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Abstract
We discuss dense coding with n copies of a specific preshared state between the
sender and the receiver when the encoding operation is limited to the application of
group representation. Typically, to act on multiple local copies of these preshared
states, the receiver needs quantum memory, because in general the multiple copies
will be generated sequentially. Depending on available encoding unitary operations,
we investigate what preshared state offers an advantage of using quantum memory on
the receiver’s side.
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1 Introduction

Quantum dense coding is a key subroutine in many quantum information processing
tasks. Dense coding utilizes preshared entanglement among the sender and receiver
to communicate more classical bits than the number of quantum bits sent from the
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sender to receiver [1–13]. It is well known that one preshared maximally entangled
qubit together with one bit of quantum communication admits communicating two
bits of classical information. Although it is evident that preshared entanglement is a
necessary resource to enable dense coding,how entanglement helps the enhancement is
still unclear—the presence of entanglement in a preshared state does not necessarily
guarantee to enhance classical communication for a given encoding strategy. It is
therefore important to characterize when entanglement indeed becomes helpful for
dense coding.

This question can be approached by observing that holding entanglement dur-
ing communication requires the receiver to store the preshared state in a quantum
memory. If the receiver is not in possession of quantum memory but instead makes a
measurement right after the preshared state is provided, entanglement is broken before
the communication is completed. Therefore, characterizing when quantum memory
enhances the classical communication rate gives insights into the role genuinely played
by quantum entanglement. This question also has practical relevance, as preparing a
long-term quantum memory may come with much technical difficulty [14, 15].

As the simplest setting, we restrict our encoding operations to a certain subgroup
under the presence of preshared states [13]—we assume that the encoding operation
is given as a (projective) unitary representation U of a group G on HA. When the
preshared entangled state is written as ρAB and our coding operation is restricted
to these unitaries, our channel can be written as the classical-quantum (cq) channel
g �→ UgρABU

†
g . Since this cq channel has a symmetric property for the group G, we

say that it is a cq-symmetric channel1. Recently, Ref. [16] studied such a model in the
context of the resource theory of asymmetrywithout considering shared entanglement.
Reference [13] applied cq-symmetric channel to the above setting under the presence
of shared entanglement.

In Ref. [13], two scenarios are considered; the first where Bob has to wait for the
quantum communication from Alice before he can perform a global measurement on
all systems, and a second where Bob is allowed to apply a global measurement on
his local part of the shared states before he receives Alice’s communication. While
the second system reduces memory requirements at Bob, Bob still requires quantum
memory when the preshared states are generated one by one.

In this work, in order tomodel the lack of quantummemory, we consider a third case
where Bob measures his local part of the entangled states one by one and investigate
when the capacities of these three cases coincide. The practical meaning of the first
and third cases are compared in Sect. 2.3.1, Remark1. In particular, we study the
conditions for a preshared entangled state when the capacities for the second and third
case differ under which quantum memory becomes helpful in dense coding, whose
encoding is realized by the action of a given group representation. We also relate our

1 The class of cq-symmetric channels has been studied well in the literature [16]. It is a quantum general-
ization of a regular channel [17], which was introduced as a useful class of channels in classical information
theory. This class of classical channels has various names, such as generalized additive [18, Section V]
and conditional additive [18, Section 4] channels. The class of additive channels is contained in the regular
channels as a subclass. The reference [19, Section VII-A-2] studied its quantum extension with an additive
group and discussed the capacity and the wire-tap capacity with semantic security. Since this class has a
good symmetric property, it is known that algebraic codes achieve the capacity [17, 19–22].
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setting to private dense coding with the existence of an eavesdropper, extending the
private capacity characterized for the first model, i.e., the case when the receiver is
allowed to make a collective measurement on the joint system [23].

We begin by studying the setting involving an arbitrary preshared state and an
arbitrary group representation, where we provide necessary (and sufficient) conditions
for a quantummemory to be useful. Using a necessary condition, we show an example
of an entangled state, in which the capacities are equal and quantummemory is useless
in this sense. We then focus on pure preshared states and give an explicit structure of
the preshared state such that the receiver does not need to hold a quantum memory to
realize the optimal decoding. Imposing the multiplicity-free condition on the group
representation, we establish a novel connection between dense coding and the resource
theory of speakable coherence [24]—equivalent to the resource theory of asymmetry
with U(1) group with a multiplicity-free representation—which brings us a further
characterization of such pure preshared states.

In fact, the resource theory of asymmetry is a topic to study physical resources
for information processing and has been under active investigation [12, 25–34]. In
the context of quantum hypothesis testing, the references [35] and [36, Theorem 2.9]
considered the difference with respect to the relative entropy between a state and the
averaged state under a certain group action, where the averaged state is the output of
the noisy channel composed of a random unitary application. This relative entropy
shows the difficulty of distinguishing the noiseless state and the noisy averaged state
under a certain group action. Here, we discuss this type of discrimination as a modi-
fication of quantum illumination, which was originally introduced for enhancing the
capability of detecting a target object with low reflectivity using entanglement [37,
38]. In particular, we apply our conditions to characterize when the entanglement in
a given input state enhances the performance in guessing whether the noiseless or
the group twirling channel acted on the entanglement half. We find that in the case
of asymmetric discrimination with an abelian group, the performance with a maxi-
mally entangled input cannot be enhanced by local quantum memory, which can be
contrasted to the conventional quantum illumination, in which quantum memory is
essential when the input is a two-mode squeezing vacuum state [39].

The remainder of this paper is organized as follows. Section2 formulates the two
cases of interest for quantum dense coding. Section2.1 formulates the case with quan-
tum memory allowing for the global measurement, and Sect. 2.3 formulates the case
without quantum memory after Sect. 2.2 prepares the notations for group representa-
tion. Section3 discusseswhen quantummemory is useless for a general preshared state
and presents several examples of such entangled states. Section4 investigates simpler
conditions for pure states and presents relevant examples. This analysis reveals the
relation between the usefulness of quantum memory and the genuinely incoherent
operations (GIO), a class of operations introduced in the resource theory of speakable
coherence [40]. Section5 applies obtained results to the case of the maximally entan-
gled states. Section6 applies our results to amodified version of quantum illumination.
Section7 provides discussion for our results and suggests future studies.
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2 Dense coding with a preshared state

2.1 Dense coding with quantummemory

2.1.1 Standard capacity

We formulate dense coding with a preshared state as in Ref. [13], which is based on a
cq-symmetric channel [16]. Assume that Alice and Bob share n copies of the quantum
state ρAB on the system H := HA ⊗ HB , where HB is a dB-dimensional system.
We consider a (projective) unitary group representation of a group G onHA. That is,
for each g ∈ G, we have a unitary operator Ug on HA such that for g, g′ ∈ G, there
exists a unit complex number c(g, g′) satisfying

UgUg′ = c(g, g′)Ugg′ . (1)

When c(g, g′) is 1, {Ug}g∈G is called a unitary group representation. Otherwise, it
is called a projective unitary group representation. We also define the group twirling
channel G(ρ) := ∑

g∈G 1
|G|UgρU

†
g .

Consider the case when encoding operation is given as an application of unitary.
In practical scenario, due to the device condition, available unitaries are limited to a
subset of unitaries. Since any combination of available unitaries is also available, it is
natural to assume that the set of available unitaries is given as a (projective) unitary
group representation of a group G onHA. In this scenario, we cannot exclude the case
that c(g, g′) takes a non-identical element in general. For example, when the X and Z
operations are available on a qubit system, c(g, g′) may take a non-identical element.
Thus, our problem is formulated as channel coding for the cq-channel g(∈ G) �→
UgρABU

†
g . Since this cq-channel has a group covariant form, the channel capacity

Cc(ρAB) of this channel is calculated as [41, 42]

Cc(ρAB) = sup
p

H

⎛

⎝
∑

g∈G
p(g)UgρABUg

†

⎞

⎠ −
∑

g∈G
p(g)H(UgρABUg

†)

= sup
p

H

⎛

⎝
∑

g∈G
p(g)UgρABUg

†

⎞

⎠ − H(ρAB)

=H(G(ρAB)) − H(ρAB)

=D(ρAB‖G(ρAB)), (2)

where H(ρ) := −Tr ρ log ρ, D(ρ‖σ) = Tr ρ(log ρ − log σ). In the following, we
use the word “capacity” to denote the channel capacity. Here, we used the following
relation.

H

⎛

⎝
∑

g∈G
p(g)UgρABUg

†

⎞

⎠ =
∑

g′∈G

1

|G|H
⎛

⎝
∑

g∈G
p(Ug′gU †

g′)UgρABUg
†

⎞

⎠
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≤H

⎛

⎝
∑

g′∈G

1

|G|
∑

g∈G
p(Ug′gU †

g′)UgρABUg
†

⎞

⎠ = H

⎛

⎝
∑

g∈G

1

|G|UgρABUg
†

⎞

⎠ .

