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INTRODUCTION

Chloroplasts have a unique transcription appara-
tus: their genes are transcribed by RNA polymerases
(RNAPs) of two types, monosubunit and multisub-
unit. Moreover, these enzymes are encoded by genes
localized in different compartments of the cell: plastid
genes code for the core subunits of multisubunit plas-
tid-encoded plastid RNAP (PEP), while nuclear genes
code for monosubunit nucleus-encoded plastid RNAP
(NEP), 

 

σ

 

 subunits of PEP, and, probably, other protein
components of PEP. It is of particular interest how two
different RNAPs interact with each other and how the
concerted expression of their genes, located in differ-
ent organelles, is achieved. Studies in the last seven or
eight years have provided or suggested answers to
these questions.

MULTISUBUNIT RNA POLYMERASE 
WITH A PLASTID-ENCODED CORE (PEP)

PEP belongs to the multisubunit RNAP family,
which also includes archaebacterial and eubacterial
RNAPs along with eukaryotic nuclear RNAPs I, II,
and III [1]. The core of PEP is most similar to the
RNAPs of bacteria, in particular, cyanobacteria. How-
ever, PEP of mature chloroplasts includes many addi-
tional proteins and is intermediate between eubacte-
rial and nuclear RNAPs in the number of polypeptides
in the whole complex [2–4].

PEP occurs in the chloroplasts of all photosynthe-
sizing organisms. Plants defective in PEP genes are
unviable, being virtually devoid of chlorophyll
because of the distorted development of chloroplasts
[5–7]. Nonphotosynthesizing parasitic plants quickly

lose the PEP genes during evolution [8–10]. Data on
the PEP activity in nonphotosynthesizing plastids are
scarce. It is probable that PEP is active in nondifferen-
tiated proplastids [11]. The RNAP responsible for
transcription in specialized nonphotosynthesizing
plastids has yet to be identified.

As in the cyanobacterial enzyme, the PEP core
consists of five subunits: 

 

(

 

α

 

)

 

2

 

, 

 

β

 

, 

 

β

 

', and 

 

β

 

", which are
encoded by 

 

rpo

 

A, 

 

rpo

 

B, 

 

rpo

 

C1, and 

 

rpo

 

C2, respec-
tively [12, 13]. These genes are components of the
plastome in almost all algae and plants studied in this
respect. The only exception is the moss 

 

Physcomi-
trella patens

 

, in which 

 

pro

 

A is relocated into the
nucleus [14]. In addition, the genome of 

 

Synechocys-
tis

 

 and the plastomes of some algae contain genes
homologous to the genes for the 

 

Escherichia coli

 

RNAP subunit 

 

ω

 

 and its orthologs, subunit K of
archaebacterial RNAP, and the RPB6 subunit that is
common for nuclear RNAPs I, II, and III [1, 15]. It is
possible that the 

 

ω

 

 subunit is a component of PEP,
although it has not thus far been found in plastids or
isolated PEP complexes ([4]; Oelmuller, personal
communication). Maize PEP includes the subunits 

 

α

 

(38 kDa), 

 

β

 

 (120 kDa), 

 

β

 

'

 

 (78 kDa), and 

 

β

 

''

 

 (180 kDa)
[16, 17]. The 

 

rpo

 

C1 and 

 

rpo

 

C2 genes correspond to
the 5' and 3' regions of 

 

rpo

 

C of 

 

E. coli

 

 and other
eubacteria (Fig. 1a). The 

 

rpo

 

C gene was also split in
archaebacteria, but at a different site than in plastids
(Fig. 1a) [12, 18]. The RNAP genes are structurally
simple (only higher plant 

 

pro

 

C1 has a single intron)
and evolutionarily conserved. For instance, the dele-
tion of a monocot-specific region from 

 

rpo

 

C2 results
in cytoplasmic male sterility in sorghum [19]. The
genomic organization of the 

 

rpo

 

 genes is also con-
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served: 

 

rpo

 

A is a component of an operon coding for
ribosomal proteins while 

 

rpo

 

B and 

 

rpo

 

C (1 and 2)
form another operon both in bacteria and in plastids
(Fig. 1b) [12, 20–22].

RNAPs of the bacterial type differ from other mul-
tisubunit RNAPs in having 

 

σ

 

 subunits [1]. The 

 

σ

 

 sub-
units regulate the promoter specificity of the only
RNAP in bacterial cells. The 

 

σ

 

 subunits interacting
with the PEP core are encoded by a small family of the
nuclear 

 

Sig

 

 genes. PEP lacking a 

 

σ

 

 subunit is incapa-
ble of correct transcription initiation [4]. The plant 

 

Sig

 

genes code for polypeptides of 47–66 kDa. Nucleotide
sequence comparison of the 

 

Sig

 

 genes and their
mRNAs, along with our unpublished data, suggest the
presence of short introns. Seven 

 

σ

 

-subunit genes were
found in 

 

E. coli

 

 and nine, in cyanobacteria [23–25].
Plants have five or six 

 

Sig

 

 genes (

 

Sig1–6

 

). Analysis of
published data allows the following conclusions. The
genes for chloroplast 

 

σ

 

 subunits (

 

cp

 

σ

 

) are expressed
differently. 

