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Abstract
As is well known, the late Husserl warned against the dangers of reifying and objec‑
tifying the mathematical models that operate at the heart of our physical theories. 
Although Husserl’s worries were mainly directed at Galilean physics, the first aim 
of our paper is to show that many of his critical arguments are no less relevant today. 
By addressing the formalism and current interpretations of quantum theory, we illus‑
trate how topics surrounding the mathematization of nature come to the fore natu‑
rally. Our second aim is to consider the program of reconstructing quantum theory, 
a program that currently enjoys popularity in the field of quantum foundations. We 
will conclude by arguing that, seen from this vantage point, certain insights deliv‑
ered by phenomenology and quantum theory regarding perspectivity are remarkably 
concordant. Our overall hope with this paper is to show that there is much room for 
mutual learning between phenomenology and modern physics.
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1  Introduction

It is no overstatement to say that Husserl’s last major publication The Crisis of Euro-
pean Sciences and Transcendental Phenomenology is a key text in twentieth century 
philosophy of science. In it, Husserl offers a thorough analysis of what he consid‑
ered to be a deeply-rooted “crisis of our culture and the role here ascribed to the 
sciences.”1 Part of this crisis is that science has lost touch with the realities of the 
proverbial “man on the street” and thus fails to answer the most pressing questions, 
“questions of the meaning and meaninglessness of the whole of [...] human exist‑
ence.”2 It is crucial to see, however, that Husserl’s criticism amounts to much more 
than a general lament about practical, cultural, political, and existential-philosophi‑
cal issues surrounding modern scientific culture. On Husserl’s view, the crisis diag‑
nosed by him is rather a direct consequence of our theoretical inability to come up 
with a single, coherent, and philosophically satisfying interpretation of the kind of 
scientific theorizing that followed the pioneering works of seventeenth century revo‑
lutionaries such as Galileo Galilei or Isaac Newton. Instrumental to the overall argu‑
ment in the Crisis is what Husserl refers to as mathematization, i.e. the cognitive 
process that allows us to turn reality into a “mathematical manifold.”3 The aim of 
this paper is to argue that, although Husserl does nowhere explicitly deal with twen‑
tieth century physics, his description and critical analysis of mathematization can 
serve as a fruitful framework for interpretational questions about quantum physics.

The structure of our paper is as follow: In the next section we will start out with 
giving a somewhat more detailed presentation of Husserl’s original take on math‑
ematization in the Crisis. In Sect. 3 we will take a closer look at the formalism of 
quantum theory. We will also discuss some conventional interpretations before intro‑
ducing the program of informational reconstruction of quantum theory in Sect. 4, 
and describing some of the interpretative insights to which this leads. We will finally 
argue in Sect. 5 that reconstructing quantum mechanics on the basis of fundamen‑
tal informational principles is in harmony with several key insights from Husserlian 
phenomenology.

2 � Husserl on mathematization

The term “mathematization” is coined by Husserl to denote the cognitive process 
through which nature is turned into a mathematical manifold. What this means, 
concretely, is best understood through Husserl’s interpretation of the works of the 
“father of modern science,” Galileo Galilei. On Husserl’s view, Galileo marks a 
watershed in the history of physics not primarily because of any of his individual 
theoretical or experimental accomplishments. What sets Galileo apart from the tra‑
dition before him is rather the larger methodological vision “that trying to deal with 

1  Husser (1970, p. 5).
2  Husser (1970, p. 6).
3  Husser (1970, p. 23).
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physical problems without geometry is attempting the impossible.”4 Following Hus‑
serl’s reading, this pronouncement is not just a pragmatic appeal to accept mathe‑
matics as a convenient tool of calculation or a universal medium of communication. 
Galileo’s amalgamation of physics and mathematics is rather the result of the under‑
lying metaphysical premise “that everything which manifests itself as real [...] must 
have its mathematical index,”5 and must therefore be translatable into the language 
of geometry. By thus elevating mathematical expressibility into a criterion for what 
can count as objectively real, Galileo introduced an intellectual innovation that had a 
formative influence on the ensuing scientific worldview.

Rather than being just a convenient liaison, the intimate linkage between physics 
and mathematics in Galilean science is metaphysically motivated: If physics is con‑
cerned with delivering the one true and complete representation of objective reality, 
and if, furthermore, mathematical expressibility is the only criterion for determin‑
ing what can count as objectively real, then mathematics is indeed indispensable 
to physics. It is crucial to note, however, that the Galilean vision resulted in several 
problems, the issue of “specific sensible qualities”6 being one of them. The problem, 
in a nutshell, is this: Of all the qualities through which we perceive reality, only 
some (namely, primary qualities such as shape, size, position, or number) meet the 
demand for mathematical expressibility quite naturally. Other qualities (namely, sec-
ondary qualities such as color, odor, taste, or warmth) resist any effort to be directly 
translated into the language of mathematics. This raises a natural question: Does the 
mathematical inexpressibility of secondary qualities indicate that the quest of math‑
ematized physics to provide us with a complete representation of objective reality 
is unrealisable after all? Or is there a way to reconcile secondary qualities with the 
view that everything objectively existing lends itself to direct translatability into 
mathematical terms?

As is well known, Galileo opted for the second alternative and took the untrans‑
latability of secondary qualities as a clear sign for their inexistence. On his view, 
“tastes, odors, colors, etc. [...] are nothing but empty names [that] inhere only in the 
sensible body.”7 Consequently, “if one takes away ears, tongues, and noses, there 
[...] remain the shapes, numbers, and motions, but not the odors, tastes, or sounds.”8 
At first sight, Galileo’s proposal still seems to leave us with an incomplete picture 
of reality, which, after all, manifests itself through primary and secondary quali‑
ties. However, since its inception by Galileo, the modern scientific worldview is tied 
to the promise that secondary qualities can be indirectly accounted for by way of 
reduction to primary qualities: color can be indirectly mathematized by reducing it 
to wavelengths; warmth can be indirectly mathematized by reducing it to motions 
of electrons, atoms, and molecules. By the nineteenth century at the latest, this par‑
tial substitution of mathematical constructions for the immediately experienceable 

4  Galilei (1967, p. 203).
5  Husser (1970, p. 37).
6  Husser (1970, §9c).
7  Galilei (2008, p. 185).
8  Galilei (2008, p. 187).
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world of secondary properties had given way to a view of reality where primary 
qualities are no more indicative of objective existence than secondary ones.9 What 
remains is a mathematical formalism that claims to be a complete representation of 
objective reality, but that at the same time is entirely disconnected from the world 
which we directly experience.