Wedescribe here the first casewith quantummemorymentioned above. In this case,
Alice transmits a message to Bob with n uses of this cq-channel. The set of available

encoding operations is characterized by the product group Gn =
n

︷ ︸︸ ︷
G × · · · × G. The

n-tensor product representation of U is given as U(g1,...,gn) := Ug1 ⊗ · · · ⊗ Ugn for
(g1, . . . , gn) ∈ Gn . By using the n-tensor product representation, a classical message
k ∈ Kn is encoded by using an encoder

φe,n : Kn → Gn (3)

and applyingUφe,n(k) to her local copies and sending them to Bob, thus producing the
state

Uφe,n(k)ρABU
†
φe,n(k)

(4)

at Bob, effectively producing the cq channel from Alice to Bob. Using quantum mem-
ories to store the whole state, Bob then decodes the message using a decoder POVM

φd,n = {�k}k∈Kn (5)

onHA ⊗ HB .
A pair of an encoder φe,n and a decoder φd,n is called a code �n . The performance

of a code�n is evaluated by the size ofKn denoted by |Kn| and the averaged decoding
error probability ε(�n) given as

ε(�n) := 1

|Kn|
∑

k∈Kn

(
1 − TrUφe,n(k)ρ

⊗n
ABU

†
φe,n(k)

�k

)
. (6)

Then, the channel coding theorem for cq-channels [43, 44] states that the quantity in
(2) gives the operational capacity, i.e.,

Cc(ρAB) = sup
{�n}

{
lim
n→∞

1

n
log |Kn|

∣
∣
∣ lim
n→∞ ε(�n) = 0

}
. (7)

2.1.2 Private capacity

In addition, the recent paper [23] considers private dense coding that covers a risk
that the eavesdropper, Eve, might intercept the transmitted state and thus obtain (a
part of) the information for the transmitted message. In this case, if Eve wants to hide
her attack, she applies another quantum channel to the intercepted system, sends the
output to Bob, and keeps its environment system. However, if she does not need to
hide her attack, she does not need to send the output to Bob. We also assume that Eve
has the environment system of the state ρAB , i.e., the joint state among Alice, Bob,
and Eve is a pure state ρABE . In this case, the following two conditions are required.
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(1) When Eve does not intercept the transmitted state, Bob recovers the message with
a probability of almost 1.

(2) Even when Eve intercepts the transmitted state, Eve obtains no information about
the message.

This problem was studied in the case with a preshared maximally entangled state [45]
and a general noisy preshared state [23]. When Alice and Bob share the maximally
entangled state, Eve obtains no information about the message even when Eve inter-
cepts the transmitted state [45]. In this case, the conventional dense coding satisfies the
above two conditions. In the general noisy case with a general state ρAB , the reference
[23] derived the following lower bound Cp

c of the private capacity C
p
c as

Cp
c (ρAB) ≥ Cp

c(ρAB) = D(ρAB‖G(ρAB)) − D(ρAE‖G(ρAE )). (8)

In particular, it is known that the above value gives the private capacity when ρAB is
a maximally correlated state [23, Appendix A].

2.2 Notations for group representation

For further study on the capacity Cc(ρAB) under the given symmetry, we prepare sev-
eral notations for group representation. We let Ĝ denote a set of irreducible projective
unitary representations of G. For all irreducible representations λ ∈ Ĝ, let Hλ be the
projective representation space and dλ be its dimension. In general, the representation
space HA can be written as

HA =
⊕

λ∈Ĝ ′
Hλ ⊗ Mλ, (9)

whereMλ = C
nλ expresses the multiplicity space of the irreducible projective unitary

presentation λ, the integer nλ is the multiplicity, and Ĝ ′ ⊂ Ĝ is the set of irreducible
representations with nλ > 0 for HA. Since our representation is unitary, vectors in
different irreducible components are orthogonal to each other. Hence, we canwrite our
space in the above way. Therefore, recalling HB = C

dB , the joint system HA ⊗ HB

is written as

HA ⊗ HB =
⊕

λ∈Ĝ ′
Hλ ⊗ C

nλdB . (10)

Let �λ be the projection to Hλ ⊗ Mλ = Hλ ⊗ C
nλ . Defining the probability

distribution P	(λ) := Tr(�λ ⊗ IB)ρAB where we denote by 	 the corresponding
random variable and the state ρλ := 1

P	(λ)
(�λ ⊗ IB)ρAB(�λ ⊗ IB), we have

G(ρAB) =
⊕

λ∈Ĝ ′
P	(λ)

1

dλ

Iλ ⊗ TrHλ
(ρλ), (11)
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where IB and Iλ are the identity operators acting on HB and Hλ, respectively. This
gives

H(G(ρAB)) = H(P	) +
∑

λ∈Ĝ ′
P	(λ)

(
log dλ + H(TrHλ

ρλ)
)
. (12)

Therefore, the capacity Cc(ρAB) admits the following form.

Cc(ρAB) = H(P	) +
∑

λ∈Ĝ ′
P	(λ)

(
log dλ + H(TrHλ

ρλ)
)

− H(ρAB). (13)

When ρAB is a pure state, this reduces to [13]

Cc(ρAB) = H(P	) +
∑

λ∈Ĝ ′
P	(λ)

(
log dλ + H(TrHλ

ρλ)
)

= H(P	) +
∑

λ∈Ĝ ′
P	(λ)

(
log dλ + H(TrMλ ρλ)

)
(14)

where the second equality (changing the system of the trace) follows because ρλ is
also a pure state.

To simplify our analysis, let us introduce the following condition on a unitary
representation.

Definition 1 (Multiplicity-free condition) We say that a unitary representation U of
G on H is multiplicity-free when there exists a subset Ĝ ′ ⊂ Ĝ such that the unitary
representation U is equivalent to

⊕

λ∈Ĝ ′
Hλ, (15)

namely, when all multiplicities are either 0 or 1, and Ĝ ′ is the set of all irreducible
representations such that nλ = 1.

2.3 Dense coding without quantummemory

2.3.1 Standard capacity

To achieve the capacity Cc(ρAB), Bob needs to keep his state in his quantum memory
while firstH⊗n

B and thenH⊗n
A are collected. Since the cost to keep quantummemory is

expensive, it is practical to replace it with classical memory by performing a projective
measurement on each system HB as they are received. To this end, let B := {|k〉}dBk=1
be Bob’s measurement basis on HB . We also let B denote the measurement channel
with respect to the basisB.WhenBob applies themeasurementB, the initial preshared
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state is given by

B(ρAB) :=
∑

k

〈k|ρAB |k〉 ⊗ |k〉〈k| =
∑

k

PK (k)ρA|k, (16)

where

PK (k) := TrA〈k|ρAB |k〉
ρA|k := 1

PK (k)
〈k|ρAB |k〉 ⊗ |k〉〈k| (17)

When Bob makes a measurement with the basis B on every quantum system HB

in advance, the capacity of (2) satisfies (notice that G acts on A and thus commutes
with B)

Cc(B(ρAB)) = D(B(ρAB)‖G ◦ B(ρAB)) = D(B(ρAB)‖B ◦ G(ρAB)). (18)

Here, since the support of B ◦ G(ρAB) contains the support of B(ρAB), the above
quantity does not diverge.

Indeed, evenwhenBob sends hismeasurement outcome toAlice beforeAlice sends
her message, the capacity has the same value because it does not distinguish whether
k is at Alice or Bob, as can be seen in the following. We have the capacity of this
setting as

dB∑

k=1

PK (k)Cc(ρA|k) =
dB∑

k=1

PK (k)(H(G(ρA|k)) − H(ρA|k))

=H(G(B(ρAB))) − H(B(ρAB))

=D(B(ρAB)‖G ◦ B(ρAB))

=Cc(B(ρAB)). (19)

The data-processing inequality for the relative entropy implies that for all measure-
ments B

Cc(ρAB) = D(ρAB‖G(ρAB)) ≥ D(B(ρAB)‖B ◦ G(ρAB)) = Cc(B(ρAB)). (20)

When the equality in (20) holds with a measurement B, Bob’s quantum memory is
useless with respect to the measurement B. We call such a state ρAB B-q-memory
useless. In particular, when there exists such a measurement B, we call such a state
ρAB q-memory useless. Otherwise, we call the state ρAB q-memory useful. Our aim is
to characterize the condition when the equality holds.

Here, it is instructive to clarify the difference between the setting in Ref. [13] and
ours. Reference [13] discussed the channel capacity when Bob is allowed to make a
measurement across n-tensor product spaceH⊗n

B before Bob receives the transmitted
systems. In contrast, we allow Bob to apply a measurement only on a single system
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HB n times. That is, in our setting, Bob is not allowed to apply quantummeasurements
over multiple copies of preshared states on Bob’s side before the communication. The
measurement in Ref. [13] is called a collective measurement and our measurement
here is called an individual measurement. Reference [13] studied the setting with a
collective measurement at the asymptotic limit n → ∞. They showed that the optimal
transmission rate under their setting becomes Cc(ρAB) when the group G is abelian,
the representation U is multiplicity-free, and the state ρAB is pure. Although their
setting does not ask Bob to keep the quantum system before receiving the other parts
from Alice, it still requires quantum memory in Bob’s system. This is because when
Bob receives these n quantum systems one by one, he needs to store these n quantum
systems before making a measurement across his n quantum systems H⊗n

B . On the
other hand, our setting described above prohibits the use of quantum memory.

Remark 1 In our setting, we allow a collective measurement across many quantum
systems received by Alice at the decoding stage, although a collective measurement
is not allowed on shared quantum systems distributed to Bob. This assumption is
justified by considering the situation where the communication from Alice to Bob is
done within a short period of time while it takes much longer for quantum systems
to be distributed to Bob before the communication. Indeed, if the use of the quantum
communication channel is expensive, this scenario is reasonable for the following
reasons. The distribution step (before the communication) can take a longer time
because it is a preparation for the communication between Alice and Bob. Since
fast communication channels are expensive, it is reasonable to use slower channels for
distributing shared quantum systems. In such a case, tomake a collectivemeasurement
on sharedquantumsystemsdistributed toBob,Bobneeds to have aquantummemory to
keep his quantum systems for a long time. On the other hand, the communication from
Alice to Bob typically needs to be accomplished quickly, where they are expected to
use faster communication channels. There, Bob does not need to hold a good quantum
memory lasting for a long time to make a collective measurement over the quantum
systems received in a short period of time from Alice.

