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Abstract
We present an algorithm for determining the minimal order differential equations
associated with a given Feynman integral in dimensional or analytic regularisation.
The algorithm is an extension of the Griffiths–Dwork pole reduction adapted to the
case of twisted differential forms. In dimensional regularisation, we demonstrate the
applicability of this algorithm by explicitly providing the inhomogeneous differential
equations for the multi-loop two-point sunset integrals: up to 20 loops for the equal-
mass case, the generic mass case at two- and three-loop orders. Additionally, we
derive the differential operators for various infrared-divergent two-loop graphs. In the
analytic regularisation case, we apply our algorithm for deriving a system of partial
differential equations for regulated Witten diagrams, which arise in the evaluation of
cosmological correlators of conformally coupled φ4 theory in four-dimensional de
Sitter space.
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1 Introduction

Feynman integrals are key ingredients in various areas of physics, and their accu-
rate calculation, whether analytically or numerically, remains a significant hurdle in
advancing our understanding of physical phenomena. In particular, identifying the
specific types of special functions required to evaluate Feynman integrals has been an
ongoing challenge since the early days of quantum field theory [1, 2] and continues
to be an active research field as recently reviewed, for instance in [3–8].

The set of differential operators acting on a Feynman integral gives important infor-
mation about its analytic nature. Moreover, the differential equation is important for
evaluating physical observables by solving the system of differential equations associ-
ated with the Feynman integrals, either analytically, in perturbation with respect to the
kinematic parameters or numerically. For instance, the differential operator has real
singularities at the position of thresholds and pseudo-thresholds, and the order of the
differential operator is connected to the underlying algebraic geometry of the singular
locus of the integrand [9]. Intriguingly, there is growing evidence suggesting that cer-
tain Feynman integrals correspond to relative period integrals of singular Calabi–Yau
geometries, a connection explored in a number of studies, including [10–24]. In addi-
tion, it has been remarked that correlation functions [25] and cosmological correlators
[26, 27] of a conformally coupled φ4 field in four dimensions can be expressed in
terms of flat space Feynman integrals. The regulation of ultraviolet divergences in this
case leads to integrals in analytical regularisation.

In this work, we give an algorithmic procedure for deriving such differential equa-
tions and the inhomogeneous part without having to go through the integral reduction
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to master integrals and the construction of a reducible system of differential equations
satisfied by the set of master integrals. Among the motivations for finding a short-
cut to derive differential equations without relaying on master integrals reduction is
that the integration-by-parts reduction leads to large system of master integrals that
may obscure the algebraic geometry underlying the analytic structure of Feynman
integrals. Another motivation is the application to cosmological correlators which
give rise to analytic regularisation for which the commonly used integration by part
algorithms are not developed out-of-the-box. Finding a system of partial differential
equations (PDEs) is also useful for generalised Feynman integrals in the context of
Gel’fand–Kapranov–Zelevinskiı̆ (GKZ) systems, which gives a D-module of differ-
ential operators acting on the Feynman integral [16, 28–35]. However, the transition
of this D-module to the PDEs of Feynman integrals requires a restriction which is
highly non-trivial and still an open problem [29, 36–38].

We work with the regularised parametric representation of a Feynman integral
I ε,κ
� = ∫

xi≥0 ω
ε,κ
� dx1 · · · dxn attached to a graph � (we refer to Sect. 2 for details)

with

ω
ε,κ
� = Uν1+···+νn−(L+1)D

�

Fν1+···+νn−LD
�

n∏

i=1

xνi−1
i , (1)

with D = 2δ − 2ε with δ a positive integer for dimensional regularisation and νi =
νi + μiκ for analytic regularisation. In the case when ε = κ = 0 and δ a positive
integer, the exponents in (1) are integers and we have a rational differential form.
One may then use the Griffiths–Dwork pole reduction [39–43] applied to the case of
Feynman integrals [1, 12, 28, 44–46] for determining the minimal order differential
operators associated with a given Feynman integral. In integer space-time dimensions
and without analytic regulator, the integrand of the Feynman integral is a rational
differential form towhichone can apply the generalisedGriffith-Dwork algorithm [46].
When working in dimensional regularisation, i.e. ε �= 0, or analytic regularisation, i.e.
κ �= 0, the integrand is a twisted differential form. One possible approach is a direct
application of the Griffiths–Dwork pole reduction [44, 45] or the creative telescoping
algorithm [47–50] but this approach leads to large linear systems limiting its use for
Feynman graphs with many legs or many loops. Therefore, in this work, we give an
extension of the Griffiths–Dwork reduction algorithm which make an essential use of
the fact that the twist is built from the Symanzik graph polynomials U� and F� . This
reduces the size of the linear system to be solved for determining the coefficients of
the differential operator. Because this linear system is generically dense and of large
size, we use the finite field package FiniteFlow [51] to derive analytic solutions.

This way we can analyse how the space-time dimension or the analytic regulator
affects the minimal order of the differential operators.

This paper is organised as follows. In Sect. 2, we review the parametric representa-
tion of Feynman integrals setting our notation for the dimensionally and analytically
regulated integrals in Sect. 2.2. In Sect. 3, we present the algorithmic procedure for
deriving the differential equations. In Sect. 3.1, we generalise the Griffiths–Dwork
pole reduction to the case of the twisted differential ω

ε,κ
� , and explain in Sect. 3.1.3

how to use this iteratively to determine the differential equations. This generalises the
algorithm for the rational differential form cases used in [46] to the case of twisted
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differential forms appearing in Feynman integrals in general dimensions. In Sect. 4,
we illustrate the procedure by working on the dimensionally regulated massless box.
We then consider theWitten cross diagram in (A)dS4 in Sect. 4.2. In Sect. 5, we derive
the ε-deformed differential equation for the two-loop sunset integral for various mass
configurations, the massless double-box and the ice-cream cone graph. We give a
Gröbner basis of differential operators for the analytically regulated two-loop ice-
cream graph, which arises in the cosmology correlator in dS4. In Sect. 6, we give the
ε-deformed differential equation for the equal-mass sunset up to twenty loop orders
and for the three-loop massive sunset. In Sect. 7.1, we discuss the question of the
minimal order differential operator, and in Sect. 7.3 we analyse how the ε parameter
arises in the differential equation. Section 7.4 contains a short conclusion. Appendix A
is dedicated to a short discussion of the derivation of the differential equation using
the Bessel representation with the creative telescoping algorithm.

2 Twisted differential from regulated Feynman integrals

We will apply our formalism in dimensional regularisation for Feynman integrals and
analytic regularisation for Witten diagrams. Their treatment is slightly different, so
we will consider them separately.

2.1 Review of the parametric representation

We consider the parametric representation of Feynman integrals in D space-time
dimensions associated with a graph � with n internal edges and L loops. Its deriva-
tion can be found for instance in [7, 52–54]. The differential form associated with a
Feynman integral is

ω� = U
ν1+···+νn− (L+1)D

2
�

F
ν1+···+νn− LD

2
�

n∏

i=1

xνi−1
i ; 	� := ω� 	

(n)
0 , (2)

where we have introduced the canonical differential form on P
n−1

	
(n)
0 :=

n∑

i=1

(−1)i−1xidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn, (3)

and where d̂xi means that the term is omitted in the wedge product. We denote collec-
tively the variables attached to all edges of � as x := {xi |1 ≤ i ≤ n}. The exponents
νi are the powers of propagators (internal edges) of �. The polynomials U� and F�

associated with � are defined as follows [7, 52, 54]. The first Symanzik polynomial is
defined by

U�(x) =
∑

T∈ Spanning
trees of �

xT , (4)
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where the sum is over all the spanning trees T of �, i.e. all sub-graphs T of � which
contain all vertices of � so that the first Betti number (i.e. the number of loops)
b1(T) = 0 and the number of connected component is b0(T) = 1. The monomial
is the product of the variables not in the spanning tree xT = ∏

e/∈T xe. This is a
homogeneous polynomial of deg(U�(x)) = L . The second Symanzik polynomial F�

is defined by

V�(x) =
∑

Spanning
2-forests of �

sFxF, F�(x) = U�(x)

⎛

⎝
∑

e∈e(�)

m2
e xe

⎞

⎠− V� , (5)

where xF = ∏
e/∈F xi to each spanning 2-forest. A 2-forest is a disjoint union of two

sub-trees F = T1 ∪ T2. This is a homogeneous polynomial of deg(F�(x)) = L + 1.
With the dot denoting the scalar product on R

1,D−1, we define the invariant of T
as sF = ∑

(v1,v2)∈F=T1∪T2 pv1 · pv2 . The second Symanzik polynomial carries all
dependence on the physical parameters, that is the internal masses and the external
kinematics, which we write as

�m := {m1, . . . ,mn}, �s := {sF | F spanning 2-forests of �} , (6)

respectively.
Thedifferential form (2) is defined in themiddle cohomologyHn−1(Pn−1\{U�F� =

0}) [10, 55]. The Feynman integral associated with the graph � is given by the integral
I� = ∫


n
	� of the differential form over the positive orthant


n := {(x1, . . . , xn) ∈ P
n−1, xi ≥ 0 for 1 ≤ i ≤ n} . (7)

2.2 Twisted differential forms

The Feynman integral I� may diverge for integer values of D and the exponents νi ,
but there is an open subset of (D, ν1, . . . , νn) ∈ C

n+1 where the integral converges.
The (unique) value of the Feynman integral is defined by analytic continuation [56].
We work in dimension D = 2δ − 2ε with δ ∈ N

∗ and ε ∈ R and consider as well the
situation where the powers of the propagators are shifted from integer values, that is
νi = νi + piκ with (ν1, . . . ,νn, p1, . . . , pn) ∈ Z

2n . The differential form (2) thus
becomes a twisted differential form 	

ε,κ
� = ω

ε,κ
� 	

(n)
0 with

ω
ε,κ
� := Uν1+···+νn−(L+1)δ

�

Fν1+···+νn−Lδ
�

(
UL+1

�

FL
�

)ε ( n∏

i=1

(
xiU�(x)

F�(x)

)pi
)κ n∏

i=1

xνi−1
i . (8)

The twists are the ε or κ-th powers of homogeneous degree zero rational functions on
P
n−1.
Notice that we do not assume that ε or κ are small numbers. When κ = 0 we have

the parametric representation of a Feynman integral in dimensional regularisation, and
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we will use the short-hand notation

ωε
� := ω

ε,0
� = Uν1+···+νn−(L+1)δ

�

Fν1+···+νn−Lδ
�

(
UL+1

�

FL
�

)ε n∏

i=1

xνi−1
i . (9)

The differential forms (9) and (8) are twisted differential of the kind studied in [57–
60]. Their relevance to Feynman integrals was already recognised in these works and
has been applied in e.g. [61–70] for expanding Feynman integrals on the basis of
master integrals. In contrast to these works, we will use the fact that the twist is given
by the power of the homogeneous degree 0 rational form which will be essential in
the construction presented in this work.

3 Annihilators of Feynman integrals

Feynman integrals are holonomic functions of their physical parameters [71–74]. This
means that Feynman integrals satisfy systems of (inhomogeneous) partial differential
equations of finite order with respect to their physical parameters �m and �s.