Galileo is in the limelight of the Crisis because it is his distinction between pri‑
mary and secondary qualities that, according to Husserl, started to drive a wedge 
between the life-world of pre-scientific experience and the “world of science.” What 
we are left with is a construal of reality in which the life-world is degraded to the 
status of a mere illusion, while the “real world”—the world of which science speaks 
through its models—is forever put beyond our experiential grasp. Yet, building on 
Husserl’s argument in the Crisis, there are two main problems with this view. First, 
there is a rather straightforward worry that concerns the justificatory basis of sci‑
ence: Although Husserl was well aware of how long-winding and intricate the rela‑
tions between theory and supporting data can be, he was nevertheless very clear 
on the fact that “the inductive judgments [of the] exact objective sciences, by 
means of which we go beyond the immediately experienced to make claims about 
the non-experienced, are always dependent on their ultimate legitimizing basis, on 
the immediate data of experience.”10 However, if this is the case—if even the most 
abstract scientific theory must find its ultimate “self-evident grounding”11 in sim‑
ple life-world experiences—, then the aforementioned construal of the relationship 
between life-world and science indeed borders on the self-contradictory: To claim 
on scientific grounds that the entire life-world is nothing but an illusion is, epistemo‑
logically speaking, to cut off the branch on which one is sitting.

The second problem concerns a fundamental naïveté which, on Husserl’s view, 
was already part of Galileo’s original project and later carried over into many instan‑
tiations of modern physics. The problem can be summarized as follows: Much of 
Galileo’s rhetoric aims at presenting his mathematical models as truthful repre‑
sentations of objective reality. Looking at his actual scientific practice, however, a 
rather different picture emerges: Considering Galileo’s theory of projectile motion, 
for instance, it can easily be shown that his highly idealized models represent the 
intended target systems neither in a purely instrumental-predictive12, nor in a more 
robust correspondence-theoretical sense.13 This, however, does not diminish the true 
value of Galileo’s accomplishment: What one learns from Galileo’s theory is not 
primarily how real projectiles move in Earth’s gravitational field. Following Hus‑
serl’s interpretation of Galileo, and building on the detailed accounts of historians 
of physics like Maurice Clavelin or Alexandre Koyré, Galileo’s true achievement 
rather lies in the discovery of a new way of constituting reality, a way that crucially 

10  Husserl (1973, p. 121); our translation.
11  Husser (1970, p. 123).
12  Segre (1991, pp. 94–7).
13  Wiltsche (2017, pp. 160–65).

9  Weyl (1949, pp. 110–13).
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depends on the ability to view nature through the lenses of mathematical models.14 
It is this aspect which is of particular relevance from a phenomenological point of 
view.15

Since they are composed of geometrical objects such as lines, planes, or cir‑
cles, Galileo’s models represent ideal limiting cases that are nowhere to be found in 
empirical reality. However, instead of treating these models and their components 
as idealities that are abstracted from basic life-world experiences, the very point of 
Galilean science is to reverse the order and let the models become prescriptive for 
how the life-world is perceived. Having mastered Galilean mechanics, then, does 
not primarily mean to have acquired a particular set of theories or techniques. It 
means, much more fundamentally, to perceive actual observable instances of flying 
arrows, spears, and stones as mere approximations to the ideal case that is stipu-
lated by the mathematical model. Accordingly, mathematization is not merely the 
process of translating empirical objects, events, or processes into mathematical 
terms. To mathematize nature is rather to intend empirical objects, events, or pro‑
cesses through ideal mathematical contents and to let these idealities become the 
prescriptive standard for what becomes actually present to us in the realm of simple 
life-world experience.16

It is crucial to see that Husserl nowhere criticised the practice of mathematiza‑
tion per se: Husserl was clearly aware that the great success story of modern science 
would have been impossible without Galileo’s amalgamation of mathematics and 
physics. The aim of the Crisis is rather to turn our awareness to a host of implicit 
presuppositions that underlie the cognitive process of mathematization—implicit 
presuppositions that remained hidden from Galileo’s view and that keep shaping the 
mindset of modern physics ever since. One such presupposition concerns the afore‑
mentioned prescriptive role mathematical models play in the physical constitution of 
reality. But closely related to this are presuppositions regarding the non-perspectivity 
and the subject-independence of physical knowledge.17 Once life-world occurrences 

14  According to Clavelin, “Galilean science was first of all a transition from one conceptual framework 
to another, [...] an unprecedented fusion of reason and reality” (Clavelin 1974, xi). Koyré sees Galileo’s 
main accomplishment in the introduction of a new “mental attitude, [an attitude] that is not [purely phys‑
ical or] purely mathematical [but] physico-mathematical” (Koyré 1978, 108).
15  Cf. Islami and Wiltsche (2020).
16  Although much more could be said on this issue, even these brief remarks should suffice to show that 
there are interesting relations between Husserl’s late philosophy of science and the extensive literature on 
models and modeling in contemporary “mainstream” philosophy of science (cf., for an introduction to 
the latter, e.g. Morgan and Morrison 1999; Bailer-Jones 2009; Gelfert 2016; Frigg and Hartmann 2020). 
In our view, the most distinct feature of a genuinely phenomenological account on scientific modeling is 
the claim that models should not primarily be seen as representational vehicles but rather as cognitive fil‑
ters that normatively guide the way in which reality is constituted. For more detailed discussions of this, 
cf., e.g., Wiltsche (2019), Islami and Wiltsche (2020) and Wiltsche (forthcoming).
17  As we will see below, certain developments in modern physics, particularly in quantum mechanics, 
cast doubt on non-perspectivity and subject-independence. We will show that the formalism of quantum 
theory, particularly when informationally reconstructed, exhibits a number of features and implications 
that are surprisingly consistent with phenomenological teachings. However, we do not want to suggest 
that Husserlian phenomenology is the only philosophical framework that has this virtue. In particular sci‑
entific perspectivism, an approach recently developed by Giere (2006) and Massimi (2012) and Massimi 
(2018), seems very promising in this respect. In fact, we believe that there are substantial similarities 
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are perceived as mere approximations to the ideal limiting case that is stipulated by 
the mathematical model, it becomes tempting to project features of the model back 
onto nature itself, and thus to “take for true being what is actually a method.”18 Tak‑
ing the apparent subject-independence and non-perspectivity of mathematical ide‑
alities as a cue, this then means to elevate these features to essential characteristics 
of the very concept of physical being. And once nature is constituted in this manner, 
further presuppositions suggest themselves rather naturally: real measurements are 
conceived as approximations to ideal measurements which would leave the objec‑
tively existing physical system undisturbed; it is assumed that ideal measurements 
could in principle yield complete information about all properties of any system; 
and since mathematical models can in principle encode complete information about 
any physical system, it is taken for granted that knowledge about all temporarily 
subsequent states of the system can be inferred from the initial state with certainty, 
thus supporting determinism. It is these three presuppositions—determinism, non-
disturbance, and completeness—to which we shall return in the ensuing sections.

