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Abstract—We consider a one-dimensional perturbation of the convolution operator. We
study the inverse reconstruction problem for the convolution component using the charac-
teristic numbers under the assumption that the perturbation summand is known a priori.
The problem is reduced to the solution of the so-called basic nonlinear integral equation with
singularity. We prove the global solvability of this nonlinear equation. On the basis of these
results, we prove a uniqueness theorem and obtain necessary and sufficient conditions for the
solvability of the inverse problem.
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INTRODUCTION

The main results for inverse problems of spectral analysis were obtained for differential operators
(see, for example, the surveys in [1], [2]). For inverse problems involving integral operators, see the
well-known paper [3] of Yurko, in which an operator of the form

Af = Mf + g(x)
∫ π

0

f(t)v(t) dt, Mf =
∫ x

0

M(x, t)f(t) dt, 0 ≤ x ≤ π, (0.1)

was studied. There the author investigated the reconstruction problem for the functions g(x),
v(x) using the spectral data of the operator A and assuming that the function M(x, t) is known
a priori, and showed the connection of this inverse problem with the inverse Sturm–Liouville
problem. As is well known, the inverse operator to the Sturm–Liouville differential operator is
a special case of an operator of the form (0.1). Inverse operators to Volterra differential and
integro-differential operators of higher order with boundary conditions at only one of the endpoints,
namely, at the point π, are of the same form. More general boundary conditions are associated with
finite-dimensional perturbations. Note that direct problems for finite-dimensional perturbations of
Volterra operators were studied by Khromov (see, for example, [4]) and by other authors.

In the present paper, we study a different inverse problem for the operator (0.1), namely, the
reconstruction problem for the operator M , assuming that the functions g(x), v(x) are known a
priori. For the spectral data we use the characteristic numbers of the operator A. The solution of
this inverse problem is hampered by the fact that the characteristic function depends nonlinearly
on M .

We consider the case in which M(x, t) depends only on the difference of its arguments, i.e., M is
a convolution operator. Note that, in the more general case of the function M(x, t), the solution of
the inverse problem under consideration, is, in general, nonunique. In Sec. 1, we establish the special
form of the kernel of the transformation operator related toM , which allows us to reduce the inverse
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problem to the solution of the so-called main nonlinear integral equation with singularity (2.1). In
Sec. 2, we prove the global solvability of this nonlinear equation. The important part of the proof
is the study of the singularity. In Sec. 3, using the results obtained in the previous sections, we
establish the uniqueness of the solution of the inverse problem and obtain necessary and sufficient
conditions for its solvability. The proof is constructive and allows us to find an algorithm for the
solution of the inverse problem. The main results of this paper are contained in Theorems 3.1
and 3.2.

1. PRELIMINARIES

Consider an operator A = A(M,g, v) of the form

Af = Mf + g(x)
∫ π

0

f(t)v(t) dt, Mf =
∫ x

0

M(x− t)f(t) dt, 0 ≤ x ≤ π. (1.1)

Suppose that M(x) ∈W 2
2 [0, T ] for all T ∈ (0, π), (π−x)M ′′(x) ∈ L2(0, π); M(0) = −i, M ′(0) = 0.

Under these conditions, the operator M−1 can be expressed as

M−1y = Dy := iy′(x) +
∫ x

0

H(x− t)y(t) dt, y(0) = 0,

where the functions N = M ′′(x) and H(x) are related by the relation

N(x) = H(x) + i

∫ x

0

N(t) dt
∫ x−t

0

H(τ) dτ (1.2)

and, therefore,
(π − x)H(x) ∈ L2(0, π). (1.3)

In what follows, we assume that the function M(x) satisfies the conditions indicated above and
g(x), v(x) ∈W 1

2 [0, π]. If, besides, a1a2 �= 0, where

a1 = 1 + ig(0)v(0) +
∫ π

0

v(x)Dg(x) dx, a2 = ig(0)v(π), (1.4)

then we say that the operator A belongs to the class A .
The characteristic numbers λk of the operator A of the form (1.1) coincide with the zeros of its

characteristic function
L (λ) = 1 − λ

∫ π

0

v(x)g(x, λ) dx, (1.5)

counting multiplicity, where

g(x, λ) = (E − λM)−1g(x) = g(x) + λ

∫ x

0

M(x− t, λ)g(t) dt. (1.6)

Here E is the identity operator and M(x − t, λ) is the kernel of the integral operator Rλ(M) =
(E − λM)−1M .

Lemma 1.1. The following representation is valid:

M(x, λ) = −i
(

exp(−iλx) +
∫ x

0

P (x, t) exp(−iλ(x− t)) dt
)
, (1.7)

where

P (x, t) =
∞∑

ν=1

iν
(x− t)ν

ν!
H∗ν(t). (1.8)

MATHEMATICAL NOTES Vol. 80 No. 5 2006



INVERSE SPECTRAL RECONSTRUCTION PROBLEM FOR THE CONVOLUTION OPERATOR 633

Here
H∗1(x) = H(x), H∗(ν+1)(x) = H ∗H∗ν(x) =

∫ x

0

H(x− t)H∗ν(t) dt.