Let us consider r parameters from the set of internal masses and independent
kinematics, z := {z1, . . . , zr } ∈ �m ∪ �s. We seek differential operators annihilating the
differential form 	

ε,κ
�

⎛

⎝
o1∑

a1=0

or∑

ar=0

ca1,...,ar ( �m, �s, ε, κ)

(
∂

∂z1

)a1
· · ·
(

∂

∂zr

)ar
⎞

⎠	
ε,κ
� = dβ

ε,κ
� , (10)

where ca1,...,ar ( �m, �s, ε, κ) are rational functions of the physical parameters, but they
are independent of the edge variables x1, . . . , xn . The inhomogeneous term is a total
derivative in xi ’s where the only allowed poles are those already present in 	

ε,κ
� [46].

Because the domain of integration of the Feynman integral does not depend on the
physical parameters, we then deduce

⎛

⎝
o1∑

a1=0

or∑

ar=0

ca1,...,ar ( �m, �s, ε, κ)

(
∂

∂z1

)a1
· · ·
(

∂

∂zr

)ar
⎞

⎠ I ε,κ
� = S ε,κ

� , (11)

whereS ε,κ
� is an inhomogeneous termobtainedby integrating dβε,κ

� over the boundary
of orthant (7). This is a non-trivial task because one needs to blow-up the intersections
between the graph hypersurface and the domain of integration, so the integral is well-
defined [10, 12, 45, 55]. For instance, Section 3.2 of [12] gives a detailed derivation
of the inhomogeneous term for the two-loop sunset integral along these lines. If the
integration is done over a cycle C, like the one defined by the maximal cut Cmax :=
{|x1| = · · · = |xn| = 1}, the resulting integral is annihilated by the action of the
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differential operator [28]

⎛

⎝
o1∑

a1=0

or∑

ar=0

ca1,...,ar ( �m, �s, ε, κ)

(
∂

∂z1

)a1
· · ·
(

∂

∂zr

)ar
⎞

⎠
∫

C
	

ε,κ
� = 0 . (12)

The ideal generated by these differential operators is a differential module (or D-
module). Thus, the differential equations we are seeking can be obtained by deriving
annihilators of 	

ε,κ
� , i.e. partial differential operators that annihilate the integrand by

acting on the physical parameter and the edge variables.

3.1 Griffiths–Dwork reduction for twisted differential forms

The differentiation of 	
ε,κ
� leads to expressions of the type

∑

a=a1+···+ar
ai≥0

ca1,...,ar ( �m, �s, ε, κ)

(
∂

∂z1

)a1
· · ·
(

∂

∂zr

)ar
	

ε,κ
�

=
∑

a=a1+···+ar
ai≥0

ca1,...,ar ( �m, �s, ε, κ)P(a1,...,ar )(x)

Fa
�

	
ε,κ
� , (13)

where P(a1,...,ar )(x) is a homogeneouspolynomial of degree (L+1)(a1+· · ·+ar ) in the
edge variables x . The sum is over the differential operators of order a1 ≥ 0, . . . , ar ≥ 0
and fixed total order a := a1 + · · · + ar . The pole order in the second Symanzik
polynomial F� has increased by a. To derive Eq. (10) one needs to find the coefficient
ca1,...,ar ( �m, �s, ε, κ). From now on we consider the case where ν1 = · · · = νr = 1 so
that ν = n. The case with νi �= 1 is an immediate generalisation.

3.1.1 The pole reduction for dimensional regularisation

We adapt the Griffiths–Dwork pole reduction to the case of the twisted differential
form (9) in dimensional regularisation (i.e. κ = 0 and ε �= 0). The starting point of
the algorithm is the reduction of polynomial P(a1,...,ar )(x) in the numerator of (13)

P(a1,...,ar )(x) = �Ca(x) · �∇F� , (14)

where we have introduced the gradient �∇F� := (
∂x1F�(x), . . . , ∂xnF�(x)

)
. The com-

ponents of the sizen vector �Ca(x) are homogeneous polynomials of degree a(L+1)−L
in x .We generalise the construction by Griffiths [40, 41] to include the twist factor for
a > 1

β(a1,...,ar ) =
∑

1≤i< j≤n

xiG
j
a(x) − x jGi

a(x)

Fa−1
�

dx1∧· · ·∧d̂xi∧· · ·∧d̂x j∧· · ·∧dxn . (15)
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To take into account the general dimensional case, we have introduced the vectors of
twisted forms

�Ga(x) := �Ca ωε
� , (16)

whose components are of homogeneous degree (a − 1)(L + 1) + 1 − n. Following
the same steps as in [39], we have

dβ(a1,...,ar )
� = −(a−1)

∑

1≤i< j≤n

xiG
j
a(x) − x jGi

a(x)

Fa
�

dF� ∧dx1∧· · ·∧d̂xi ∧· · ·∧d̂x j ∧· · ·∧dxn

+
∑

1≤i< j≤n

d(xiG
j
a(x) − x jGi

a(x))

Fa−1
�

∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ d̂x j ∧ · · · ∧ dxn . (17)

From the degree of homogeneity of F� and the components of �Ga(x)

n∑

i=1

xi
∂F�(x)

∂xi
= (L + 1)F�(x),

n∑

i=1

xi
∂ �Ga(x)

∂xi
= ((a − 1)(L + 1) + 1 − n) �Ga(x) , (18)

we find that

dβ(a1,...,ar )
� = (a − 1)

�Ga(x) · �∇F�

Fa
�

	
(n)
0 − �∇ · �Ga(x)

Fa−1
�

	
(n)
0 . (19)

Using the definition of �Ga in (16) we have reduced the pole order of F� in (13)

(a − 1)

(
∂

∂z1

)a1
· · ·
(

∂

∂zr

)ar
	ε

� = �∇ · �Ga(x)

Fa−1
�

	
(n)
0 + dβ(a1,...,ar )

� . (20)

We now expand the first term in the right-hand-side

�∇ · �Ga(x) = �∇ · �Ca(x)
UλU

�

FλF
�

+ �Ca(x) · �∇
(
UλU

�

FλF
�

)

, (21)

where we have defined

λU = n − (L + 1)(δ − ε), λF = n − L(δ − ε). (22)

The second term in this equation can be evaluated using

�Ca(x) · �∇
(
UλU

�

FλF
�

)

=
(
λU �Ca · �∇ logU� − λF �Ca · �∇ logF�

) UλU
�

FλF
�
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=
[

−λF
P(a1,...,ar )(x)

F�

+ λU �Ca · �∇ logU�

]
UλU

�

FλF
�

, (23)

where we have used Eq. (14) in the second equality. Therefore,

(
∂

∂z1

)a1
· · ·
(

∂

∂zr

)ar
	ε

� = �∇ · �Ca(x) + λU �Ca · �∇ logU�

(a − 1 + λF ) Fa−1
�

	ε
� + 1

a − 1 + λF
dβ(a1,...,ar )

� .

(24)
This expression involves the term �Ca · �∇ logU� which has a pole in U� . We then
perform a second reduction by demanding that

�Ca(x) · �∇U� = ca(x)U� , (25)

where ca(x) is a homogeneous polynomial of degree (a−1)(L+1). This is equivalent to
the computation of syzygies of Jac(U�) := 〈 �∇U�(x)〉. Indeed, using the homogeneity
of U� we can rewrite the previous equation as

(
L �Ca(x) − ca(x)�x

)
· �∇U� = 0 , (26)

which are examples of syzygies of the Jacobian ofU� . Using this reduction in Eq. (24)
leads to

(
∂

∂z1

)a1
· · ·
(

∂

∂zr

)ar
	ε

� = M (a1,...,ar )(x)

Fa−1
�

	ε
� + a − 1

a + n − L(δ − ε)
dβ(a1,...,ar )

�

(27)
with the numerator given by the polynomial of homogeneous degree (a − 1)(L + 1)

M (a1,...,ar )(x) := �∇ · �Ca(x) + λU ca(x)

a − 1 + λF
, (28)

with λU and λF the powers of the U� and the F� polynomials respectively given
in (22).

To perform the pole reduction, we have to solve the linear system

{ �Ca(x) · �∇F� = P(a1,...,ar )(x)

�Ca(x) · �∇U� = ca(x)U�

, (29)

for determining the coefficients of �Ca(x) and ca(x). The system (29) has a solution
when its rank is positive. We have a linear system of the n components of �Ca(x)
which are homogeneous polynomial of degree deg(C) = deg(P(a1,...,ar )) − L in x
and ca(x)which is a polynomial of homogeneous degree deg(C)−1. Since the number
of coefficients of a homogeneous polynomial of degree d in n variables is

(d+n−1
d

)
,
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the system has

n

(
deg(P(a1,...,ar )) − L + n − 1

deg(P(a1,...,ar )) − L

)

+
(
deg(P(a1,...,ar )) − L + n − 2

deg(P(a1,...,ar )) − L − 1

)

(30)

unknown variables for

(
deg(P(a1,...,ar )) + n − 1

deg(P(a1,...,ar ))

)

+
(
deg(P(a1,...,ar )) + n − 2

deg(P(a1,...,ar )) − 1

)

(31)

equations. Since the deg(P(a1,...,ar )) = a(L + 1), the rank of the system (29) is

rank = (30) − (31) (32)

= n

(
(L + 1)(a − 1) + n

(L + 1)(a − 1) + 1

)

+
(

(L + 1)(a − 1) + n − 1

(L + 1)(a − 1)

)

−
(

(L + 1)a + n − 1

(L + 1)a

)

−
(

(L + 1)a + n − 2

(L + 1)a − 1

)

For fixed values of loops L and number of edges n there is always a value of the
number of derivatives a such that the system has positive rank.

A few comments are in order. In practice for Feynman integrals, the polynomial
P(a1,...,ar )(x) is not a generic homogeneous polynomial, so the number of equations
is smaller or equal than (31). We remark that this way of solving the linear system
includes implicitly the freedom given by the syzygies of Jac(F�) := 〈 �∇F�(x)〉 and
Jac(U�) since they belong to the kernel of equation (14) and (25) respectively.1 One
important property of that reduction is that the differential form β

(a1,...,an)
� is that it

does not have poles that are not poles of F� which is guaranteed by construction. We
refer to Section 3 of [46] for a discussion of the pole constraints.

The system of linear equation (29) is dense since, in general, all coefficients in
�Ca(x) and ca(x) are non-vanishing. Moreover, we are interested in analytic solutions
of these systems. We thus benefit from the dense solver implemented in the Mathe-
matica package FiniteFlow, described in detail in Sec.4 of [51]. Specifically, in
Mathematica have used the command FFDenseSolve.

3.1.2 The pole reduction for analytic regularisation

We give an adaption of the Griffiths–Dwork pole reduction to the case of the twisted
differential form (8) from analytical regularisation. Since most of the steps are similar
to the one presented in the previous section, we only give the main equations.