3 � Quantum theory and its challenge to Galileo’s 
mechanico‑geometric ideal

As we have seen, one of Husserl’s principal aims in the Crisis is to oppose the Gali‑
lean vision on which (a) reality is exhausted by what can be mathematically cap‑
tured and (b) the life-world is degraded to a mere illusion. One might wonder, how‑
ever, why we should still bother with Husserl’s worries given that in the meanwhile 
Galilean mechanics has been superseded by quantum mechanics. Furthermore, 
one might get the impression that phenomenology and physics are rival projects, 
advocating inconsistent worldviews. In this paper, and in line of a handful of ear‑
lier works19, we argue for the opposite. By addressing the quantum formalism and 
current interpretations of quantum theory, we point out that Husserl’s worries are 
still relevant. By discussing the program of reconstructing quantum theory, we show 
that the insights delivered by phenomenology and quantum theory are surprisingly 
similar.

In Sect.  3.1, we introduce the quantum formalism and discuss what it means 
to interpret quantum theory. We shall see that here topics surrounding the 

Footnote 17 (continued)
between our phenomenological approach and perspectivism. For a detailed discussion of perspectivist 
elements in Husserlian phenomenology and of how phenomenological ideas support and supplement per‑
spectivism, cf. Berghofer (2020a).
18  Husserl (1970, p. 51).
19  Following pioneering works such as the ones by Heelan (1988), Mormann (1991), Bitbol (1996) and 
French (2002) or Ryckman (2005), recent years have seen a steady increase in studies dealing with the 
various connections between phenomenology and the physical sciences. For an overview, see Berghofer 
and Wiltsche (2020). This positive trend notwithstanding, however, still more work needs to be done in 
order to arrive at a more adequate understanding of how phenomenology and physics are related to each 
other, both historically and systematically.
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mathematization of nature come to the fore naturally. Indeed, prominent positions 
reify or objectify the mathematics we use in quantum theory and explicitly argue 
that the three-dimensional physical space of our everyday experiences is a mere illu‑
sion. This means that Husserl’s worries, originally raised against Galileo, are still 
relevant today.

In Sect.  3.2, we shed light on the program of reconstructing quantum theory. 
This reconstructive program enjoys popularity in the part of the physics commu‑
nity working on foundations of physics. In philosophy of physics, unfortunately, the 
reconstructive program is largely ignored.

In Sect. 4, we interpret informational reconstructions of quantum theory and con‑
trast the conception of measurement as it emerges from our reconstruction with the 
Galilean ideal pursued in classical mechanics. Here we see that the picture offered 
by the reconstructive program resonates well with phenomenological approaches to 
science and physics. These similarities are discussed in Sect. 5, focusing on the per‑
spectival character of perceptual experiences and quantum measurements. Here we 
shall see that there are profound and systematically significant similarities between 
insights delivered by phenomenology and quantum theory (at least if information‑
ally reconstructed). This means that although phenomenology and physics are usu‑
ally considered entirely different projects that could not possibly benefit from each 
other and advocate conflicting world views, the opposite might be the case.

3.1 � Interpretation of quantum theory

The mathematical formalism of quantum theory departs in fundamental ways from 
the formalisms of the primary theories of classical physics (chiefly classical mechan‑
ics and electromagnetism). For example, the quantum formalism predicts that a 
measurement performed on a physical system will, in general, change the quantum 
state of the system. Here, “quantum state” refers to the mathematical object—a vec‑
tor in a complex vector space—which, insofar as predictive use of the formalism by 
an experimenter is concerned, represents the physical state of the system.20 Simi‑
larly, “measurement” is a primitive term in the formalism, and appeals to the experi‑
mental physicist’s intuitive understanding of what “measurement” consists in.

Moreover, the formalism only predicts the probability that a specific measure‑
ment outcome will be obtained, even if the initial quantum state of the system is 
exactly specified.

Thus, as these two examples attest, quantum theory appears to depart from key 
ideals in Galileo’s conception of a mathematical theory of natural phenomena—first, 
that an ideal measurement allows observation without causing disturbance21 of the 

20  We emphasize that “represents” has a pragmatic connotation—the quantum state represents a physi‑
cal state for the practical purposes of prediction. The notion of a “physical state” is, in turn, carried over 
from classical physics, and expresses the view that it is meaningful to speak of the “state” of a body at an 
instant of time.
21  By “disturbance” we are referring to the fact that it is an intrinsic feature of the quantum formalism 
that projective measurements necessarily change the observed quantum state. This is why there is a long 
history of calling a quantum measurement a process of “disturbance” (cf., e.g., Jaeger 2015). However, 
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mathematical object that describes the physical state of the system; second, that an 
ideal theory allows prediction of precisely what will happen when a measurement is 
performed on a system given the initial conditions.

Consequently, since its creation in the 1920s, there has been an ongoing effort 
to understand what lessons should be drawn from the non-classical nature of the 
quantum formalism. That is: insofar as the theories of classical physics are an 
empirically-successful formal expression of Galileo’s vision of the possibility of a 
mechanico-geometrical mathematical theory of natural phenomena, what should 
we conclude from the fact that quantum theory—which was formulated in response 
to the inability to construct models based on classical physics to account for basic 
physical phenomena (such as the blackbody radiation curve)—does not conform 
with key aspects of Galileo’s vision?

The efforts that have been made to answer the above-mentioned question fall 
under the banner of the interpretation of quantum theory. Ideally, a full-blown inter‑
pretation of quantum theory would provide a coherent conceptual framework within 
which each non-classical aspect of the quantum formalism is rendered intelligible 
rather than puzzling or counter-intuitive. In doing so, such an interpretation should 
allow us to clearly understand how and why certain aspects of Galileo’s mechanico-
geometric conception of physical reality can be retained in the face of quantum the‑
ory, while others have to be given up or modified.

Take, for example, the probabilistic nature of quantum predictions. One could 
interpret this fact as a consequence that quantum theory fails to take into account 
some pertinent, but hitherto unknown, information about the actual physical state 
of the system. One could then hypothesize that exact prediction would be possible 
if that additional information were available, and one might further hypothesize the 
nature of that additional information. Thus, one might stand behind the deterministic 
ideal in the face of the apparently contrary evidence supplied by quantum theory. 
Such an option is taken in the so-called de Broglie–Bohm interpretation of quantum 
theory, which posits that the complete description of, say, an electron requires not 
only a quantum state (as posited by quantum theory), but also the position of a local‑
ized object or “particle.” This interpretation then posits a specific equation (the so-
called guidance equation) which governs the deterministic evolution of the particle 
in response to the quantum state.22

Alternatively, one could interpret the probabilistic nature of quantum predic‑
tions as the consequence of a fundamental limitation on any mathematical theory of 
nature. One could then give an account which would explain why this limitation was 
obscured during the heyday of classical physics owing to its limited scope, why it 

Footnote 21 (continued)
we want to emphasize that employing this terminology does not mean that we side, e.g, with Bohr’s 
distinctive view of disturbance. We only refer to the fact that, according to the quantum formalism, meas‑
urements change the quantum state, which is uncontroversial. We are thankful to an anonymous reviewer 
of this journal for pressing us on making this clarification.
22  If the quantum state is written � = Re

iS∕ℏ , and the state of the particle is (�,�) , then the guid‑
ance equation reads � = ∇S∕m . The particle position is then assumed to evolve classically, so that 
�(t + dt) = �(t) + �∕mdt.
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emerged when attention was drawn to the microscopic realm, and, most importantly, 
precisely what—if not missing information—is the ultimate origin of this limitation. 
For example, in some of his writings on the interpretation of quantum theory, Bohr 
argues that measurement is an inherently invasive process involving an uncontrol‑
lable change in the system under observation, and that this forces the renunciation of 
the ideal of non-probabilistic prediction.23

A major challenge faced by any putative interpretation of quantum theory is that 
quantum theory appears to be odds with so many distinct aspects of the mechan‑
ico-geometric ideal, and thus an interpretation must, ideally, simultaneously resolve 
many distinct points of tension. Some of these points of tension—such as the distur‑
bance of system state by measurement, or the probabilistic nature of measurement 
outcomes—were evident as soon as quantum theory received its first formal expres‑
sion. But others took some time to surface.