Proof. Since Rλ(M) = M + λMRλ(M), we see that the functions M(x) and M(x, λ) are related
by

M(x, λ) = M(x) + λ

∫ x

0

M(x− t)M(t, λ) dt,

and hence they are of identical smoothness with respect to x, and M(0, λ) = −i. Applying the
operator (Rλ(M))−1 = M−1 − λE to the function y(x) = Rλ(M)f(x), where f ∈ L2(0, π), we
obtain the relation

i

∫ x

0

M ′(x− t, λ)f(t) dt +
∫ x

0

f(t) dt
∫ x

t

H(x− τ)M(τ − t, λ) dτ = λ

∫ x

0

M(x− t, λ)f(t) dt,

where the “prime” denotes differentiation with respect to x. Since f is arbitrary, the function
M(x, λ) is a solution of the Cauchy problem

iM ′(x, λ) +
∫ x

0

H(x− t)M(t, λ) dt = λM(x, λ), M(0, λ) = −i

and hence is of the form (1.7) if

P (x, x) +
∫ x

0

∂

∂x
P (x, t) exp(−iλ(x− t)) dt

= i

∫ x

0

H(t) exp(−iλ(x− t)) dt + i

∫ x

0

exp(−iλ(x− t)) dt
∫ t

0

H(t− τ)P (x− t+ τ, τ) dτ.

Since λ is arbitrary, the last relation is equivalent to the Cauchy problem

∂

∂x
P (x, t) = iH(t) + i

∫ t

0

H(t− τ)P (x− t+ τ, τ) dτ, P (x, x) = 0, 0 ≤ t ≤ x ≤ π,

which, in turn, is equivalent to the integral equation

P (x, t) = i(x− t)H(t) + i

∫ x−t

0

ds

∫ t

0

H(t− τ)P (s + τ, τ) dτ, 0 ≤ t ≤ x ≤ π. (1.9)

Thus, if the function P (x, t) is a solution of Eq. (1.9), then (1.7) holds. Let us solve (1.9) by the
method of successive approximations. Let

P1(x, t) = i(x− t)H(t), Pν+1(x, t) = i

∫ x−t

0

ds

∫ t

0

H(t− τ)Pν(s+ τ, τ) dτ

and, by induction, we obtain the expression

Pν(x, t) = iν
(x− t)ν

ν!
H∗ν(t).

The series on the right-hand side of (1.8) is uniformly convergent for 0 ≤ t ≤ x ≤ π and yields the
solution of Eq. (1.9). Lemma 1.1 is proved. �

Denote

µ0(x) =
∫ π

x

v(t)g(t − x) dt, µ(x) = µ0(x) +
∫ π

x

P (t, t− x)µ0(t) dt. (1.10)

It is readily verified that µ(x) ∈W 2
2 [0, π].
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Lemma 1.2. For the characteristic function of the operator (1.1), the following representation is
valid:

L (λ) = a1 − a2 exp(−iλπ) +
∫ π

0

w(x) exp(−iλx) dx, w(x) ∈ L2(0, π), (1.11)

where a1, a2 are defined in (1.4) and

w(x) = −iµ′′(x). (1.12)

Proof. Substituting (1.6) into (1.5), substituting t→ x− t, and changing the order of integration,
we obtain

L (λ) = 1 − µ0(0)λ − λ2

∫ π

0

µ0(x)M(x, λ) dx.

Using (1.7), (1.10), we find

L (λ) = 1 − µ0(0)λ + iλ2

∫ π

0

µ(x) exp(−iλx) dx.

Twice integrating by parts and using the relations

µ(0) = µ0(0), µ(π) = 0, µ′(0) = i(a1 − 1), µ′(π) = ia2,

we obtain (1.11). Lemma 1.2 is proved. �
It follows from expression (1.11) (see [3]) that the operator A ∈ A has an infinite set of charac-

teristic numbers λk, k = 0,±1,±2, . . . , of the form

λk = 2k + α+ κk, {κk} ∈ �2, λk �= 0. (1.13)

Moreover, the function L (λ) is uniquely defined by its zeros:

L (λ) = exp(pλ)
∞∏

k=−∞

(
1 − λ

λk

)
exp

(
λ

λk

)
, (1.14)

where

p =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

iπ

exp(−iαπ) − 1
+

∞∑
k=−∞

(
1
λ0

k

− 1
λk

)
if exp(iαπ) �= 1,

π

2i
− 1
λ−α/2

+
∞∑

k=−∞, k �=−α/2

(
1
λ0

k

− 1
λk

)
if exp(iαπ) = 1.

(1.15)

Here λ0
k = 2k + α. In [3], the following converse assertion was also proved.

Lemma 1.3. Let numbers λk, k = 0,±1,±2, . . . , of the form (1.13) be given. Then, for the func-
tion L (λ) defined by (1.14), the following representation holds :

L (λ) = γ(1 − exp(i(α− λ)π)) +
∫ π

0

w(x) exp(−iλx) dx (1.16)

with some function w(x) ∈ L2(0, π), where

γ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
1 − exp(iαπ)

∞∏
k=−∞

λ0
k

λk
if exp(iαπ) �= 1,

i

πλ−α/2

∞∏
k=−∞, k �=−α/2

λ0
k

λk
if exp(iαπ) = 1.