As before we reduce the polynomial P(a1,...,ar )(x) in the Jacobian of F� using
Eq. (14) and introduce the differential forms (15) β

(a1,...,ar )
� and the vector of differ-

ential forms �Ga(x) as in Eq. (16), leading to the pole reduction Eq. (20). Because the

1 It was noticed in [46], that in the rational case, only the first order syzygies are needed to take into account
the non-isolated singularities of Feynman integrals.
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twist is different the expansion of the right-hand-side (recall that D = 2δ − 2ε)

�∇ · �Ga(x) = �∇ · �Ca(x)
UλU

�

FλF
�

Q(x)κ + �Ca(x) · �∇
(
UλU

�

FλF
�

Q(x)κ
)

, (33)

where we have set (we have assumed that ν1 = · · · = νn = 1 the generic case of
integer values is an easy generalisation)

Q(x) :=
n∏

i=1

x pi
i (34)

and defined the powers of the various polynomials by

λU = n− (L +1)(δ − ε)+κ

n∑

i=1

pi , λF = n− L(δ − ε)+κ

n∑

i=1

pi , λQ = κ .

(35)
This is evaluated using

�Ca(x) · �∇
⎛

⎝
UλU

� Q(x)κ

FλF
�

⎞

⎠ =
(
λU �Ca · �∇ logU� − λF �Ca · �∇ logF� + λQ �Ca · �∇ log Q(x)

)UλU
� Q(x)κ

FλF
�

,

(36)
so that

(
∂

∂z1

)a1
· · ·
(

∂

∂zr

)ar
	

ε,κ
� =

�∇ · �Ca(x) + λU �Ca · �∇ logU� + λQ �Ca · �∇ log Q(x)

(a − 1 + λF ) Fa−1
�

	
ε,κ
�

+ 1

a − 1 + λF
dβ(a1,...,ar )

� . (37)

This time we need to reduce the pole in U� from the term �Ca · �∇ logU� and the
new pole in 1/xi arising from the propagators. As before we impose the following
conditions ⎧

⎪⎪⎨

⎪⎪⎩

�Ca(x) · �∇F� = P(a1,...,ar )(x)

�Ca(x) · �∇U� = ca(x)U�

�Ca(x) · �∇Q(x) = qa(x)Q(x)

, (38)

leading to the pole reduction in Eq. (13)

(
∂

∂z1

)a1
· · ·
(

∂

∂zr

)ar
	ε

� = M (a1,...,ar )(x)

Fa−1
�

	ε
� + 1

a − 1 + λF
dβ(a1,...,ar )

� . (39)

The numerator is now given by the polynomial of homogeneous degree (a−1)(L+1)

M (a1,...,ar )(x) := �∇ · �Ca(x) + λUca(x) + λQqa(x)

a − 1 + λF
. (40)
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3.1.3 Determination of the differential equations

We turn to the derivation of the differential equation (10) by iterating the generalised
Griffiths–Dwork reduction given in the previous sections. We present an algorithm for
a derivation of a linear ordinary differential equation with respect to a single variable
differentiation z (either an internal mass, or a kinematic variable or a scaling parameter
as used in [9, 46]) so that r = 1 and a = a1. The generalisation to the many variable
case is immediate.

We are seeking the differential operator

L ε,κ
� =

N (�,ε,κ)∑

a=0

ca( �m, �s, ε, κ)

(
d

dt

)a

(41)

with ca( �m, �s, ε, κ) polynomials in the internal masses �m and the (independent) kine-
matic variables �s and the regulators ε and κ , such that

L ε,κ
� 	

ε,κ
� = dβε,κ

� . (42)

Holonomicity of Feynman integrals gives an upper bound on the order of the differ-
ential operator, which is determined by the number of master integrals. For a graph
� the minimal order of the differential operator depends in general of the regulators.
Let N (�, ε, κ) be the starting order of the reduction. We then apply the results of
Sects. 3.1.1 or 3.1.2 so that

(
d

dt

)N (�,ε,κ)

	ε
� = MN (�,ε,κ)(x)

FN (�,ε,κ)−1
�

	
ε,κ
� + dβN (�,ε,κ)

� . (43)

In the next step we add the lowest-order derivative

[(
d

dt

)N (�,ε,κ)

+ qN (�,ε,κ)−1(t, ε, κ)

(
d

dt

)N (�,ε,κ)−1
]

	
ε,κ
�

= MN (�,ε,κ)(x) + qN (�,ε,κ)−1(t, ε, κ)PN (�,ε,κ)−1(x)

FN (�,ε,κ)−1
�

	
ε,κ
� + dβN (�,ε,κ)

� , (44)

where the rational coefficient qN (�,ε,κ)−1(t, ε) = cN (�,ε,κ)−1(t, ε)/cN (�,ε,κ)(t, ε)
is an unknown rational function of t and the regulators ε and κ . The polynomial
PN (�,ε,κ)−1(x) is the numerator factor obtained by taking the N (�, ε, κ) − 1 deriva-
tive of the differential form.

We then apply the reduction of Sect. 3.1.1 or 3.1.2 to the polynomial in the numera-
tor MN (�,ε,κ)(x)+qN (�,ε,κ)−1(t, ε)PN (�,ε,κ)−1(x). The resolution of the system (29)
determines the rational coefficient qN (�,ε,κ)−1(t, ε) and MN (�,ε,κ)−1(x) computed
using (40). One iterates the reduction until the power of the second Symanzik poly-
nomial F� is n − L − 1 so that
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⎡

⎣
(

d

dt

)N (�,ε,κ)

+
N (�,ε,κ)−1∑

a=1

cN (�,ε,κ)−a(t, ε)

cN (�,ε,κ)(t, ε)

(
d

dt

)N (�,ε,κ)−a
⎤

⎦	
ε,κ
� = M0 	

ε,κ
� + dβε,κ

� ,

(45)

where M0 is of degree 0 so that

q0(t, ε, κ) = c0(t, ε, κ)

cN (�,ε,κ)(t, ε, κ)
= −M0. (46)

The inhomogeneous term β
ε,κ
� is the sum of βa with 1 ≤ a ≤ N (�, ε, κ) contributions

with their multiplicative factor as given in (24)

β
ε,κ
� =

∑

1≤i< j≤n

(xi B
j
� − x j B

i
�) dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ d̂x j ∧ · · · ∧ dxn (47)

with

�Bε,κ
� :=

⎛

⎝
N (�,ε,κ)∑

a=1

�Ca(x)

(a − 1 + n − L(δ − ε))Fa−1
�

⎞

⎠ ω
ε,κ
� , (48)

which is a vector of degree of homogeneity 1 − n in the edge variables x . Since
dβε,κ

� = −�∇ · �B� 	
(n)
0 , from (45) we have the ordinary differential equation satisfied

by the integrand of the Feynman integral

⎡

⎣
(
d

dt

)N (�,ε,κ)

+
N (�,ε,κ)∑

r=1

cN (�,ε,κ)−r (t, ε)

cN (�,ε,κ)(t, ε)

(
d

dt

)N (�,ε,κ)−r
⎤

⎦ω
ε,κ
� = −�∇ · �Bε,κ

� .

(49)
Integrating this expression over the positive orthant leads to the inhomogeneous dif-
ferential equation satisfied by the Feynman integrals

⎡

⎣
(
d

dt

)N (�,ε,κ)

+
N (�,ε,κ)∑

r=1

cN (�,ε,κ)−r (t, ε)

cN (�,ε,κ)(t, ε)

(
d

dt

)N (�,ε,κ)−r
⎤

⎦ I ε,κ
�

= −
∫

xi≥0

�∇ · �Bε,κ
� dx1 · · · dxn . (50)

The inhomogeneous term is a total derivative reflecting the fact that it is spanned by
Feynman integral with collapsed edge of the original graph �. The evaluation of this
inhomogeneous term is delicate and requires taking into account the various blow-ups
of the domain of integration so the integral is well-defined [10, 12, 45, 55].

Let us comment onhow todetermine the order of the differential operators.Anupper
bound on the order can be computed from the number of master integrals. The number
of master integrals can be computed from the Euler characteristic of complement of
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the graph polynomial [72] or counting the critical points of the Euler representation
of the integral in projective space [65, 74] or [62, 75] (see [33] for a discussion of the
relation between the different ways of computing the number of master integrals). On
the other hand, determining the minimal order is a difficult question. Our pragmatical
approach is to increase the order starting from lower orders until the system (29) has
a solution, which is the spirit of the Griffiths–Dwork reduction applied to Feynman
integrals in [44].

In practice, for determining the minimal order it is enough to run the step of the
Griffiths–Dwork reduction for fixed generic numerical values for the physical parame-
ters (the internal masses and kinematic parameters), because all the reduction amounts
to solve a linear system in the projective space of the edge parameters x . This allows
to determine the smallest order for which the algorithm closes to give a differential
operator. The Griffiths–Dwork algorithm does not automatically lead to an irreducible
differential operator. The factorisation of a linear ordinary differential operator can be
done with the DFactor routine from Maple up to the order 4 for generic parame-
ters [76, 77], and to any orders for linear ordinary differential operators with numerical
coefficients using the facto algorithm in sagemath [78, 79].

In the rational case ε = κ = 0, it was noticed in [11, 12, 46, 80] that the order
of the minimal differential operator is smaller than the number of irreducible master
integrals. When the regulator take integer values the minimal order is smaller than the
number of master integrals. In the various cases studied below, we will see that the
order of the minimal differential operator can saturate the upper bound given by the
number of masters for generic values of the regulators ε and κ . This will be discussed
further in Sect. 7.1.

4 One-loop examples

We start in Sect. 4.1 with the simple example of the massless one-loop box in dimen-
sional regularisation, which will serve as an illustration of where the main features of
the algorithm emerge (Fig. 1).

We then work out a Gröbner basis of differential operators associated with the
Witten cross diagram for conformally coupled φ4 in four dimensional de Sitter space.
It was shown in [25, 26] that the cosmological correlators of conformally coupled φ4

can be organised as dimensionally regulated flat space Feynman integrals in position
space. Because of the measure of integration in (anti)-de Sitter the resulting integrals
fall into the category of the analytic regularisation of Sect. 2.2.