2.3.2 Private capacity

Next, we discuss the private dense coding when Bob makes a measurement with the
basis B. We have the following lower bound for the private capacity [23]

Cp
c(ρAB,B) = D(B(ρAB)‖G ◦ B(ρAB)) − D(ρAE‖G(ρAE )). (21)

The difference between Cp
c(ρAB) and Cp

c(ρAB,B) is given by

Cp
c(ρAB) − Cp

c(ρAB,B) = D(ρAB‖G(ρAB)) − D(B(ρAB)‖B ◦ G(ρAB))

= Cc(ρAB) − Cc(B(ρAB)) ≥ 0. (22)

Therefore, the equality condition in (20) is useful for comparing the lower bounds for
these two private capacities.
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3 General preshared states

3.1 Conditions for q-memory uselessness

We begin our investigation of conditions for q-memory uselessness with a general
mixed preshared resource state. We denote with ρ−1 the pseudoinverse of an operator
ρ on H and its support Hρ . For the general case, we consider [G ◦ B(ρAB)]−1 of
G ◦ B(ρAB) and denote the support of the operator G ◦ B(ρAB) as HB,G,ρAB . Then,
the supports of B(ρAB), G(ρAB), and ρAB are included in HB,G,ρAB . Applying the
equality condition for the information processing inequality for relative entropy [46]
to (20), we have the following characterizations.

Theorem 1 Given a preshared state ρAB and the basisB, the following conditions are
equivalent.

(A1) The equality in (20) holds, i.e., ρAB is B-q-memory useless.
(A2) The following relation holds as an operator on HB,G,ρAB .

ρAB = √
G(ρAB)

√
G ◦ B(ρAB)

−1B(ρAB)
√
G ◦ B(ρAB)

−1√G(ρAB). (23)

(A3) There exists a CPTP map 
 such that


(B(UgρABU
†
g )) = UgρABU

†
g (24)

for g ∈ G.

Proof The equivalence between (A1) and (A2) follows from [47, Theorem3]. The rela-
tion (A3)⇒ (A1) is trivial.Assume (A2).WehaveUgG(ρAB) = G(ρAB)Ug andUgG◦
B(ρAB) = G◦B(ρAB)Ug .Wedenote the space orthogonal toHB,G,ρAB byH⊥

B,ρAB
.We

denote the projection to H⊥
B,ρAB

by I⊥. We consider
√G(ρAB)

√G ◦ B(ρAB)
−1 as a

map onHB,G,ρAB . Then, we can define themap T := √G(ρAB)
√G ◦ B(ρAB)

−1⊕ I⊥
onH .

Since Ug
√G(ρAB)U−1

g = √G(ρAB) and Ug
√G ◦ B(ρAB)

−1
U−1
g =√G ◦ B(ρAB)

−1, we have
√G(ρAB)

√G ◦ B(ρAB)
−1

Ug = Ug
√G(ρAB)√G ◦ B(ρAB)

−1. Thus, we have

TUgB(ρAB)U †
g T

†

= √
G(ρAB)

√
G ◦ B(ρAB)

−1
UgB(ρAB)U †

g

√
G ◦ B(ρAB)

−1√G(ρAB)

= Ug

√
G(ρAB)

√
G ◦ B(ρAB)

−1B(ρAB)
√
G ◦ B(ρAB)

−1√G(ρAB)U †
g

= UgρABU
†
g , (25)

where the final equation follows from the condition (A2). Defining 
(ρ) := TρT †,
we have (A3). ��
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Fig. 1 Circuit representation of the conditions in Theorem 2

We remark that the above results can be extended to a general quantum channel
B following the same proof. Apart from (23), we obtain an alternative necessary and
sufficient condition for a general resource state ρAB using the result in Ref. [47].

Theorem 2 Let B̃ be a system isomorphic to B and CXB→B̃ := ∑dB
k,k′=1 |k〉〈k|B ⊗

|k′ + k〉〈k′|, where k′ + k is implicitly k′ + k mod dB, be the CNOT gate with respect
to the basis B controlled on B. Let ρ′

AB B̃
be the state on AB B̃ defined as

ρ′
AB B̃

:= CXB→B̃ (ρAB ⊗ |0〉〈0|B̃)CX†
B→B̃

. (26)

Then, the condition Cc(ρAB) = Cc(B(ρAB)) holds if and only if there exist the fol-
lowing six items satisfying the condition (27).

(1) an index set J , which is possibly an infinite set,
(2) a decomposition HA ⊗ HB = ⊕

j∈J HL j ⊗ HR j for some subspaces HL j and
HR j ,

(3) states ηL j ,g on HL j that can depend on g,
(4) states ηR j B̃

on HR j ⊗ HB̃ independent of g,
(5) a probability distribution {p j |g} j for each g ∈ G,
(6) a unitary VAB on AB.

Ugρ
′
AB B̃

U †
g = VAB

⎛

⎝
⊕

j

p j |gηL j ,g ⊗ ηR j B̃

⎞

⎠ V †
AB, ∀g ∈ G. (27)

Proof Step 1. First, we introduce another useful necessary and sufficient condition for
the equation Cc(ρAB) = Cc(B(ρAB)). Define the classical-quantum state

τGAB :=
∑

g∈G

1

|G| |g〉〈g| ⊗UgρABU
†
g . (28)
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To take into account the action of Bob’s measurement, we also consider a classical-
quantum state

τ ′
GABB̃

:= CXB→B̃ τGAB ⊗ |0〉〈0|B̃CX†
B→B̃

=
∑

g∈G

1

|G| |g〉〈g| ⊗Ugρ
′
AB B̃

U †
g ,

(29)
where ρ′

AB B̃
is the state defined in (26). This gives

τ ′
GAB := Tr B̃(τ ′

GABB̃
) =

∑

g∈G

1

|G| |g〉〈g| ⊗UgB(ρAB)U †
g . (30)

Note that due to the invariance of the relative entropy under isometries like in (29),
we have

Cc(ρAB) = D(τGAB‖τG ⊗ τAB) = D(τ ′
GABB̃

‖τ ′
G ⊗ τ ′

AB B̃
). (31)

On the other hand, Eq. (30) implies that

Cc(B(ρAB)) = D(τ ′
GAB‖τ ′

G ⊗ τ ′
AB). (32)

Therefore, Cc(ρAB) = Cc(B(ρAB)) if and only if

D(τ ′
GABB̃

‖τ ′
G ⊗ τ ′

AB B̃
) = D(τ ′

GAB‖τ ′
G ⊗ τ ′

AB). (33)

Step 2.Next, employing condition (33), we show that the existence of the six items
is equivalent to the equation Cc(ρAB) = Cc(B(ρAB)). Applying the result from Ref.
[47, Theorem 6], we get that (33) holds if and only if there exists a decomposition of
Hilbert space HA ⊗ HB as

HA ⊗ HB =
⊕

j

HL j ⊗ HR j (34)

such that

τ ′
GABB̃

= VAB

⎛

⎝
⊕

j

q jηGL j ⊗ ηR j B̃

⎞

⎠ V †
AB (35)

for some unitary VAB on AB and for some states ηGL j on HG ⊗ HL j and ηR j B̃
on

HR j ⊗HB̃ . Since Eq. (34) corresponds to the items (1) and (2), it is sufficient to show
the equivalence between (35) and the condition (27) with the items (3), (4), (5), and
6), which does not come with the subsystem G holding a classical state.

Suppose τ ′
GABB̃

has the form (35). Because of (29), we have

∑

g∈G
|g〉〈g|τ ′

GABB̃
|g〉〈g| = τ ′

GABB̃
. (36)
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This implies that ∑

g∈G
|g〉〈g|ηGL j |g〉〈g| = ηGL j ∀ j . (37)

This condition requires ηGL j to have classical states on the subsystem G, which has
the classical-quantum form

ηGL j =
∑

g∈G
|g〉〈g| ⊗ c j,g ηL j ,g, ∀ j (38)

for some coefficient c j,g and some state ηL j ,g onHL j . Since Tr〈g|τ ′
GABB̃

|g〉 = 1/|G|
by (29), we have

∑
j q j c j,g = 1/|G|, ∀g ∈ G. Together with the form in (29), we

get

Ugρ
′
AB B̃

U †
g = VAB

⎛

⎝
⊕

j

p j |gηL j ,g ⊗ ηR j B̃

⎞

⎠ V †
AB, ∀g ∈ G (39)

where p j |g := |G| q j c j,g constructs a probability distribution labeled by g with∑
j p j |g = 1. Since this is the form advertised in (27), we just showed that (35)

implies (27).
On the other hand, one can recover the form of (35) by applying 1

|G|
∑

g |g〉〈g|⊗
from left in both sides of (27), which means that (27) implies (35). Therefore, (27)
and (35) are equivalent, which concludes the proof. ��

Let us consider a mixed-state example that satisfies the conditions in Theorem 2.
Clearly, when the state ρAB has the following separable form

ρAB =
dB∑

k=1

PK (k)|ψk〉〈ψk | ⊗ |k〉〈k|, (40)

we have B(ρAB) = ρAB , which implies the equality of the capacities in (20). That is,
the state ρAB is B-q-memory useless. However, a general separable state cannot be
written in the form (40) even when the basis {|k〉}dBk=1 can be freely chosen because
a general separable state is written with the sum of non-orthogonal product states.
Hence, it is, in general, unclear whether a general separable state ρAB is q-memory
useless.