For example, in the mid-1930s, Schrödinger pointed out that, according to the 
quantum formalismé, the quantum state of a two-body system is, in general, not (as 
presumed in classical physics) a simple list of the quantum states of each body, but 
is rather a new entity in its own right—a so-called entangled state.24 Schrödinger 
showed that a measurement on one component of a system that had been placed in 
such a state would, in general, change the state of the other component, no matter 
how distant, with the nature of this change being partly determined by the specific 
choice of measurement. Some thirty years later, Bell showed that, modulo specific, 
non-trivial assumptions25 about the nature of the physical reality, these entangled 
states allow for quantum predictions that are incompatible with the classical ideal of 
locality, namely the ideal that two bodies interact with one each other via influences 
that propagate from one to the other at finite speed.26

The major limitation of every extant interpretation of quantum theory is that 
none is able to provide a coherent interpretation of all of the non-classical aspects 
of quantum theory. Indeed, most only attempt to interpret a small number of these 
non-classical aspects. This has given rise to a plethora of interpretations—Bohr’s 
interpretation, the de Broglie–Bohm interpretation, the many-worlds interpretation, 
to name but three—which propose radically different resolutions of the conundrum 
posed by quantum theory.27 Since interpretations are, by their very nature, one step 
removed from the physical theory per se, they are not readily open to empirical test. 
Hence, we are today left in the undesirable position of having many distinct inter‑
pretations on the table, each plausible to some extent yet limited in its explanatory 
capacity, but with no decisive way to choose between them.

25  These assumptions are: (1) an experimenter’s choice of measurement can be freely chosen, in par‑
ticular not being influenced by the initial quantum state of the system; and (2) there is no "conspiracy" in 
the sense that the initial quantum state of the system is not affected by the experimenters’ later choice of 
which measurements to perform.
26  Bell (1964).
27  For accessible introductory surveys on the interpretations and implications of quantum theory, the 
reader is referred to Norsen (2017) and Maudlin (2019).

23  Bohr (1937).
24  Schrödinger (1935).
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A further problem that plagues specifically realist interpretations of the quan‑
tum state—such as the de Broglie–Bohm interpretation—is that they are in danger 
of implying an implausible reification of the mathematical concepts28. In quantum 
mechanics, the quantum state is represented by the so-called wave function. Math‑
ematically speaking, wave functions are vectors in a Hilbert space. This is often 
expressed by saying that “[w]ave functions live in Hilbert space.”29 A Hilbert space 
is an abstract mathematical concept, namely a complete vector space on which an 
inner product is defined. But if the wave function is something real, does this mean 
that mathematical Hilbert space is physically real too?

We see now that Husserl’s worries about mathematization are still relevant and 
how this topic emerges in quantum mechanics. Wave functions representing quan‑
tum states live in Hilbert space. But what about tables and chairs, and you and I? 
What is the relationship between abstract mathematical spaces and the space we 
actually live in? In this context, the most straightforward reification of mathematics 
would occur by reifying Hilbert space. And indeed, one can find prominent voices 
championing Hilbert space realism.30 However, most consider this an implausible 
and unwarranted hypostatization of mathematical objects and it has been pointed out 
that only “[v]ery few people are willing to defend Hilbert space realism in print.”31

A similar but more subtle form of mathematization takes place in configuration 
space realism, i.e., the project of reifying the 3N-dimensional configuration space, 
N being the number of the particles in the universe. The main proponent of this 
view is David Albert, who at one point considered our impression that we live in 
three-dimensional space “somehow flatly illusory.”32 Obviously, from a Husserlian 
perspective, such a claim is highly suspect, to say the least. Configuration space 
realism, often referred to as “wave function realism,” has been quite popular and 
has sparked much controversy. In fact, “[t]his view of the ontology of (no hidden 
variable) quantum mechanics has probably been the most commonly assumed in the 
recent literature.”33 Its prevalence notwithstanding, Wallace rightly remarks that “it 

28  One reviewer has remarked that the temptation to reify mathematical structures is by no means special 
to quantum theory. We agree. As we have argued earlier, Husserl’s point in §9 of the Crisis is that the 
reification of mathematical idealities becomes part of scientific practice already in the 17th century and 
thus long before the advent of quantum physics. However, what still makes quantum theory a special 
case in this discussion is, among other things, that the mathematics operating at its core is much further 
removed from simple lifeworld intuitions than the mathematical structures featured in classical physics. 
While it is somewhat understandable that many took Galileo’s geometrical models as truthful representa‑
tions of dropping stones and flying cannonballs, a straightforward reification seems far less natural in the 
case of, say, Hilbert spaces. This, in and by itself, is of course no argument for or against any particular 
understanding of quantum physics. It shows, however, that the issue of mathematization is particularly 
pressing in this context.
29  Griffiths (2018, p. 94).
30  E.g. Carroll and Singh (2019).
31  Wallace (2013, p. 216).
32  Albert (1996, p. 277).
33  Wallace (2013, p. 217).
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makes the same unmotivated conceptual move as Hilbert space realism: it reifies a 
mathematical space without any particular justification.”34

This is not the place to discuss the problems of such mathematizations in detail, 
but we note the Husserlian idea that no matter how abstract our scientific theories 
are, their justification, ultimately, lies in ordinary experiences, in what is immedi‑
ately given. Accordingly, as discussed in Sect. 2, with Husserl we might warn that 
an interpretation of a scientific theory should not cut off the branch on which sci‑
ence is sitting. And indeed, this worry has been raised against Albert’s configuration 
space realism when it is questioned whether it can be empirically coherent.35

Concerning the formal and technical apparatus of the mathematical sciences, 
Husserl warned us not to be “misled into taking these formulae and their formula-
meaning for the true being of nature itself.”36 We see how this problem also arises in 
quantum mechanics via wave function realism. The most common realist interpreta‑
tions of quantum mechanics—the many-worlds interpretation, Bohmian mechanics, 
and GRW theory—are all in danger of leading to a mathematization of nature that 
is not based on physical principles but on mathematical formalism. Critical voices 
have pointed out that in these interpretations “the strategy has been to reify or objec‑
tify all the mathematical symbols of the theory and then explore whatever comes of 
the move.”37