4.1 Themassless box graph in dimensional regularisation

We define the usual Mandelstam invariants as t = (k1 + k3)2, s = (k1 + k2)2. The
graph polynomials are given by

U� = x1 + · · · + x4, F�(s, t) = −t x2x4 − sx1x3 . (51)
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Fig. 1 The box graph with
massless external and internal
states. The outgoing external
momenta are ki with
k1 + · · · + k4 = 0. The labels of
the graph give the index of the
edge variable xi

1

2

3

4
k1 k2

k3k4

The twisted differential in Eq. (9) for the box graph in D = 4 − 2ε in the projective
space P3 reads 	ε

� = ωε
� 	

(4)
0 , where

ωε
� = 1

F�(s, t)2

(
U2

�
F�(s, t)

)ε

. (52)

This is a single scale function depending only on the ratio X = t/s of the kinematic
invariants, so we scale the integral obtaining 	̃ε

�(X) = (−s)2+ε	ε
�(s, Xs). The

application of the procedure given in Sect. 3.1.3 needs only to start at the first order.
Computing the derivative with respect to X , we obtain

P(1) = (2 + ε)x2x4 , (53)

which we will reduce with respect to

�∇(F�) = (
∂x1F� = −x3, ∂x2F� = −x4X , ∂x3F� = −x1,−Xx2

)
. (54)

The vector �C1(x) has components

Ci
1(x) =

∑

e∈m2,4

λiex
e, (55)

where mi, j denote the set of exponent vectors of degree i in j variables. There-
fore, m2,4 = {(a1, a2, a3, a4)|a1 + a2 + a3 + a4 = 2, a1, a2, a3, a4 ≥ 0}. Since
deg(Ci

1(x)) = 2, deg(c1(x)) = 1, i.e. c1(x) = ∑
e∈m1,4

qexe, and m1,4 =
{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}. Hence the linear system becomes

{∑4
i=1

∑
e∈m2,4

λiex
e∂xi (F�) = (2 + ε)x2x4∑4

i=1
∑

e∈m2,4
λiex

e∂xi (U�) = ∑
e∈m1,4

qexeU�
, (56)

which leads to

c0 = 1 + X + ε

X(X + 1)
. (57)

We then derive

L ε
� = (X + 1)X

d

dX
+ (1 + X + ε) . (58)
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In this simple case, the algorithm requires only one iteration. The boundary contribu-
tion in Eq. (48) is given by

�Bε
� =

{

X
x4
2

,− x1 + x2 + x3
2

, X
x4
2

,− x4(2X + 1)

2

}

+ λ30,0,1,0 {x4X − x1, x1 − x3, x3 − x4X , 0}
+ λ40,0,1,0 {x4 − x2, x2X − x3, 0, x3 − x4X}
+ λ41,0,0,0 {0, x2X − x1, (x4 − x2)X , x1 − x4X} . (59)

The boundary vector depends on the free coefficients λin1,n2,n3,n4 from the reduction.
This freedom arises from the kernel of the linear system (56) on the unknown coeffi-
cients λin1,...,n4 . The gradient of this vector does not depend on the free coefficients as
it reads

�∇ · �Bε
� = x2x4X(Xε + X + 1) − x1x3(X + ε + 1)

X(X + 1)(x2x4X + x1x3)
ωε

�, (60)

so that
L ε

�ωε
� + �∇ · �Bε

� = 0 . (61)

By integrating �∇· �Bε
� over the
4 = {xi ≥ 0, 1 ≤ i ≤ 4}weget the inhomogeneous

term

S ε
� = (ε + 1)�(−ε − 1)2

�(−2ε)

(
(−s)−1−ε + (−t)−ε−1

)
. (62)

This simple example illustrates the general procedure as we will see with more loops.
In general the system of equations is dense.

4.2 TheWitten cross diagram in AdS4 in dimensional regularisation

The dimensionally regulated Witten cross diagram of Fig. 2 considered in Section 4.1
of [26] is given by the integral over the bulk point X

W1,4−4ε
0 (ζ, ζ̄ ) = 1

2

ζ ζ̄

(v12v34)2

∫

R4

d4−4εX

‖X‖2‖X − u1‖2(1−4ε)‖X − uζ ‖2 . (63)

Fig. 2 Witten cross diagram,
between four states on boundary
of dS4

2

v1 4

3
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with the vectors u1 = (1, 0, 0, 0) and uζ =
(

ζ+ζ̄
2 ,

ζ−ζ̄
2i , 0, 0

)
where ζ and ζ̄ param-

eterise the cross ratios ζ ζ̄ = v212v
2
34/(v

2
14v

2
23) and (1 − ζ )(1 − ζ̄ ) = v213v

2
24/(v

2
14v

2
23)

defined by the position on the boundary of (A)dS4.
The parametric representation is given by I ε×(ζ, ζ̄ ) = ∫


3
	

2ε,−4ε
× (ζ, ζ̄ ) the inte-

gration over the twisted differential form

	
2ε,2ε
× (ζ, ζ̄ ) = π2−2ε�(1 − 2ε)

�(1 − 4ε)

1

U×F×(ζ, ζ̄ )

(
F×(ζ, ζ̄ )2

x42

)ε

	
(3)
0 (64)

over the domain 
3 = {xi ≥ 0, 1 ≤ i ≤ 3} and with the graph polynomials

U× = x1 + x2 + x3, F×(ζ, ζ̄ ) = x1x2 + ζ ζ̄ x1x3 + (1 − ζ )(1 − ζ̄ )x2x3. (65)

We can apply the algorithm to the case of the analytic regularisation of Sect. 3.1.2
with δ = 2, ε = κ = 2ε, (p1, p2, p3) = (0,−2, 0). We find the following set of
differential operators acting on I×(ζ, ζ̄ )

L×,1 = (ζ − 1)(ζ − ζ̄ )ζ 2 ∂2

∂ζ 2 +
(
ζ(3ζ − ζ̄ − 2) − 2ε

(
ζ 2 + ζ ζ̄ − 2ζ̄

))
ζ

∂

∂ζ

+ (2ε − 1)
(
2ε(ζ + ζ̄ ) − ζ 2

)
(66)

and

L×,2 = (ζ − 1)ζ ζ̄
∂

∂ζ
+ (ζ̄ − 1)ζ ζ̄

∂

∂ζ̄
+ ζ ζ̄ − 2ε(ζ + ζ̄ ). (67)

We have checked that they form a Gröbner basis with respect to the lexicographical
ordering of ζ, ζ̄ using the command OreGroebnerBasis, which is part of the
package HolonomicFunctions [50].

The algorithm determines the boundary terms such that2

L×,r

(
1

U×F×(ζ, ζ̄ )

(
F×(ζ, ζ̄ )2

x42

)ε)

+ �∇ · �B2ε,2ε
×,r = 0. r = 1, 2. (68)

For computing the boundary contribution to say, S×,1 we need to evaluate

S×,1 = −
∫


3

�∇ · �B2ε,2ε
×,1 . (69)

Integrating by parts we have the expression

2 Details are provided in the attached Mathematica notebook with this example is accessible at
Cross-AdS.nb.
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S×,1 =
∫∫ ∞

0

(

lim
x1→∞(B2ε,2ε

×,1 )1 − lim
x1→0

(B2ε,2ε
×,1 )1

)

dx2dx3

+
∫∫ ∞

0

(

lim
x2→∞(B2ε,2ε

×,1 )2 − lim
x2→0

(B2ε,2ε
×,1 )2

)

dx1dx3

+
∫∫ ∞

0

(

lim
x3→∞(B2ε,2ε

×,1 )3 − lim
x3→0

(B2ε,2ε
×,1 )3

)

dx1dx2 . (70)

The components of �B2ε,2ε
×,1 depend on seven free parameters

{
λ11,0,0, λ

3
1,1,1, λ

3
1,2,0, λ

3
2,1,0, λ

3
0,0,1, λ

3
0,1,0, λ

3
1,0,0

}
. (71)

For all values of these parameters we have for ε > 0

lim
x2→∞(B2ε,2ε

×,1 )2 = lim
x2→0

(B2ε,2ε
×,1 )2 = 0 . (72)

For all values of the parameters, the limits limx1→0(B
2ε,2ε
×,1 )1 and limx3→0(B

2ε,2ε
×,1 )3

are finite for ε > 0. But the limits limx1→∞(B2ε,2ε
×,1 )1 and limx3→∞(B2ε,2ε

×,1 )3 are not
finite for ε > 0. With the choice of the parameters

λ31,0,0 = − 4ε − 1

2(ε − 1)
λ32,1,0,

λ30,1,0 = (2ε − 1)λ31,1,1
ζ ζ̄ (ε − 1)

+ 2(2ε − 1)λ30,0,1
ζ ζ̄ (4ε − 1)

− (2ε − 1)λ31,2,0
ε − 1

− λ32,1,0(2ζ + 2ζ̄ − ζ ζ̄ − 2 + 4(ζ ζ̄ − ζ − ζ̄ + 1)ε)

2ζ ζ̄ (ε − 1)

+ (2ε − 1)2
(
ζ + ζ̄ − 3ζ 2 + 2(4ζ 2 − ζ − ζ̄ )ε

)

(4ε − 1)(ζ − 1)ζ 3ζ̄ (ζ − ζ̄ )
, (73)

we have limx1→∞(B2ε,2ε
×,1 )1 = limx3→∞(B2ε,2ε

×,1 )3 = 0 for ε > 0. The boundary term
is given by

S×,1 = −
∫∫ ∞

0
lim
x1→0

(B2ε,2ε
×,1 )1 dx2dx3 −

∫∫ ∞

0
lim
x3→0

(B2ε,2ε
×,1 )3 dx1dx2,

= −π(2ε − 1)
(
(ζ − 1)2ε(ζ̄ − 1)2ε − 1

)

sin(2πε)
. (74)

It was shown in [26] that

I ε×(ζ, ζ̄ ) = 2
Li2 (ζ ) − Li2

(
ζ̄
)− 1

2 log(ζ ζ̄ ) log
(
1−ζ

1−ζ̄

)

ζ − ζ̄
+ O(ε) , (75)
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Fig. 3 The two-loop sunset
graph. The labels of the graph
give the index of the edge
variable xi 2

1

3

k k

where Li2 (z) = − ∫ z
0 log(1 − u)d log u is the dilogarithm. One easily checks that

L×,1 I
ε×(ζ, ζ̄ ) + S×,1 = 0 + O(ε) . (76)

This analysis shows that the boundary term produced by the Griffiths–Dwork reduc-
tion is not guaranteed to be integrable over the positive orthant. The choice of free
parameters we have made is equivalent to add a total derivative (or an exact form) to
get a convergent integral. Although the algorithm produces the integrand for comput-
ing it according (50), this simple case shows that evaluating the inhomogeneous term
is not an easy task, which will not carry for most of the remaining cases studied in this
paper.

5 Two-loop examples

In this section, we apply the algorithm to the case of dimensionally regulated two loop
integrals. We derive the ε-deformation of the equal-mass sunset integral in Sect. 5.1.1,
the general mass configuration sunset integral in Sect. 5.1.2, the two point kite integral
in Sect. 5.2, the ice-cream cone graph in Sect. 5.3, the non-planar triangle-box graph
in Sect. 5.4 and the four points planar and non-planar boxes Sect. 5.5. We conclude in
Sect. 5.6 with the ice-cream cone graph in analytic regularisation in four dimensions,
which arises in the two-loop correction to cosmological correlators of conformally
coupled φ4 in de Sitter space [27].

5.1 The two-point two-loop sunset graph

Wenow turn to the two-loop sunset graph of Fig. 3 and show how to adapt theGriffiths-
Dwork reduction used in [12, 46] to the ε-dependent integrand from dimensional
regularisation. For the two-loop case the differential Eq. (9), setting t = k2, is

	ε
�(t) = 1

F�(t)

(
U3

�
F�(t)2

)ε

	
(3)
0 (77)

with the graph polynomials

U� = x1x2 + x1x3 + x2x3,

F�(t) = −t x1x2x3 + (m2
1x1 + m2

2x2 + m2
3x3)U�. (78)
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The twisted differential form 	ε
� is defined on the complement of the sunset elliptic

curve F�(t) = 0. We discuss the equal-mass and the general case separately. We
apply the algorithm by starting to seek an operator of second order which is enough
for the equal-mass case, but for the three-mass case we find that the minimal order is
four, in agreement with previous results [81–83].

