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Abstract—It is proved that, on any closed oriented Riemannian n-manifold, the vector spaces
of conformal Killing, Killing, and closed conformal Killing r-forms, where 1 ≤ r ≤ n− 1, have
finite dimensions tr, kr, and pr, respectively. The numbers tr are conformal scalar invariants of
the manifold, and the numbers kr and pr are projective scalar invariants; they are dual in the
sense that tr = tn−r and kr = pn−r. Moreover, an explicit expression for a conformal Killing
r-form on a conformally flat Riemannian n-manifold is given.
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1. INTRODUCTION

Let (M,g) be a Riemannian manifold of dimension n ≥ 2. For each integer 1 ≤ r ≤ n, we denote
the vector space of differential r-forms on (M,g) by Ωr(M,R) and consider its subspaces. The
best-known subspace is the space Hr(M,R) of harmonic r-forms; for a closed oriented Riemannian
manifold (M,g), it has finite dimension br, which is called the rth Betti number. The Betti numbers
obey Poincaré duality br = bn−r and are conformally invariant for n = 2r (see [1, p. 85 (Russian
transl.)]). There are also three subspaces not as well known. The first of them is the space T r(M,R)
of conformal Killing differential r-forms, or conformal Killing–Yano tensors of rank r, which are
a generalization of conformal Killing vector fields to Riemannian manifolds. The second subspace
is the space Kr(M,R) of coclosed conformal Killing differential r-forms, which are also known as
Killing r-forms, or Killing–Yano tensors of rank r; they generalize Killing vector fields. Finally, the
subspace P r(M,R) consists of closed conformal Killing differential r-forms, or closed conformal
Killing tensors of rank r, which generalize concircular vector fields (see the survey [1]).

The three subspaces of the vector space on a closed oriented Riemannian manifold (M,g) listed
above have properties similar to those of the subspace of harmonic forms.

Theorem 1. On any closed oriented Riemannian n-manifold (M,g), the vector spaces T r(M,R),
Kr(M,R), and P r(M,R), where 1 ≤ r ≤ n−1, have finite dimensions tr, kr , and pr. The numbers
tr are conformal scalar invariants of the manifold, and the numbers kr and pr are projective scalar
invariants ; they are dual in the sense that tr = tn−r and kr = pn−r.

Note that, unlike tr, kr, and pr, the Betti numbers br are also topological invariants of the
manifold (M,g).

In [2] and [3], this author obtained explicit expressions for the coclosed and closed conformal
Killing forms in a local coordinate system on a projectively plane pseudo-Riemannian manifold
by using the projective invariance of these forms. This made it possible to write the integrals of
the special Maxwell equations and the symmetry operators of the massless Dirac equations on the
given manifold.

848 0001-4346/2006/8056-0848 c©2006 Springer Science+Business Media, Inc.



SCALAR INVARIANTS OF RIEMANNIAN MANIFOLDS 849

In this paper, we apply the conformal invariance of conformal Killing forms to obtain their
explicit expression in a local coordinate system on a conformally flat manifold, which, in particular,
makes it possible to write the symmetry operators of the Dirac equations with mass (see [3]) on a
conformally flat pseudo-Riemannian manifold.

Theorem 2. On any conformally flat Riemannian n-manifold (M,g), every point has a neigh-
borhood with local coordinate system x1, . . . , xn in which any conformal Killing r-form ω with
1 ≤ r ≤ n− 1 has local components

ωi1...ir = e−(r+1)σ(Akji1...irx
kxj +Bji1...irx

j + Ci1...ir). (1)

The coefficients Akji1...ir , Bi1...ir , and Ci1...ir on the right-hand sides of equalities (1) are constant
and skew-symmetric in i1, . . . , ir , and they satisfy the conditions

Akjii2...ir +Akiji2...ir = 2Aki2...ir ḡij −
r∑

a=2

(−1)a(Akii2...̂ia...ir ḡjia +Akji2...̂ia...ir ḡjia),

Bjii2...ir +Biji2...ir = 2Bi2...ir ḡij −
r∑

a=2

(−1)a(Bii2...̂ia...ir ḡjia +Bji2...̂ia...ir ḡjia),

where
Aki2...ir =

1
n− p+ 1

ḡjlAkjli2...ir , Bi2...ir =
1

n− p+ 1
ḡjlBjli2...ir ,

and the ḡij are the constant components of the metric tensor ḡ for which g = e−2σ ḡ.