Here we want to take a different approach. Instead of reifying mathematical con‑
structs, the idea is to formulate physically meaningful postulates from which the 
quantum formalism can be derived or reconstructed. This is the program of recon-
structing quantum theory. Proponents of this program emphasize that this basic idea 
of deriving the formalism from physical postulates is successfully realized in other 
physical theories, special relativity being the prime example:

Textbook postulates such as ‘a physical system is described by a complex Hil‑
bert space,’ ‘pure states are described by unit vectors,’ ‘outcome probabilities 
are given by the Born rule,’ and ‘systems combine by the tensor product rule’ 
are now regarded as abstract mathematical statements in need of a more funda‑
mental explanation. Such an explanation would be akin in spirit to Einstein’s 
derivation of the Lorentz transformations from the light postulate and the prin‑
ciple of relativity.38

This is a project of “taking a more physical and less mathematical approach”39 and 
attempting “to reduce the mathematical structure of quantum mechanics to some 
crisp physical statements.”40 This less mathematical but more physical approach 
resonates well with our Husserlian sentiments expressed above. What is more, as 

34  Wallace (2013, p. 217).
35  Chen (2019, p. 6).
36  Husser (1970, p. 44).
37  Fuchs (2019, p. 136).
38  Chiribella (2016, p. 3).
39  Masanes (2013, p. 16373).
40  Fuchs (2016, p. 285).
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we shall see below, the reconstructive program leads to a picture of physics and real‑
ity that shares profound similarities with phenomenological teachings concerning 
the structure of experience, the epistemological significance of experiences, and the 
irreducibility of the subject.

3.2 � Reconstruction of quantum theory

One of the major barriers that one faces in any attempt to interpret quantum theory 
is that the only precise expression of quantum theory is an abstract mathematical 
formalism which is far removed from ordinary experience. For example, whereas 
classical mechanics posits that the state of a particle consists in its position and 
velocity, quantum mechanics describes its state as a vector in a complex-valued, 
infinite-dimensional vector space.

The sheer remoteness of the quantum formalism from our direct physical experi‑
ence presents a formidable barrier to its conceptual assimilation. To emphasize this 
point: the mathematical formalism of classical mechanics was, to a considerable 
extent, a formal expression of physical principles, such as Galileo’s principle of rela‑
tivity and Descartes’ principle of conservation of motion41. Each of these principles 
can be quite readily grasped, quite independently of any mathematical formulation. 
Moreover, each can be viewed as instances of even more basic notions—conserva‑
tion as an instance of the general idea that change is underlain by changelessness; 
relativity as an instance of idea that, although physical observations are necessarily 
perspectival, there are classes of observers which are in some sense equivalent. In 
contrast, the path from ideas such as de Broglie’s wave-particle duality to Schroed‑
inger’s equation involves many mathematical leaps (such as the introduction of com‑
plex numbers, and the transition to many-dimensional configuration space when 
treating a system of many particles) whose physical origin is obscure.

Removal of the above-mentioned barrier is the primary objective of the program 
of the reconstruction of quantum theory. The essential goal of the reconstruction 
program is to formulate physical principles—ideally, principles with an intuitive 
comprehensibility comparable to those underlying classical physics—from which 
the quantum formalism can demonstrably be systematically derived.

With a reconstruction of quantum theory in hand, the challenge of interpreting 
quantum theory shifts from the traditional interpretation of the quantum formal-
ism as given to an interpretation of the conceptual framework (with its background 
assumptions) and the principles used in the reconstruction.

3.2.1 � Informational reconstruction of quantum theory

Over the last two decades, a number of reconstructions of the core formal‑
ism of quantum theory—specifically, the Dirac–von Neumann axioms for 

41  See Goyal (2020) for a recent, systematic derivation of classical mechanics guided by these funda‑
mental principles.
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finite-dimensional systems, and the tensor product rule for handling composite sys‑
tems42—have been put forward.43

Operational framework
While these reconstructions differ greatly in their background assumptions and prin‑
ciples, most derive quantum theory within an operational framework. This amounts 
to taking as primitive the notion of measurement, as well the notion of an agent 
(or experimenter) who is capable of freely choosing which measurement to make 
and when (if at all) to make it. Thus, a typical reconstruction imagines that a physi-
cal system enters an experiment where it undergoes a measurement (which yields a 
particular outcome), is then subject to some kind of interaction with an apparatus 
before undergoing a final measurement. The italicized terms—“experiment,” “phys‑
ical system,” “measurement,” “outcome,” and “interaction” are all technical terms 
that are taken as primitive. The choice of which measurements are performed, and 
which interaction is enacted, is left to the agent.

This operational framework is not devoid of implicit assumptions, which could 
legitimately be questioned. For example, the notion of a “physical system” upon 
which an experiment is performed presumes that there is something which persists 
(retains its identity) during the course of the experiment, a nontrivial assumption 
given the measurements and interactions that are taking place. Similarly, it is implic‑
itly assumed that the agent’s choice is independent of the physical system itself. 
Nevertheless, such notions are taken as primitive in the practice of physics, whatever 
be the theory under consideration—every physical theory is, in practice, ultimately 
developed and tested on a laboratory workbench. Hence, to question the assump‑
tions underlying the operational framework would be tantamount to questioning our 
basic conceptualization of what happens on the laboratory workbench—which, after 
all, is the closest we come to the life-world in the context of quantum theory.44

Informational view of physical theory
Most of the recent reconstructions of quantum theory that utilize an operational 

framework also adopt an informational view concerning physical theory.45 Accord‑
ing to this view, measurement is a means to gather data about the “physical world,” 
and thus provides information about the physical world. A physical theory is accord‑
ingly, in essence, a compact codification of the regularities that we discover in that 
information. This view resembles Mach’s view that a physical theory is, above all, 
an economical codification of the regularities extracted from sense data. But the 

42  See, for example, Griffiths (2018) for an introduction to the mathematical formalism of quantum the‑
ory.
43  See, for example, Hardy (2001), Goyal et al. (2010) and Chiribella et al. (2011).
44  Cf. Husser (1970, §34b).
45  Of course, there is no consensus in the literature on whether quantum information theory could have 
an important impact on the question of how to interpret quantum theory. For a critical discussion, cf. 
Timpson (2013). Unfortunately, the project of informationally reconstructing quantum theory has been 
largely ignored in the philosophical literature (including Timpson 2013). It would go beyond the scope of 
the paper to defend the significance of informational principles.
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informational view typically stops short of incorporating the extreme instrumental‑
ism that is often associated with Mach’s thinking.

The informational view accordingly regards the conceptual framework and spe‑
cific assumptions of a physical theory as—paraphrasing the words of Wheeler46—
a kind of papier-mâché that we fill in between the “iron posts” of measurement 
outcomes.