5.1.1 The equal-mass case

We derive the differential operator satisfied by the two-loop all equal-mass in general
dimensions. We start with at N (�, ε) = 2 finding

(
d

dt

)2

	ε
�(t, ε) = �(3 + 2ε)

�(1 + 2ε)

(x1x2x3)2

F�(t)3

(
U3

�
F�(t)2

)ε

	
(3)
0 , (79)

from which we can extract P(2) = 2(ε + 1)(2ε + 1)(x1x2x3)2. Accordingly, we
label the unknowns with the upper index so S(k) indicates the k-th reduction. We then
perform the Jacobian reduction of P(2) as

2(ε + 1)(2ε + 1) (x1x2x3)
2 =

3∑

i=1

∑

e∈m4,3

λ(2),i
e xe∂xi (F�(t)) , (80)

where we have written explicitly the components of �C (2) as C (2)
i = ∑

e∈m4,3
λ

(2),i
e xe.

We have to solve the following equation for the coefficients λ
(2),i
e coupled to the

equations generated by

3∑

i=1

∑

e∈m4,3

λ(2),i
e xe∂xi (U�) =

∑

e∈m3,3

q(2)
e xeU� , (81)

where c(2) = ∑
e∈m3,3

q(2)
e xe is an unknown homogeneous degree 3 polynomial in

x . The unknowns will be fully determined at the end of algorithm. For this case, the
differential form given in Eq. (15) reads

βε
� = x2C

(2)
3 − x3C

(2)
2

F�(t)2

(
U3

�
F�(t)2

)ε

dx1 + x3C
(2)
1 − x1C

(2)
3

F�(t)2

(
U3

�
F�(t)2

)ε

dx2

+ x1C
(2)
2 − x2C

(2)
1

F�(t)2

(
U3

�
F�(t)2

)ε

dx3, (82)

which leads to

(2 + 2ε)

(
d

dt

)2

	ε
�(t, ε) =

(∑3
i=1 ∂iC

(2)
i

F�(t)2
+ 3ε

∑3
i=1 C

(2)
i ∂i logU�

F�(t)2

)
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×
(

U3
�

F�(t)2

)ε

	
(3)
0 − d(2βε

�). (83)

Therefore, using Eq.(28), we define

M (2) :=
∑3

i=1 ∂ iC (2)
i + 3εc(2)

2 + 2ε
, (84)

which upon using (81) leads to the reduction of the pole

(
d

dt

)2

	ε
�(t, ε) = M (2)

F2
�

(
U3

�
F�(t)2

)ε

	
(3)
0 + dβε

� . (85)

We now add the first derivative with an unknown rational coefficient q1(t, ε)

(
d

dt

)2

	ε
�(t, ε)+q1(t, ε)

(
d

dt

)

	ε
�(t, ε) = M (1)

F�(t)2

(
U3

�
F�(t)2

)ε

	
(3)
0 +dβε

� ,

(86)

where M (1) := M (2) +q1(t, ε)x1x2x3(1+2ε). We then reduce the pole a second time
by writing

M (1) =
3∑

i=1

C (1)
i ∂ iF�(t) , (87)

where C (1)
i are unknown homogeneous degree 1 polynomials. Thus,

(
d

dt

)2

	ε
�(t, ε) + q1(t, ε)

(
d

dt

)

	ε
�(t, ε) =

∑3
i=1 C

(1)
i ∂ iF�(t)

F�(t)2

(
U3

�
F�(t)2

)ε

	
(3)
0 + dβε

� . (88)

The last step to compute the differential operator is to derive the constant term, which
must reduce the poler order of the right-hand-side of this equation. We thus impose

3∑

i=1

C (1)
i ∂ iF�(t) + q0(t, ε)F�(t) = 0. (89)

Solving all the equations needed for the pole reduction leads to the unique solution
for the coefficients q1 and q0. The solutions are

q1(t, ε) =
(
3t2 − 10t − 9

)
ε

(t − 9)(t − 1)t
+ 3t2 − 20t + 9

(t − 9)(t − 1)t
,

q0(t, ε) = ε2(2t + 2)

(t − 9)(t − 1)t
+ ε(3t − 5)

(t − 9)(t − 1)t
+ t − 3

(t − 9)(t − 1)t
, (90)
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leading to the ε-deformed differential operator

L (2),ε,1−mass
� = d

dt

(

t(t − 1)(t − 9)
d

dt

)

+ (t − 3)

+ ε

(

(3t2 − 10t − 9)
d

dt
+ 3t − 5

)

+ ε22(t + 1). (91)

Collecting the inhomogeneous contributions into the vector

�Bε
� =

2∑

a=1

�Ca

(a + 2ε)F�(t)a−1 	ε
� (92)

one can check that the action of this differential operator on 	ε
�(t) is

L (2),ε,1−mass
� 	ε

�(t) + �∇ · �Bε
� = 0 (93)

as it should be from the general considerations of Sect. 3.1.3.
From the solutions, we can compute the inhomogeneous term is given by evaluating

the integral

S�(t, ε) = −
∫


3

�∇ · �Bε
� . (94)

Because the denominator of Bε
� has a pole at the coordinate point [1 : 0 : 0], [0 : 1 : 0]

and [0 : 0 : 1] one needs to consider the blow-up of the domain of integration 
3.
This is done by inserting a small P1 of radius ρ (see Eq. (3.47) of [12])

S�(t, ε) = lim
ρ→0

3∑

i=1

∫

∂
̃3|xi=0

∑

1≤ j �=i≤3

(Bε
�) jdx j . (95)

A computation identical to the one performed in [12] leads to

S�(t, ε) = −6
�(1 + ε)2

�(1 + 2ε)
. (96)

The piece of order ε0 reproduces the differential operator for the two-loop equal-mass
sunset in D = 2 given in [53]. This differential equation in general dimensions can
be obtained by applying the results [82, 84] to the all-equal-mass case.

5.1.2 The different mass case

For the non-equal-mass case, the order of the differential equation is 4 with the fol-
lowing ε expansion

L ε
� = L (1)

1 L (2)
1 L 3−mass

� + εL (3)
4 + ε2L (4)

3 + ε3L (5)
2 + ε4L (6)

1 + ε5L (7)
0 , (97)
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where L (r)
i are irreducible differential operator of order i and L 3−mass

� is the dif-
ferential operator for the three-mass two-loop sunset integral in two dimensions. This
differential equation reproduces the one derived in [82, 84]. The ε deformation does
not change the non-apparent singularities of the differential operator as can be seen
from the coefficient of the highest order term

L ε
�
∣
∣
∣
(d/dt)4

= t3
4∏

i=1

(t − μ2
i )
(

− (2ε + 5) t2 − 2
(
m2

1 + m2
2 + m2

3

)
(1 + 2ε) t

+ (7 + 6ε)
4∏

i=1

μi

)
, (98)

where μi = {m1 +m2 +m3,−m1 +m2 +m3,m1 −m2 +m3,m1 +m2 −m3} are the
thresholds. The ε deformation is only affecting the apparent singularities, since the ε

factor in (77) does not change the nature of the singular locus which is still given by
the same elliptic curve as in the ε = 0 case.

The action of L ε
� on the Feynman integral is given by

L ε
� I ε

�(m, t, ε) = S�( �m, t, ε) (99)

with the source term

S�( �m, t, ε) = c23(t, ε)�(ε + 1)2

(m2m3)2ε�(1 + 2ε)
+ c13(t, ε)�(ε + 1)2

(m1m3)2ε�(1 + 2ε)
+ c12(t, ε)�(ε + 1)2

(m1m2)2ε�(1 + 2ε)
,

(100)
where c12(t, ε), c13(t, ε) and c23(t, ε) are polynomials of degree 4 in t and degree 2 in
ε, respectively. The contribution to the inhomogeneous term arise from each boundary
contributions located at x1 = 0, x2 = 0 and x3 = 0. They are given by the two-bouquet
Feynman graphs

S�( �m, t, ε) =

k

k

m2 m3 +

k

k

m1 m3 +

k

k

m1 m2
.

(101)
The coefficients match the one derived from the general dimension results of [82, 84].

The results are provided on the SageMath worksheet
Sunset-Twoloop-3mass-Epsilon.ipynb. Expanding in powers of ε, we have

S�( �m, t, ε) = S 0
�( �m, t) +

(

c(1)
0 ( �m) +

3∑

i=1

c(1)
i ( �m) log(mi )

)

ε + O(ε2) (102)
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with the leading term given by

S 0
�( �m, t) = 60t4 + 56

(
m2

1 + m2
2 + m2

3

)
t3 − 308

4∏

i=1

μi . (103)

For ε = 0 the two-loop sunset integral satisfies the differential equation [12, 83]

L 3−mass
� f (0)

� (t) = s0( �m, t) +
3∑

i=1

si ( �m, t) log(m2
i ) (104)

with

s0( �m, t) = (105)

18t4 − 24
(
m2

1m
2
2 + m2

3

)
t3 − 4

(
m4

1 + m4
2 + m4

3 + 10(m2
1m

2
2 + m2

1m
2
3 + m2

2m
2
3)
)
t2

+ 8
(
m2

1 + m2
2 + m2

3

) 4∏

i=1

μi t + 2
4∏

i=1

μ2
i ,

s1( �m, t) = (106)
(
4m2

1 − 2m2
2 − 2m2

3

)
t3 +

(
−12m4

1 + 14m2
1m

2
2 + 14m2

1m
2
3 + 6m4

2 − 28m2
2m

2
3 + 6m4

3

)
t2

+
(
12m6

1 − 22m4
1m

2
2 − 22m4

1m
2
3 + 16m2

1m
4
2 + 16m2

1m
4
3 − 6m6

2 + 6m4
2m

2
3 + 6m2

2m
4
3

− 6m6
3

)
t − 2

(
2m4

1 − m2
1m

2
2 − m2

1m
2
3 − m4

2 + 2m2
2m

2
3 − m4

3

) 4∏

i=1

μi ,

s2( �m, t) = (107)
(
−2m2

1 + 4m2
2 − 2m2

3

)
t3 +

(
6m4

1 + 14m2
1m

2
2 − 28m2

1m
2
3 − 12m4

2 + 14m2
2m

2
3 + 6m4

3

)
t2

+
(

− 6m6
1 + 16m4

1m
2
2 + 6m4

1m
2
3 − 22m2

1m
4
2 + 6m2

1m
4
3 + 12m6

2 − 22m4
2m

2
3 + 16m2

2m
4
3

− 6m6
3

)
t + 2

(
m4

1 + m2
1m

2
2 − 2m2

1m
2
3 − 2m4

2 + m2
2m

2
3 + m4

3

) 4∏

i=1

μi ,

with
s3( �m, t) = −s1 − s2 . (108)

It can be checked that

S 0
�( �m, t) = L (1)

1 L (2)
1 L 3−mass

� f (0)
� (t). (109)

The logarithmic dependence on the masses arise at the order ε and

c(1)
0 ( �m) = 114t4 + 168

(
m2

1 + m2
2 + m2

3

)
t3 +

(
− 552(m4

1 + m4
2 + m4

3)
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Fig. 4 Special two-point kite.
Dashed lines are massless
propagators, and solid lines are
massive propagators. The labels
of the graph give the index of the
edge variable xi

2

1

3

4

5k k

+ 1136(m2
1m

2
2 + m2

1m
2
3 + m2

2m
2
3)
)
t2 − 64

(
m2

1 + m2
2 + m2

3

) 4∏

i=1

μi t + 14
4∏

i=1

μ2
i ,

(110)

and

c(1)1 (m1,m2,m3) = (111)

− 80t4 −
(
88m2

1 + 68m2
2 + 68m2

3

)
t3 +

(
360m4

1 − 780m2
1m

2
2 − 780m2

1m
2
3

+ 436m4
2 − 904m2

2m
2
3 + 436m4

3

)
t2 +

(
− 136m6

1 + 324m4
1m

2
2 + 324m4

1m
2
3 − 256m2

1m
4
2

− 256m2
1m

4
3 + 68m6

2 − 68m4
2m

2
3 − 68m2

2m
4
3 + 68m6

3

)
t − 28

4∏

i=1

μi

×
(
2m4

1 − m2
1m

2
2 − m2

1m
2
3 − m4

2 + 2m2
2m

2
3 − m4

3

)

with c(1)
2 (m1,m2,m3) = c(1)

1 (m2,m1,m3), and c
(1)
3 (m1,m2,m3) = c(1)

1 (m3,m2,m1),

and c(1)
1 ( �m) + c(1)

2 ( �m) + c(1)
3 ( �m) = 4S 0

�( �m, t).

