

[

o2O

\

t� k

X̂X tð Þ ¼ o
� �

¼
[

t�1

X̂X tð Þ 2 O
� �

:

Therefore, by Theorem 1, P(4) = 1. Hence, the conclusion follows by proving that

� �
[

o2O

\

p;q

T t
p;q ! e p; q; oð Þ

n o
and � �

[

o2O

\

p

��t pð Þ ! 1 p ¼ o1f gf g:

We start showing the first inclusion. Let ! 2 � be arbitarily fixed, and let ~oo 2 O be

such that X̂X t; !ð Þ ¼ ~oo for all t large enough. We observe that, for all p; q;2 V ;~tt � 1, and

u Q 2, we have

� ~ttþ u
p;q ¼ 1� �~ttþ u� 1a~ttþ u� 1ð Þ�~ttþ u� 1

p;q þ �~ttþ u� 1a~ttþ u� 1e p; q; ~ooð Þ

¼ �~tt
p;q

Y~ttþ u� 1

t¼~tt

1� �t atð Þ þ e p; q; ~ooð Þ
Y~ttþ u� 1

t¼~tt

�t at

Y~ttþu�1

s¼ tþ 1

1� �s asð Þ; ð6Þ
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where the latter identity can be easily checked by induction. Summing up on all p,q 2 V,

by Equation (3), we have

1 ¼
X

p;q2V

�
~ttþ u
p;q ¼

Y~ttþ u� 1

t¼~tt

1� �t atð Þ þ
X~ttþ u� 1

t¼~tt

�t at

Y~ttþu�1

s¼ tþ 1

1� �s asð Þ: ð7Þ

Since it holds

Y~ttþ u� 1

t¼~tt

1� �t atð Þ � exp �
X~ttþ u� 1

t¼~tt

�t

 !

; ð8Þ

by the hypothesis, it follows

lim
u! þ 1

Y~ttþ u� 1

t¼~tt

1� �t atð Þ ¼ 0: ð9Þ

By the Equation (9), we have that the second addend in Equation (7) tends to one as uYV.

The thesis follows by letting u tend to infinity in Equation (6).

The proof of the second inclusion follows replacing � by �, and e(I) by 1{I}. Í
REMARK 2 Conditions (i) or (ii) of Theorem 1 impose upper bounds on �t. As it will be

discussed in Section 6, the extreme case �t = 0 corresponds to RS. In this case, con-

vergence of X̂X tð Þ holds, but the pheromone values do not converge anymore. By add-

ing to condition (ii) of Theorem 1 the lower bound type condition
P

t � 1
�t ¼ þ1, the

convergence property of Theorem 2 for the pheromone values holds. Thus, there is a

trade-off: to achieve pheromone values convergence, �t has to be decreased towards zero

neither too Bfast’’ nor too Bslowly.’’

REMARK 3 We notice that the conclusion of Theorem 2 implies that
Q

t� 1 1��t f �HMax
*

� �� �
¼0,

which is the opposite of condition (i) of Theorem 1. Indeed, by Equation (6) with (p,q)

such that e p; q; ~ooð Þ ¼ 0 and the conclusion of Theorem 2, we have
Q

t� 1 1� �tatð Þ ¼ 0

REMARK 4 We point out that by the updating rule of Equation (1) and Bayes_ formula, for

any y 2 S, we have

P Xi tð Þ ¼ y X t � 1ð Þj
� �

/ �t y1ð Þ
Yn

j¼2

Tt
y j � 1; yjP

l2V

Tt
yj�1; l

; ð10Þ

where the proportionality factor is no smaller than one, and X(t) is the random vector

obtained by stacking Xi(s), 1 e i e A, 1 e s e t. In particular, for the TSP, since e(p,q,x) =

1/n if (p,q) is one of the n distinct pairs of adjacent components of x and zero otherwise,

by Theorem 2 it follows that

P
[

o2O

\

1� i�A

P Xi tð Þ ¼ y X t � 1ð Þj
� �

! 1 y ¼ of g
� �

 !

¼ 1:
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This means that for the TSP, as t goes to infinity, the conditional probability in Equation

(10) approaches one if y is one optimal solution.

4.2. Examples

Finally, we give three examples of the proposed ACO algorithm for which conditions of

Theorem 1 or Theorem 2 are met. We preliminary observe that the proposed ACO algo-

rithm is completely determined if we specify the sequence of evaporation factors, the

values of �p,q
1 and �1( p), and the initial distribution of X(0). However, the assumptions of

the Theorems only involve the evaporation factors.