Accordingly, an informational reconstruction typically eschews manifestly 
mechanical or geometric models of physical systems. Instead, its assumptions are 
informational in nature. For example, it is commonly posited that the state of a phys‑
ical system is (insofar as the predictive use of the theory is concerned) described by 
a mathematical object—the mathematical state—that enables prediction of the out‑
come probabilities of any measurement performed upon it; and that the mathemati‑
cal state contains more degrees of freedom than those that are needed to predict the 
outcome probabilities of any given measurement.

4 � Interpreting informational reconstructions of quantum theory

As stated above, one of the primary motivations of the reconstructive program is to 
shift the paradigm of interpretation: rather than interpreting the quantum formal-
ism as given (as has been the case historically), we instead interpret the conceptual 
framework and principles employed in a given reconstruction. Whether or not such 
an interpretative project is fruitful for any given reconstruction depends on the per‑
spicuity of the conceptual framework and principles.

In this connection, we recall the above-mentioned historical analogy with Ein‑
stein’s derivation of the Lorentz transformations. Prior to Einstein’s derivation, 
numerous attempts had been made to interpret these transformations against the 
background assumption that there exists a privileged reference (ether) frame by pos‑
iting new hypotheses (such as Fitzgerald’s hypothesis that a body in motion through 
the ether is contracted in its direction of motion). However, Einstein interpreted 
these same transformations on the background assumption that all inertial frames 
are equivalent  (Galileo’s principle of relativity). Although this interpretation was 
directly opposed to the competing one, it rapidly gained widespread assent due to 
the perspicuity of the conceptual framework and physical principles that formed the 
basis of his derivation.

The full interpretation of an informational reconstruction of quantum theory is 
beyond the scope of this paper. Instead, we focus on a specific interpretative issue, 
namely that concerned with the perspectivity of the quantum measurement process.

46  Wheeler (1989).
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4.1 � Perspectivity of quantum measurements

The Galilean ideal asserts that it is possible to construct a mathematical theory of 
nature satisfying the following fundamental criteria: 

1.	 Determinism It is possible, in principle, to describe a physical system with suf‑
ficient precision that it is possible to predict the outcome of a measurement per‑
formed on that system with certainty. Accordingly, in theoretical terms, given the 
initial (mathematical) state of the system (the "initial conditions"), the state of 
the system at any later time is determined by (i.e. is a mathematical function of) 
the initial state.

2.	 Non-disturbance Although practical measurements involve some degree of 
interaction with a physical object of interest, and thus unavoidably disturb the 
behaviour of the measured object, these practical measurements are, in fact, an 
approximation to ideal measurements that involve no interaction whatsoever, and 
thus do not disturb the measured object. In theoretical terms, the mathematical 
state is unaffected when an ideal measurement is performed on the system.

3.	 Completeness It is possible to simultaneously measure all of the properties of 
any physical system. In practice, such a measurement can be implemented by 
performing, in rapid succession, perspective-limited measurements (each capable 
of measuring only a limited number of properties), this being possible due to 
the non-disturbing property of measurements. In theoretical terms, there exists 
a single ideal measurement such that the (mathematical) state of the system is 
determined by the outcome of such a measurement.

In the simplest case of a classical particle moving through space, the mathemati‑
cal state of the particle is given by its position and velocity, and a single idealized 
measurement can be performed which yields the values of these properties without 
changing their values.

In contrast, informational reconstructions of quantum theory47—imply the 
following: 

1.	 Indeterminism Measurement outcomes are not determined by the quantum (math‑
ematical) state of the system. Instead, the quantum state determines only the 
probabilities of these outcomes.48 

•	 For example, given a so-called qubit (an elementary quantum system), the 
state of the system can be represented by a point, P , on a unit sphere, which 
we can represent by a unit vector, � , from the sphere’s origin to P . Similarly, 

47  For example, those reconstructions described in Hardy (2001), Goyal et al. (2010) and Chiribella et al. 
(2011).
48  As shown in Goyal (2014), indeterminism follows in an operational framework directly from a small 
number of assumptions, namely (1) continuity, (2) symmetric transition probabilities, and (3) a measure‑
ment with a single coarse-grained outcome does not affect the outcome probabilities of subsequent meas‑
urements performed on the system.
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each possible measurement corresponds to a point on this sphere, described 
by unit vector, �.

	   A measurement � on a qubit with state � does not tell us what � is. Rather, 
the measurement yields one of two possible outcomes—labelled “+” and 
“−”—and the state determines the probabilities of these outcomes. In particu‑
lar, p+ = (1 + � ⋅ �)∕2 is the probability of outcome “+.”

2.	 Disturbance Once any given (projective) measurement is performed on a system, 
its quantum state is necessarily changed to reflect the measurement outcome.

•	 If a measurement � is performed on a qubit that is initially in state � , and 
yields outcome “+,” the state of the qubit after the measurement is simply � . 
Thus, the post-measurement state is determined by the measurement vector 
and its outcome, and no further information about the qubit’s initial state, � , 
can be gained by performing additional measurements on the same qubit.

3.	 Non-completeness Each (projective) measurement only provides information 
about one half of the predictively-relevant degrees of freedom of the quantum 
state. Due to the disturbance property above, the non-completeness of a meas‑
urement cannot be overcome by simply performing another measurement on the 
same system afterwards.

•	 For example, in the above-mentioned qubit example, a measurement, � , made 
on a qubit prepared in state � only yields information about the projection of � 
on � , namely about � ⋅ � . In terms of the spherical polar angles �,� , of � rela‑
tive to � , the measurement provides information about � , but not about �.

In most informational reconstructions, indeterminism is allowed for as part of the 
operational framework itself, with disturbance then following as a consequence of 
the requirement—shared by classical theories—that measurements are repeatable 
(or reproducible), namely that, after a measurement has been performed on a sys‑
tem, its immediate repetition yields the same outcome with certainty. Non-com‑
pleteness is introduced either directly as a postulate49 as a formalization of Bohr’s 
notion of complementarity), or indirectly via other postulates.50

Collectively, these three properties can be summarized as saying that quantum 
measurements are perspectival. That is, given a physical system (as described by 
quantum theory), one must first choose from a set of possible different measure‑
ments. The chosen measurement provides a distinct perspective on the system in 
two distinct senses. First, it only provides information about certain degrees of free‑
dom of the state of the system. Second, one only receives limited information about 
these degrees of freedom. Having received this information, one cannot repeat the 
same measurement on the system in the hope of receiving more information about 
its original state, because its state is irrevocably changed by the initial measurement. 
Similarly, one cannot subsequently perform a different measurement in the hope of 

49  See, for example, Goyal et al. (2010).
50  See, for example, Chiribella et al. (2011).



429

1 3

Husserl, the mathematization of nature, and the informational…

obtaining information about other degrees of freedom, because—again—the system 
is no longer in its original state. Thus, the agent’s choice of initial measurement is 
directly consequential, both in terms of what the agent does and does not learn about 
the system, and in how the state of the system is changed following her intervention.

5 � Phenomenological reflections on informational reconstructions 
of quantum theory

5.1 � Points of contact between phenomenology and the reconstructive program

Several features of the reconstructive program resonate well with phenomenological 
approaches to science and physics.

