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Abstract—The linearization of a Hamiltonian system on a Poisson manifold at a given (sin-
gular) symplectic leaf gives a dynamical system on the normal bundle of the leaf, which is
called the first variation system. We show that the first variation system admits a compatible
Hamiltonian structure if there exists a transversal to the leaf which is invariant with respect to
the flow of the original system. In the case where the transverse Lie algebra of the symplectic
leaf is semisimple, this condition is also necessary.
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1. INTRODUCTION

Let (M , Ψ) be a Poisson manifold with Poisson bracket

{F , G}Ψ = Ψ(dF , dG) = ΨJI(y)
∂F

∂yI

∂G

∂yJ

(here and in the following, the summation is taken with respect to repeated indices). Suppose we
are given a Hamiltonian system (M , Ψ, H) , corresponding to the Hamiltonian vector field

XH = Ψ� dH = −ΨJI(y)
∂H

∂yI

∂

∂yJ
;

here Ψ� : T ∗M → TM is a vector bundle morphism generated by the Poisson tensor Ψ. According
to the general scheme [1, 2], the linearization procedure for the dynamical system (M , XH) defines
a vector field Var(XH) on the tangent bundle TM . The dynamical system corresponding to
Var(XH) is called the first variation system of XH on TM . In local coordinates (yI , uJ) on TM ,
the first variation system is represented as

ẏI = −ΨJI(y)
∂H

∂yI
, (1.1)

u̇J = −
(

∂ΨJS(y)
∂yI

∂H

∂yS
+ ΨJS ∂2H

∂yS∂yI

)
uI . (1.2)

In invariant terms, Var(XH) can be defined by means of the canonical involution on TTM [1]. As
is known, system (1.1), (1.2) is Hamiltonian relative to the tangent Poisson structure on TM [1].

Our goal is to study the linearized Hamiltonian dynamics at a given (singular) symplectic leaf.
Suppose we are given a closed symplectic leaf (B, ω) of (M , Ψ) with symplectic structure

ω =
1
2
ωij(ξ) dξi ∧ dξj . (1.3)
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The restriction of XH to B is a Hamiltonian vector field on (B, ω) ,

vf = XH |B = ωis(ξ)
∂f

∂ξs
,

where f = H|B . Let TBM be the restriction of the tangent bundle TM to the leaf B . The
normal bundle E = TBM/TB of B is a vector bundle π : E → B over B whose fiber Eξ over ξ
is a quotient space Eξ = TξM/TξB .

Let p : TBM → E be the natural projection. Since the submanifold B is invariant with respect
to the flow of XH , the vector field Var(XH) has two invariant submanifolds TB and TBM
in TM . One can show that the vector field Var(XH) is projectible under p , i.e., there exists a
unique vector field varB(XH) on E such that

(dup) Var(XH)(u) = varB(XH)(p(u))

for every u ∈ TξM and ξ ∈ B . The dynamical system (E, B, varB(XH)) is called the first
variation system of XH at B . The corresponding phase space E (the total space of the normal
bundle of B) is of the same dimension as the original manifold, dimE = dimM . Moreover, B ⊂ E
(as the zero section of E) is invariant with respect to the flow of varB(XH) . So, the first variation
system represents a natural linearized model for the original Hamiltonian system XH at B . We
are interested in the following question: When is varB(XH) Hamiltonian relative to a natural
Poisson structure on E? This problem appears as a first step in the study of the (nonlinear)
Hamiltonian dynamics near a (singular) symplectic leaf in the context of perturbation theory. In
general, the linearization procedure may destroy the Hamiltonian property for varB(XH) . In the
symplectic case, this effect was studied in [3–5]. In this paper, we formulate some results on the
existence of a Hamiltonian structure for varB(XH) , which are based on the notion of linearized
Poisson structure of a symplectic leaf [6, 7].

2. EXISTENCE OF HAMILTONIAN STRUCTURES

Consider the dual bundle E∗ ⊂ T ∗
BM of E , which is called the conormal bundle of the leaf B

and coincides with the kernel of the bundle morphism Ψ�
B : T ∗

BM → TBM , ker Ψ�
B = E∗ . Then E∗

carries an intrinsic fiberwise Lie algebra structure [ · , · ]fib , which is uniquely determined by the
condition: for arbitrary functions k and k̃ on M constant along the leaf B , we have

[η, η̃]fib = d({k, k̃}Ψ)|B , where η = dk|B , η̃ = dk̃|B .