Let us now investigate whether there exists an entangled q-memory useless state.

Proposition 3 Let ρAB be a state having the following form

ρAB =
∑

j

PJ ( j)|� j 〉〈� j |, (41)

where the state |� j 〉 has the form

|� j 〉 =
dB∑

k=1

eiθk, j
√
PK |J (k| j)

∑

λ∈Ĝ ′
eiθλ,k

√
P	(λ)|ψλ,k〉 ⊗ |k〉, (42)
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and the vector |ψλ,k〉 ∈ Hλ ⊗ Mλ satisfies

TrMλ
|ψλ,k〉〈ψλ,k | = TrMλ

|ψλ,k′ 〉〈ψλ,k′ | (43)

for every k, k′. Then, there is a basis B such that the conditions for Theorem 2 hold.
That is, the state ρAB is q-memory useless.

Proof Step 1 First, we observe that for each |ψλ,k〉 in (42) there exists a Schmidt
decomposition

|ψλ,k〉 =
∑

j

√
cλ, j |rλ, j 〉Hλ

|mλ,k, j 〉Mλ
(44)

where neither cλ, j nor |rλ, j 〉 depends on k. This is because the marginal states for
|ψλ,k〉 on Hλ do not depend on k because of (43), and thus we can use the same
eigenbasis for Hλ in the Schmidt decomposition, recalling that any eigenbasis of the
marginal state gives a Schmidt basis.

Step 2 Next, employing the form in (44), we show that ρAB in (41) satisfies the
conditions in Theorem 2. Let us define |� ′

j 〉 as

|� ′
j 〉 := CXB→B̃ |� j 〉|0〉B̃, (45)

where |0〉B̃ is a computational basis state on B̃. Then, using (42) and (44), we can
write

|� ′
j 〉 =

∑

λ

√
P	(λ)

dB∑

k=1

√
PK |J (k| j)ei(θλ,k+θk, j )

∑

l

√
cλ,l |rλ,l〉Hλ

|mλ,k,l〉Mλ
|k〉B |k〉B̃ .

(46)

Applying Ug = ⊕
λ Uλ,g ⊗ IMλ

to |� ′〉, we get

Ug|� ′
j 〉

=
∑

λ

√
P	(λ)

dB∑

k=1

√
PK |J (k| j)ei(θλ,k+θk, j )

∑

l

√
cλ,l |rλ,g,l〉Hλ

|mλ,k,l〉Mλ
|k〉B |k〉B̃

(47)

where |rλ,g,l〉 := Uλ,g|rλ,l〉. Let Vk := ⊕
λ e

−iθλ,k IHλ
⊗ ∑

l |mλ,l〉〈mλ,k,l |Mλ
be a

unitary on A where {|mλ,l〉}l is an arbitrary basis independent of k. We then define a
controlled unitary VAB := ∑dB

k=1 Vk ⊗ |k〉〈k|B . We get

VABUg|� ′
j 〉

=
∑

λ

√
P	(λ)

dB∑

k=1

eiθk, j
√
PK |J (k| j)

∑

l

√
cλ,l |rλ,g,l〉Hλ

|mλ,l〉Mλ
|k〉B |k〉B̃
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=
(

∑

λ

√
P	(λ)

∑

l

√
cλ,l |rλ,g,l〉Hλ

|mλ,l〉Mλ

)

⊗
( dB∑

k=1

eiθk, j
√
PK |J (k| j)|k〉B |k〉B̃

)

(48)

=: |�A,g〉 ⊗ |�B B̃, j 〉 (49)

Therefore, we have for the state ρAB = ∑
j PJ ( j)|� j 〉〈� j | that

VABUgρABU
†
g V

†
AB = |�A,g〉〈�A,g| ⊗

∑

j

PJ ( j)|�B B̃, j 〉〈�B B̃, j |. (50)

This is the form in (27), where we choose L j = A, R j = B for item 2) in Theorem 2.
This concludes the proof that the stateρAB in (41) satisfies the conditions inTheorem2.

��

3.2 Examples of entangled q-memory useless state based on Proposition 3

We derive examples of entangled q-memory useless states using Proposition3. This
construction contains mixed states as well as pure states. To simplify the condition in
Proposition3, we assume that our unitary representationUg ofG onH is multiplicity-
free. Then, the condition (42) is rewritten as

|� j 〉 =
dB∑

k=1

eiθk, j
√
PK |J (k| j)

( ∑

λ∈Ĝ ′
eiθλ,k

√
P	(λ)|ψλ〉

)
⊗ |k〉. (51)

where Ĝ ′ with |Ĝ ′| = l is a subset of irreducible representations. We write the set Ĝ ′
as {λs}ls=1 and remember that the basis B is written as {|k〉}dBk=1. As a special case, let

dB = l, PK |J (k| j) = P	(λs) = 1
l , θλs ,k = 2πsk

l , and θk, j = 2π jk
l . The states

|φk〉 :=
∑

λs∈Ĝ ′
ei

2πsk
l

√
P	(λs)|ψλs 〉, k = 1, . . . , dB (52)

form normalized orthogonal vectors. The states |� j 〉 with j = 1, . . . , l are simplified
as

|� j 〉 =
l∑

k=1

ei
2π jk
l

1√
l
|φk〉 ⊗ |k〉. (53)

We find that the states |� j 〉 with j = 1, . . . , l also form normalized orthogonal
vectors and are all examples of entangled q-memory useless states. Then, the state
ρAB = ∑l

j=1 PJ ( j)|� j 〉〈� j | is separable if and only if PJ is the uniform distribution
on {1, . . . , l} [48]. In this case, the state ρAB is written as
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ρAB = 1

l

l∑

k=1

|� j 〉〈� j | = 1

l

l∑

k=1

|φk〉〈φk | ⊗ |k〉〈k|. (54)

In addition, the state ρAB in the example is amaximally correlated state with respect
to the basis {|φk〉⊗|k′〉}lk,k′=1. Hence, the lower boundC

p
c(ρAB) of the private capacity

equals the private capacity in this case [23, Appendix A]. The above example also
guarantees that Cp

c(ρAB) = Cp
c(ρAB,B). Thus, Cp

c(ρAB,B) also attains the private
capacity. In this case, even when Bob makes a measurement in the basis B, Alice and
Bob can attain the private capacity. That is, Bob’s quantum memory is not needed
even for private dense coding.

3.3 Examples of entangled q-memory useless state based on Condition (A2)

Let G be commutative and HA be multiplicity free, and consider the maximally
entangled state

|�〉 =
l∑

s=1

1√
l
|ψλs 〉|vλs 〉 (55)

where the set Ĝ ′ of irreducible representations appearing in HA is given as {λs}ls=1
and {|vλs 〉}ls=1 are orthogonal states on HB defined by

|vλs 〉 = 1√
l

l∑

k=1

e−2πkλs i/l |k〉. (56)

Although the previous section shows the fact that the maximally entangled state |�〉
is q-memory useless by using Proposition3, this section shows the same fact by using
the condition (A2).

Note that

|�〉 = 1

l

l∑

k=1

l∑

s=1

e−2πkλs i/l |ψλs 〉|k〉 (57)

Therefore, defining |φk〉 := 1√
l

∑l
s=1 |ψλs 〉, we obtain the following lemma.

Lemma 4 The maximally entangled state |�〉 has the following form.

|�〉 = 1√
l

l∑

k=1

|φk〉|k〉. (58)

While the capacity is log l, it can be achieved even when Bob measures the system
B with the basis {|ek〉}k because the resultant state on A is |φk〉 and H(G(|φk〉〈φk |)) =
log l. Hence, |�〉 is q-memory useless.
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This q-memory useless property can be seen from the fact that the state |�〉 satisfies
the condition (A2) as follows. We have

B(|�〉〈�|) = 1

l

l∑

k=1

|φk〉〈φk | ⊗ |k〉〈k| (59)

G(|�〉〈�|) = 1

l

l∑

s=1

|ψλs 〉〈ψλs | ⊗ |vλs 〉〈vλs | (60)

G ◦ B(|�〉〈�|) = 1

l2
I . (61)

Thematrices lB(|�〉〈�|) and lG(|�〉〈�|) are projections. The intersection of the range
of these projections is the one-dimensional space generated by |�〉. Hence,

√
G(|�〉〈�|)B(|�〉〈�|)√G(|�〉〈�|) = 1

l2
|�〉〈�|. (62)

The combination of (61) and (62) guarantees the condition (A2). Therefore, the state
|�〉〈�| is q-memory useless.

This fact can be extended to the dephased state ρAB,p = (1 − p)|�〉〈�| +
pG(|�〉〈�|) [49] as follows. Instead of (59), we have

B(ρAB,p) = (1 − p)
1

l

l∑

k=1

|φk〉〈φk | ⊗ |k〉〈k| + p

l2
I . (63)

Even when ρAB,0 is replaced by ρAB,p, the relations (60) and (61) still hold as follows.