First, instead of taking the mathematical formalism of quantum theory for granted 
and interpreting it as given, the reconstructive program begins with inquiring what 
motivates the formalism in the first place. Where does the quantum formalism come 
from? The reconstructive program seeks to identify the basic physical principles 
from which the formalism can be derived or reconstructed. What is interpreted, 
then, is not the formalism as such but the formalism in light of the conceptual frame‑
work and underlying physical principles employed in a given reconstruction.

This claim that we must not take the mathematical formalism of a physical theory 
for granted but inquire as to its origin and motivation can also be found in Hus‑
serlian phenomenology. In Section 9h of the Crisis, entitled “The life-world as the 
forgotten meaning-fundament of natural science,” Husserl argues that “Galileo was 
himself an heir in respect to pure geometry.”51 This is because Galileo’s geometry 
was “preceded by the practical art of surveying” and this “pregeometrical achieve‑
ment was a meaning-fundament for geometry, a fundament for the great invention of 
idealization.”52 For Husserl, “it was a fateful omission that Galileo did not inquire 
back into the original meaning-giving achievement” of what is an “idealization prac‑
ticed on the world of our everyday experiences.”53 This omission is why it seemed 
obvious to Galileo that geometry could be applied to nature but “this obviousness 
was an illusion.”54 The basic idea here is that inquiring into the origin of geometry 
reveals that applying geometry to capture nature involves a process of idealization. 
According to Husserl, Galileo confused what is a method to represent reality with 
reality itself and this confusion was a consequence of the fact that Galileo took the 
mathematical-geometrical formalism that worked so well for granted and interpreted 
it as given.

Similarly, in the reconstructive program, we find the (implicit) criticism that 
many researchers working on interpretations of quantum mechanics only look at the 
quantum formalism as it is, try to make sense of it (which may involve more or 

51  Husser (1970, p. 49).
52  Husser (1970, p. 49).
53  Husser (1970, p. 49).
54  Husser (1970, p. 49).
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less minor modifications of the formalism), but are not concerned with its sense-
giving foundation. Of course, the difference is that Husserl considered the life-world 
the sense-giving foundation of the sciences and is interested in how the respective 
formalism emerges from this foundation. The reconstructive program, on the other 
hand, is interested in how the formalism emerges from underlying physical princi‑
ples. However, the basic ideas of both approaches fit well and we believe that they 
may complement each other.

Second, in the operational framework of the reconstructive program, the agent 
and her experiences take center stage. The operational framework implies that, 
essentially, the experiences of the agent are taken as the basic raw materials out of 
which any worldview is build up. This is in perfect agreement with phenomenol‑
ogy. It is the core commitment of a phenomenological epistemology that knowledge 
is always knowledge of a subject and that every piece of knowledge can be traced 
back to epistemically foundational experiences.55 For Husserl, such justification-
conferring experiences include perceptual experiences, introspective experiences, 
a priori intuitions, and evaluative experiences. Importantly, an experience, like any 
intentional act, is an “intentional relation of consciousness to object”56 where we 
have “the ego as one pole of the relation in question, while the other pole is the 
object”57 such that “[j]ust like any object-pole, the Ego-pole is a pole of identity.”58 
This means that in phenomenology the subject is irreducible. Similarly, in the 
reconstructive program, the agent is a primitive notion and the choices of the agent 
are regarded to be independent of the physical system itself. What is more, since in 
the operational framework the worldview originates from the agent’s experiences, 
reconstructive approaches are at least skeptical towards projects of mathematizing 
nature. Above we have seen that, in the context of realist interpretations of the wave 
function, Hilbert space realism59 and configuration space realism60 are in danger of 
implying an empirically incoherent mathematization of nature. Similar to Galileo, 
they objectify or reify the mathematics used in their successful physical theories.

Third, another important aspect of the operational framework is that this 
approach is close to the practice of the physicist and unbiased with respect to quan-
tum phenomena. We do not consider the properties of classical mechanics properties 
that must be preserved in quantum theory. One might argue that this is a different 
attitude than the one prevailing, for instance, in the de Broglie-Bohm interpreta‑
tion, in which particle ontology and determinism are preserved (with some costs) by 
slightly modifying the quantum formalism. This is not to say that the reconstructive 
program is incompatible with Bohmian mechanics. However, phenomena such as 
complementarity, entanglement, nonlocality, and the apparently probabilistic nature 

55  Cf. Berghofer (forthcoming). For how a phenomenological epistemology can enrich current debates, 
cf. Berghofer (2020b).
56  (Husserl 1960, p. 66).
57  Husserl (2001, p. 100).
58  Husserl (1989, p. 324).
59  Carroll and Singh (2019).
60  Albert (1996).
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of measurement outcomes tend, in the reconstructive approach, to be taken seriously 
without the ambition to explain them away if possible. Alluding to Husserl’s famous 
quip in Ideas 1,61 proponents of the reconstructive program may proclaim to be the 
genuine positivists because they respect the (quantum) phenomena. Furthermore, 
the operational framework wants to be close to the practice of the physicist. No rules 
are imposed “from above” on what measurement is or how a physicist has to per‑
form a measurement. Instead, notions such as “measurement” or “experiment” are 
considered primitive notions. This is also in line with Husserl. As Mirja Hartimo 
puts it, Husserl “does not make a priori, metaphysical claims about the sciences. Nor 
is he aiming at a philosophical view of what the sciences should be or become like. 
Instead he is describing the scientific practices and their normative goals as he finds 
them at each point of time.”62

Fourth, informational reconstructions of quantum theory imply (1) the indeter‑
minism of measurement outcomes, (2) the disturbing character of projective meas‑
urements that necessarily change the observed quantum state, (3) and the incom‑
pleteness of the information provided by measurements. This means that in quantum 
mechanics the physicist or agent is not and cannot be an innocent bystander that 
gains a complete and completely objective picture of nature. This is in agreement 
with the phenomenological picture according to which the subject is an embodied 
subject that cannot be separated from the world it acts upon. What is more, it is 
a core conviction of phenomenology that a purely objective view from nowhere is 
impossible. “There is no pure third-person perspective, just as there is no view from 
nowhere.”63 Instead, “[a]ny understanding of reality is by definition perspectival. 
Effacing our perspective does not bring us any closer to the world. It merely pre‑
vents us from understanding anything about the world at all.”64

One of Husserl’s main contributions to a proper phenomenological analysis of 
perceptual experience is the disclosure of what he calls the horizontal structure of 
experience. In this context, Husserl shows that perceptual experiences are genuinely 
perspectival. In the following section, we address Husserl’s conception of horizontal 
intentionality and shed light on similarities between the perspectival character of 
perceptual experiences and the perspectival character of quantum measurements.