(1.17)
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2. BASIC NONLINEAR INTEGRAL EQUATION

Relation (1.12) can be regarded as a nonlinear equation with respect to the function H(x).
Twice differentiating (1.10) and using (1.12), we obtain the following equation (a2 �= 0):

(π − x)H(x) = ϕ(x) +
∞∑

ν=1

(
bν(x)H∗ν(x) +

∫ x

0

Bν(x, t)H∗ν(t) dt
)
, 0 < x < π, (2.1)

where

ϕ(x) =
iw(π − x) − µ̌′′

0(x)
a2

, µ̌0(x) = µ0(π − x), (2.2)

b1(x) ≡ 0, bν(x) = iν+1 (π − x)ν

ν!
, ν ≥ 2,

Bν(x, t) = − iν

a2

(π − x)ν−2

ν!
(
ν(ν − 1)µ̌0(x− t) − 2ν(π − x)µ̌′

0(x− t) + (π − x)2µ̌′′
0 (x− t)

)
. (2.3)

Equation (2.1) is called the basic nonlinear integral equation. Note that condition (1.3) ensures the
inclusion ϕ(x) ∈ L2(0, π) and, besides,

∫ π

0

(π − x)ϕ(x) dx = 0. (2.4)

Indeed, by (1.12), (2.2), we have

µ′′(x) = µ′′
0(x) + a2ϕ(π − x)

and, in view of expressions µ′(π) = µ′
0(π), µ(π) = µ0(π), we can integrate this expression twice,

obtaining

µ(x) = µ0(x) + a2

∫ π

x

dt

∫ π

t

ϕ(π − τ) dτ.

Since µ(0) = µ0(0), we obtain (2.4). The present section is devoted to the proof of the following
converse assertion.

Theorem 2.1. For any function ϕ(x) ∈ L2(0, π) satisfying (2.4), Eq. (2.1) has a unique solution
H(x), (π − x)H(x) ∈ L2(0, π).

Proof. In connection with the proof of a theorem of Sakhnovich, Khromov [5] obtained the solution
of the equation

f(x) = y(x) + y ∗ y(x), 0 < x < 1, (2.5)

which is described below. First, the solution y(x) is found for 0 < x < δ, where δ is sufficiently
small, by using the contraction mapping principle. Let us rewrite (2.5) as

f(x) = y(x) +
∫ δ

0

y(x− t)y(t) dt +
∫ x

δ

y(x− t)y(t) dt. (2.6)

Then, for x < 2δ, y(t) in the first integral and y(x − t) in the second integral are known. There-
fore, (2.6) is a linear equation for δ < x < 2δ. Thus, knowing the solution of Eq. (2.5) on (0, δ) for
some δ ∈ (0, 1), we can find the solution on (δ, 2δ) and hence on the whole interval (0, 1) in a finite
number of steps.

This property of convolution also enables the solution of the following equation of a more general
form:

y(x) = ξ(x) +
∞∑

ν=1

(
ψν(x)y∗ν(x) +

∫ x

0

Ψν(x, t)y∗ν(t) dt
)
, 0 < x < T, (2.7)
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where ψ1(x) = 0. Suppose that the functions ψν(x), Ψν(x, t) are square-integrable and there exist
square-integrable functions u(x), U(x, t) such that

|ψν(x)| ≤ u(x), |Ψν(x, t)| ≤ U(x, t), 0 < t < x < T, ∀ ν.
Theorem 2.2. For any function ξ ∈ L2(0, T ), Eq. (2.7) has a unique solution y ∈ L2(0, T ).

Proof. Let us first show that, for a sufficiently small δ > 0, Eq. (2.7) has a unique solution y(x),
0 < x < δ, in the ball Bδ = {y : ‖y‖δ ≤ 1/2}, where ‖ · ‖δ is the norm on L2(0, δ). Denote

ψνy = ψν(x)y∗ν(x) +
∫ x

0

Ψν(x, t)y∗ν(t) dt, Ψy = ξ +
∞∑

ν=1

ψνy.

Let y, ỹ ∈ L2(0, δ). The Cauchy–Bunyakovskii inequality implies

|y ∗ ỹ(x)| ≤ ‖y‖δ‖ỹ‖δ ∀x ∈ [0, δ].

For convenience, we assume δ ≤ 1. Then, by induction, we obtain the estimate

|y∗ν(x)| ≤ ‖y‖ν
δ , ν ≥ 2,

and hence

‖ψνy‖δ ≤ Cδ‖y‖ν
δ , where Cδ = ‖u‖δ +

(∫ δ

0

∫ x

0

U2(x, t) dt dx
)1/2

. (2.8)

Also, since

y∗ν − ỹ∗ν = (y − ỹ) ∗ (y∗(ν−1) + y∗(ν−2) ∗ ỹ∗1 + · · · + ỹ∗(ν−1)), ν ≥ 2,

and ‖y∗ν‖δ ≤ ‖y‖ν
δ , we obtain the estimate

‖ψνy − ψν ỹ‖δ ≤ Cδν(max{‖y‖δ , ‖ỹ‖δ})ν−1‖y − ỹ‖δ . (2.9)

Choose δ so that Cδ < 1/4, ‖ξ‖δ ≤ 1/4. Then it follows from (2.8), (2.9) that the operator Ψ maps
Bδ into Bδ and is a contraction in Bδ. Indeed, suppose that y, ỹ ∈ Bδ; then