2. PROOFS

For an arbitrary smooth map f : (M,g) → (M, ḡ) of Riemannian manifolds, we denote its
differential by f∗ and the transpose of f∗ by f∗. Any differential r-form ω on (M, ḡ) determines
the differential r-form ω := f∗ω̄ on (M,g). The following lemma is valid.

Lemma 1. Let f : (M,g) → (M, ḡ) be the conformal diffeomorphism of Riemannian n-manifolds
defined by f∗ḡ = e2σg, and let ω be a conformal Killing r-form on (M,g) (1 ≤ r ≤ n − 1). Then
the r-form ω̃ on (M, ḡ) defined by f∗ω̃ = e(r+1)σω is conformally Killing.

Proof. Let f : (M,g) → (M, ḡ) be a diffeomorphism. Then, for any x ∈ M and x̄ = f(x) ∈ M ,
we can choose charts (U,ϕ) (with x ∈ U) and (U, ϕ̄) (with x̄ ∈ U) so that the diffeomorphism f
is determined in these charts by equations of the form x̄1 = x1, . . . , x̄n = xn (see [4, p. 67
(Russian transl.)]). We say that the local coordinates x1, . . . , xn are common for the manifolds
(M,g) and (M̄, ḡ) with respect to the given diffeomorphism f . In these coordinates, the conformal
diffeomorphism f : (M,g) → (M, ḡ) is determined by the condition ḡ = e2σg, which implies the
equalities (see [1, pp. 84–85 (Russian transl.)])

∇̄XY = ∇XY + dσ(X)Y + dσ(Y )X − g(X,Y ) gradσ, (2)

d̄∗ω = e−2σ{d∗ω − (n− 2r)igrad σω}, (3)

where ∇ and ∇̄ are the Levi-Civita connections, d∗ and d̄∗ are the codifferentiation operators on
the Riemannian manifolds (M,g) and (M, ḡ), respectively, X = Xi∂/∂xi and Y = Y k∂/∂xk are
vector fields, while igrad σω stands for inner multiplication (that is, the convolution of the r-form ω
with the vector gradσ).

On the manifold (M,g), the conformal Killing r-forms constitute the kernel of the natural
first-order differential operator D, which acts on an arbitrary form ω ∈ C∞ΛrM as

Dω = ∇ω − (r + 1)−1 dω − (n− r + 1)−1g ∧ d∗ω,
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where
d : C∞ΛrM → C∞Λr+1M

is the exterior differentiation operator,

d∗ : C∞ΛrM → C∞Λr−1M

is its conjugate codifferentiation operator mentioned above, and g ∧ d∗ω is the exterior product of
the differential (r − 1)-form d∗ω and the metric tensor g, which is defined by

(g ∧ d∗ω)(X0,X1, . . . ,Xr) =
r∑

a=2

(−1)ag(X0,Xa)(d∗ω)(X1, . . . , X̂a, . . . ,Xr)

for any X0, . . . ,Xr ∈ C∞TM (see [2], [5], [6]). According to (2) and (3), in local coordinates
x1, . . . , xn common with respect to the given conformal diffeomorphism f , the operator D is related
to the corresponding operator d on the manifold (M, ḡ) by