EXAMPLE 1 The infinite product in condition (i) of Theorem 1 can be rewritten as the ex-

ponential of
P

t � 1ln 1� �t f �Hmax
*

� �� �
: Therefore, to satisfy assumption (i) of Theorem 1,

it suffices to model the terms ln(1 j �t f ($Hmax* )) in such a way that the above series

converges. To this aim, setting ln 1� �t f �HMax
*

� �� �
¼ �t��, with � > 1, we have

Y

t � 1

1� �t f �HMax
*

� �� �
¼
Y

t � 1

e�t�� ¼ e
�
P
t � 1

t��

¼ C:

Moreover, it holds f ($Hmax* ) sup{�t : t Q 1) = f ($Hmax* )�1 = (1 j ejl) < 1.

EXAMPLE 2 We first consider condition (ii) of Theorem 1, where�t and bt appear. We model

bt in such a way that it is increasing and
P

t�1 b�n
t ¼ þ1 . Moreover, we define �t = a(1j

bt/bt + 1) with a < 1. Therefore, the inequality in assumption (ii) of Theorem 1 is satisfied

assuming f ($Hmax* ) a < 1. This inequality ensures also that f ($Hmax* )sup{�t : t Q 1} < 1.

The particular choice bt ¼ t�=n, with � 2 (0, 1), guarantees
P

t�1 �t ¼ þ1: Indeed,
X

t�1

�t ¼ a
X

t�1

t þ 1ð Þ��=n
t þ 1ð Þ�=n � t�=n

h i

¼ a�=n
X

t�1

t þ 1ð Þ��=n�
�=n�1
t � a�=n

X

t�1

1= t þ 1ð Þ ¼ þ1

where t e Jt e t + 1, and we applied the mean value theorem to the function t�=n .

EXAMPLE 3 As in the latter example, we choose bt increasing and such that
P

t � 1 b�n
t ¼ þ1:

In particular we set bt = ln(t + 1), thus we have
P

t� 1 ln t þ 1ð Þ½ ��n ¼ þ1
since limt!þ1 ln tð Þnt�1¼ 0 , by De l_Hospital_s rule. Defining �t = a/((t + 1) ln(t + 2)),

with a < 1/2, it is easily seen that the inequality in assumption (ii) of Theorem 1 is

satisfied when f ($HMax* ) a < 1/2. This inequality implies also that f ($HMax* )

sup{�t : t Q 1) < 1. Finally, condition
P

t � 1�t ¼ þ1 in Theorem 2 holds, indeedP
t�1 1

.
t þ 1ð Þln t þ 2ð Þ½ � �

Rþ1
1

dx
xþ2ð Þln xþ2ð Þ ¼ þ1.

5. Simulation Study

In this Section we study the performance of the proposed ACO algorithm, and we

compare the results with those from existing procedures. As in Droste et al. (2002),
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we consider the expected value of the waiting time W ¼ min t : X̂X tð Þ 2 O
� �

until

an optimum is reached. For a toy problem we provide estimates of E[W] by simu-

lation for different values of n. Particularly, we study the proposed algorithm with the

choice �t ¼ 1
9 tþ1ð Þ ln tþ2ð Þ (see example 3), f xð Þ ¼ e�x, with � = ln(9/2)/(2$HMax* ),

�1
p;q¼1= Vj j2; �1 pð Þ ¼ 1= Vj j and X(0) drawn according to the uniform law on S.

Moreover, we focus on the case of a single ant (A = 1), which means that the algorithm is

based only on the memory effect. We compare the performance of this ACO procedure

with that one obtained by setting � = 0, corresponding to a particular GBAS/tdev

algorithm. This analysis is performed for the following Bopen’’ TSP with a specific

distance matrix. We define V = {1, 2 , ... , n} and we assume S to be the set of all

permutations of V. The objective function is H xð Þ ¼ Pn�1

i¼1
xi � xiþ1j j: In such a case the set

of optimal solutions O is equal to {(1, 2, ... , n), (n, n j 1, ... ,1)}. Furthermore, we choose

HMax* = $HMax* = (n j 1)2. The numerical results presented in this paper are obtained

taking n = 3, ... ,10. For the ACO algorithms of above, for each value of n, the sample

mean (sm) and the standard deviation of the mean (se) of W have been computed

performing 10,000 independent algorithm runs. We also compare the considered ACO

algorithms with the RS, for which E W½ � ¼ Sj j= Oj j ¼ n!=2: These results are reported in

Table 1. We notice that the ACO algorithm introduced in this paper provides a faster

convergence than the GBAS/tdev. Indeed, as Table 1 and Figure 2 show, the proposed

ACO algorithm gives a relevant gain in terms of number of iterations starting from n = 7.