‖Ψy‖δ ≤ ‖ξ‖δ +
∞∑

ν=1

‖ψνy‖δ ≤ ‖ξ‖δ + Cδ

∞∑
ν=1

‖y‖ν
δ ≤ ‖ξ‖δ + Cδ <

1
2
,

‖Ψy − Ψỹ‖δ ≤
∞∑

ν=1

‖ψνy − ψν ỹ‖δ ≤ Cδ

∞∑
ν=1

ν(max{‖y‖δ , ‖ỹ‖δ})ν−1‖y − ỹ‖δ ≤ α‖y − ỹ‖δ,

where

α = Cδ

∞∑
ν=1

ν

2ν−1
= 4Cδ < 1.

Applying the contraction mapping principle, we establish the unique solvability of Eq. (2.7) in Bδ.
Now, assuming that y = y1(x) is a solution of (2.7) for 0 < x < δ, δ ∈ (0, π), we can show

that (2.7) has a unique solution y(x) in L2(0, 2δ) coinciding with y1(x) on (0, δ). We search for y(x)
in the form y(x) = y1(x) + y2(x), where y1(x) = 0 for δ < x < 2δ, and y2(x) = 0 for 0 < x < δ. By
induction, we can prove the representation

y∗ν(x) = (y1 + y2)∗ν(x) = y∗ν
1 (x) +

ν−1∑
k=1

Ck
ν (y∗(ν−k)

1 ∗ y∗k
2 )(x) + y∗ν

2 (x), ν ≥ 2, (2.10)
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where Ck
ν = ν!/(k!(ν − k)!). Since y2(x) = 0 on (0, δ), it follows that y∗22 (x) ≡ 0 on [0, δ] and

y∗22 (x) =
∫ x

δ

y2(t)y2(x− t) dt =
∫ x−δ

0

y2(x− t)y2(t) dt = 0, δ ≤ x ≤ 2δ.

Hence, for ν ≥ 2, we have y∗ν
2 (x) ≡ 0 on [0, 2δ] and, by (2.10), we obtain the expression

y∗ν(x) = y∗ν
1 (x) + ν(y∗(ν−1)

1 ∗ y2)(x), 0 ≤ x ≤ 2δ, ν ≥ 2.

Substituting it into (2.7), we obtain a linear equation with respect to y2(x):

y2(x) = ζ(x) +
∫ x

δ

Ψ(x, t)y2(t) dt, δ < x < 2δ, (2.11)

where the functions

ζ(x) = ξ(x) +
∞∑

ν=1

(
ψν(x)y∗ν

1 (x) +
∫ x

0

Ψν(x, t)y∗ν
1 (t) dt

)
,

Ψ(x, t) = Ψ1(x, t) +
∞∑

ν=2

ν

(
ψν(x)y∗(ν−1)

1 (x− t) +
∫ x−t

0

Ψν(x, t+ τ)y∗(ν−1)
1 (τ) dτ

)

are square-integrable. Equation (2.11) has a unique solution and, therefore, the function given
by y(x) = y1(x) + y2(x) is the unique solution of Eq. (2.7) in L2(0, 2δ) coinciding with y1(x) on
(0, δ). Continuing the process, we obtain the solution of (2.7) on the whole interval (0, T ) in a
finite number of steps. It is unique. Indeed, suppose that ỹ ∈ L2(0, T ) is another solution. For a
sufficiently small δ > 0, both functions y(x), ỹ(x), 0 < x < δ, will belong to the ball Bδ and, by
the first part of the proof, will be equal almost everywhere on (0, δ). By the uniqueness of the
continuation of the solution, we obtain y(x) = ỹ(x) almost everywhere on (0, T ). Theorem 2.2 is
proved. �

Let us continue the proof of Theorem 2.1. By Theorem 2.2, there exists a unique square-integr-
able solution H = H1(x) of Eq. (2.1) on the interval (0, π/2). Just as in its proof, we search for a
solution on (0, π) in the form H(x) = H1(x)+H2(x), where H1(x) = 0 on (π/2, π), and H2(x) = 0
on (0, π/2). We obtain the following equation with respect to H2(x):

(π − x)H2(x) = ζ(x) +
∫ x

π/2

B(x, t)H2(t) dt,
π

2
< x < π, (2.12)

where

ζ(x) = ϕ(x) +
∞∑

ν=1

(
bν(x)H∗ν

1 (x) +
∫ x

0

Bν(x, t)H∗ν
1 (t) dt

)
,

B(x, t) = B1(x, t) +
∞∑

ν=2

ν

(
bν(x)H∗(ν−1)

1 (x− t) +
∫ x−t

0

Bν(x, t+ τ)H∗(ν−1)
1 (τ) dτ

)
.