G(ρAB,p) = (1 − p)G(|�〉〈�|) + pG(|�〉〈�|) = 1

l

l∑

λ=1

|ψλ〉〈ψλ| ⊗ |vλ〉〈vλ|
(64)

G ◦ B(ρAB,p) = (1 − p)
1

l

l∑

k=1

G(|φk〉〈φk |) ⊗ |ek〉〈ek | + p

l2
I

= (1 − p)
1

l

l∑

k=1

I ⊗ |ek〉〈ek | + p

l2
I = 1

l2
I . (65)

Combining (62) and (63) with the above relations, we have

√
G(ρAB,p)

√
G ◦ B(ρAB,p)

−1
B(ρAB,p)

√
G ◦ B(ρAB,p)

−1√
G(ρAB,p)

=(1 − p)|�〉〈�| + pG(|�〉〈�|). (66)

Since the condition (A2) holds, the dephased stateρAB = (1− p)|�〉〈�|+ pG(|�〉〈�|)
serves as another example of an entangled q-memory useless state.
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4 Pure preshared states

4.1 General conditions for q-memory uselessness

Next, we consider the case with a pure state ρAB = |�〉〈�|. ForB = {|k〉}dBk=1 onHB ,
without loss of generality, we can assume that 〈k|ρB |k〉 > 0. (Otherwise, we restrict
k to the index to satisfy 〈k|ρB |k〉 > 0.) Then, we have

|�〉AB =
dB∑

k=1

√
PK (k)|ψk〉A|k〉B . (67)

Theorem 5 Assume that the preshared state ρAB is a pure state |�〉〈�|. Given the
basis B, the following condition is equivalent to Conditions (A1), (A2), and (A3).

(C1) The state |�〉 has the form as

|�〉 =
dB∑

k=1

√
PK (k)

∑

λ∈Ĝ ′

√
P	(λ)eiθλ,k |ψλ,k〉 ⊗ |k〉, (68)

where for all k, k′ the vector |ψλ,k〉 ∈ Hλ ⊗ Mλ satisfies the condition;

TrMλ
|ψλ,k〉〈ψλ,k | = TrMλ

|ψλ,k′ 〉〈ψλ,k′ |, (69)

and PK and P	 are independent probability distributions.

When a state ρAB is a pure state, Condition (C1) is equivalent to the condition in
Proposition3. That is, the above theorem shows the inverse direction of Proposition3
in the case with pure states.

Proof It is sufficient to show the equivalence between (C1) and (A1). Defining

ρλ,k := 1

PK (k)P	|k(λ)
(Pλ ⊗ |k〉〈k|)ρAB(Pλ ⊗ |k〉〈k|) (70)

and recalling (13), we have

Cc(B(ρAB))

=
∑

λ∈Ĝ ′
P	(λ) log dλ +

dB∑

k=1

PK (k)
(
H(P	|k) +

∑

λ∈Ĝ ′
P	|k(λ)H(TrHλ

ρλ,k)
)

=
∑

λ∈Ĝ ′
P	(λ) log dλ +

dB∑

k=1

PK (k)H(P	|k)
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+
∑

λ∈Ĝ ′
P	(λ)

dB∑

k=1

PK |λ(k)H(TrHλ
ρλ,k)

=
∑

λ∈Ĝ ′
P	(λ) log dλ +

dB∑

k=1

PK (k)H(P	|k) +
∑

λ∈Ĝ ′
P	(λ)

dB∑

k=1

PK |λ(k)H(TrMλ
ρλ,k).

(71)

The final equation follows from the fact that ρλ,k is a pure state because ρAB is pure.
In this case, by comparing (14) and (71), Condition (A1), i.e., Cc(ρ) = Cc(B(ρ)),

is equivalent to

H(P	) +
∑

λ∈Ĝ ′
P	(λ)H(TrMλ ρλ)

=
dB∑

k=1

PK (k)H(P	|k) +
∑

λ∈Ĝ ′
P	(λ)

dB∑

k=1

PK |λ(k)H(TrMλ ρλ,k).

(72)

Since P	 = ∑dB
k=1 PK (k)P	|k and TrMλ ρλ = ∑dB

k=1 PK |λ(k)TrMλ ρλ,k , the concav-
ity of entropy implies that

H(P	) ≥
dB∑

k=1

PK (k)H(P	|k) (73)

H(TrMλ ρλ) ≥
dB∑

k=1

PK |λ(k)H(TrMλ ρλ,k) ∀λ (74)

and therefore, (72) is equivalent to

P	 = P	|k, TrMλ ρλ = TrMλ ρλ,k (75)

for all k and λ. Since the condition (75) is equivalent to Condition (C1), we obtain the
equivalence between (C1) and (A1). ��

Although we have already proven the equivalence between (C1) and all the condi-
tions in Theorem 1, it may not be immediately clear how the form of (C1) can induce
the form in (A2). In Appendix, we explicitly derive how the form in (A2) can be
reached starting from the form in (C1).

Theorem 1 and the proof of Proposition 3 give the following characterization for
pure resource states. The following is a summary of the results for general pure states.

Theorem 6 For an arbitrary pure resource state ρAB = |�〉〈�|, the following are
equivalent.

(D1) The equality in (20) holds, i.e., ρAB is B-q-memory useless.
(D2) |�〉 satisfies (68) and (69).
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(D3) The following relation holds.

ρAB =√
G(ρAB)

√
G ◦ B(ρAB)

−1B(ρAB)
√
G ◦ B(ρAB)

−1√G(ρAB). (76)

(D4) There exists a controlled unitary VAB = ∑dB
k=1 Vk ⊗ |k〉〈k|B and a set {|ηg〉A}g

of states on HA and some state |φ〉B onHB such that

VAB Ug|�〉 = |ηg〉A ⊗ |φ〉B,∀g ∈ G. (77)

To obtain a further characterization, we recall the multiplicity-free condition.When
the multiplicity-free condition is satisfied, (68) and (69) can be represented by the
following single form

|�〉 =
∑

λ∈Ĝ ′

√
P	(λ)|ψλ〉 ⊗

dB∑

k=1

√
PK (k)eiθλ,k |k〉, (78)

for some vector |ψλ〉 ∈ Hλ independent of k. On the other hand, if G is abelian (but
not necessarily multiplicity-free), then dimHλ = 1 for all λ ∈ Ĝ ′, implying that
(69) is always satisfied and thus the condition (68) solely serves as the necessary and
sufficient condition for Bob’s quantum memory to be useless.

Therefore, we obtain the following corollary.

Corollary 7 Let the preshared state ρAB be a pure state given by |�〉 = ∑
λ∈Ĝ ′√

P	(λ)|ψλ〉|vλ〉, where Ĝ ′ with |Ĝ ′| = l is a subset of irreducible representations
for which P	(λ) �= 0 ∀λ ∈ Ĝ ′, and |v1〉, . . . , |vl〉 are some quantum states on HB.
Suppose also that the multiplicity-free condition holds. Then, the following conditions
are equivalent.

(E1) The state |�〉 is q-memory useless.
(E2) There exist a basis {|k〉}dBk=1 ofHB, a probability distribution PK on {1, . . . , dB}

independent of λ, and real numbers {θλ,k}λ,k such that

|vλ〉 =
dB∑

k=1

√
PK (k)eiθλ,k |k〉. (79)

Since Condition (E2) can be considered as a condition for the l vectors V :=
(|v1〉, . . . , |vl〉) inHB , the problem of q-memory uselessness is reduced to the analysis
for the l vectors V .

For example, when the vectors |v1〉, . . . , |vl〉 are orthogonal, Condition (E2) holds
by choosing the basis {|k〉}dBk=1 of HB as follows. The orthogonality guarantees that
l ≤ dB . We set |1〉, . . . , |l〉 as

|k〉 = 1√
l

l∑

s=1

ei2πks/l |vs〉, k = 1, . . . , l (80)

123



When quantum memory is useful for dense… Page 21 of 35 88

and |l + 1〉, . . . , |r〉 to be vectors orthogonal to |v1〉, . . . , |vl〉. Equation (79) is then
satisfied by choosing PK (k) = 1/l for k = 1, . . . , l and θλ,k = −2πλk/l.

The fact that Condition (E2) always holds when l = 2 can be seen as follows. We
choose θ and θ ′ as eiθ ′

cos θ = 〈v1|v2〉. Then, we choose the basis {|1〉, |2〉} to satisfy

|v1〉 = 1√
2
(|1〉 + |2〉) (81)

|v2〉 = 1√
2
(ei(θ

′+θ)|1〉 + ei(θ
′−θ)|2〉). (82)

4.2 Characterization by genuinely incoherent operations

Under the multiplicity-free condition, we characterize our conditions for q-memory
uselessness for pure states by using genuinely incoherent operations (GIO) [40], one
of the major classes of operations considered in the resource theory of coherence [24].
The GIO, which we denote as OGIO, is defined as the set of operations that preserve
all incoherent states, 
GIO(σ ) = σ for every incoherent state σ , where a state is
called incoherent when it is diagonal with a given preferred orthogonal basis. Then,
it was shown in [40, Thm.2] that 
 is in OGIO if and only if 
 can be written as

(ρ) = A � ρ with some positive semidefinite matrix A with Aλλ = 1∀λ, where
(X � Y )λη := XληYλη is the Hadamard product.