6. Discussion

We start noticing that the proposed ACO and the GBAS/tdev algorithms are general-

izations of RS. In fact, if we set �t = 0 for all t in Equation (2), and we assume �p,q
1 =

1/ªVª2 and �1( p) = 1/ªVª, then the probability in Equation (1) reduces to 1/ªVª. This

Table 1. Numerical simulation for the ACO algorithms in the toy example. The first column contains the

different values of n = ªVª considered. In the second column are reported the values of the theoretical mean

(tm) of W for RS. In the remaining columns, there are the values of the sample mean (sm) and the standard

deviation of the mean (se) of W for the ACO algorithms.

n

RS GBAS/tdev Proposed ACO

tm sm se sm se

3 3 3 0 3 0

4 12 12 0 13 0

5 60 56 0 60 0

6 360 277 2 270 3

7 2,520 1,513 16 1,369 16

8 20,160 8,656 102 6,815 96

9 181,440 53,503 642 35,987 554

10 1,814,400 366,697 5,016 204,386 4,043
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is the updating rule of RS, whose convergence can be proved trivially. When �t is not

identically equal to zero, the proposed ACO algorithm has higher probability to visit

Bneighbours’’ of the current best feasible solution, keeping reasonable chances of visiting

all the other points of S. This is the main difference between RS and the proposed ACO

algorithm, the same being true for the GBAS/tdev algorithm. We also point out that in

RS, we simulate a sequence of i.i.d. random vectors. On the contrary, the proposed ACO

algorithm with non vanishing evaporation factors allows non-Markovian dependency of

the current state from the past, as it arises by Equations (1) and (2). However, arguing

as in Lemma 3.1 of Gutjahr (2002), the process M ¼ X̂X tð Þ; Tt
� �� �

t�1
is a non-homo-

geneous Markov chain, where Tt is the vector with components Tp,q
t . Therefore, to run

the ACO algorithm we only need at each iteration the realization of the process M at the

previous one.

Another stochastic algorithm, which is broadly applied to solve NP�hard com-

binatorial optimization problems, is SA. Here, again the optimal solution is the limit of a

stochastic process {Y(t)}t Q 1 with values in S. However, three important facts have to be

noticed. First, in SA {Y(t)}t Q 1 is a non-homogeneous Markov chain. Secondly, the

sequence of kernels which governs the one step transitions in SA is given and it is

defined by means of a sequence of real numbers called Bcooling schedule.’’ In the

Figure 2. A comparison by simulation between RS and ACO algorithms for the toy example. The different

values of n = ªVª are reported along the horizontal axis. The corresponding ratios between the sample mean of

W for the RS and the ACO algorithms are represented on the vertical axis. These ratios quantify speedup

factors. The symbols * and o refer to the proposed ACO and GBAS/tdev algorithms, respectively.
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proposed ACO algorithm the kernels are not fixed in advance, as it is clear by Equations

(1) and (2). Finally, exploring S by a colony of ants is in the same spirit of the multi-start

version of SA, where independent replications of {Y(t)}t Q 1 are simulated, starting from

different initial values. However, the main difference between these two procedures is

that in ACO algorithms, the A stochastic processes {Xi(t)}t Q 1 (i = 1, ... , A) are not

independent. Convergence analysis of SA is based on the theory of non-homogeneous

Markov chains; see, for instance, Geman and Geman (1984) and Hajek (1988). More

precisely, convergence in distribution of {Y(t)}t Q 1 to the uniform distribution on the set

of optimal solutions is proved. This is done assuming suitable sufficient conditions on the

cooling schedule. The convergence result in Theorem 1 is of a similar kind as the one for

SA, but its proof is based on similar techniques as in Gutjahr (2002).

We now point out some differences between the proposed ACO and the GBAS/tdev

algorithms. As already mentioned in Section 3, the ACO algorithm studied here involves

amplification factors which are not present in the GBAS/tdev. Such factors allow to take

into account the objective function value during reinforcement. In some cases, this may

improve the speed of convergence of the algorithm. For the toy problem considered in

Section 5, the simulation results on the waiting time until an optimum is reached provide

a numerical evidence in this direction. We also notice that the pheromone values at the

beginning are not all equal as in the GBAS/tdev algorithm. Furthermore, also when

amplification factors are not considered, we extend the set of converging GBAS/tdev

algorithms of Gutjahr (2002). Indeed, the conditions of Theorem 2 involve a generic

sequence {bt}t Q 1, while Theorem 4.1 of Gutjahr (2002) only deals with the particular

sequence {ln t}t Q 1. Moreover, the sufficient condition (i) of Theorem 1 was not con-

sidered in Gutjahr (2002).