 

In vitro

 

, PEP with different 

 

σ

 

 subunits
interacts with the same promoters of the 

 

σ

 

70

 

 type with
different efficiencies. As with 

 

E. coli

 

 

 

σ

 

70

 

, 

 

cp

 

σ

 

 subunits
alone do not bind to promoters [26–28]. Plants (

 

Ara-
bidopsis thaliana

 

) knocked-out in one 

 

Sig

 

 gene are
viable owing to the increased expression of the other

 

Sig

 

 genes [29]. Still, the disruption of individual 

 

Sig

 

genes suppresses the growth and development of

plants [29, 30]. A protein interacting with SIG1, but
not with the other 

 

σ

 

 subunits, is known in 

 

A. thaliana

 

[31]. SIG2 and SIG5 ensure, respectively, the consti-
tutive and inducible transcription of 

 

psb

 

D from differ-
ent promoters in 

 

A. thaliana

 

 [28, 30]. Thus, different

 

cp

 

σ

 

 are homologous and interact with promoters of the
same type, but they are still capable of differentially
regulating the transcription of plastid genes. Apart
from flowering plants, several 

 

Sig

 

 genes were found in
the moss 

 

P. patens

 

 [32, 33] and in the red alga 

 

Cyani-
dium caldarium

 

 [34].

Two specific inhibitors, rifampicin and tagetin, are
used to block the function of PEP. The antibiotic
rifampicin, which binds to the 

 

β

 

 subunit of bacterial
RNAP, suppresses the PEP activity as well [2, 36, 37].
Rifampicin prevents the formation of the first phos-
phodiester bonds, and its effect depends on the protein
composition of the initiation complex [2, 38, 39]. Tage-
tin, also known as tagetitoxin, inhibits bacterial RNAP
[40], PEP [2, 11, 40, 41], and nuclear RNAP III [42].
Tagetin acts at the stage of transcription elongation
[43] and is independent of transcription initiation fac-
tors. However, its efficacy depends on the DNA tem-
plate [43].

PEP is reorganized during plastid biogenesis. For
instance, PEP-B is prevalent in mustard etioplasts [2].
PEP-B is probably a minimal transcription complex
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Fig. 1.

 

 Genes for the core subunits of multisubunit RNAPs. (a) Structure of 

 

E. coli

 

 RNAP subunit 

 

β

 

 and homologous subunits of
cyanobacterial, plastid, and archaebacterial RNAPs. A, B, C, D, and F are conserved motifs. The position of the intron in the plastid
RNAP 

 

β

 

'-subunit gene is shown. Cited from [12] with modification. (b) Organization of the 

 

rpo

 

B/C operon in proteobacteria, cyano-
bacteria, and plastids. The start and direction of transcription are shown with arrows.
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consisting of the RNAP core and a 

 

σ

 

 subunit. The
complex is sensitive to rifampicin. In mustard chloro-
plasts, PEP mostly occurs as PEP-A [9], an intricate
complex containing not only the RNAP core, but also
protective proteins, RNA-binding proteins, and a pro-
tein capable of binding to membranes [39]. A similar
complication of PEP was observed in the plastids of
pea [3], tobacco [4], and 

 

Arabidopsis

 

 (Oelmuller, per-
sonal communication). The binding of RNAP with the
additional polypeptides is stronger than that with a 

 

σ

 

subunit [4]. PEP-A consists of at least 13 polypep-
tides, is more than 900 kDa, and is insensitive to
rifampicin. The difference in rifampicin sensitivity
between PEP-A and PEP-B is most probably deter-
mined by the composition of transcription factors
interacting with the RNAP core [38].

PEP is reorganized during the early development of
chloroplasts: young greening plastids contain an inter-
mediate enzyme, which is similar in molecular weight to
PEP-A and in buffer salt requirements to PEP-B [37].

Many protein components of PEP-A have been
identified ([4, 39]; Oelmuller, personal communica-
tion), yet their roles in transcription are still poorly
understood. Most components are similar to proteins
with unknown functions; some others show a similarity
to nontranscription proteins such as phosphofructo-
kinase, aldolase, acetylmuramyl-L-alanylglutamate–
diaminopimelate ligase, superoxide dismutase (SOD),
thioredoxin, and certain ribosomal proteins. Many of
the proteins with unknown functions contain con-
served motifs responsible for DNA binding, RNA
binding, and protein–protein interactions. Disruption
of the genes for three such proteins (an aldolase
homolog and two proteins with unknown functions) is
similar in effect to the disruption of the genes coding
for components of the PEP core. Mutant plants fail to
develop chloroplasts; the transcription of PEP-depen-
dent genes is strongly suppressed and that of NEP-
dependent genes is increased in leaf etioplasts (Oel-
muller, personal communication). It is clear that these
proteins are functionally important subunits of PEP-A.

PEP-A probably incorporates Fe-dependent SOD,
an enzyme involved in protecting chloroplast from
free radical damage ([39]; Oelmuller, personal com-
munication). Such an association with SOD is
unknown for nuclear and bacterial RNAPs [1, 44, 45].
Presumably, Fe-dependent SOD protects the tran-
scription machinery of chloroplasts from free radicals
generated in large amounts during intense photosyn-
thesis.