Dω = Dω − (r + 1){dσ ⊗ ω − (r + 1)−1dσ ∧ ω − (n− r + 1)−1g ∧ igrad σω},

where ω = ω in the coordinate system under consideration. Therefore, the form ω̃ = e(r+1)σω
satisfies the relation Dω̃ = e(r+1)σDω, which proves the lemma, because this relation implies

ω ∈ KerD ⇐⇒ ω̃ ∈ KerD. �

Proof of Theorem 1. In [6], for a closed oriented Riemannian manifold (M,g), the conjugate D∗

of the natural operator D and the rough Laplacian D∗D : C∞ΛpM → C∞ΛpM were constructed;
moreover, it was proved that KerD∗D is exhausted by the r-forms from the space T r(M,R). All
operators of the form D∗D are elliptic (see, e.g., [7]); therefore, the kernel KerD∗D of any such
operator is a finite-dimensional vector space (see [1, pp. 631–632 (Russian transl.)] and [8, Ch. 11]).
In particular, the space T r(M,R) is finite-dimensional; we set tr = dimT r(M,R) (see also [1, p. 49
(Russian transl.)]).

Under the conformal transformation ḡ = e2σg of the metric, the conformal Killing r-forms ω on
the manifold (M,g) correspond to the conformal Killing r-forms ω := e(r+1)σω on the Riemannian
manifold (M, ḡ); therefore, the vector space of conformal Killing r-forms on (M, ḡ) has a basis con-
sisting of normalized basis r-forms from the space T r(M,R). Thus, the numbers tr = dimT r(M,R)
are conformal invariants.

The Hodge operator
∗ : C∞ΛrM ∼= C∞Λn−rM

(see [1, p. 52 (Russian transl.)]) establishes an isomorphism ∗ : T r(M,R) ∼= Tn−r(M,R) (see [2,
p. 46], [9]), which allows us to assert that tr = tn−r.

For 1 ≤ r ≤ n− 1, the Killing r-forms on a closed oriented Riemannian manifold (M,g), which
form the vector space Kr(M,R), exhaust KerD∗D ∩ Ker d∗ (see [6]); hence we have

kr = dimKr(M,R) = dimR(KerD∗D ∩ Ker d∗) <∞.

By a projective diffeomorphism f : (M,g) → (M, ḡ) we mean a map which takes the geodesics
of the manifold (M,g) to geodesics of the manifold (M̄, ḡ). Note that if f is a projective diffeomor-
phism, then the map f−1 : (M, ḡ) → (M,g) is a projective diffeomorphism as well.

The following lemma, which was proved in [3], describes a property of projective diffeomorphisms
necessary for the proof of the theorem.
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Lemma 2. Let f : (M,g) → (M, ḡ) be a projective diffeomorphism of Riemannian n-manifolds,
1 ≤ r ≤ n − 1, and let ω be a Killing r-form on the manifold (M,g). Then the r-form ω̃ on the
manifold (M, ḡ) defined by

f∗ω̃ = e(p+1)ψω for ψ =
ln(det ḡ det g)

2(n+ 1)

is Killing.

It follows from this lemma that, under any projective transformation g → ḡ of the metric,
each Killing r-form ω on the manifold (M,g) generates the Killing r-form ω := e(r+1)ψω on the
Riemannian manifold (M, ḡ). Thus, the vector space of Killing r-forms on (M, ḡ) has a basis
consisting of normalized basis r-forms from the space Kr(M,R). Therefore, the number kr is
projectively invariant.

On the other hand, for 1 ≤ r ≤ n − 1, the r-forms that constitute the vector space P r(M,R)
exhaust KerD∗D ∩ Ker d (see [6]); hence

pr = dimP r(M,R) = dimR(KerD∗D ∩ Ker d) <∞.