The Lie algebra bundle E∗ is locally trivial with typical fiber g called the transverse Lie algebra
of the leaf B . So, the normal bundle E becomes a locally trivial Lie–Poisson bundle over the
symplectic base (B, ωB) . The corresponding fiberwise Lie–Poisson structure induces the vertical
Poisson tensor Λ on E called the linearized transverse Poisson structure of Ψ at B [8, 9].

Definition 2.1. A Poisson structure Π on E is said to be compatible if it is well defined in a
neighborhood of the zero section B and satisfies the conditions:

(i) (B, ωB) is a symplectic leaf of Π;
(ii) the linearized transverse Poisson structure of Π at B coincides with Λ.
By a transversal L to B we mean a subbundle of TBM which is complementary to TB ,

TBM = TB ⊕ L. (2.1)

Let FltH be the flow of the Hamiltonian vector field XH . Since B ⊂ E is an invariant submanifold
of XH , the differential d FltH acts on TBM leaving TB invariant.
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Theorem 2.2. If the flow of the Hamiltonian vector field XH admits an invariant transversal L
to B ,

d FltH(L) = L, (2.2)

then the first variation system varB(XH) of XH at B is Hamiltonian relative to a certain com-
patible Poisson structure Π on E and a function F ∈ C∞(E) ,

varB(XH) = Π�(dF ). (2.3)

Below, to prove this theorem, we give a construction of the compatible Poisson structure Π and
the Hamiltonian function F .

3. COMPATIBLE POISSON STRUCTURES

Recall a procedure [6, 7] which allows us, starting from the triple (M , Ψ, B) , to construct a
class of compatible Poisson structures on E parametrized by the transversals to B .

We have a natural decomposition

TBE = TB ⊕ E. (3.1)

Pick a transversal L to B . It is clear that L is a subbundle of TBE isomorphic to E . The
restriction of the projection p to the fiber Lξ gives an isomorphism onto Eξ .

By an exponential map associated with a transversal L to B we mean a diffeomorphism f from
a neighborhood of B in E onto a neighborhood of B in M satisfying the conditions

f |B = idB , (dξf)(e) = p−1(e)

for every e ∈ Eξ and ξ ∈ B . In particular, (dξf)(Eξ) = Lξ . An exponential map exists because
of the tubular neighborhood theorem.

Consider the pull-back f∗Ψ of the original Poisson structure Ψ via an exponential map f . Fix a
basis {eσ} of local sections of E∗ . Let {eσ} be the dual basis of E . Consider a coordinate system
(ξi , xσ) on E , where the (ξi) are coordinates along B and {xσ} are the normal coordinates to B
associated with the basis {eσ} , B = {x = 0} . Then f∗Ψ is a compatible Poisson tensor on E
whose bracket relations have the following decompositions at B:

{ξi , ξj}f∗Ψ = −ωij − ωisRsmνωmjxν + O2 , (3.2)

{ξi , xσ}f∗Ψ = ωijθσ
jνxν + O2 , (3.3)

{xα , xβ}f∗Ψ = λαβ
ν xν + O2. (3.4)

Here ωis(ξ)ωsj(ξ) = δi
j , the (ωsj) are the coefficients of the symplectic form (1.3), and the λαβ

ν ,
θσ

νj , and Rsmν are smooth functions on B . The symbol Ok denotes a term of order k in the
formal Taylor expansion of a function at x = 0. Note that the functions λαβ

ν = λαβ
ν (ξ) are the

structural constants of the Lie bracket on the fiber E with respect to the basis {eσ(ξ)} .
Denote by Ωk(B, E) the space of vector-valued k -forms on B with values in the space of smooth

sections of E . In particular, Ω0(B, E) = C∞(B ; E) is the space of vector-valued functions
on E . Let us introduce the matrix-valued 1-form θL = (θα

β ) and the vector-valued 2-form
RL = (Rσ) ∈ Ω2(B, E∗) with components

θα
β = θα

iβ(ξ) dξi , Rσ =
1
2
Rijσ(ξ) dξi ∧ dξj
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relative to the basis {eα} . It can be shown [10] that there exists a linear connection ∇L on E
whose connection form relative to the basis {eσ} is given precisely by θL . The main feature of ∇L

is that the parallel transport of ∇L preserves the fiberwise Lie–Poisson structure of E . Moreover,
the curvature of ∇L is related to RL by

Curv∇L
= dθL + θL ∧ θL = − ad∗ ◦RL.

