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Abstract
In this note, we show that the potential vector field of a Cotton soliton (M, g, V ) is
an infinitesimal harmonic transformation, and we use it to give another proof of the
triviality of compact Cotton solitons. Moreover, we extend this triviality result to the
complete case by imposing certain regularity conditions on the potential vector field
V .
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1 Introduction

The evolution of a Riemannian metric g on a three-dimensional smooth manifold M
to a metric g(t) in time t through the equation

∂

∂t
g(t) = κCg(t),

where Cg(t) is the (0, 2)-Cotton tensor of (M, g), is called the Cotton flow and was
introduced by Kisisel et al. [9]. For κ = 1, the corresponding soliton, known as the
Cotton soliton, is a three-dimensional Riemannian manifold (M, g)with a vector field
V and a real constant λ such that

LV g + C = λg, (1.1)

where LV denotes theLie-derivative operator along the vector fieldV . ACotton soliton
is said to be shrinking, steady, or expanding when λ > 0,= 0,< 0, respectively. It
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is said to be trivial if V is Killing and M is locally conformally flat. A Lorentzian
Lie-group admits a non-trivial left-invariant Cotton soliton if and only if the Cotton
operator is nilpotent [2]. If V = ∇ f in (1.1), for a smooth function f , where∇ denotes
the gradient operator of g, then it is known as a gradient Cotton soliton, in which case
(1.1) assumes the form

2Hess f + C = λg,

where Hess f denotes the Hessian of f with respect to g. Lorentzian metrics with
nilpotent Ricci operator allow the existence of gradient Cotton solitons [3]. The Cotton
tensor is given by

Ci jk = (∇i S) jk − (∇ j S)ik,

where S is the Schouten tensor given by

Si j = Ri j − r

4
gi j ,

where Ri j are the components of the Ricci tensor and r denotes the scalar curvature
of M . Now, the (0, 2)-Cotton tensor (also known as the Cotton–York tensor) is given
by

Ci j = 1

2
√
g
Cmniε

nmlgl j ,

where ε123 = 1. The Cotton tensor is trace-free and divergence-free [16] and vanishes
if and only if M is locally conformally flat. For more details on Cotton flow and its
physical aspects, we refer the reader to [4, 6, 8, 10].

Following Nouhaud [11], we say that a vector field V is an infinitesimal harmonic
transformation if trace (LV∇) = 0, i.e. (LV∇)(ei , ei ) = 0, where (ei ), i = 1, ..., n is
any local orthonormal frame on M . It was shown by Stepanov and Shandra [13] that a
vector field V is an infinitesimal harmonic transformation on a Riemannian manifold
(M, g) if and only if

�V = 2QV , (1.2)

whereQ is theRicci operator associatedwith theRicci tensor Ric(X ,Y ) = g(QX ,Y ),
and the Laplacian � is determined by the Weitzenböck formula

�V = �̄V + QV , (1.3)

where �̄V is the rough Laplacian given by

∑

i

{∇ei∇ei − ∇∇ei ei
}V . (1.4)

One can infer from equation (1.2) that V ∈ ker�, where � denotes the Yano operator
(see Yano [14]) given by

�V = �V − 2QV . (1.5)
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A Killing vector field is obviously an example of an infinitesimal harmonic transfor-
mation [13]. Ghosh [7] proved that an almost Ricci soliton reduces to a Ricci soliton
if and only if the potential vector field is an infinitesimal harmonic transformation. In
[12], Stepanov and Shelepova showed that the potential vector field of a Ricci soliton
is an infinitesimal harmonic transformation and used it to show that there exist no
non-trivial expanding Ricci solitons on a compact manifold M .

The purpose of this note is to show that the potential vector field of a Cotton soliton
is an infinitesimal harmonic transformation and then apply it to discuss the triviality
of Cotton solitons in the compact and non-compact cases, respectively.

Theorem 1.1 Let (M, g, V ) be a Cotton soliton. Then, V is an infinitesimal harmonic
transformation.

This fact can be used to give an alternative demonstration of the following assertion
for a compact Cotton soliton [3].

Proposition 1.1 Let (M, g, V ) be a compact Cotton soliton. Then, (M, g) is locally
conformally flat and V is a Killing vector field.

Remark 1.1 Our proof of Proposition 1.1 is a consequence of the fact that V is an
infinitesimal harmonic transformation for a Cotton soliton, and is different from the
proof of Calviño-Louzao et al. [3] which uses the following formula

〈Lξ g, ϕ〉 = 2div(iξ ϕ) − 2(divϕ)(ξ)

for a symmetric (0, 2)-tensor field ϕ and an arbitrary smooth vector field ξ on M ,
where iξ ϕ(.) = ϕ(ξ, .).

Calviño-Louzao et al. [3] showed the existence of a complete, non-trivial shrinking
Cotton soliton on the Heisenberg group. Recently, Cunha and Silva Junior [5] studied
complete, non-compactCotton solitons under various assumptions to infer the triviality
of Cotton solitons. This motivates us to extend Proposition 1.1 to the complete case
by using the result proved in Theorem 1.1 and imposing certain regularity conditions
on V . More precisely, we prove the following theorem.