5.2 � The perspectival character of perceptual experiences and quantum 
measurements

An important achievement of Husserl’s mature phenomenology is the discov‑
ery of the horizontal structure of intentionality. To make a long story65 short: As 

61  “If ’positivism’ is tantamount to an absolutely unprejudiced grounding of all sciences on the ’posi‑
tive,’ that is to say, on what can be seized upon originaliter, then we are the genuine positivists” Husserl 
(1982, p. 39).
62  2020.
63  Zahavi (2019, p. 54).
64  Zahavi (2019, p. 28).
65  Cf., for the long story, Berghofer and Wiltsche (2019).
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phenomenological descriptions reveal, perceptual experiences always and necessar‑
ily go beyond what is directly given. What this means can be illustrated by means of 
an example: Assume that you are undergoing a perceptual experience of a laptop. At 
first glance, what presents itself to you in experience is a three-dimensional object in 
space. But a more accurate description reveals that what is really sensuously given 
to you is not simply a laptop, but only one single profile of the laptop, its current 
frontside. To be sure, you could alter your position and make the current backside 
the new frontside, and vice versa. But this doesn’t change the fact that the laptop is 
always given in perspectives and that, more generally, physical things always and 
necessarily have more parts, functions, and properties than can be actualized in one 
single intentional act. The laptop-as it is intended-is transcendent, not only in the 
sense that it can be seen from indefinitely more perspectives than you can take up 
at a given point in time. The laptop is also transcendent in the sense that it has, for 
instance, a momentarily hidden internal structure, a history, certain practical func‑
tions, or many properties that aren’t in the center of attention right now.

So, a closer look at how physical things appear to us reveals that our intentions 
towards these things always “transcend” or “go beyond” the actual experiences that 
give rise to them. As the example of the laptop shows, there is a describable differ‑
ence between what is meant through a particular perceptual act (the laptop in front 
of you) and what is sensuously given (the laptop’s facing side with its momentarily 
visible features). Phenomenologically construed, this discrepancy does not represent 
a problem that must be somehow remedied, e.g. by proposing a theory that explains 
how a number of seemingly disconnected profiles add up to a homogeneous thing to 
which we then attribute these profiles. The fact that our perceptual intentions always 
transcend the sphere of direct givenness is rather to be treated as a phenomenologi‑
cally discoverable feature of experience itself: Intending is, as Husserl puts it, always 
and necessarily an “intending-beyond-itself.”66

Husserl characterizes the perspectival character of perception as follows:

Of necessity a physical thing can be given only ‘one-sidedly’; [...] A physical 
thing is necessarily given in mere ‘modes of appearance’ in which necessarily 
a core of ‘what is actually presented’ is apprehended as being surrounded by a 
horizon of ‘co-givenness,’ which is not givenness proper.67

When Husserl illuminates the perspectival character of perception, he not only 
stresses that perception is incomplete but also that physical objects in perception 
always appear from a certain point of view.

All orientation is thereby related to a null-point of orientation, or a null-thing, 
a function which my own body has, the body of the perceiver. And again, the 
perspectival mode of givenness of every perceptual thing and of each of its 
perceptual determinations—on the other hand, also of the entire unitary field 
of perception, that of the total spatial perception—is something new. The dif‑

66  Husserl (1960, p. 46).
67  Husserl 1982, p. 94).
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ferences of perspective clearly are inseparably connected with the subjective 
differences of orientation and of the modes of givenness in sides.68

A further aspect of perception is that previous experiences shape the way we per‑
ceive. Perception is not a faculty that allows us to see the world as it is objectively, 
independent from our history, background beliefs, etc. To put it differently, “expe‑
rience is not an opening through which a world, existing prior to all experience, 
shines into a room of consciousness; it is not a mere taking of something alien to 
consciousness into consciousness.”69 This aspect of perception is closely related to 
discussions about the theory-ladenness of perception.

Although Husserl regards experiences as a source of immediate justification, he 
is well aware that experiences are not windows to the world through which we see 
how the world is in itself thoroughly objectively. Instead, experiences present their 
objects in a certain way that at least partly depends on subjective factors such as pre‑
vious experiences, background beliefs, etc. To put it differently, the objects we expe‑
rience and think about do not have an objective sense that is for us to be discovered. 
Instead, we ourselves constitute the sense of the objects we engage with.

For Husserl, sense is not simply something outside us that we apprehend, it 
is something that is ‘constituted’ or put together by us due to our particular 
attitudes, presuppositions, background beliefs, values, historical horizons and 
so on. In short, phenomenology is a reflection on the manner in which things 
come to gain the kind of sense they have for us.70

Accordingly, we cannot achieve an objective view on the world, our experiences are 
necessarily incomplete and perspectival, by engaging with the world we constitute 
and thereby change the sense of the objects we encounter, and we only have limited 
knowledge of the present and the future. As we have seen in Sect. 5.1, all this is in 
contrast to the Galilean ideal pursued in classical mechanics. Of course, our every‑
day experiences are a different encounter with the world than scientific investiga‑
tions. The fact that there is a profound discrepancy between the Husserlian picture 
and the Galilean ideal does not imply that one of them is mistaken. For Husserl, the 
discrepancy is explained by the fact that Galilean mechanics (unbeknownst to Gali‑
leo) is directed at an idealization of reality, not at reality itself.

In short, there are unexpected but profound and systemically significant similari‑
ties between insights delivered by phenomenology and quantum mechanics. Never‑
theless, as must be expected when comparing the richness of our lived experience as 
understood via phenomenology to the austere and abstract formalism of a physical 
theory concerned with a sharply-delineated realm of experience, these similarities 
conceal many subtle points of tension. For example, the openness in our experience 

68  Husserl (1977, p. 121). A similar remark can be found in Husserl (1973, pp. 116f). It is interesting to 
see that the phenomenologically minded mathematician, physicist and father of the gauge principle Her‑
mann Weyl basically makes the same claim, explicitly drawing on a phenomenological terminology [cf., 
for further details, (Ryckman 2005, 131 and Wiltsche forthcoming)].
69  Husserl (1969, p. 232).
70  Moran (2012, p. 52).
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has several facets—we are rarely able to delineate the set of possible outcomes of a 
given action, let alone compute the probabilities of these outcomes given our prior 
knowledge. In contrast, the abstractions embodied in the quantum formalism apply 
to measurements with a definite, pre-defined number of possible outcomes. Points of 
dissimilarity such as this require careful attention, and may indeed suggest ways in 
which the formalism could be generalized.

The development of a sophisticated and nuanced account of the similarities as 
well as the points of tension between phenomenology and quantum theory—when 
viewed through the lens of the informational reconstruction program—is a challeng‑
ing project that will likely require cross-disciplinary collaboration. However, broadly 
speaking, very little research has been conducted at the intersection of phenomenol‑
ogy and quantum mechanics. There are several reasons for this unfortunate lack 
of engagement. One reason is that in current debates one finds a plethora of rival 
interpretations of quantum mechanics. Accordingly, there is no consensus on what 
quantum mechanics tells us. We believe that the project of reconstructing quantum 
theory helps us to get a clearer picture. We hope that the present work shows that 
phenomenology in particular but also philosophy of physics in general could benefit 
from engaging with the reconstructive program.
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