Here ad∗ is the co-adjoint operator on the fibers of E . Denote by

hori
def=

∂

∂ξi
− θσ

iν(ξ)xν ∂

∂xσ
(3.5)

the horizontal lift of the basic vector field ∂/∂ξi , i = 1, . . . , dim B . Let us also define the scalar
2 -form F = 1

2Fij(ξ , x) dξi ∧ dξj on E with coefficients

Fij(ξ , x) def= ωij(ξ) − xνRijν(ξ). (3.6)

Note that Fij(ξ , 0) = ωij(ξ) and hence det[Fij(ξ , 0)] �= 0 for all ξ ∈ B . So, the 2-form F is
nondegenerate in the open domain

N = {(ξ , x) ∈ E | det[Fij(ξ , x)] �= 0}
containing B . The elements of the inverse of [Fij ] will be denoted by

F ij = F ij(ξ , x), F isFsj = δi
j .

Introduce the bivector field ΠL on N ⊆ E associated to the data (∇L , RL) , which is defined by

ΠL
def= −1

2
F ij hori ∧horj +Λ. (3.7)

Here the bivector field Λ on E is given by

Λ =
1
2
λαβ

ν (ξ)xν ∂

∂xα
∧ ∂

∂xβ

and defines the linearized transverse Poisson structure of Ψ at B .

Proposition 3.1 [8]. For every transversal L , the bivector field ΠL in (3.7) determines a com-
patible Poisson tensor on N ⊆ E .

As is known, the Poisson structure ΠL is independent of the choice of a transversal L up to an
isomorphism in a neighborhood of B (see [6, 7]). This fact gives rise to the notion of linearized
Poisson structure of a given symplectic leaf.

Suppose we are given a linear vector field Vf on E , which descends to a Hamiltonian vector
field vf on (B, ω) ,

Vf = vi
f (ξ)

∂

∂ξi
+ V α

ν (ξ)xν ∂

∂xα
,

where V = (V α
ν (ξ)) is a matrix-valued function on B .

Proposition 3.2. A linear vector field V is Hamiltonian relative to the Poisson structure ΠL
and to a fiberwise linear function � = π∗f − 〈x, η〉 , η ∈ C∞(B, E) if and only if the pair (η, V )
satisfies the equations on B :

dη − (θL)T η = −ivf
RL , (3.8)

V = −(ivf
θL + ad∗ ◦η). (3.9)

Here ivf
denotes the inner product of the vector field vf and a differential form on B .
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4. INVARIANT TRANSVERSALS AND DYNAMICAL TORSION

Let f be an exponential map associated with a transversal L . Consider the pull-back Pois-
son structure f∗Ψ on E . The symplectic leaf (B, ω) is also the symplectic leaf of f∗Ψ with
normal bundle identified with E . The Taylor expansion at x = 0 for the Hamiltonian system
(E, f∗Ψ, f∗H = H ◦ f) by using (3.2)–(3.4) gives

dξi

dt
= ωis(ξ)

∂f(ξ)
∂ξs

+ Υi
ν(ξ)xν + O2 , (4.1)

dxσ

dt
= [λσβ

ν (ξ)ηβ(ξ) − θσ
jν(ξ)ωjs(ξ)

∂f(ξ)
∂ξs

]xν + O2. (4.2)

Here f(ξ) = f∗H(ξ , 0) and

ην(ξ) = −∂(f∗H)
∂xν

(ξ , 0). (4.3)

Moreover, the smooth functions Υi
ν on B are given by

Υi
ν

def= −ωij ∂ην

∂ξj
+ ωijθα

jνηα + ωisRsmνωmj ∂f

∂ξj
. (4.4)

We can associate with ην the global vector function ηL = ην(ξ) ⊗ eν(ξ) on B (a section of E∗).
Moreover, one can show that Υi

ν define the vector field

ΥL = Υi
ν(ξ)xν ∂

∂ξi

on E , which can be called the torsion of the flow of Xf∗H relative to the splitting (2.1). The
vanishing of the torsion ΥL = 0 means that the transversal L is invariant with respect to d Flt

f∗H
.

We will see below how ηL and ΥL depend on the choice of L .
Now, it follows from (4.2) that the first variation system of the Hamiltonian vector field Xf∗H

at B has the form

dξ

dt
= vf , (4.5)

dx

dt
= −(ad∗

η +ivf
θ)x. (4.6)

The corresponding vector field can be represented as

varB(Xf∗H) = horvf
−

〈
ad∗

η x,
∂

∂x

〉
. (4.7)

Here horvf
is the horizontal lift of the Hamiltonian vector field vf relative to the connection ∇L .