Another protein associated with PEP-A is casein
kinase 2, which phosphorylates the transcription com-
plex [46–48]. Phosphorylation/dephosphorylation
affects the strength of the interaction between the
RNAP core and σ subunits [49], the binding of the
holoenzyme with a promoter [46, 47] and with
rifampicin [39], and the activity of PEP-associated

casein kinase 2 itself [46]. It is probable that the struc-
tural organization of PEP is also regulated by phos-
phorylation/dephosphorylation.

The PEP activity changes during chloroplast bio-
genesis. The observed changes in the amount of the
rpoB mRNA for the PEP subunit β make it possible to
assume that, as proplastids develop into chloroplasts,
PEP synthesis is initiated, quickly reaches its maxi-
mum, and then declines with chloroplast maturation
[50–52]. The NEP activity changes similarly but even
more quickly. According to the results of inhibitor
analysis, PEP activity accounts for 40–50% of the
total RNAP activity in nondifferentiated proplastids
and for 95–99% in mature chloroplasts [11].

As the synthesis of the PEP mRNA decreases and
PEP is reorganized during chloroplast differentiation,
transcription regulation by external factors becomes
stronger. For instance, PEP-dependent psbA and psbC
of photosystem II are actively transcribed regardless
of illumination in young chloroplast but only in the
light in mature chloroplasts [53]. The change is prob-
ably due to the reorganization of PEP, which differ-
ently interacts with the psbA promoter at different
stages of chloroplast biogenesis, binding or not to the
region 35 [53, 54].

Changes in PEP activity correspond to the program
of chloroplast differentiation. The first stage, the
build-up, is associated with the active synthesis of
RNAs and proteins necessary for the formation of the
internal structures of chloroplasts. PEP probably
directs the active transcription of most genes without
being distracted by any stimulus at this stage. At the
second, maintenance, stage, mature chloroplasts
require economical gene expression in order to main-
tain the existing structures. Hence, PEP is reorganized
to drive inducible, rather than constitutive, transcrip-
tion in mature chloroplasts. However, at least one
gene, psbD, is transcribed in the inducible manner
regardless of the stage of chloroplast differentiation
[53, 55], which is probably explained by the specific
structure of its light-responsive promoter [56–58].

The origin of PEP from bacterial RNAP is sup-
ported not only by their structural similarity, but also
by specific features of their functioning. PEP recog-
nizes the terminators of E. coli thrA, rrnB, and rrnC,
as well as the T4 gene 32 in vivo [59]. On the other
hand, the promoters of the plastid genes of wheat,
maize (rbcL and atpB), and pea (psbA) function nor-
mally in E. coli cells [60–62]. The psbA promoter is
recognized in chloroplasts in vitro by E. coli RNAP
alone [63] or in complex with the plastid σ factor
[26, 64]. However, RNAPs diverged in the course of
evolution. For instance, E. coli RNAP initiates the
transcription of the plastid ribosomal operon from a
site that does not interact with plastid RNAPs in vivo or
in vitro [65]. Unlike PEP, E. coli RNAP does not interact
with the light-responsive psbD promoter [63]. The E. coli
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rpoA gene for the RNAP subunit α fails to replace the
corresponding plastid gene [66].

There are still no grounds for believing that the dif-
ference is determined by the evolution of the corre-
sponding genes in the plant cells, rather than reflecting
their divergence in γ-proteobacteria (E. coli) and
cyanobacteria, which was the origin of chloroplasts.
For instance, it was already in free-living cyanobacte-
ria that rpoC was split into rpoC1 and rpoC2, and
rpoB–rpoC1–rpoC2 were isolated in an operon with
its own promoter (Fig. 1) [12, 13]. Structural and
functional comparisons of PEP and cyanobacterial

RNAP will provide further insight into the evolution
of PEP in the eukaryotic cell.

NUCLEUS-ENCODED MONOSUBUNIT RNA 
POLYMERASE (NEP)

NEP was first isolated in 1993 [67], and its genes
were identified in 1997 [68]. NEP was found in chlo-
roplasts of higher plants: P. patens [69], A. thaliana
[68, 70], three Nicotiana species [71–73], and four
cereals [52, 74–76].

Ag-Tm (0.1942)
Dm-Tm (0.1986)

Gg-Tm (0.1997)
Tn-Tm (0.1382)

Xl-Tm (0.1836)
Hs-Tm (0.1624)
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animals
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mBv2-Tm (0.3116)
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In flowering plants, NEP occurs in plastids of vir-
tually all types: proplastids [52]; chloroplasts of coty-
ledons [73], leaves [52, 73, 74, 76], and stems [73];
etioplasts [6, 77]; root leucoplasts [52, 73, 74, 78, 79];
and amyloplasts of nondifferentiated cells [80, 81], as
well as in floral tissues [74]. It is still unclear whether
algae possess NEP. Unsuccessful attempts to disrupt the
PEP genes in the Chlamydomonas plastome [82, 83] and
the effect of rifampicin on transcription [84] testify,
though indirectly, that PEP is the only RNAP in
Chlamydomonas chlorotoplasts.