We find that GIO is a useful tool for analyzing the condition (E2) for general l
through the Gram matrix of V = (|v1〉, . . . , |vl〉) defined as J (V )λη := 〈vλ|vη〉,
λ, η = 1, . . . , l, or equivalently, J (V ) := V †V . Since the diagonal element of the
Gram matrix J (V ) is 1, the CPTP map 
J (V ) defined as 
J (V )(ρ) := J (V ) � ρ is
also in OGIO. Then, we have the following characterizations.

Theorem 8 Suppose HA satisfies the multiplicity-free condition. Let |�〉 = ∑
λ∈Ĝ ′√

P	(λ)|ψλ〉|vλ〉 be a given resource state shared by Alice and Bob, where Ĝ ′ with
|Ĝ ′| = l is a subset of irreducible representations for which P	(λ) �= 0 ∀λ ∈ Ĝ ′. The
following conditions for l vectors V := (|v1〉, . . . , |vl〉) inHB are equivalent.

(F1) The state |�〉 is q-memory useless.
(F2) There exist a basis {|k〉}dBk=1 ofHB, a probability distribution PK on {1, . . . , dB},

and real numbers {θλ,k}λ,k that satisfy (79).
(F3) There exist a basis {|k〉}dBk=1 ofHB, a probability distribution PK on {1, . . . , dB},

and real numbers {θλ,k}λ,k that satisfy

J (V ) = J (U ) (83)

where l vectors U := (|u1〉, . . . , |ul〉) are defined as

|uλ〉 :=
dB∑

k=1

√
PK (k)eiθλ,k |k〉 (84)

for λ = 1, . . . , l.
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(F4) There exist a probability distribution PK on {1, . . . , dB} and real numbers
{θλ,k}λ,k that satisfy

1

l
J (V ) =

∑

k

PK (k)Zk |+〉〈+|Z†
k , (85)

where |+〉 := 1√
l

∑l
λ=1 |λ〉 is the maximally coherent state and

Zk :=
∑

λ

eiθλ,k |λ〉〈λ| (86)

is an (incoherent) diagonal unitary.
(F5) There exist a probability distribution PK on {1, . . . , dB} and real numbers

{θλ,k}λ,k such that 
J (V ) ∈ OGIO can be written as


J (V )(ρ) =
∑

k

PK (k)ZkρZ
†
k . (87)

For Condition (F4), Reference [40, Thm.3] found that, for l = 2, 3, any genuinely
incoherent operation can be written as a probabilistic incoherent diagonal unitary,
while for every l ≥ 4, there exists a genuinely incoherent operation that cannot be
written as a probabilistic incoherent diagonal unitary. In addition, for any 
 ∈ OGIO,
there exist l vectors V := (|v1〉, . . . , |vl〉) such that 
 = 
J (V ). Therefore, we obtain
the following result.

Corollary 9 For every choice of |v1〉, . . . , |vl〉, there exist a basis {|k〉}dBk=1, a probability

distribution {PK (k)}dBk=1, and real numbers {θλ,k}λ,k that satisfy (79) for l = 2, 3. On
the other hand, for every l with l ≥ 4, there exist |v1〉, . . . , |vl〉 for which there is no
choice of {|k〉}dBk=1, {PK (k)}dBk=1, and {θλ,k}λ,k that satisfies (79). In other words, Bob’s
quantum memory is not useful to achieve the capacity Cc(|�〉) for l = 2, 3. However,
when l ≥ 4, there exists a state |�〉 such that Bob’s quantum memory is useful to
achieve the capacity Cc(|�〉).

Therefore, when the preshared state ρAB is a pure state |�〉〈�| as in Theorem 8,
the multiplicity-free condition holds, and |Ĝ ′| is 2 or 3, the quantum memory HB

can be replaced by a classical memory. However, when |Ĝ ′| > 3 there is a pure state
|�〉〈�| even with the multiplicity-free condition such that the quantum memory HB

enhances the communication speed.

Proof of Theorem 8 Corollary7 shows the equivalence between Conditions (F1) and
(F2). Since the application of a unitary operator to a basis does not change the Gram
matrix, Conditions (F2) and (F3) are equivalent.
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Next, we show the equivalence between (F3) and (F4). Since the Grammatrix J (U )

can be written by

J (U )λη =
dB∑

k=1

PK (k)eiθλ,k−iθη,k , (88)

it is written as

J (U ) = l
dB∑

k=1

PK (k)|wk〉〈wk |, (89)

where we define |wk〉 = 1√
l

∑l
λ=1 e

iθλ,k |λ〉 for every k. We further note that |wk〉 can
be written by |wk〉 = Zk |+〉, This fact implies

1

l
J (U ) =

dB∑

k=1

PK (k)Zk |+〉〈+|Z†
k , (90)

which shows the equivalence between (F3) and (F4).
Next, we show the equivalence between (F4) and (F5). We assume Condition (F5).

Then, we have

1

l
J (V ) = J (V ) � |+〉〈+|

=
J (V )(|+〉〈+|) =
dB∑

k=1

PK (k)Zk |+〉〈+|Z†
k , (91)

which implies Condition (F4).
We assume Condition (F4). Then, the GIO 
J (V ) satisfies


J (V )(ρ) = J (V ) � ρ =
∑

k

PK (k)Zk |+〉〈+|Z†
k � ρ

=
∑

k

PK (k)
(
Zk |+〉〈+|Z†

k � ρ
)

=
∑

k

PK (k)ZkρZ
†
k , (92)

which implies Condition (F5). ��

4.3 Construction of q-memory useful pure state

We provide a systematic method to construct a q-memory useful pure state by using
the results of GIO. Since an arbitrary 1

l J (v) can be obtained by applying some gen-
uinely incoherent operation to |+〉l , our problem is reduced to finding whether such
an operation in OGIO can be implemented by a probabilistic incoherent unitary. The

123



88 Page 24 of 35 R. Takagi, M. Hayashi

following result, which gives the extremality condition for OGIO, is useful to present
examples for which quantum memory is useful for all Bob’s bases.

Lemma 10 ([40, Proof of Theorem 21]) Let 
 ∈ OGIO be represented by a set {Kt }r ′
t=1

of Kraus operators with r ′ > 1. Then, 
 cannot be realized by a probabilistic inco-
herent unitary if r ′2 operators {K †

t Ks}r ′
t,s=1 are linearly independent.

Kraus operators of a channel 
J (V ) ∈ OGIO are given as follows.

Lemma 11 Given l vectors V := (|v1〉, . . . , |vl〉) in HB with the form |v j 〉 =
∑dB

k=1 v j,k |k〉, the operators Kk = diag(|ãk〉) for vectors |ãk〉 = ∑l
j=1 v j,k | j〉 with

k = 1, . . . , dB form Kraus operators {Kt }dBt=1 of a channel 
J (V ) ∈ OGIO.

Proof Since the relation

l
dB∑

t=1

Kt |+〉〈+|K †
t =

dB∑

t=1

|ãt 〉〈ãt | = J (V ) (93)

holds, we have
dB∑

t=1

KtρK
†
t = 1

l
J (V ) � ρ = 
J (V )(ρ). (94)

��
The above lemma shows that Kraus operators of any genuinely incoherent operation


J (V ) ∈ OGIO are given as diagonal operators. More generally, the following lemma
is known.

Lemma 12 ([40, Theorem 2]) A channel is GIO if and only if all Kraus operators are
diagonal.

Combining Lemmas 10 and11with the statement (F5) implies the following.When
the d2B vectors {(v j,tv j,s)

l
j=1}dBt,s=1 are linearly independent, the genuinely incoherent

operation 
J (V ) ∈ OGIO cannot be realized by a probabilistic incoherent unitary.
Then, a state |�〉 constructed by the set {|v j 〉}lj=1 serves as a resource state, for which

quantum memory is useful for all Bob’s bases. To satisfy this condition, dB2 needs to
be smaller than l.

A protocol to find such a resource state is as follows.

(1) Given l ≤ |Ĝ|, we choose dB such that 1 < dB2 ≤ l.
(2) Pick l states |v j 〉 = ∑dB

k=1 v j,k |k〉 ∈ C
dB for j = 1, . . . , l.

(3) Check whether the dB2 vectors {(v j,tv j,s)
l
j=1}dBt,s=1 are linearly independent. If

not, go back to the previous step and try another set of {|v j 〉} j .
(4) Choose an arbitrary subset of irreps Ĝ ′ ⊂ Ĝ such that |Ĝ ′| = l. Choose an

arbitrary state |ψλ〉 ∈ Hλ for each λ ∈ Ĝ ′ and an arbitrary probability distribution
P	(λ) over λ ∈ Ĝ ′ with P	(λ) > 0 ∀λ ∈ Ĝ ′.
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(5) Define |�〉 = ∑l
j=1

√
P	(λ j )|ψλ j 〉⊗|v j 〉 = ∑l

j=1
∑dB

k=1

√
P	(λ j )v j,k |ψλ j 〉⊗

|k〉, where λ j refers to the j th irrep in Ĝ ′.