Thus, Eq. (2.1) has a unique solution H(x), 0 < x < π, which is square-integrable on any interval
(0, T ), T ∈ (0, π). However, the question of the integrability ofH(x) on the whole (0, π) still remains
open. Denote h2(x) = (π − x)H2(x); then, in view of (2.3), the following equation is equivalent
to (2.12):

h2(x) = ζ(x) + 2
∫ x

π/2

h2(t) dt
π − t

+
∫ x

π/2

G(x, t)h2(t) dt,
π

2
< x < π, (2.13)
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where the function

G(x, t) =
i

a2(π − t)

{
2
∫ x

t

µ̌′′
0(x− τ) dτ − (π − x)µ̌′′

0 (x− t)
}

+
1

π − t

∞∑
ν=2

ν

(
bν(x)H∗(ν−1)

1 (x− t) +
∫ x−t

0

Bν(x, t+ τ)H∗(ν−1)
1 (τ) dτ

)

is square-integrable for 0 < t < x < π. Theorem 2.1 will be proved if we show that its solution
satisfies the inclusion h2(x) ∈ L2(π/2, π). However, as can be seen from Lemma 2.2 (see below),
an equation of the form (2.13) with arbitrary square-integrable functions ζ(x), G(x, t) need not, in
general, have a solution in the required class. Let us prove several auxiliary assertions. Denote

Tαf =
1

(b− x)α

∫ x

a

f(t) dt
(b− t)1−α

, T ∗
αf =

1
(b− x)1−α

∫ b

x

f(t) dt
(b− t)α

, a < x < b.

Lemma 2.1. Choose α < 1/2. Then the operators Tα, T ∗
α map L2(a, b) into L2(a, b) and are

bounded.

Proof. The proof is based on the application of the generalized Minkowski inequality

{∫ b

a

∣∣∣∣
∫ d

c

f(x, t) dt
∣∣∣∣
2

dx

}1/2

≤
∫ d

c

{∫ b

a

|f(x, t)|2 dx
}1/2

dt, (2.14)

which is understood in the following sense: “if the right-hand side of (2.14) is finite, then the
left-hand side is also finite and both sides obey the stated relation” (see [6, p. 179 (Russian transl.)]).
Suppose that f(x) ∈ L2(a, b). Denote f̌(x) = f(b − x). Successively substituting x → b − x,
t→ b− xt, we obtain

∫ b

a

|T ∗
αf(x)|2 dx =

∫ b−a

0

∣∣∣∣ 1
x1−α

∫ b

b−x

f(t) dt
(b− t)α

∣∣∣∣
2

dx =
∫ b−a

0

∣∣∣∣
∫ 1

0

f̌(xt) dt
tα

∣∣∣∣
2

dx,

and, by (2.14), we obtain the estimate

‖T ∗
αf‖ ≤

∫ 1

0

1
tα

{∫ b−a

0

|f̌(xt)|2 dx
}1/2

dt,

where ‖ · ‖ is the norm on L2(a, b). Further, substituting x→ (b− x)/t, we find

‖T ∗
αf‖ ≤

∫ 1

0

1
tα+1/2

{∫ b

b(1−t)+at

|f(x)|2 dx
}1/2

dt ≤ 2
1 − 2α

‖f‖,

i.e., the operator T ∗
α acts from L2(a, b) to L2(a, b) and is bounded. By Fubini’s theorem (see [7,

p. 208 (Russian transl.)]) the operator Tα is adjoint to T ∗
α. Lemma 2.1 is proved. �

Lemma 2.2. The solution y(x) of the equation

y(x) = f(x) + 2
∫ x

a

y(t) dt
b− t

, a < x < b, (2.15)

satisfies the condition (b − x)θy(x) ∈ L2(a, b) if and only if one of the following conditions holds,
depending on the value of the parameter θ:

1) (b− x)θf(x) ∈ L2(a, b), for θ > 3/2;
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2) (b− x)θf(x) ∈ L2(a, b),

∫ b

a

(b− x)f(x) dx = 0 for 0 ≤ θ < 3/2. (2.16)

Proof. Performing the substitution, we can readily see that the solution of Eq. (2.15) is of the
form

y(x) = f(x) +
2

(b− x)2

∫ x

a

(b− t)f(t) dt. (2.17)

Suppose that θ > 3/2. We can easily verify that

(b− x)θy(x) = f0(x) + 2Tαf0(x),

where
f0(x) = (b− x)θf(x) ∈ L2(a, b), α = 2 − θ < 1/2.

Applying Lemma 2.1, we obtain (b− x)θy(x) ∈ L2(a, b). Now, suppose that θ < 3/2. Using (2.16),
we transform (2.17) as follows:

y(x) = f(x) − 2
(b− x)2

∫ b

x

(b− t)f(t) dt,

whence, by multiplying by (b− x)θ, we obtain

(b− x)θy(x) = f0(x) − 2T ∗
αf0(x),

where α = θ−1 < 1/2. Using Lemma 2.1 again, we find that (b−x)θy(x) ∈ L2(a, b). The sufficiency
is proved; let us pass to the proof of the necessity. By (2.15), we have

(b− x)θ|f(x)| ≤ |y0(x)| + 2
∫ x

a

|y0(t)| dt
b− t

∈ L2(a, b),

where y0(x) = (b − x)θy(x) ∈ L2(a, b). Suppose that θ < 3/2. Multiplying both sides of (2.15) by
b− x and integrating from 0 to π, we obtain (2.16). Lemma 2.2 is proved. �

Let β(x) = (x− b)5/5 and denote by L2,β(a, b) the space of functions f(x), a < x < b, with the
norm

‖f‖L2,β
=

(∫ b

a

|f(x)|2 dβ(x)
)1/2

=
(∫ b

a

(b− x)4|f(x)|2 dx
)1/2

.