NEP belongs to the monosubunit RNAP family,
which includes RNAPs of bacteriophages (T3, T7,
SP6, K11) and mitochondria (Fig. 2) (for review, see
[85, 86]). A knock-out of one of the two NEP genes
suppresses the growth of A. thaliana [87]. A specific
NEP inhibitor has not been found, but it is known that
phage T7 lysozyme inhibits T7 RNAP [88].

Little continues to be known about the NEP struc-
ture. NEP is 107–108 kDa in cereals [52, 75, 76] and
113 kDa in A. thaliana [68], including a transit peptide of
approximately 8 kDa [68]. The C-terminal region is con-
served to the greatest extent and the N-terminal region is
most variable in RNAPs of this type [68, 74]. The PEP
core subunits are not contained in the NEP complex,
because NEP is active when the PEP genes are silent or
disrupted in plants [5, 6, 89, 90]. In higher plants, the
C-terminal region of monosubunit RNAPs contain a con-
served amino acid sequence that differs between plastid
NEP (R-T-S-L-Q-x-LA-L-x-R-E-G-D-x-x-x) and its
mitochondrial counterpart (K-T-x-L-Q-V-L-T-L-x-x-
x-T-D-K-V-M) (the conserved residues specific for
the plastid and mitochondrial enzymes are in bold)
[52, 91]. This sequence corresponds to the specificity

loop of T7 RNAP; this loop is responsible for the
interaction with a promoter [74]. Although this region
displays only a low similarity between RNAPs of bac-
teriophage T7 and plants [74, 92], NEP recognizes T7
promoters [41] and T7 RNAP recognizes NEP-depen-
dent promoters [93].

Unlike bacteriophage RNAPs, mitochondrial
enzymes require accessory proteins for specific tran-
scription initiation (for review, see [94, 95]). These
proteins are termed σ-like, because they are function-
ally and structurally similar to σ subunits of bacterial-
type RNAPs, although there is no similarity in the amino
acid sequences interacting with a promoter [75]. It is of
interest that one of the maize σ subunits is delivered both
in chloroplasts and in mitochondria [64].

Since mitochondrial and plastid RNAPs are
encoded by homologous, if not the same, genes, it is
probable that NEP also requires accessory proteins for
specific transcription initiation. The existence of part-
ner proteins essential for the NEP functional activity
is indirectly supported by the fact that antibodies
against the region conserved among plant monosub-
unit RNAPs interact with functionally inactive, but
not with active, NEP in chloroplasts [41]. It is possible
that these antibodies compete for the binding site with
a protein that is required for NEP to interact with a
promoter. The binding of NEP to the promoter of the
ribosomal operon is ensured by a trans-acting factor,
CDF2, the composition of which is obscure [41].

Monosubunit RNAPs of plant plastids and mito-
chondria are encoded by the RpoT genes. The genes
are located on different chromosomes [52, 74, 76, 96],
are more than 6 kb in size, and are complex in struc-