The final state |�〉 is a state for which quantum memory is useful for all Bob’s
bases. For 1 < dB2 ≤ l, a randomly chosen {|v j 〉}lj=1 usually satisfies the linear
independence condition in Step 3. As an analytical example, we find an instance for
{|v j 〉}lj=1 for l ≥ 4 and dB = 2 discussed in Ref. [40], which is defined as

v j,1 :=
{ 1

j when j ≤ 4
1 when j > 4

(95)

v j,2 :=
{
i j

√
1 − 1

j2
when j ≤ 4

0 when j > 4.
(96)

One can then check that four vectors {(v j,tv j,s)
l
j=1}2t,s=1 are linearly independent. We

then prepare {|v j 〉}lj=1 as v j,1|1〉 + v j,2|2〉.
The states constructed by the above procedure Steps 1–5 provide situations where

Bob wants to hold local quantum memory and make a collective measurement on his
side before communication. Notice that, as shown in Ref. [13], the capacity Cc(ρAB)

for the pure state case can be achieved by applying collective measurement across n
Bob’s local systems of the preshared state.

5 Case withmaximally entangled state

5.1 Commutative group

Similarly to Sect. 3.3, we assume that the group G is commutative. For simplicity, we
assume the multiplicity-free condition to the space HA. We use the same notations
as the ones used in Sect. 3.3. We assume that the preshared entangled state |�〉 is a
maximally entangled state |�〉. Thus, due to the relations (55) and (56), the condition
(79) in Corollary 7 holds. In this case, the condition (79) in Corollary7 shows that the
maximally entangled state |�〉 is q-memory useless in a simpler way than Condition
(A2) does. This is also a special case of the examples presented in Sect. 3.2.

Next, we proceed to the case when the multiplicity-free condition does not hold.
Using an orthogonal basis {|e j,λ〉}l(λ)

j=1 where l(λ) := dimMλ and an orthogonal

basis {|v j 〉}rj=1 with r = ∑l
λ=1 l(λ), the maximally entangled state |�〉 is written as

1√
r

∑l
λ=1 |ψλ〉∑l(λ)

j=1 |e j,λ〉|v j+∑λ
λ′=1 l(λ

′)〉. We choose |eB,k〉 as

|eB,k〉 := 1√
r

r∑

λ=1

e2πk ji/r |v j 〉. (97)
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Then, we have

|�〉 = 1√
r

l∑

λ=1

|ψλ〉
l(λ)∑

j=1

|e j,λ〉 1√
r

r∑

k=1

e−2πk( j+∑λ
λ′=1 l(λ

′))i/r |eB,k〉

=
r∑

k=1

1√
r

l∑

λ=1

√
l(λ)√
r

e−2πk
∑λ

λ′=1 l(λ
′)i/r |ψλ〉

( 1√
l(λ)

l(λ)∑

j=1

e−2πk ji/r |e j,λ〉
)
|eB,k〉.

(98)

Hence, by choosing |ψλ〉
(

1√
l(λ)

∑l(λ)
j=1 e

−2πk ji/r |e j,λ〉
)

as |ψλ,k〉, Condition (C1)

holds in Theorem5. That is, the quantum memory is not needed even in this case.
In particular, when the set Ĝ ′ is the whole set Ĝ of irreducible representations of

G, the entropy of
∑

g∈G 1
|G|Ug|�〉〈�|U †

g is log |G|. This means that the action of G
can be distinguished perfectly even when Bob measures his memory in advance. In
other words, the states {Ug|�〉}g∈G can be distinguished perfectly by one-way local
measurements. For example, given Weyl–Heisenberg representation of Zd × Zd , the
action of the commutative subgroup ofZd ×Zd can be distinguished perfectly by one-
way local measurements. As another example, givenWeyl–Heisenberg representation
of Fn

p ×F
n
p, the action of the commutative subgroup of Fn

p ×F
n
p can be distinguished

perfectly by one-way local measurements. In fact, this kind of state discrimination
has been discussed in the context of local discrimination of generalized Bell states in
[50–57].

While the classification of a commutative subgroup in Zd ×Zd is not easy [55–57],
a commutative subgroup inFn

p×F
n
p can be easily classified as follows. Commutativity

can be characterized by the orthogonality under the symplectic inner product. The set
of m-dimensional orthogonal subspace can be considered as an orthogonal version of
Grassmannian over finite fields, whose classification is well known [58, Proposition
1.7.2]. For the identification of m-dimensional orthogonal subspace, it is sufficient to
choosem independent commutative vectors inFn

p×F
n
p. The choice of the first nonzero

vector has p2n−1 cases. The choice of the second nonzero vector has p2(n−1)−1 cases
due to the commutativitywith the first vector. The commutativitywith the first vector is
equivalent to the orthogonal property to thefirst vector for the symplectic inner product.
Therefore, in the case of m-dimensional subgroups, we have (p2n − 1)(p2(n−1) −
1) · · · (p2(n−m+1) − 1) cases. Since (pm − 1)(pm−1 − 1) · · · (p − 1) choices of m
independent commutative vectors correspond to the samem-dimensional subgroup,we

have (p2n−1)(p2(n−1)−1)···(p2(n−m+1)−1)
(pm−1)(pm−1−1)···(p−1)

commutative m-dimensional subgroup in total.

When m = n, this number is simplified to (pn + 1)(pn−1 + 1) · · · (p + 1).

5.2 General group

Next, we observe how the above fact can be generalized to a general group G. When
G is not a commutative group, the irreducible representation is not one-dimensional.
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Hence, this case cannot be considered as a special case of the examples presented in
Section 3.2.

We have the following lemma for a general group with respect to the relation
between Condition (C1) and a maximally entangled state |�〉 when the set Ĝ ′ of
irreducible representations appearing in HA is given as {1, . . . , l}.

Lemma 13 A maximally entangled state |�〉 satisfies Condition (C1) in Theorem5 if
and only if the relation dimMλ ≥ dimHλ holds for λ ∈ Ĝ ′.

This lemma guarantees the following. When the preshared entangled state |�〉 is a
maximally entangled state |�〉 and the relation dimMλ ≥ dimHλ holds for λ ∈ Ĝ ′,
the states {Ug|�〉}g∈G can be distinguished perfectly by one-way local measurements.

Proof The “only if” part. We assume that a maximally entangled state |�〉 satisfies
the condition (69). Then, the condition (69) implies TrMλ

|ψλ,k〉〈ψλ,k | is TrMλ
ρA.

Hence, TrMλ
|ψλ,k〉〈ψλ,k | is the completely mixed state. Thus, dimMλ ≥ dimHλ.

The “if” part. We assume that dimMλ ≥ dimHλ for λ ∈ Ĝ ′. When two entangled
states have the same reduced density matrix onHA, these two entangled states can be
converted to each other via a local unitary onHB . It is sufficient to show the existence
of the choice of {|k〉} and {|ψλ,k〉} to satisfy Condition (C1).

Wedenote thedimensionofMλ byd ′
λ.Wechoose anorthogonal basis {|eλ,A, j 〉}dλ−1

j=0

of Hλ, and an orthogonal basis {|e′
λ,A, j ′ 〉}

d ′
λ−1
j ′=0 of Mλ. We define the operators

Z := ∑dλ−1
j=0 e2π i j/dλ |eλ,A, j 〉〈eλ,A, j | on Hλ, and X := ∑d ′

λ−1
j ′=0 |e′

λ,A, j ′+1〉〈e′
λ,A, j ′ |

on Mλ, where modulo d ′
λ is applied in the definition of X . For (kλ, k′

λ) ∈
{0, 1, . . . , dλ − 1} × {0, 1, . . . , d ′

λ − 1}, we define the vectors |ψλ,k,k′ 〉 := Zk ⊗
Xk′ 1√

dλ

∑dλ−1
j=0 |eλ,A, j 〉|e′

λ,A, j 〉 in Hλ ⊗ Mλ, which forms an orthogonal basis of

Hλ ⊗ Mλ.
For (kλ, k′

λ) ∈ {0, 1, . . . , dλ − 1}× {0, 1, . . . , d ′
λ − 1} with λ ∈ Ĝ ′ = {1, 2, . . . , l},

we define the vector |eB,k1,k′
1,...,kl ,k

′
l
, λ〉 inHB . Then, we define the vector

d1−1∑

k1=0

d ′
1−1∑

k′
1=0

· · ·
dl−1∑

kl=0

d ′
l−1∑

k′
l=0

l∑

λ′=1

√
1

d1d ′
1 · · · dld ′

l l

·
l∑

λ=1

√
dλd ′

λ
∑l

λ′′=1 dλ′′d ′
λ′′
e2πλλ′i/l |ψλ,kλ,k′

λ
〉|eB,k1,k′

1,...,kl ,k
′
l
, λ′〉, (99)

which satisfies Condition (C1).
The reduced density matrix of

l∑

λ′=1

√
1

l

l∑

λ=1

√
dλd ′

λ
∑l

λ′′=1 dλ′′d ′
λ′′
e2πλλ′i/l |ψλ,kλ,k′

λ
〉|eB,k1,k′

1,...,kl ,k
′
l
, λ′〉.
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onHA is

l∑

λ=1

dλd ′
λ

∑l
λ′′=1 dλ′′d ′

λ′′
|ψλ,kλ,k′

λ
〉〈ψλ,kλ,k′

λ
|. (100)

Therefore, the reduced density matrix of the vector (99) on HA is

l∑

λ=1

dλ−1∑

kλ=0

d ′
λ−1∑

k′
λ=0

1
∑l

λ′′=1 dλ′′d ′
λ′′

|ψλ,kλ,k′
λ
〉〈ψλ,kλ,k′

λ
|, (101)

which is the completely mixed state on HA. Therefore, a maximally entangled state
|�〉 has the form to satisfy Condition (C1). Hence, we obtain the “if” part. ��

6 Implications to quantum illumination

As one of the settings of physical significance, quantum illumination investigates
whether a low-reflective target object is present by shooting light and collecting the
signal. The problem of target detection can be reduced to the channel discrimination
problem to identify whether the given channel is a replacement channel that prepares
the thermal state or a thermal attenuator channel. In this scenario, it has been shown
that entanglement in the input state can enhance the discrimination performance in
symmetric and asymmetric channel discrimination settings [37–39].