The theoretical study on the waiting time until an optimum is reached for the proposed

ACO algorithm is presently under investigation by the authors. This kind of analysis has

already been performed for the (1 + 1) EA; see, for instance, Droste et al. (2002). The

results obtained in Droste et al. (2002) refer to specific classes of objective functions and

provide in some cases very good asymptotic rates. The same strategy of restricting the

class of objective functions could be adopted in the context of ACO algorithms.

Appendix

In this Appendix we prove the following Lemma 1, which is exploited in the proof of

Theorem 1.

LEMMA 1 Setting p tð Þ ¼ P

�
T

1� i�A

T

1� s� t

Xi sð Þ=2O
� �	

, for any fixed o* 2 O, the follow-

ing inequality holds

p tð Þ � exp ��n

�
o*
�Xt

j¼ 2

Yj� 1

s¼ 1

1� �sf ð�H
Max
* Þ
		n� 


;

 (

where �n

�
o*
�
¼ �1

�
o1*
� Qn

j¼ 2

�1
oj� 1* ,oj

*:
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Proof: For any fixed o* 2 O; it follows

p tð Þ � P
\

1� i� A

\

1� s� t

�
Xi sð Þ 6¼ o*

�
!

� P
\

1 � s � t

�
X1 sð Þ 6¼ o*

�
!

:

  

ðA:1Þ

The latter term of (A.1) can be rewritten as

p
\

1 � s � t

X1 sð Þ 6¼ o*
� �

 !

¼
X

x t�1ð Þ2F

P X1 tð Þ 6¼ o* X t � 1ð Þ ¼ x t � 1ð Þj
� ��P X t � 1ð Þ ¼ x t � 1ð Þð Þ;

ðA:2Þ
where F = {y(t j1) : y1(s) 2 S\{o*},yi(s) 2 S, 1 e s e t j 1, 2 e i e A}. Moreover, by

Equation (10), we have

P X1 tð Þ ¼ o* X t � 1ð Þj ¼ x t � 1ð Þ
� �

� �t o1
*

� �Yn

j¼ 2

� t

oj�1* ;oj*P

l2V

� t

oj� 1* ; l

: ðA:3Þ

Since at e f ($HMax)* for all t, by the pheromone updating rule of Equation (2), for

all t Q 2 and p, q 2 V, it follows

� t
p;q � 1� �t�1at�1ð Þ� t�1

p;q � �1
p;q

Yt� 1

s¼ 1

1� �sasð Þ � �1
p;q

Yt� 1

s¼ 1

1� �s f �HMax*ð Þð Þ

�t pð Þ � �1 pð Þ
Yt� 1

s¼ 1

1� �s f �HMax*ð Þð Þ:

ðA:4Þ

Therefore, by Equations (A.3) and (A.4), and the identity
P

p;q2V �
1
p;q ¼ 1, it follows

P X1 tð Þ ¼ o* X t � 1ð Þ ¼ x t � 1ð Þj
� �

� �n o*ð Þ
Yt� 1

s¼ 1

1� �s f �HMax*ð Þð Þ
" #n

; ðA:5Þ

where �n o*ð Þ ¼ �1 o1*ð Þ
Qn

j¼2

�1
oj�1* ;oj*

:

Therefore, by equations (A.2) and (A.5) we have

P
\

1�s�t

X1 sð Þ 6¼ o*
� �

 !

� 1� �n o*ð Þ
Yt�1

s¼ 1

1� �s f �HMax*ð Þð Þ
 !n" #

X

x t� 1ð Þ 2F

P X t � 1ð Þ ¼ x t � 1ð Þð Þ

¼ 1� �n o*ð Þ
Yt�1

s¼ 1

1� �s f �HMax*ð Þð Þ
 !n" #

P
\

1 � s � t� 1

X1 sð Þ 6¼ o*
� �

 !

:

ðA:6Þ

(A.2)

(A.6)
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By iterating inequality (A.6) we obtain, for all t Q 2,

P
\

1� s� t

X1 sð Þ 6¼ o*
� �

 !

�
Yt

j¼ 2

1� �n o*ð Þ
Yj� 1

s¼ 1

1� �s f �HMax*ð Þð Þ
 !n" #

: ðA:7Þ

The conclusion follows by Equations (A.1) and (A.7), and ln(1 j x) e j x, where

x < 1. Í
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