Fig. 2. Phylogenetic analysis of monosubunit RNAPs. Cluster analysis (ClustalW) was carried out using the Vector NTI package
[97]. Both monosubunit RNAP genes and homologous open reading frames were included in the analysis. Group I includes RNAPs
of bacteriophages and proteobacteria. Group II includes RNAPs whose genes are on mitochondrial chromosomes and in plasmids
along with RNAPs of α-proteobacteria and protozoa. Group III includes RNAPs of fungi and their close relatives Mycetozoa. Group
IV includes animal RNAPs. Group V includes plant RNAPs, with individual clusters formed by RNAPs of mitochondrial or mito-
chondrial–plastid targeting (Va), RNAPs of plastid targeting (Vb), and RNAPs of mosses. RNAPs of bacteriophages: K11
(CAA37330), T3 (NP_523301), T7 (AAP33914), SP6 (NP_853568), and Xp10 (AAP58699). RNAPs of α-proteobacteria: Agrt-T
(Agrobacterium tumefaciens, NP_531879) and Rp-T (Rhodopseudomonas palustris, NP_947869). RNAP of a γ-proteobacterium:
Psep-T (Pseudomonas putida, NP_744415). RNAPs encoded by the mitochondrial chromosome: mBv1-Tm (Beta vulgaris,
BAD66791), mBv2-Tm (B. vulgaris, T14558), mDc-Tm (Daucus carota, AAS15052), and mP1-Tm (Pylaiella littoralis,
AAC23956). RNAPs encoded by mitochondrial plasmids: mpAb-Tm (Agaricus bitorquis, P33539), pmNc-Tm (Neurospora crassa,
P33540), pmPk-Tm (Pichia kluyveri, CAA72339), pmZm1-Tm (Zea mays, AAR91041), and pmZm2-Tm (Z. mays, S22768). Other
RNAPs, encoded by nuclear genes: protozoan Pf-Tm (Plasmodium falciparum, NP_701124) and Tb-Tm (Trypanosoma brucei,
AAK97228); Mycetozoa Dd-Tm (Dictyostelium discoideum, AAK73754); fungal Cn-Tm (Cryptococcus neoformans, AAN75608),
Nc-Tm (Neurospora crassa, XP_326163), Sc-Tm (Saccharomyces cerevisiae, S56218), and Sp-Tm (Schizosaccharomyces pombe,
CAB16197); animal Ce-Tm (Caenorhabditis elegans, NP_740951), Ag-Tm (Anopheles gambiae, EAA12908), Dm-Tm (Droso-
phila melanogaster, NP_608565), Tn-Tm (Tetraodon nigroviridis, CAG01374), Xl-Tm (Xenopus laevis, AAF19376), Gg-Tm (Gal-
lus gallus, XP_418204), Mm-Tm (Mus musculus, NP_766139), and Hs-Tm (Homo sapiens, AAB58255); plant mitochondrial At-
Tm (A. thaliana, CAA69331), Ca-Tm (Chenopodium album, CAA69305.1), Hv-Tm (Hordeum vulgare, CAE52834), Ns-Tm (Nic-
otiana sylvestris, CAC95019), Nt(t)-Tm (N. tabacum, the gene inherited from N. tomentosiformis, CAC82574), Os-Tm (Oryza
sativa, BAC76604), Ta-Tm (Triticum aestivum, AAF32492), and Zm-Tm (Z. mays, AAD22976); plant mitochondrial–plastid
Pp-Tmp1 (P. patens, CAC95163), Pp-Tmp2 (P. patens, CAC95164), At-Tmp (A. thaliana, CAC17120), Ns-Tmp (N. sylvestris,
CAC82575), and Nt(t)-Tmp (N. tabacum, the gene inherited from N. tomentosiformis, CAC95020); and plant plastid At-Tp
(A. thaliana, CAA69717), Hv-Tp (H. vulgare, CAD45445), Ns-Tp (N. sylvestris, CAC82576), Nt(t)-Tp (N. tabacum, the gene
inherited from N. tomentosiformis, CAC95021), Os-Tp (O. sativa, BAC98394), Ta-Tp (T. aestivum, AAB01085), and Zm-Tp
(Z. mays, AAD22977).
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ture: the RpoT genes of different plants have 18 com-
mon introns; some genes have one or two additional
introns. The intron size varies from 76 to 816 bp
[68, 73], but N. silvestris RpoTm contains a 17-kb
intron [92]. The mature RpoT mRNA is more than
3 kb and codes for 950–1100 amino acid residues. The
RpoT genes are evolutionarily conserved; the loca-
tions of the 18 common introns are the same in all
genes examined in flowering plants; and some introns
are located similarly in plant and human RpoT [86].

The similar arrangement of introns in plant and
human RpoT suggest that the gene arose early in the
evolution of the eukaryotic cell. Genes homologous to
the bacteriophage monosubunit RNAP genes were
detected in the genomes of some α- and γ-proteobac-
teria (Fig. 2, groups I and II) and in representatives of
the most ancient groups of eukaryotes [98]. Since α-
proteobacteria are regarded as evolutionary ancestors
of mitochondria [99], it is possible to assume that
RpoT found its way into the eukaryotic cell as a com-
ponent of the α-proteobacterial genome. Fungal and
plant mitochondrial DNAs still harbor genes homolo-
gous to the monosubunit RNAP genes, but their func-
tions are unknown. Cluster analysis showed that these
genes are most similar to the proteobacterial and pro-
tozoan genes (Fig. 2, group II), yet they cluster sepa-
rately from the corresponding genes of bacterio-
phages and multicellular eukaryotes. These findings
support the assumption that the eukaryotic cell
acquired the monosubunit RNAP gene as a component
of the α-proteobacterial genome. Then, as the bacte-
rium was transformed into an organelle (mitochon-
drion), the gene was relocated into the nucleus like
many other genes of α-proteobacteria and cyanobac-
teria. The bacterial origin of the gene is indirectly sup-
ported by the fact that, in contrast to bacteriophage
RNAP, eukaryotic monosubunit RNAP interacts with
transcription factors homologous to the σ subunits of
bacterial RNAP [94, 95]. Thus, it is possible to
assume that the function of monosubunit RNAP was
initially associated with mitochondria in the eukary-
otic cell.

NEP, a monosubunit RNAP functioning in plastids,
originated no later than terrestrial plants, because it is
present in the moss P. patens [69]. Yet its origin was
hardly earlier according to circumstantial evidence
[82–84]. Hence, NEP probably originated when ter-
restrial plants were arising. Development of the terres-
trial flora was accompanied by a substantial reorgani-
zation of plant morphology and physiology and inev-
itably involved changes in the structure or expression
of many genes. At that time, algal chloroplasts were
transformed into plastids with intricate biogenesis.
The products of many genes coding for proteins of
other cell compartments probably appeared in plastids
during this transformation.