5.2 The two-point one-mass kite

We consider the two points kite graph of Fig. 4 with three massive and two massless
propagators. Its Symanzik polynomials read

U = (x1 + x2)(x3 + x4) + (x1 + x2 + x3 + x4)x5, (112)

F (m2, p2) = k2(x1x2x3x4

4∑

i=1

x−1
i +(x1+x4)(x2+x3)x5)−m2(x1+x3+x5)U .

(113)

Now setting k2 = Xm2, we have single scale problem and now set m = 1 so

	ε = U5−3δ

F (1, X)5−2δ

(
U3

F2

)ε

	
(5)
0 . (114)
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Fig. 5 The ice cream cone
graph. The massive external
momenta are ki satisfy
k1 + k2 + k3 = 0. We have
labelled the graph with the edges
variables y1

x1

y2

zk1

k2

k3

It was shown in [46, 85, 86] that the two point Kite graph with generic masses satisfies
a first order differential equation in four dimensions. The integrand of the Feynman
integral is the twisted differential form

	 = U5−3δ

(F (X))5−2δ

(
U3

F (X)2

)ε

	
(5)
0 (115)

and the result of the reduction gives the differential operator

L ε = X(X − 1)
d

dX
+ X − 1 + (1 + X)ε . (116)

5.3 The three-point ice-cream cone graph

In this section, we give the result for the ε-deformed differential equation for the ice-
cream cone graph of Fig. 5 generalising the result for ε = 0 given in [9, 46]. The
two-loop (one scoop) ice-cream cone differential form in D = 2 − 2ε dimensions is
given by

	ε (t) = U

F2

(
U3

F2

)ε

	
(4)
0 , (117)

with

U := (y1 + y2)(x1 + z) + zx1,

V := k22 y1y2(z + x1) + zx1(k21 y1 + k23 y2),

F (t) := (μ2
1y1 + μ2

2y
2
2 + m2

1x1 + m2
2z)U − tV . (118)

We find the following results (some numerical cases are accessible on the SageMath
worksheet IceCream-Epsilon.ipynb).
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• The equal-kinematics case μ1 = μ2 = m1 = m2 = k21 = k22 = k23 = 1: the
differential operator has order 3 and reads

L [7],ε =
4∑

r=0

εr L [7],r (119)

with

L
[7],0 = 2t3 (t − 1) (t − 3) (t − 4)

(
d

dt

)3

+ 2t2 (t − 2)
(
11t2 − 44t + 15

)( d

dt

)2

+ 2t2
(
29t2 − 116t + 89

) d

dt
+ 32t2 (t − 2) , (120)

L
[7],1 = t3 (t − 1) (t − 3) (t − 4) (t + 1)

(
d

dt

)3

+ t2
(
10t4 − 37t3 − 26t2 + 95t + 18

)( d

dt

)2

+ t
(
24t4 + 5t3 − 242t2 + 53t + 48

) d

dt
+ 12t4 + 64t3 − 112t2 − 48t − 12, (121)

L
[7],2 = t2 (t + 1)

(
5t3 − 22t2 + 5t + 24

)( d

dt

)2

+ t2
(
28t3 − 23t2 − 130t − 71

) d

dt

+ 26t4 + 56t3 − 48t2 − 64t − 18, (122)

L
[7],3 = 4t

(
2t2 − 4t − 3

)
(t + 1)2

d

dt
+ 6

(
3t2 − 1

)
(t + 1)2 , (123)

L
[7],4 = 4t (t + 1)3 . (124)

The ε0 term factorises as

L [7],0 =
((

2t6 − 16t5 + 38t4 − 24t3
) d

dt
+ 4

(
2t3 − 12t2 + 19t − 6

)
t2
)

◦
(
d

dt
+ 5t3 − 30t2 + 49t − 18

(t − 4) t (t − 1) (t − 3)

)

◦
(
d

dt
+ 2t − 4

(t − 1) (t − 3)

)

. (125)

The rightmost operator is the minimal differential equation for the ε = 0 case [46]

L [7] = d

dt
+ 2(t − 2)

(t − 1)(t − 3)
. (126)

• The equal-mass case μ1 = μ2 = m1 = m2 = 1 and generic momenta
k21 �= k22 �= k23 �= 1: the differential operator is of order 3 reads

L [413],ε =
1∑

r=0

L [413],r
,3

εr +
2∑

r=0

L [413],r
,2−r

ε2+r , (127)
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where L [413],r
,n

is of order n. The ε0 term factorises as

L [413],0
,3

= L 0
a,1 ◦ L [413],0

, (128)

where L 0
a,1 is a first order operator and the second order differential operator

L [413],0 matches the mass specialisation of the differential operator derived algo-
rithmically in Section 5.2 of [46] and using Hodge theory in Section 7.3 of [9].
The highest order coefficient factorises as

L [413],ε∣∣∣
(d/dt)3

= t3(tk22 − (m1 +m2)
2)(tk22 − (m1 −m2)

2)c1(t)c2(t)c
[413]
3 (t, ε)

(129)
with

c1(t) = k21k
2
2k

2
3 t

2 + t
(
m2

1

(
−k21k

2
3 − k22k

2
3 + k43

)
+ m2

2

(
k41 − k21k

2
2 − k21k

2
3

)

+ (m3 + m4)
2
(
−k21k

2
2 + k42 − k22k

2
3

) )

+ m4
1k

2
3 + m2

1m
2
2

(
−k21 + k22 − k23

)
+ m2

1(m3 + m4)
2
(
k21 − k22 − k23

)

+ m4
2k

2
1 + m2

2(m3 + m4)
2
(
−k21 − k22 + k23

)
+ k22(m3 + m4)

4, (130)

and

c2(t) = t2k21k
2
2k

2
3 + t

(
m2

1

(
−k21k

2
3 − k22k

2
3 + k43

)
+ m2

2

(
k41 − k21k

2
2 − k21k

2
3

)

+ (m3 − m4)
2
(
−k21k

2
2 + k42 − k22k

2
3

) )

+ m4
1k

2
3 + m2

1m
2
2

(
−k21 + k22 − k23

)
+ m2

1(m3 − m4)
2
(
k21 − k22 − k23

)
+ m4

2k
2
1

+ m2
2(m3 − m4)

2
(
−k21 − k22 + k23

)
+ k22(m3 − m4)

4, (131)

and c[413]
3 (t, ε) a polynomial of degree 5 in t and 1 in ε. We recognise the physical

thresholds of the ice-cream cone graph given in Section 5.2 of [46] (and given on
this page PF-icecream-2loop.ipynb). The ε deformation only affects the position
of the apparent singularities.

• The equal-mass case for the scoop m1 = m2 = 1 and generic masses μ1 �=
μ2 �= 1 and generic momenta k21 �= k22 �= k23 �= 1: the differential operator has
order 3 and has the ε expansion

L [215],ε =
1∑

r=0

L [215],r
,3

εr +
2∑

r=0

L [215],r
,2−r

ε2+r , (132)
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where L [215],r
,n

is of order n. The ε0 term factorises as

L [215],0
,3

= L 0
a,1 ◦ L [215],0

, (133)

where L 0
a,1 is a first order operator and the second order differential operator

L [215],0 matches the mass specialisation of the differential operator derived algo-
rithmically in Section 5.2 of [46] and using Hodge theory in Section 7.3 of [9].
The leading coefficient factorises as

L [215],ε
,4

∣
∣
∣
(d/dt)4

= t3(tk22 − (m1 +m2)
2)(tk22 − (m1 −m2)

2)c1(t)c2(t)c
[215]
3 (t, ε).

(134)
Only the positions of the apparent singularities depend on ε. They arise from the

roots of the polynomial c[215]
3 (t, ε) of degree 5 in t and 1 in ε.

• Generic masses non-vanishing m1 �= m2 �= μ1 �= μ2 and generic momenta
k21 �= k22 �= k23 �= 1: the differential operator is of order 4 and has the ε expansion

L [17],ε =
1∑

r=0

L [17],r
,4

εr +
2∑

r=0

L [17],r
,2−r

ε2+r . (135)

The ε0 term factorises as

L [17],0
,4

= L 0
a,1 ◦ L 0

b,1 ◦ L [17],0
, (136)

whereL 0
a,1 andL

0
b,1 arefirst order operators and the secondorder differential oper-

ator L [17],0 matches the mass specialisation of the differential operator derived
algorithmically in Section 5.2 of [46] and using Hodge theory in Section 7.3 of [9].
The leading coefficient factorises as

L [17],ε
,4

∣
∣
∣
(d/dt)4

= t4(tk22 − (m1 + m2)
2)(tk22 − (m1 − m2)

2)c1(t)c2(t)c
[17]
3 (t, ε).

(137)
The position of the non-apparent singularities is not affected by the ε deformation,

but the apparent depend on ε. They arise from the roots of the polynomial c[17]
3 (t, ε)

of degree 11 in t and 2 in ε.

5.4 The three-point non-planar triangle-box graph

For the non-planar triangle-box graph in Fig. 6, setting the internal mass tom = 1 and
defining the 2k1 · k2 = X with k21 = k22 = 0 and k1 + k2 + k3 = 0. We have

U = (x1 + x2)(x3 + x4 + x5 + x6) + (x3 + x4)(x5 + x6), (138)
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Fig. 6 The non-planar
triangle-box graph. Dashed lines
are massless propagators, and
solid lines are massive
propagators. The external
momenta ki satisfy
k1 + k2 + k3 = 0 and
k21 = k22 = 0

1

2

3

6

4

5
k3

k2

k1

Fig. 7 The planar massless
double-box graphs. The massless
external momenta ki satisfy
k1 + · · · + k4 = 0 and k2i = 0.
The labels of the graph give the
index of the edge variable xi

3 5

1 6

4

7

2k2 k3

k4k1

F (X) = − ((x3 + x4 + x5 + x6)x1x2 + x1x3x5 + x2x4x6) X

+ (x3 + x4 + x5 + x6)U . (139)

The integrand of the Feynman integral is the twisted differential form

	 = U6−3δ

(F (X))6−2δ

(
U3

F (X)2

)ε

	
(6)
0 . (140)

an the differential operator is

L ε = (16+X)X2
(

d

dX

)2

+(2(X+8)ε+7X+80)X
d

dX
+4(X+6)ε+4(2X+15) .