Theorem 1.2 Let (M, g, V ) be a complete, non-compact Cotton soliton with closed
V . Then M is locally conformally flat and V is parallel if any one of the following
conditions are met

(i) M is parabolic and |V | ∈ L∞(M).
(ii) |V | ∈ L p(M) for p > 1.
(iii) |V | converges to zero at infinity.
A vector field V is said to be closed if its metrically associated one-form is closed
(i.e. dv = 0). Also, we use the notation L p(M) = {u : M → R; ∫

M |u|p < +∞} for
each p ≥ 1.
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Remark 1.2 Theorem 1.2 is different from Theorems 4 and 6 of Cunha and Silva
Junior [5] in the sense that by limiting our scope to the case when V is closed, we
avoid imposing restrictions on the curvature of the manifold.

Remark 1.3 Theorem 1.2 generalizes Theorems 2 and 5 of Cunha and Silva Junior [5]
in the sense that V closed need not imply V gradient, unless M is simply connected.

2 Preliminaries

In this section, we prepare a lemma and recall some useful results from the literature,
which eventually will be used in proving our main assertions.

Lemma 2.1 Let (M, g, V ) be a Cotton soliton. Then,

(a) ∇XV = − 1
2CX + 1

2λX + FX, where C(X ,Y ) = g(CX ,Y ), C is a tensor field
of type (1, 1) associated with C, and F is a skew-symmetric tensor field of type
(1, 1) such that g(FX ,Y ) = −g(X , FY ).

(b) divV = n
2λ.

(c) Ric(X , V ) = (divF)X, where Ric denotes the Ricci tensor.

Proof Equation (1.1) can be written as

g(∇XV ,Y ) + g(∇Y V , X) + C(X ,Y ) = λg(X ,Y ). (2.1)

The exterior derivative dv of the one-form v metrically associated with V is given by

1

2
g(∇XV ,Y ) − 1

2
g(∇Y V , X) = (dv)(X ,Y ). (2.2)

As dv is skew-symmetric, we define a tensor field F of type (1, 1) by

(dv)(X ,Y ) = g(FX ,Y ).

Thus, equation (2.2) assumes the form

g(∇XV ,Y ) − g(∇Y V , X) = 2g(FX ,Y ). (2.3)

Adding equations (2.1) and (2.3) side by side leads us to

2g(∇XV ,Y ) + C(X ,Y ) = λg(X ,Y ) + 2g(FX ,Y ),

i.e.

∇XV = −1

2
CX + 1

2
λX + FX , (2.4)

which proves (a). Contracting (2.4) with respect to X and noting that the Cotton tensor
is trace-free give

divV = n

2
λ, (2.5)
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which proves (b). Using (2.4), we compute R(Y , X)V to get

R(Y , X)V = 1

2
(∇XC)Y − 1

2
(∇YC)X + (∇Y F)X − (∇X F)Y . (2.6)

Contracting (2.6) with respect to Y and using the trace-freeness and divergence-
freeness of the Cotton tensor provide

Ric(X , V ) = (divF)X , (2.7)

which proves part (c) of the assertion, thereby completing the proof. 
�
Let us recall a very useful lemma due to Yau [15].

Lemma 2.2 (Yau [15]) Let u be a non-negative smooth subharmonic function on a
complete Riemannian manifold M. If u ∈ L p(M) for p > 1, then u is constant.

A function f is said to be subharmonic if � f ≥ 0. Further, a Riemannian manifold
(M, g) is said to be parabolic if the unique subharmonic functions on M which are
bounded from above are constant functions, i.e. if u ∈ C∞(M) with �u ≥ 0 and
supMu < +∞, then u is constant.

We also recall the maximum principle at infinity due to Alías et al. [1] and state it as
the following lemma.

Lemma 2.3 (Alías et al. [1]) Let (M, g) be a complete non-compact Riemannian man-
ifold and X be an arbitrary smooth vector field on M. Assume that there exists a
non-negative, non-identically vanishing function u ∈ C∞(M) which converges to
zero at infinity and g(∇u, X) ≥ 0. If divX ≥ 0 on M, then g(∇u, X) ≡ 0 on M.

A continuous function u ∈ C0(M) is said to converge to zero at infinity if it satisfies
the condition

lim
d(x,x0)→∞ u(x) = 0,

where d(., x0) : M → [0,∞) denotes the Riemannian distance of a complete non-
compact Riemannian manifold M measured from a fixed point x0 ∈ M .

Next, we would require the well-known Bochner formula.