Next, let us consider two transversals L and L̃ to B . Let l : TBM → L̃ be the projection
along TB according to decomposition (3.1). Given a basis {nσ} of (local) sections of L , we define
the basis {ñσ} of sections of L̃ by ñσ(ξ) = lξ(nσ(ξ)) . Then we have

ñσ(ξ) = nσ + uσ(ξ), (4.8)

where the uσ are some vector fields on B , uσ(ξ) ∈ TξB . Using these vector fields and the
symplectic 2 -form ω on B , we define the vector-valued 1-form 	 ∈ Ω1(B, E∗) by

	
def= −(iuν ω) ⊗ eν , (4.9)
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or, in coordinates, by 	iν = ωiju
j
ν . Since ω is nondegenerate, for a fixed L , formula (4.9) gives

a one-to-one correspondence between the set of all transversals to B and the space Ω1(B, E∗) of
vector-valued 1-forms on B . Direct computations show that the data corresponding to L and L̃
are related by

∇L̃ = ∇L − ad∗ ◦	, (4.10)

RL̃ = RL + (∇L)∗	L +
1
2
[	L ∧ 	L]. (4.11)

Moreover,
ηL̃

σ = ηL
σ − Luσf. (4.12)

These relations imply the following fact.

Proposition 4.1. The first variation system of the Hamiltonian system Xf∗H is independent of
the choice of the exponential map f ,

varB(Xf∗H) = varB(XH).

The comparison of (3.8) and (4.7) with (4.4) shows that the condition ΥL = 0 is equivalent to
Eqs. (3.8), (3.9) for ηL in (4.3). So, by Proposition 3.2, we derive the main result.

Theorem 4.2. Assume that there is a transversal L invariant with respect to d FltH . Let ΠL be
the corresponding Poisson structure in (3.7). Then varB(XH) is Hamiltonian relative to ΠL and
to the function

FL(ξ , x) = f(ξ) − 〈x, ηL(ξ)〉.
In the particular case, by analyzing Eqs. (3.8), (3.9), one can derive the following criterion.

Theorem 4.3. If the transverse Lie algebra g of the symplectic leaf B is semisimple, then the
existence of an XH-invariant transversal L to B is a necessary and sufficient condition for the first
variation system varB(XH) to be Hamiltonian in the class of compatible Hamiltonian structures
on E .

Using this criterion, we can describe the possible obstructions to the existence of a Hamiltonian
structure in the following simple situation.

Example 4.4. Let B = (a, b) × S
1 be the 2-cylinder equipped with the canonical symplectic

structure ω = ds ∧ dτ , where s ∈ (a, b) and τ (mod 2π) is the angle variable on the circle
S

1 = R/2πZ . Consider the cyclic Poisson brackets on R
3 associated with the Lie algebra so(3) ,

{x1 , x2} = x3 , {x2 , x3} = x1 , {x3 , x1} = x2.

Let us think of M = (a, b) × S
1 × R

3 as a Poisson manifold equipped with product Poisson
structure. Clearly, B = (a, b) × S

1 is a symplectic leaf of M . Consider the Hamiltonian system
on M corresponding to the function

H = 1 − 〈x, φ(s, τ)〉 + O2 ,

where φ(s, τ) = φ(s, τ + 2π) is a smooth vector-function 2π-periodic in τ . The corresponding
first variation system of XH at B is of the form

ṡ = 0, τ̇ = 1, (4.13)
dx
dτ

= φ(s, τ) × x. (4.14)
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Then (4.14) presents a one-parameter family of periodic linear systems on R
3 . Let M(s) be the

corresponding monodromy matrix smoothly depending in s . One can show that system (4.13),
(4.14) admits a compatible Hamiltonian structure if and only if M(s) satisfies the Lax type equa-
tion

dM(s)
ds

= [M(s), A ◦ µ(s)]

for a certain smooth vector-function µ(s) . Here A◦µ(s) denotes the 3×3 skew-symmetric matrix
of the cross product on R

3 . This implies that the spectrum of M(s) is independent of s (i.e., the
monodromy has the property of isospectral deformation). Otherwise, specM(s) varies with s ,
system (4.13), (4.14) does not possess a compatible Hamiltonian structure.
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