(141)

5.5 The four-point planar and non-planar double boxes graph

We show how to derive differential equation for themassless box andmassless double-
box integrals in dimension D = 4 − 2ε. Unlike previous cases, these integrals are
divergent in four dimensions so the ε = 0 integrals are not defined.

5.5.1 The massless planar double-box graph

The graph polynomials associated with the massless double-box graph in Fig. 7 are
given by

U�� = (x1 + x2 + x3)(x4 + x5 + x6) + (x1 + · · · + x6)x7, (142)

F��(s, t) = t x3x5x7 + s
(
(x1 + x2 + x3)x4x6

+ (x4 + x5 + x6)x1x2 + (x2 + x4)(x1 + x6)x7
)
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Fig. 8 The non-planar massless
double-box graphs. The massless
external momenta ki satisfy
k1 + · · · + k4 = 0 and k2i = 0.
The labels of the graph give the
index of the edge variable xi

4
7

3 6

2

5

1
k2 k3

k4k1

with the twisted differential in D = 4 − 2ε in the projective space P6

	ε
��(s, t) = U��

F��(s, t)3

(
U3

��
F2

��(s, t)

)ε

	
(7)
0 . (143)

We work with the single scale form 	̃ε
��(X) = (−s)3+2ε	ε

��(s, Xs) with the result

L ε
�� = (1 + X)X2

(
d

dX

)2

+ (2 + 3X + ε)X
d

dX
+ X − ε − 2ε2. (144)

5.5.2 The massless non-planar double-box graph

The graph polynomials associated with the non-planar massless double-box graph in
Fig. 8 are given by

U = (x1 + x3 + x4)(x2 + x5 + x6 + x7) + (x2 + x7)(x5 + x6) (145)

and

F (s, t) = s (x1x3(x2 + x5 + x6 + x7) + x1x6x7 + x2(x3x5 − x4x6))

+ t x4(x5x7 − x2x6) (146)

we work with the single scale differential form

	̃ε = (−s)3+2ε U
F (s, Xs)3

(
U3

F2 (s, sX)

)ε

	
(7)
0 . (147)

The differential operator we obtain is

L ε = (1 + X)2X2
(

d

dX

)2

+ (1 + X)(1 + 2X)(2 + ε)X
d

dX
+ 2X(X + 1)

+ (2X(X + 1) − 1) ε − 2ε2 . (148)
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Fig. 9 The Witten ice-cream
cone graph in momentum space 2

4k3 k4

k1 k2

5.6 TheWitten ice-cream cone diagram

We turn to the Witten ice-cream cone of Fig. 9 in analytic regularisation entering the
two-loop correction to the cosmological correlator between conformally coupled field
analysed in Section 5.3.4 of [27]. The cosmological correlator is the integration over
the energy of the two-loop flat space integral analytically regulated

I =
∫

d4L2d4L4

(L2
2)

1+κ(L2
4)

1+κ((L4 + L2 + Q)2)1+κ((L4 + L2 + Q̃)2))1+κ
, (149)

where �k1 + �k2 + �k3 + �k4 = 0 and Q = (ω3, �k3) and Q̃ = (ω4,−�k4). The parametric
representation is given by the integration I = ∫


4
	κ over the domain 
4 = {xi ≥

0, 1 ≤ i ≤ 4} of the differential form

	κ = π4�(4κ)

�(1 + κ)4

1

U2

(
4∏

i=1

xiU
F

)κ

	
(4)
0 , (150)

with the graph polynomials

U = x1x2 + (x1 + x2)(x3 + x4), (151)

and
F = x1x2

(
x3Q

2 + x4 Q̃
2
)

+ (x1 + x2)x3x4(Q − Q̃)2. (152)

Setting u = Q2/(Q − Q̃)2 and v = Q̃2/(Q − Q̃)2 one finds the following Gröbner
basis of differential operators3

L1 = (1 − u − v) v

(
∂

∂v

)2

− 2uv
∂

∂u

∂

∂v
− (3κ + 1)u

∂

∂u

+ (3κ(1 − u − 2v) − v)
∂

∂v
− 8κ2, (153)

3 Details are provided in the attached Mathematica notebook with this example is accessible at Ice-
cream-AdS.nb.
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Fig. 10 Multi-loop sunset

...

...p p

L2 = −u

(
∂

∂u

)2

+ v

(
∂

∂v

)2

− 3κ
∂

∂u
+ 3κ

∂

∂v
, (154)

L3 = 2u2
(
(u − v)2 + 1 − 2(u + v)

)( ∂

∂u

)3

(155)

+ v
(
9κ
(
(u + v − 1)2 − 2uv

)
− u2 + 9u2 − (v − 1)2 − 8u(1 + v)

)( ∂

∂v

)2

+
(
κ2
(
−29u2 + u(43v + 29) − 18(v − 1)2

)
+ κ

(
6u(v + 3) − 6(v − 1)2

)

+u(5u − v + 1))
∂

∂u

+
(
κ2
(
27u2 − 59uv − 54u + 36v2 − 63v + 27

)

− 3κ
(
−9u2 + 6uv + 8u + 3v2 − 4v + 1

)

− v(u + 3v − 3)
) ∂

∂v
+ 24(κ − 1)κ2(v − u − 1) .

6 Three- and higher-loop examples

We now turn to the higher-loop cases of Fig. 10. We first discuss the equal-mass case
and then a numerical example at three-loop orderwith all possiblemass configurations.

6.1 Minimal differential operator for higher-loop sunset

We now consider the n−1-loop sunset integral with n ≥ 4 in D = 2−2ε dimensions.
Eq. (9) for this case reads

I ε
�(n−1)( �m, t, ε) =

∫


n

	ε
�(n−1)( �m, t, ε); 	ε

�(n−1)( �m, t, ε) = 	
(n)
0

F�(n−1)(t)

(
Un

�(n−1)

F�(n−1)(t)n−1

)ε

(156)
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with

U�(n−1) = x1 · · · xn
n∑

i=1

1

xi
,

F�(n−1)(t) = Un−1

n∑

i=1

m2
i xi − t x1 · · · xn . (157)

Notice that Un
�(n−1)/F�(n−1)(t)n−1 is a homogeneous rational function of degree 0

in (x1, . . . , xn). As usual the differential form is defined in the complement of the
vanishing locus of the denominator in P

n−1\{F�(n−1)(t) = 0}. In D = 2 dimension
(ε = 0)we have a rational differential form	ε

�(n−1)( �m, t, 0). The differential operator
has been given up to six loops for ε = 0, and it is in agreement with the Feynman
integral being a (relative) period of a Calabi–Yau manifold of complex dimension
n − 2 [11, 12, 14, 17, 18, 20, 80, 87].

6.1.1 The equal-mass case

Already in D = 2 dimensions, for the sunset integral from three loops on the
Griffiths–Dwork algorithm had to be adapted because of the non-isolated singular-
ities of integrand. This was achieved in [46] by using syzygies. The resolution of the
linear system in Eq. (29) also takes into account the syzygies when including the ε

dependent factor.
For the equal-mass case m1 = · · · = ml+1 = 1, we find the sunset Feynman

integral satisfies the differential equation

L ε
�(l) I�({1, . . . , 1}, t, ε) = −(l + 1)!�(1 + ε)l

�(1 + lε)
(158)

with

L ε
�(l) =

l∑

r=0

L r
�(l)ε

r , (159)

where the differential operator is L r
�(l) is of order l − r . In the all equal mass case,

the ε dependence takes the particular formL ε
�(l) = L 0

�(l) +O(ε) whereL 0
�(l) is the

differential operator of order l for the all-equal-mass sunset integral in D = 2 derived
in [53] and the ε dependent differential operators have an order l − r where r is the
power of ε. The order ε0 differential operatorL 0

�(l) reproduces the one derived in [53]
up to five-loops using the properties of the Feynman integral in D = 2 dimensions (see
as well [17, 88–92]). By applying the algorithm presented in Sect. 3.1 we derived the
differential equations for the all-equal-mass sunset integral up to 20 loop orders. The
explicit results are given on the SageMath worksheet Sunset-1mass-Epsilon.ipynb.
We notice that the algorithm presented in this work produces the minimal differential
operator and does not need any factorisation of the differential operator, contrary to
the procedure presented in [90].
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6.1.2 The three-loop generic mass cases

For the three-loop sunset with different masses, we find the following results which
are given as well on theSageMathworksheet Sunset-Threeloop-Epsilon.ipynb.With
the notation of Section 4 of [46]:

• Case [4]: The equal-mass case m1 = m2 = m3 = m4 has already been discussed
in the previous section. The ε0 operator was derived and analysed in [11, 53, 88].
For ε �= 0, the differential operator reads

L [4],ε
�(3) = −(t − 16)(t − 4)t2

(
d

dt

)3

− 6(t3 − 15t2 + 32t)

(
d

dt

)2

− (7t2 − 68t + 64)

(
d

dt

)

− t + 4

+ ε

(

−6(t − 10)t2
(
d

dt

)2

− 6(3t − 20)t

(
d

dt

)

+ 18 − 6t

)

+ ε2
(

−(11t2 − 28t − 64)

(
d

dt

)

− 11t + 14

)

+ ε3 (−6t − 12) . (160)

• Case [31]: For two different masses m1 = m2 = m3 �= m4 the differential
operator is of order 5 and has the following ε dependence

L [31],ε
�(3) =

1∑

r=0

εrL [31],r
5 +

4∑

r=0

ε2+rL [31],r
4−r , (161)

where L [31],r
n are of order n. The order ε0 operator factorises as

L [31],0
5 = L [31],0

a,1 ◦ L [31],ε
�(3) , (162)

where L [31],0
a,1 is a first order operator and L [31],0

�(3) is the fourth order differential
operator of the three-loop sunset integral with mass configuration [31] (see in
Section 4.3 of [46]). The coefficient of the highest order term (d/dt)5 is given by

L [31],ε
�(3)

∣
∣
∣
(d/dt)5

= t3(t − (m1 − m4)
2)(t − (m1 + m4)

2)(t − (3m1 + m4)
2)

× (t − (3m1 − m4)
2)q[31](t, ε). (163)

The ε dependence appears only in the apparent singularities determined by the
polynomial q[31](t, ε) of degree 3 in t and 1 in ε.
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• Case [22]: For two different masses m1 = m2 �= m3 = m4 the differential
operator has order 6 and the ε expansion

L [22],ε
�(3) =

3∑

r=0

εrL [22],r
6 +

5∑

r=0

ε4+rL [22],r
5−r , (164)

where L [22],r
n are operators of order n. The order ε0 operator factorises as

L [22],0
6 = L [22],0

a,1 ◦ L [22],0
b,1 ◦ L [22],0

�(3) , (165)

where L [22],0
a,1 and L [22],0

b,1 are first order operators. L [22],0
�(3) is the fourth order

operator for the three-loop sunset integral with mass configuration [22] given
Section 4.3 of [46]. The coefficient of the highest order term (d/dt)6 is given by

L [22],ε
�(3)

∣
∣
∣
(d/dt)6

= t4(t − (2m1)
2)(t − (2m4)

2)(t − (2m1 + 2m4)
2)

× (t − (2m1 − 2m4)
2) q[22](t, ε). (166)

The ε dependence appears only in the apparent singularities determined by the
polynomial q[22](t, ε) of degree 4 in t and 3 in ε.