Lemma 2.4 For any vector field V , we have

1

2
�|V |2 = Ric(V , V ) − g(�V , V ) + |∇V |2. (2.8)

3 Proofs of the results

Proof of Theorem 1.1. Taking the covariant derivative of (1.1) along an arbitrary vector
field X , we acquire

(∇X LV g)(Y , Z) + (∇XC)(Y , Z) = 0. (3.1)
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Now, the commutation formula (Yano [14]):

(LV∇X g − ∇X LV g − ∇[V ,X ]g)(Y , Z) = −g((LV∇)(X ,Y ), Z) − g((LV∇)(X , Z), Y ).

reduces to

(∇X LV g)(Y , Z) = g((LV∇)(X ,Y ), Z) + g((LV∇)(X , Z),Y ). (3.2)

Comparing (3.1) and (3.2) gives

g((LV∇)(X , Y ), Z) + g((LV∇)(X , Z),Y ) + (∇XC)(Y , Z) = 0. (3.3)

Permuting (3.3) cyclically twice over X , Y and Z , we get

g((LV∇)(Y , Z), X) + g((LV∇)(Y , X), Z) + (∇YC)(Z , X) = 0. (3.4)

g((LV∇)(Z , X),Y ) + g((LV∇)(Z ,Y ), X) + (∇ZC)(X ,Y ) = 0. (3.5)

Subtracting the sum of (3.4) and (3.5) from (3.3), we achieve

2g((LV∇)(Y , Z), X) + (∇YC)(Z , X) + (∇ZC)(X , Y ) − (∇XC)(Y , Z) = 0. (3.6)

where we used the fact that (LV∇)(X ,Y ) = (LV∇)(Y , X). Equation (3.6) can also
be written as

2g((LV∇)(X , Y ), Z) + (∇XC)(Y , Z) + (∇YC)(Z , X) − (∇ZC)(X , Y ) = 0. (3.7)

Since C(X ,Y ) = g(CX ,Y ), equation (3.7) can be exhibited as

2g((LV∇)(X ,Y ), Z) + g((∇XC)Y , Z) + g(∇YC)Z , X) − g((∇ZC)X ,Y ) = 0. (3.8)

Now, using the formula

g((LV∇)(X ,Y ), Z) = g(∇X∇Y V − ∇∇XY V − R(X , V )Y , Z)

in equation (3.8) and subsequently setting X = Y = ei , where (ei ) is an orthonormal
frame field on M , and using the definition of rough Laplacian given by (1.4), along
with the fact that the Cotton tensor is trace-free and divergence-free, we get

Ric(V , Z) − g(�̄V , Z) = 0. (3.9)

The use of equation (1.3) in (3.9) and factoring out Z entails

�V = 2QV .

Hence, V is an infinitesimal harmonic transformation. This completes the proof. 
�
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Proof of Proposition 1.1 Since V is an infinitesimal harmonic transformation, in view
of (1.5), we have

�V = 0.

Integrating the equation in Lemma 2.1 (b) and using divergence theorem give λ = 0,
and hence,

divV = 0.

At this stage, we appeal to Theorem 3.4 of Yano [14], which states that, “A necessary
and sufficient condition for a vector field V on a compact Riemannian manifold to be
Killing is that �V = 0 and divV = 0", in order to infer that V is Killing, and hence
C = 0, i.e. M is locally conformally flat. This completes the proof. 
�
Proof of Theorem 1.2 Since the potential vector field of a Cotton soliton is an infinites-
imal harmonic transformation, i.e. �V = 2QV , equation (2.8) can be written as

1

2
�|V |2 = |∇V |2 − Ric(V , V ). (3.10)

Further, by assumption, V is closed; therefore, using (2.2) and (2.3) provides F ≡ 0.
The use of this in (2.7) shows that Ric(V , V ) = 0 for the choice X = V . This finding
reduces (3.10) to

1

2
�|V |2 = |∇V |2 ≥ 0. (3.11)

To prove part (i), we observe from (3.11) that |V |2 is a subharmonic function. Since M
is parabolic, |V |2 is constant onM . Therefore, (3.11) entails V is parallel. This implies
V is Killing, and hence, divV = 0. The last equality and Lemma 2.1 (b) give λ = 0.
The use of these findings in (1.1) leads us to C = 0, i.e. M is locally conformally flat.

For part (ii), |V |2 is subharmonic in view of (3.11). Since |V |2 ∈ L p(M) for p > 1,
we invoke Lemma 2.2 to infer that |V |2 is constant on M . Thus, (3.11) shows that V
is parallel. With the same reasoning as elucidated in the last part of the proof of part
(i), we conclude that V is Killing and M is locally conformally flat.

Finally, we prove part (iii) by contradiction. Suppose |V |2 is non-constant on M . We
consider the function u = |V |2. We observe that u is non-negative and non-identically
vanishing and converges to zero at infinity. Let us consider the smooth vector field
X = ∇|V |2 on M . For this vector field, we have

g(∇u, X) = |∇|V |2|2 ≥ 0.

Also, divX = div(∇|V |2) = �|V |2 = 2|∇V |2 ≥ 0. That is, divX ≥ 0 onM . Hence,
by Lemma 2.3, |V |2 is constant onM , thus arriving at a contradiction. Therefore, |V | is
constant, and in view of (3.11), V is parallel. Again, appealing to the same arguments
as in the last part of the proof of part (i), we arrive at our conclusion. This completes
the proof. 
�
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