The duality property kr = pn−r follows from the isomorphism ∗ : Kr(M,R) ∼= Pn−r(M,R)
(see [2], [5]). Since the numbers kr are projectively invariant, it follows that so are the numbers pr.
This completes the proof of Theorem 1. �
Lemma 3. On a flat Riemannian n-manifold (M,g), each point has a neighborhood with a local
coordinate system x1, . . . , xn in which any conformal Killing r-form ω, where 1 ≤ r ≤ n − 1, has
local components

ωi1...ir = Akji1...irx
kxj +Bji1...irx

j + Ci1...ir . (4)

The coefficients Akji1...ir , Bji1...ir , and Ci1...ir on the right-hand sides of these equalities are con-
stant and skew-symmetric in i1, . . . , ir , and they satisfy the conditions

Akjii2...ir +Akiji2...ir = 2Aki2...irgij −
r∑

a=2

(−1)a(Akii2...̂ia...irgjia +Akji2...̂ia...irgjia),

Bjii2...ir +Biji2...ir = 2Bi2...irgij −
r∑

a=2

(−1)a(Bii2...̂ia...irgjia +Bji2...̂ia...irgjia),

where
Aki2...ir =

1
n− p+ 1

gjlAkjli2...ir , Bi2...ir =
1

n− p+ 1
gjlBjli2...ir .

Proof. Let (M,g) be a flat Riemannian manifold of dimension n ≥ 2; by definition, each of its
points x has a neighborhood U isometric to an open set in R

n. In any Cartesian coordinates
x1, . . . , xn in U , the local components gij of the metric tensor g are constant, and the Christoffel
symbols of the Levi-Civita connection ∇ vanish. Therefore, in U , the covariant differentiation
∇j := ∇∂j

coincides with the partial differentiation ∂j = ∂/∂xj , and the equations determining
the conformal Killing r-forms (see [10]) are

∂jωii2...ir + ∂iωji2...ir = 2θi2...irgij −
r∑

a=2

(−1)a(θii2...̂ia...irgjia + θji2...̂ia...irgiia), (5)

where the ωi1i2...ir are the local components of the r-form ω in the neighborhood U and the
θi2...ir = (n − r + 1)−1gij∂iωji2...ir are their components, which, in turn, satisfy the equations
(see [10])

∂jθi2i3...ir + ∂i2θji3...ir = 0. (6)
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Since the integrals of Eqs. (6) have the form θi2...ir = Aki2...irx
r+Bi2...ir for any constants Ai1i2...ir

and Bi2...ir skew-symmetric in all of their indices (see [5]), it follows from (5) that

∂k∂jωii2...ir = Aki2...irgji +Aji2...irgki −Aii2...irgkj

+ 2−1
r∑

a=2

(−1)a(Aiki2...̂ia...irgjia +Aiji2...̂ia...irgkia

−Akji2...̂ia...irgiia −Ajii2...̂ia...irgkia −Ajki2...̂ia...irgiia),

and therefore ∂l∂k∂jωii2...ir=0. This means that the local components of ω have the required
form (4). The conditions on the coefficients in (4) are obtained by substituting these components
into Eq. (5). This completes the proof of Lemma 3. �
Proof of Theorem 2. A Riemannian manifold (M,g) is said to be conformally flat (see [1, p. 86
(Russian transl.)]) if, for any point x ∈ M , there exists its neighborhood U and a function σ
on U such that (M, ḡ), where M = U and ḡ = e2σg, is a flat Riemannian manifold. According to
Lemma 3, on the flat manifold (M, ḡ), the conformal Killing r-form ω has local components

ωi1...ir = Akji1...irx
kxj +Bji1...irx

j + Ci1...ir .

Under the pointwise conformal transformation g = e2σ
′
ḡ of the metric, the form ω̃ = e(r+1)σ′

ω,
where σ′ = −σ, is conformal Killing by Lemma 1 . This proves Theorem 2. �

In conclusion, note that the proofs of Lemma 1 and Theorem 2 suggested above can be carried
over to pseudo-Riemannian manifolds without modifications; this justifies our remark concerning
the possibility of applying the results in theoretical physics.
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