• Case [211]: For three different masses m1 = m2 �= m3 �= m4 the differential
operator has order 7 and has the ε expansion

L [211],ε
�(3) =

8∑

r=0

εrL [211],r
7 +

6∑

r=0

ε9+rL [22],r
6−r , (167)

where L [211],r
n are operators of order n. The order ε0 operator factorises as

L [211],0
7 = L [211],0

a,1 ◦ L [211],0
b,1 ◦ L [211],0

c,1 ◦ L [211],0
�(3) , (168)

whereL [211],0
a,1 ,L [211],0

b,1 andL [211],0
c,1 are first order operators andL [211],0

�(3) is the
fifth order differential operator the three-loop sunset integral with mass configu-
ration [211] given Section 4.3 of [46]. The coefficient of the highest order term
(d/dt)6 is given by

L [211],ε
�(3)

∣
∣
∣
(d/dt)6

= t5
(
t − (m1 − m2)

2
) (

t − (m1 + m2)
2
)

×
(
t − (m1 + m2 − 2m4)

2
) (

t − (m1 − m2 + 2m4)
2
) (

t − (−m1 + m2 + 2m4)
2
)

×
(
t − (m1 + m2 + 2m4)

2
)
q[211](t, ε). (169)

The ε dependence appears only in the apparent singularities determined by the
polynomial q[211](t, ε) of degree 9 in t and 7 in ε.
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• Case [1111]: For four different masses m1 �= m2 �= m3 �= m4, the differential
operator has order 11 and has the ε expansion

L [1111],ε
�(3) =

16∑

r=0

εrL [1111],r
11 +

11∑

r=0

ε16+rL [1111],ε
11−r . (170)

The order ε0 operator factorises as

L [1111],0
0,11 = L [1111],0

a1,1
◦ · · · ◦ L [1111],0

a5,1
◦ L [1111],0

�(3) , (171)

whereL [1111],ε
a1,1

, . . . ,L [1111],ε
a5,1

are first order operators andL [1111],0
�(3) is the sixth

order differential operator for the three-loop sunset integral with mass configu-
ration [1111] given in [46]. The coefficient of the highest order term (d/dt)11 is
given by

L [1111],ε
�(3)

∣
∣
∣
(d/dt)11

= t11
(
t − (m1 + m2 − m3 − m4)

2
)

×
(
t − (m1 − m2 + m3 − m4)

2
) (

t − (m1 + m2 + m3 − m4)
2
)

×
(
t − (m1 − m2 − m3 + m4)

2
) (

t − (m1 + m2 − m3 + m4)
2
)

×
(
t − (m1 − m2 + m3 + m4)

2
) (

t − (−m1 + m2 + m3 + m4)
2
)

×
(
t − (m1 + m2 + m3 + m4)

2
)
q[1111](t, ε). (172)

The ε dependence appears only in the apparent singularities determined by the
polynomial q[1111](t, ε) of degree 17 in t and 16 in ε.

7 Summary and discussion

In Sect. 3.1, we have presented an algorithm for deriving inhomogeneous differential
equations satisfied by Feynman integrals. At each derivative order the procedure con-
sists of solving the linear systems (29) in order to determine the coefficients ca1,...,ar (z)
and the inhomogeneous term β� in (10). Our work introduces an explicit dependence
on the regulators ε or κ , so it is worth discussing their effect on theminimal differential
operator and on the singularities of the differential equations.

7.1 Minimal order of the differential operator and number of master integrals

The minimal order differential operator gives direct information about the underlying
algebraic-geometry associatedwith the Feynman integral. The knowledge of this oper-
ator is an essential ingredient for identifying if a given Feynman integral is a (relative)
period associated with a genus 0, 1 or 2 curve, a Calabi-Yau manifold or other object.
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We start by summarising what we have found with the examples studied in this
paper:

• For the L-loop sunset integrals, the number of irreduciblemaster integrals is 2L+1−
L − 2 [72, 93, 94].

– The minimal differential operator for the all equal-mass case has order the
number of loops L .

– For generic mass configuration at one-loop we have an operator of order 1, at
two-loop an operator of order 4 and at three-loop an operator has order 11.

– In integer dimensions ε = 0 the order of theminimal order differential operator
for generic kinematics can be less than the number of master integrals. One
typical example is the one of the Picard–Fuchs operator L�(l) for the multi-

loop sunset in D = 2 dimensions which has for minimal order 2L+1− ( L+2⌊
L+2
2

⌋
)

for generic mass configurations [46]. The order of the ε-dependent differential
operator is the same as the number of irreducible master integrals but its ε-
independent piece L 0

�(l) is factorisable as L
0
�(l) = L1 ◦ L�(l).

• For the two-loop ice-cream cone, the number of irreducible masters is four.

– In the generic mass and kinematics case, the minimal order of the ε-deformed
minimal differential operator is four.

– For special kinematic configurations, the ice-cream cone differential operator
is three which is smaller than the number of masters.

We thus see that when ε �= 0 and generic kinematics the order of the differential
operator saturates the bound given by the number of irreducible masters. This leads
us to formulate the following observation: For general kinematics the minimal (i.e.
not factorisable) ε-deformed differential operator has the same order as the number
of independent master integrals.

7.2 Order reduction

For special kinematics, the minimal order is smaller than the number of master inte-
grals. This reduction of order can be understood by the factorisation of the differential
operator

Lgeneric
restriction−→ L̂restricted = L1 ◦ Lminimal . (173)

The reduction of order arises when the integrand has more singularities or more
symmetries:

• More singularities: In the case of massless internal lines or massless external
kinematics, extra singularities arise thus reducing the genus of the singular locus of
the integral. This has for consequence a lowering of the order minimal differential
operator.

• More symmetries: Another situation is when special choices of kinematic con-
figurations the integrand of the Feynman integral produce extra symmetries in the
space of projective variables x . This leads to new relations between independent
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(period) integrals, which reduce the number of independent integrals. A typical
case is the reduction order of the sunset integral according the mass configurations
as given in [11, 17, 18, 46, 90]. These cases are not associated with the appearance
of new singularities of the Feynman integral.

In the case of special kinematic configurations that do not lead to new singularities
of the integral, the order drop is not detected by either the computation of the Euler
characteristic of complement of graph hypersurface in the projective space of the
edge variables, nor the computation using the critical points of the Lee–Pomeransky
representation [33, 74, 95] nor the Baikov representation [62, 65, 96]. For instance
in [97] it was explained how a hidden involution symmetry of the two-loop non-planar
double-box allows identifying the hyperelliptic curve of genus 2 when the use of the
Baikov representation gave a curve of genus 3. It is shown in [9], using a detailed
algebraic-geometrical analysis, that all planar two-loop integrals are either period of
rational curves, elliptic curve or genus 2 hyperelliptic curves or minimal order two or
four, respectively.

7.3 The regulator dependence

For a differential equation

cN (z)
dN f (z)

dzN
+ · · · + c0(z) f (z) = 0, (174)

the roots of cN (z) are the singularities of the differential equation. A root of cN (z)
where the solution f (z) is regular is called an apparent singularity. A root of cN (z)
where the solution has a singularity is a real singularity (See Section 16.4 of [98] for
details). For the case of Feynman integrals, the non-apparent singularities of (174)
are the roots of the discriminant of the singular locus of the integrand of Feynman
integrals [9].

We have noticed that the dimensional regulator ε appears only in the apparent
singularities of the differential operator L ε

� . This means that the ε deformation does
not change the position of the real singularities, but it affects the local behaviour (the
monodromy) of the solution near the singularity. The physical interpretation of this is
that the kinematic singularities (the position of the thresholds and pseudo-thresholds)
of a Feynman integral are independent of the space-time dimension. However, the
local behaviour of the integral near the thresholds and pseudo-thresholds does change
with the space-time dimension. The latter has been used with great success when
decomposing amplitudes using the generalised unitarity method [99].

7.4 Outlook

We have presented a generalisation of the Griffiths–Dwork reduction for deriving
the differential operator acting on Feynman integrals in dimensional regularisation or
analytic regularisation. The algorithm makes a special use of the fact that the twist
from the regularisation is the power of a degree zero homogeneous rational function
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in the edge variables. The procedure amounts to solving linear systems which is done
using FiniteFlow routines [51].

We have applied the algorithm to various cases and derived the inhomogeneous
partial differential equations satisfied by the integrand of the Feynman integral in
parametric representation. In dimensional regularisation we have confirmed that the
order the differential operators is smaller or equal to the number of master integrals.
The order of the differential operators is lower for the cases of the kinematic invariants
where the integrand presents more symmetry (equal-masses, special kinematics,…) or
more singularities (massless internal or external states). Something that was already
noticed in the case of finite integrals [46] but stays true for the regulated integrals.

One motivation for presenting this algorithm is its application to Feynman integrals
in analytical regularisation which arise in the evaluation of the cosmological correla-
tors [25, 27, 100], since the commonly used integration-by-part algorithms need to be
adapted to the case of analytic regularisationwith several propagators with generalised
powers.

Wehave shown aswell how to derive aGröbner basis of partial differential operators
in some multiple scale cases. The differential operators produced by the algorithm of
this paper might arise as specialisation of the system of partial differential operators
obtained by GKZ approach. The restriction of the GKZ D-module is a difficult open
problem, which we leave for further investigations.
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A The Bessel representation for the sunset graphs

Following the steps in Section 8 of [53] gives the following Bessel integral represen-
tation for the multi-loop sunset integrals in D = 2 − 2ε dimensions

I ε
�(n−1)( �m, t, ε) = 2(n−1)(1−ε)t

ε
2

(m1 · · ·mL+1)ε�(1 + (n − 1)ε)

×
∫ ∞

0
I−ε(

√
t x)

n∏

i=1

K−ε(mi x) x
1+ε(n−1)dx . (175)
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This integral representation is valid for t < (m1 + · · · + mn)
2. For x → 0 we have

lim
x→0

I−ε(x) �
( x

2

)ε ; lim
x→0

K−ε(x) �
( x

2

)ε

(176)

and the integral converges as long as 2 + (n − 1)ε > 0 which is the condition D =
2 − 2ε < 2n/(n − 1) for the absence of ultraviolet divergences for the n − 1-loop
massive sunset.

Using this representation and applying the creative telescoping algorithm [47–50],
we have checked the results obtained the extended Griffiths–Dwork reduction. The
creative telescoping algorithm builds an annihilator

T (t, ∂t ; x, ∂x ) = L (t, ∂t ) + C (t, ∂t ; x, ∂x ) (177)

of the integrand f (t, x) := I−ε(
√
t x)

∏L+1
i=1 K−ε(mi x) x1+ε(n−1) such that

T (t, ∂t ; x, ∂x ) f (t, x) = L (t, ∂t )i(t, x) + C (t, ∂t ; x, ∂x ) f (t, x) = 0 (178)

implying thatL (t, ∂t ) f (t, x) is the operator acting on the integral because the domain
of integration is independent of t . On an ordinary laptop, the results for the equal-mass
case and up to twenty loops order are obtained in a few second to a fewminutes, which
is of the same order of time as the generalised Griffiths–Dwork reduction presented
in the main text of this work.
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