Lemma 2.3. For any function f(x) ∈ L2,β(a, b), the equation

y(x) = f(x) + 2
∫ x

a

y(t) dt
b− t

+
∫ x

a

G(x, t)y(t) dt, a < x < b, (2.18)

where ∫ b

a

∫ x

a

|G(x, t)|2 dt dx <∞,

has a unique solution y(x) ∈ L2,β(a, b).

Proof. Suppose that a linear bounded operator F bijectively maps a Banach space B into itself
and the linear operator G : B → B is completely continuous. Then if the operator S = F + G is
an injection, it follows that it is also a bijection of B onto B. Indeed, denoting S1 = SF−1, we
obtain S1 = E +G1, where G1 = GF−1. Then S1 is an injection and G1 is completely continuous.
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By the Fredholm alternative (see [7, p. 649 (Russian transl.)]), S1 is a bijection. Hence, S is also
a bijection. Denote F = E − 2T0,

Gy =
∫ x

a

G(x, t)y(t) dt =
∫ x

a

Gβ(x, t)y(t) dβ(t), Gβ(x, t) =
G(x, t)
(b− t)4

,

and write Eq. (2.18) in the operator form f = Fy −Gy. We can easily show that the operator F
is bounded in L2,β(a, b) and, by Lemma 2.2 for θ = 2, it is a bijection of L2,β(a, b) onto L2,β(a, b).
The operator G maps L2,β(a, b) into itself. Since

∫ b

a

∫ x

a

|Gβ(x, t)|2 dβ(t) dβ(x) ≤
∫ b

a

∫ x

a

|G(x, t)|2 dt dx <∞,

G is a Hilbert–Schmidt operator, and hence it is completely continuous (see, for example, [8, p. 382
(Russian transl.)]). It remains to note that F −G is an injection, and hence a bijection of L2,β(a, b)
onto itself. Lemma 2.3 is proved. �

In view of Lemma 2.3, Eq. (2.13) has a unique solution h2(x) such that (π − x)2h2(x) ∈
L2(π/2, π). Hence Eq. (2.12) has a unique solution H2(x), (π − x)3H2(x) ∈ L2(π/2, π). Thus,
Eq. (2.1) has a unique solution H(x), (π − x)3H(x) ∈ L2(0, π). It remains to show that (2.4)
implies (1.3). Denote h(x) = (π − x)H(x) and, by (2.3), we can rewrite (2.1) in the form

h(x) = ϕ(x) + 2
∫ x

0

h(t) dt
π − t

+ α1(x) + α2(x), (2.19)

where

α1(x) = i

∫ x

0

h(t)
a2(π − t)

{
2
∫ x−t

0

µ̌′′
0 (τ) dτ − (π − x)µ̌′′

0 (x− t)
}
dt,

α2(x) =
∞∑

ν=2

(
bν(x)H∗ν(x) +

∫ x

0

Bν(x, t)H∗ν(t) dt
)
.

Our next move is to use Lemma 2.2 to verify that h(x) ∈ L2(0, π). To do this, let us prove two
more lemmas. By the symbol C we shall denote different constants in estimates independent of the
arguments of the functions.

Lemma 2.4. If (π − x)lH(x) ∈ L2(0, π), where 3/2 ≤ l ≤ 3, then (π − x)l−3/2αk(x) ∈ L2(0, π),
k = 1, 2.

Proof. Denote h0(x) = (π − x)l−1h(x). Then, by the assumption of the lemma, h0(x) ∈ L2(0, π).
The Cauchy–Bunyakovskii inequality implies

|α1(x)| ≤ C

∫ x

0

|h0(t)| dt
(π − t)l−1/2

+ C(π − x)
(∫ x

0

dt

(π − t)2l

)1/2(∫ x

0

|h0(t)|2|µ̌′′
0(x− t)|2 dt

)1/2

;

hence we obtain the relation for α1(x), because the convolution of integrable functions is an inte-
grable function. Further, we have α2(x) = α2,1(x) + α2,2(x), where

α2,1(x) =
∞∑

ν=2

(
bν(x)H∗ν

1 (x) +
∫ x

0

Bν(x, t)H∗ν
1 (t) dt

)
, α2,2(x) =

∫ x

0

Φ(x, t)H2(t) dt,

Φ(x, t) =
∞∑

ν=2

ν

(
bν(x)H∗(ν−1)

1 (x− t) +
∫ x−t

0

Bν(x, t+ τ)H∗(ν−1)
1 (τ) dτ

)
.
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Obviously, |α2,1(x)| < C. Also, it is easy to obtain the estimate

|α2,2(x)| ≤ C

∫ x

0

|H1(x− t)| |h
0
2(t)| dt

(π − t)l−2
+ C

∫ x

0

|h0
2(t)| dt

(π − t)l−1
+ C,

where h0
2(x) = (π − x)lH2(x). This yields (π − x)l−3/2α2,2(x) ∈ L2(0, π). Lemma 2.4 is proved.