The P. patens genome harbors two RpoT genes,
whose products are delivered into both mitochondria
and plastids (RpoTmp) [69]. RpoT of P. patiens was
duplicated after the divergence of mosses and vascular
plants [69]; i.e., plants had the only RpoTmp before
these two groups were separated. The dicots N. sylves-
tris and A. thaliana each have three RpoT. One gene
(RpoT1 = RpoTm) codes for a product transported
into mitochondria; another (RpoT2 = RpoTmp), for a
product transported both into mitochondria and plas-
tids; and the third one (RpoT3 = RpoTp), for a product
transported only into plastids [68, 70–73]. Cereals
(wheat, barley, rice, and maize), which represent the
youngest monocot family, each have two RpoT genes,
RpoTm and RpoTp, which respectively code for mito-
chondrial and plastid RNAPs [52, 74–76].

It seems that RpoTm was transformed into
RpoTmp in the course of evolution, and its product
came to drive transcription not only in mitochondria,
but also in plastids. The transformation of RpoTm into
RpoTmp might have been due to the accidental inser-
tion of a fragment of 100–150 bp into the 5'-terminal
region of the ancestral gene. The RpoTmp mRNA
contains two active translation initiation sites. When
translation starts from the first site, the product is
directed into plastids; when the second site is
involved, the product is directed into mitochondria
[69, 70, 72]. The distance between the two sites is
100–150 bp and corresponds to 35–50 codons. Some
other nuclear genes also code for proteins functioning
both in plastids and in mitochondria (for review, see
[64, 100]).

As with mosses, a similar scenario can be assumed
for vascular plants: RpoTmp was duplicated, and the
duplicated copies each lost one of the two translation
initiation sites to become RpoTm and RpoTp, which is
more advantageous for the fine regulation of gene
expression in plastids and mitochondria. It is still dif-
ficult to tell whether RpoTmp, whose product func-
tions in both organelles, is widespread in dicots. How-
ever, cereals, the youngest and most advanced group
of plants, have only two genes, RpoTm for mitochon-
drial RNAP and RpoTp for plastid RNAP [52, 74–76].

Thus, the following evolutionary scenario can be
assumed for monosubunit RNAPs. A T7-like RNAP
gene found its way in a proteobacterium (it cannot be
excluded, however, that bacteriophages acquired a
bacterial RNAP gene). As a component of the α-pro-
teobacterial genome, the monosubunit RNAP gene
was incorporated in the eukaryotic cell. As bacteria
were transformed into mitochondria, the gene was
transferred into the nucleus, but the product preserved
its mitochondrial function. It was presumably during
the formation of terrestrial plants that the monosub-
unit RNAP gene was slightly changed (see above) so
that its product came to be transported not only into
mitochondria, but also in plastids. Then the gene was



MOLECULAR BIOLOGY      Vol. 39      No. 5      2005

PLASTID RNA POLYMERASES 667

duplicated (probably, more than once), and the result-
ing copies gradually evolved to the state in which one
gene serves one organelle. A scheme of the putative
evolution of the RpoT genes is shown in Fig. 3.

The regulation of RpoT gene expression in plants
is still poorly understood, yet some differences
between RpoTp and RpoTm are known. The amount
of the RpoTp mRNA is almost always greater than that
of the RpoTm (and RpoTmp) mRNA [52, 71, 74]. An
opposite proportion is observed only in etiolated
plants [74]. Mutant plants defective in chloroplast
development display a higher level of RpoTp expres-
sion; the expression of RpoTm (and RpoTmp) remains
unchanged or is also increased, but later and to a lesser
extent [52, 71]. The maximal activity of the RpoT
genes and their products is characteristic of the earli-
est stage of plant development, RpoTp being activated
later than RpoTm [74, 76].

NEP synthesis is most intense in young leaves and
is considerably suppressed during cell differentiation
and aging [41, 52, 73, 74, 76, 101]. Maize is the only
known exception: the amount of the NEP mRNA
increases along the gradient of leaf cell differentiation
(up to 5 cm) and then decreases, although not so
quickly as in barley [52, 74]. The NEP activity is
much the same as the PEP activity in young leaves,
while NEP accounts for only 1–5% of total transcrip-
tion in chloroplasts of mature tissues [11, 41]. How-
ever, NEP is capable of transcribing the whole of the
plastid DNA in the absence of PEP [102, 103].

NEP is utilized not only by the plant itself, but also
by its parasites. For instance, the avocado viroid is
replicated in plastids with the use of NEP [104].

OTHER PLASTID RNA POLYMERASES

Pea plastids were shown to possess a primase
activity, which is involved in the synthesis of 4- to
60-nt ribonucleuotide primers during the replication
of plastid DNA [105]. Pea chloroplast primase is 115–
120 kDa in size and is not inhibited by tagetin. The
primase function in plastids is possibly performed by
NEP, the more so as RNAPs of the same type play a
similar role in bacteriophage T7 [106] and in mito-
chondria [107, 108].

Spinach and pea chloroplasts contain template-
independent RNAP–polynucleotide phosphorylase,
which polyadenylates RNA molecules and plays a
role in their degradation [109, 110].