�
Lemma 2.5. If (π − x)lH(x) ∈ L2(0, π) for some l < 3, then

∫ π

0

(π − x)αk(x) dx = 0, k = 1, 2. (2.20)

Proof. We have α1(x) = α1,1(x) + α1,2(x), where

α1,1(x) =
2i
a2

∫ x

0

h(t)
π − t

dt

∫ x−t

0

µ̌′′
0(τ) dτ, α1,2(x) = −iπ − x

a2

∫ x

0

h(t)µ̌′′
0 (x− t) dt
π − t

.

Integrating by parts, we obtain
∫ s

0

(π − x)α1,1(x) dx =
{
−i (π − x)2

a2

∫ x

0

h(t) dt
π − t

∫ x−t

0

µ̌′′
0(τ) dτ

}∣∣∣∣
s

x=0

+ i

∫ s

0

(π − x)2

a2
dx

∫ x

0

h(t)µ̌′′
0 (x− t) dt
π − t

,

i.e., ∫ s

0

(π − x)α1(x) dx = −i (π − s)2

a2

∫ s

0

h0(t) dt
(π − t)3

∫ s−t

0

µ̌′′
0(τ) dτ,

where h0(x) = (π − x)3H(x). Choose an ε > 0 and an s1 ∈ (0, π) so that

(∫ π−s1

0

|µ̌′′
0(τ)|2 dτ

)1/2

< ε.

Suppose that s > s1; then, by the Cauchy–Bunyakovskii inequality, we obtain the estimates
∣∣∣∣
∫ s

0

(π − x)α1(x) dx
∣∣∣∣ ≤ C(π − s)2

∫ s1

0

|h0(t)| dt
(π − t)3

+ Cε(π − s)2
∫ s

s1

|h0(t)| dt
(π − t)5/2

,

∫ s

s1

|h0(t)| dt
(π − t)5/2

≤ C
1

(π − s)2
.

(2.21)

The second summand in (2.21) can be made arbitrarily small under an appropriate choice of s1,
while the first summand tends to zero as s → π. By Lemma 2.4, we have (π − x)α1(x) ∈ L(0, π);
hence we obtain (2.20) for k = 1. Further, denote

µ1(x) =
∞∑

ν=2

iν
(π − x)ν

ν!

∫ x

0

H∗ν(t)µ̌0(x− t) dt

=
∞∑

ν=2

iν
(π − x)ν

ν!

{∫ x

0

H∗ν
1 (t)µ̌0(x− t) dt

+ ν

∫ x

0

h0
2(t) dt

(π − t)3

∫ x−t

0

µ̌′
0(x− t− τ) dτ

∫ τ

0

H
∗(ν−1)
1 (ξ) dξ

}
.
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where h0
2(x) = (π − x)3H2(x) ∈ L2(0, π). We have the estimate

|µ1(x)| ≤ C(π − x)2
(

1 +
∫ x

0

|h0
2(t)| dt

(π − t)2

)
. (2.22)

Also, for all T ∈ (0, π) we have µ1(x) ∈ W 2
2 [0, T ]. By differentiation, we can easily verify that

µ′′
1 (x) = −a2α2(x). Since µ1(0) = µ′

1(0) = 0, we have

µ1(x) = −a2

∫ x

0

(x− t)α2(t) dt, 0 ≤ x < π.

Using (π − x)α2(x) ∈ L(0, π), letting x tend to π, and invoking (2.22), we obtain (2.20) also for
k = 2. Lemma 2.5 is proved. �

Let us return to the proof of Theorem 2.1. Consider relation (2.19). Since (π − x)3H(x) ∈
L2(0, π), Lemma 2.4 implies (π − x)3/2αk(x) ∈ L2(0, π), k = 1, 2. By Lemma 2.2, for θ = 8/5
we find that (π − x)8/5h(x) ∈ L2(0, π), or, equivalently, (π − x)13/5H(x) ∈ L2(0, π). Further,
by Lemma 2.5, we have (2.20). Since Eq. (2.4) also holds, applying Lemma 2.4 together with
Lemma 2.2 for 0 ≤ θ < 3/2 four more times, we finally verify that h(x) ∈ L2(0, π), or, equivalently,
(π − x)H(x) ∈ L2(0, π). Theorem 2.1 is proved. �

3. INVERSE PROBLEM

Consider the following inverse problem.

Problem 3.1. Using the characteristic numbers {λk} of the operator A(M,g, v) of the form (1.1),
find the operator M under the assumption that the functions g(x), v(x) are known a priori.

To be definite, let us solve problem 3.1 for the class A . Besides the operator A = A(M,g, v) ∈ A ,
also consider the operator Ã = A(M̃, g, v) ∈ A . Let us agree that if a symbol χ denotes an object
belonging to the operator A, then this symbol equipped with a tilde χ̃ denotes a similar object
corresponding operator Ã. The following uniqueness theorem for the solution of the inverse problem
holds.

Theorem 3.1. If {λk} = {λ̃k}, then M = M̃ . In other words, the characteristic numbers of
the operator A(M,g, v) ∈ A determine the operator M uniquely under the assumption that the
functions g(x), v(x) are known a priori.