DIVISION OF FUNCTIONS 
BETWEEN RNA POLYMERASES

The functions of both RNAPs are closely associ-
ated with the biogenesis of plastids. NEP and PEP are
most active during the transformation of proplastids
into chloroplasts. The development of chloroplasts

requires the expression of the photosynthesis genes. Key
proteins of photosynthetic complexes are encoded by
the plastome, and special machinery must be gener-
ated preliminarily to ensure the expression of the cor-
responding genes. In addition, the plastome codes for
many proteins (and RNAs) involved in transcription,
RNA processing, translation, and protein degradation
in plastids [111]. Their genes are transcribed and the
transcripts translated at the initial stage of proplastid
differentiation.

During the early differentiation of leaf cells, NEP
synthesis is activated before PEP synthesis [52]. NEP
efficiently transcribes the plastome transcrip-
tion/translation genes and is almost inactive with the
photosynthesis genes [77, 86]. In the absence of PEP,
NEP can ensure the function of the gene expression
machinery in plastids [7], but not the formation of the
functional photosynthetic system [5–7]. We have fur-
ther developed the existing hypothesis of the division
of RNAP functions during chloroplast differentiation
[86]. This hypothesis is illustrated in Fig. 4. Tran-
scription of plastid genes is preceded by the activation

Fig. 3. Hypothetical evolution of eukaryotic genes for
monosubunit RNAPs. “T7” RNAP, protein similar to bacte-
riophage T7 RNAP; rpoT, gene for monosubunit RNAP of
bacteria and mitochondria; RpoT, nuclear genes for mono-
subunit RNAPs targeted to mitochondria (RpoTm), both
mitochondria and plastids (RpoTmp), or plastids (RpoTp);
α, α-proteobacterium; MT, mitochondrion; N, nucleus.
Putative steps of RNAP evolution are indicated with (?) and
dashed lines. See text for comments.
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of nuclear RpoTp [52]. Newly synthesized NEP is
transported into proplastids and begins to transcribe
the transcription/translation genes, including those
coding for PEP [50, 52]. In turn, PEP transcribes both
transcription/translation and photosynthesis genes. As
its activity increases, the formation of the gene
expression machinery is continued and that of the
photosynthesis system begins [52].

The activities of plastid RNAPs are probably deter-
mined by the internal developmental program during
the early differentiation of leaf cells. In this period, the
transcription of many plastid photosynthesis genes is
light-independent [53, 112, 113] and the transcription
of the transcription/translation genes is activated
regardless of whether the plant is capable of generat-
ing chloroplasts [52].

Chloroplast formation is accompanied by a
decrease in the amount of the NEP-coding RpoTp
mRNA in leaf cells. In barley mutants defective in
chloroplast formation, the amount of the RpoTP
mRNA fails to decrease for a long time and then even
increases, suggesting that the RpoTp transcription in
greening leaves is suppressed by a plastid signal [52].
Such a signal can be provided by the accumulation of
chlorophyll synthesis intermediates or by the reduc-

tion/oxidation of some molecules (e.g., glutathione or
plastoquinones) [114]. Some proteins can act as signal
molecules [115]. Being transduced from chloroplasts
to the nucleus, these signals regulate the expression of
many genes.

Thus, during chloroplast differentiation, NEP pre-
sumably initiates the expression of the PEP and ribo-
somal genes; PEP supports the generation of compo-
nents of the plastid gene expression machinery and
ensures the formation of the photosynthetic system;
and unidentified factors generated together with the
photosynthetic system (possibly, as a result of photo-
synthesis) suppress the synthesis of NEP.

In differentiated chloroplasts, PEP transcribes most
genes [11] while the NEP activity is extremely low
[41, 67]. What is the role of NEP in mature plastids?

According to the hypothesis of the division of
RNAP functions in differentiated chloroplasts, PEP
predominantly transcribes the photosynthesis genes
and NEP transcribes the transcription/translation
genes [77, 86]. Yet the situation is not so simple. Data
on the roles of PEP and NEP in the transcription of
plastid genes are summarized in the table. The genes
are divided into three groups: group I (PEP) harbors
the genes that are transcribed predominantly (or
exclusively) by PEP; group II (PEP/NEP), the genes
that are transcribed by both enzymes; and group III
(NEP), the genes that are transcribed predominantly
(or exclusively) by NEP. The contribution of either
RNAP to the transcription of particular genes was
inferred from the results of promoter analysis or by a
comparison of the transcription intensity and the
amount of the corresponding mRNA between PEP-
lacking mutants and wild-type plants.

As the table demonstrates, the photosynthesis
genes are transcribed predominantly by PEP in mature
chloroplasts. Yet PEP transcribes many transcrip-
tion/translation genes as well: the rRNA and tRNA
genes are transcribed by PEP or by both RNAPs.
Analysis of the A. thaliana ∆Sig2 mutant suggest the
important role of PEP in the transcription of the tRNA
genes [29]. Some genes for ribosomal proteins are
also transcribed by both RNAPs or mostly by PEP.

NEP is important for the transcription of the genes
coding for PEP, Clp protease, and many ribosomal
proteins in mature chloroplasts (table). This conclu-
sion is based on the fact that these genes are tran-
scribed more intensely in PEP-lacking plastids. Other
factors can also increase the transcription of these
genes in etioplasts. However, the currently available
data make it possible to believe that the Rpo operon
(the genes coding for the PEP subunits β, β', and β")
and cereal clpP (protease Clp) are transcribed exclu-
sively by NEP.