Proof. In view of (1.14), it follows from the coincidence of the spectra of the operators A and Ã

that L (λ) ≡ L̃ (λ). Hence, by virtue of (1.11), we obtain w(x) = w̃(x), and hence ϕ(x) = ϕ̃(x)
almost everywhere on (0, π). Thus, both functionsH(x) and H̃(x) satisfy Eq. (2.1). By Theorem 2.1,
we have H(x) = H̃(x) and, by (1.2), M ′′(x) = M̃ ′′(x) almost everywhere on (0, π); hence M = M̃ .
Theorem 3.1 is proved. �

Let us present necessary and sufficient conditions for the solvability of the inverse problem.

Theorem 3.2. Suppose that functions g(x), v(x) ∈ W 1
2 [0, π], g(0)v(π) �= 0, and a sequence of

complex numbers {λk}, k = 0,±1,±2, . . . are given. Then, for the existence of the operator
A(M,g, v) ∈ A with characteristic numbers {λk}, it is necessary and sufficient that these numbers
have the form (1.13) and the following matching conditions be satisfied:

p = −
∫ π

0

g(x)v(x) dx, γ exp(iαπ) = ig(0)v(π), (3.1)

where the numbers p and γ are defined by (1.15) and (1.17), respectively.
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Proof. Necessity. The asymptotics of (1.13) was established earlier. Taking the logarithm and
then differentiating (1.5) and (1.14), for λ = 0 we obtain

L ′(0) = −
∫ π

0

g(x)v(x) dx, L ′(0) = p;

this yields the first of relations (3.1). The second relation is obtained by comparing of expres-
sions (1.11) and (1.16).

Sufficiency. Using the given sequence {λk}, we construct the function L (λ) by formula (1.14).
By Lemma 1.3, L (λ) satisfies relation (1.16) with some function w(x) ∈ L2(0, π). Let us show that
if conditions (3.1) are satisfied, then the function ϕ(x) defined by (2.2) with this function w(x)
satisfies condition (2.4). Denote

w1(x) = −a2 +
∫ π

x

w(t) dt, w2(x) = −
∫ π

x

w1(t) dt. (3.2)

Twice integrating by parts in (1.16), we obtain

L (λ) = γ + w1(0) + iλw2(0) − (γ exp(iαπ) − a2) exp(−iλπ)

+ λ2

∫ π

0

w2(x) exp(−iλx) dx;

hence
L ′(0) = iw2(0) + iπ(γ exp(iαπ) − a2). (3.3)

On the other hand, by (1.14), we have L ′(0) = p, and by by (2.2), (3.2),

w2(x) = iµ0(x) + ia2

∫ π

x

dt

∫ π

t

ϕ(π − τ) dτ.

Therefore, relation (3.3) can be rewritten as

p = −
∫ π

0

g(x)v(x) dx − a2

∫ π

0

(π − x)ϕ(x) dx + iπ(γ exp(iαπ) − ig(0)v(π)),

and since a2 �= 0, by (3.1) we have (2.4). By Theorem 2.1, Eq. (2.1) has a unique solution H(x)
satisfying condition (1.3). Next, we obtain the functionN(x), (π−x)N(x) ∈ L2(0, π), from Eq. (1.2)
and construct M(x) by the formula

M(x) = −i+
∫ x

0

(x− t)N(t) dt.

Consider an operator A = A(M,g, v) of the form (1.1). Suppose that L1(λ) is its characteristic
function. Then, by Lemma 1.2, we have

L1(λ) = a1 − a2 exp(−iλπ) +
∫ π

0

w(x) exp(−iλx) dx. (3.4)

Subtracting (1.16) from (3.4) and taking into account the second relation in (3.1), we can write

L1(λ) − L (λ) = a1 − γ.

Since L (0) = L1(0) = 1, we have a1 = γ �= 0 and L1(λ) ≡ L (λ). Hence, A is an operator of
class A , and its characteristic numbers coincide with {λk}. Theorem 3.2 is proved. �
Remark 3.1. Similar results are also valid for the case in which M−1 is an integro-differential
operator of arbitrary natural order.

MATHEMATICAL NOTES Vol. 80 No. 5 2006



644 S. A. BUTERIN

ACKNOWLEDGMENTS

The author wishes to express gratitude to Professor V. A. Yurko for posing the problem and
supervising the research work.

This research was supported by the Ministry of Education under grant no. E02-1.0-186, by
the program “Universities of Russia” under grant no. UR.04.01.042, by the Russian Foundation
for Basic Research under grant no. 04-01-00007, and by the Presidential grant of the Russian
Federation for the support of leading scientific schools under grant no. NSh-1295.2003.1.

BIBLIOGRAPHY
1. V. A. Yurko, Inverse Spectral Problems and Their Applications [in Russian], SPI, Saratov, 2001.

2. V. Yurko, Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-posed Problems
Series, VSP, Utrecht, 2002.

3. V. A. Yurko, “An inverse problem for integral operators,” Mat. Zametki [Math. Notes], 37 (1985),
no. 5, 690–701.

4. A. P. Khromov, “Finite-dimensional perturbations of Volterra operators,” Summary of doctorate thesis
in the physico-mathematical sciences, Mat. Zametki [Math. Notes], 16 (1974), no. 4, 669–680.

5. A. P. Khromov, “On generating functions of Volterra integral operators,” in: The Theory of Functions
and Approximations [in Russian], pt. 1, Izdat. Saratov Univ., Saratov, 1987, pp. 90–96.
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