It is still unclear why it is that many genes are tran-
scribed by both RNAPs in mature chloroplasts (table).

NEP

rpo rrn rpl rps matK clpP

PEP

psa psb pet atp ndh

Photosynthetic system

Fig. 4. Interplay of NEP and PEP during chloroplast differ-
entiation. Solid arrows show the role of RNAP in the tran-
scription of plastome genes and the formation of the photo-
synthetic system as a result of the expression of the corre-
sponding plastid genes. Dashed arrows show the role of
plastome genes in PEP synthesis. A dotted arrow shows the
presumable role of the photosynthetic system of chloro-
plasts in the inhibition of the expression of the NEP gene.
The matK gene codes for maturase, which is involved in the
maturation of plastid RNAs. The proteins encoded by the
other genes are indicated in the table.
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Possibly, such a mode of transcription allows for a fine
regulation of gene expression. An example of differ-
ential expression regulation is provided by psbD. In
A. thaliana, SIG2-containing PEP ensures the consti-
tutive transcription of psbD from one promoter [28]
while SIG5-containing PEP ensures inducible tran-
scription from another promoter [30].

Thus, the functions of PEP and NEP in mature
chloroplasts are as follows. PEP is responsible for
more than 90% of total transcription and transcribes
most photosynthesis and many translation genes. Both
NEP and PEP transcribe some photosynthesis genes
(e.g., all ATP synthase genes of the plastome) and
many translation genes. Some transcription/transla-
tion genes are transcribed exclusively by NEP. In the
absence of PEP, NEP is capable of transcribing the whole
of the plastid DNA, but only to a low level [102, 103].
However, such transcription may be due to nonspecific
initiation, since bacteriophage monosubunit RNAPs are
capable of directing transcription in the absence of
promoters [125].

It is possibly NEP that ensures transcription in non-
photosynthesizing plastids, because NEP is synthesized
in all organs while almost nothing is known on the pres-
ence of PEP in nonphotosynthesizing organs.

The mechanisms regulating the expression of the
PEP and NEP genes are still poorly understood. The
RNAP functions are probably associated with photo-
synthesis in chloroplasts. The development of photo-
synthesizing chloroplasts probably suppresses the
NEP activity [52]. The following sequence of events was
demonstrated for mature chloroplasts: increase in photo-
synthesis  reduction of the glutathione pool  inac-
tivation of casein kinase 2   activation of PEP
[47, 126]. Further study will provide for a better
understanding of the mechanisms regulating the activities
of the two RNAPs and their interaction in plastids.
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Transcription of plastome genes by RNAPs

Gene I PEP II PEP/NEP III NEP

rbcL [5, 11, 90, 102, 103, 116, 118, 120, 
124]

psb A [5, 11, 90, 102, 103, 116]
B [77]
D-C [5, 102, 103, 124]
E-F-L-J [77, 103]

psa A-B [77, 103] A-B [11, 102, 103]
pet B [11] B-D [103, 119]
atp B [118]

F [116] 
B-E [11, 77, 102, 117, 117]
I-H-F-A [5, 11, 77, 90, 103, 119, 121]

ndh A [77] F [77] J [103] B [77, 103]
rpo A [102] B-C1-C2 [90, 102, 103, 116, 117]
rrn 16-23-5-4.5 [116, 118, 122, 124] [5, 11, 80, 90, 102, 103, 122]
trn F [103] G [119] H [103] M [103] 

N [90] Q [103] R [90] V [119]
E [116] G [103] I [103] R [103]
V [103]

rps 14 [77, 103] 2 [116] 4 [116] 15 [90] 16 [77] 3 [103] 7 [103] 12 [103, 123]
15 [116] 18 [77, 103]

rpl 16 [11] 16 [5] 32 [81] 23-2 [116, 122, 123] 20 [103]
33 [77, 103]

clpP [77] [77, 103, 116, 117, 118] 
accD [102, 103] [102, 77]
ycf 1 [77] 2 [77, 103] 3 [103] 10 [103] 15 [103]

Note: Group I (PEP), genes transcribed predominantly or exclusively by PEP; group II (PEP/NEP), genes transcribed by both enzymes;
and group III (NEP), genes transcribed predominantly or exclusively by NEP. The rbcL gene codes for the large subunit of ribulose
bisphosphate carboxylase; psb, for a photosystem II subunit; psa, for a photosystem I subunit; pet, for a subunit of the cytochrome
b6/f complex; atp, for an ATP synthase subunit; ndh, for an NADH dehydrogenase subunit; rpo, for a PEP subunit; rrn, for an rRNA;
trn, for a tRNA; rps, for a small-subunit ribosomal protein; rpl, for a large-subunit ribosomal protein; clpP, for the proteolytic subunit
of protease Clp; and accD, for the β subunit of acetyl-CoA carboxylase-carboxytransferase; ycf are conserved plastid genes with
unknown functions. The results were obtained with tobacco [5, 11, 77, 80, 81, 102, 013, 120, 121], barley [90, 116, 119, 122, 123,
124], maize [116, 117], rice [118], and rye [90].
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