Here, we consider a variant of quantum illumination, where instead of detecting
the thermal noise, we are to detect the existence of a certain noise channel.2 Namely,
we consider the asymmetric channel discrimination task where the null hypothesis
is error-free, i.e., 
1 = id, and the alternative hypothesis is to have a group twirling
channel as noise, i.e., 
2 = G. One can then ask whether entanglement in a given
input state ψ helps the hypothesis testing, i.e., whether one would like to hold a local
quantum memory to utilize the entanglement in ψ .

This problem is formulated as follows. Let η j := 
 j ⊗ id(ψ) be the output states
with an input stateψ for j = 1, 2. In general, one is allowed tomake a collectivePOVM
measurement {En, I−En} onmultiple copies η⊗n

j of output states.We define the type-

I error by αn(E) := Tr((I − E) η⊗n
1 ) and type-II error by βn(E) := Tr(E η⊗n

2 ). In the
asymmetric channel discrimination task, we aim to minimize the type-II error under
the condition that type-I error is upper bounded by a constant ε. The Stein’s lemma [35,
60] tells that for all 0 < ε < 1, the error exponent of the type-II error is characterized
by the relative entropy between two output states, i.e.,

− lim
n→∞

1

n
log inf

0≤En≤I
{βn(En) : αn(En) ≤ 1 − ε}

2 Our setting can also be considered as a variant of quantum reading [59] in the sense that the reflectivity
of the target is not small.
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=D(
1 ⊗ id(ψ)‖
2 ⊗ id(ψ)). (102)

We can address this question for the case of asymmetric channel discrimination
by employing the framework established above. Since Stein’s lemma assures that the
performance of the hypothesis testing is characterized by the relative entropy as in
(102), entanglement in ψ is helpful (one would like to retain local quantum memory)
if and only if the equality in (20) with ρAB = ψ holds. We can also carry over
the characterization of the resource state in Theorem 8 and Corollary 9 for the local
memory to be useless.

As a typical example, we choose G = Zd with a representation Ug = ∑d−1
t=0 |t +

g mod d〉〈t |. This representation can be decomposed into Ug = ⊕d−1
λ=0 Uλ,g where

Uλ,g := e2π igλ/d |+λ〉〈+λ| and |+λ〉 := 1√
d

∑d−1
j=0 e

2π i jλ/d | j〉. Then, Theorem 8, as

well as a consequence from Sect. 5.1, implies that the maximally entangled input
|ψ〉 = 1√

d

∑d−1
t=0 |t t〉 = 1√

d

∑d−1
λ=0 |+λ〉|+d−λ−1〉 does not require the local quantum

memory to achieve the optimal performance for the noise detection task. Indeed, the
Gram matrix J (v) in Theorem 8 is the d × d identity matrix, as {|+λ〉}λ constructs an
orthonormal basis. Therefore, by taking PK (k) = 1/d and θλ,k = 2πλk/d in (F4) of
Theorem 8, we can check that (85) is indeed satisfied. This makes a stark contrast to
the case of the original quantum illumination, in which the two-mode squeezed state,
which is the infinite-dimensional correspondence of the maximally entangled state,
serves as the optimal input with the help of quantum memory [39].

7 Discussion

We have introduced the new concept of q-memory uselessness and usefulness of a
presharedbipartite state in the dense-coding taskbasedon agivengroup representation.
We have derived various conditions for q-memory uselessness for general mixed and
pure states. Using our general conditions, we have presented an example of a mixed
entangled state that is q-memory useless. In addition, we have revealed a notable
relation between q-memory uselessness of pure states and the resource theory of
coherence. This relation is useful when the state is pure, the group is abelian, and
the representation is multiplicity-free. Under this condition, we have shown that any
pure state is q-memory useless when the given group representation consists of at
most three irreducible representations. We also have presented a systematic way to
construct a pure q-memory useful state when the group representation consists ofmore
than three irreducible representations. Finally, we have discussed the relations between
our framework and quantum illumination. We have considered a variant of quantum
illumination that aims to distinguish the noiseless and the group twirling channels
and employed our conditions to characterize the usefulness of quantum memory in
enhancing the performance.

An interesting future direction is to find whether there exists a separable q-memory
useful state. The class of q-memory useless states represented by the form in (40) is
known to have zero quantumdiscord [61]. This implies that q-memory useful separable
states, if any, should have nonzero quantum discord. Establishing the quantitative rela-
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tion between quantum discord and q-memory usefulness may provide further insights
into the role of quantum correlation in dense coding.

Appendix A Derivation from (C1) to (A2)

We demonstrate how to derive from (C1) to (A2) in the pure state case. That is, we
check that a pure state ρAB = |�〉〈�| that satisfies (68) and (69) indeed satisfies (23)
as follows.

Let |ψλ,k〉 = ∑
j
√
cλ,k, j |rλ,k, j 〉Hλ

|mλ,k, j 〉Mλ
be a Schmidt decomposition of

|ψλ,k〉, where
{|rλ,k,i 〉

}
i and

{|mλ,k,i 〉
}
i are orthonormal bases onHλ andMλ. Then,

the condition (69) ensures that

∑

j

cλ,k, j |rλ,k, j 〉〈rλ,k, j | =
∑

j

cλ,k′, j |rλ,k′, j 〉〈rλ,k′, j |, ∀k, k′. (A1)

Substituting this into the form (68) yields

|�〉 =
∑

λ

√
P	(λ)

∑

k

√
PK (k)eiθλ,k

·
∑

j

√
cλ,k, j |rλ,k, j 〉Hλ

|mλ,k, j 〉Mλ
|k〉B . (A2)

Using this expression, we can write

B(ρAB) =
∑

λλ′k

√
P	(λ)P	(λ′)PK (k)eiθλ,k−iθλ′,k |ψλ,k〉〈ψλ′,k | ⊗ |k〉〈k|. (A3)

G ◦ B(ρAB) =
∑

λk

P	(λ)PK (k)
∑

j

cλ,k, j
I

dHλ

⊗ |mλ,k, j 〉〈mλ,k, j | ⊗ |k〉〈k| (A4)

√
G ◦ B(ρAB)

−1 =
∑

λk

√
P	(λ)PK (k)

−1 ∑

j :cλ,k, j �=0

√
dHλ

cλ,k, j
I ⊗ |mλ,k, j 〉〈mλ,k, j | ⊗ |k〉〈k|.

(A5)

We then have √
G ◦ B(ρAB)

−1B(ρAB)
√
G ◦ B(ρAB)

−1

=
∑

λλ′k
eiθλ,k−iθλ′,k dHλ

|�̃λ,k〉〈�̃λ′,k | ⊗ |k〉〈k| (A6)

where |�̃λ,k〉 := ∑
j :cλ,k, j �=0 |rλ,k, j 〉|mλ,k, j 〉.
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We also have

G(ρAB) =
∑

λ

P	(λ)
I

dHλ

⊗ TrHλ
|φλ〉〈φλ| (A7)

and

√
G(ρAB) =

∑

λ

√
P	(λ)

I
√
dHλ

⊗ √
TrHλ

|φλ〉〈φλ| (A8)

where |φλ〉 := ∑
k

√
PK (k)eiθλ,k

∑
j
√
cλ,k, j |rλ,k, j 〉Hλ

|mλ,k, j 〉Mλ
|k〉B .

The fact that

√
TrHλ

|φλ〉〈φλ| =
∑

kk′

√
PK (k)PK (k′)eiθλ,k−iθλ,k′

∑

j j ′

(
cλ,k, j cλ,k′, j ′

)1/4

〈rλ,k′, j ′ |rλ,k, j 〉|mλ,k, j 〉〈mλ,k′, j ′ | ⊗ |k〉〈k′|
(A9)

can be seen as follows. The square of the right-hand side becomes

∑

kk′k′′

√
PK (k)PK (k′′)PK (k′)eiθλ,k−iθλ,k′′

∑

j j ′ j ′′

(
cλ,k, j cλ,k′′, j ′′

)1/4 √
cλ,k′, j ′

〈rλ,k′, j ′ |rλ,k, j 〉〈rλ,k′′, j ′′ |rλ,k′, j ′ 〉|mλ,k, j 〉〈mλ,k′′, j ′′ | ⊗ |k〉〈k′′|
=

∑

kk′k′′

√
PK (k)PK (k′′)PK (k′)eiθλ,k−iθλ,k′′

∑

j j ′′

(
cλ,k, j cλ,k′′, j ′′

)1/4

〈rλ,k′′, j ′′ |
⎛

⎝
∑

j ′

√
cλ,k′, j ′ |rλ,k′, j ′ 〉〈rλ,k′, j ′ |

⎞

⎠ |rλ,k, j 〉|mλ,k, j 〉〈mλ,k′′, j ′′ | ⊗ |k〉〈k′′|.
(A10)

Taking the matrix power in both sides of (A1) results in

∑

j

(
cλ,k, j

)a |rλ,k, j 〉〈rλ,k, j | =
∑

j

(
cλ,k′, j

)a |rλ,k′, j 〉〈rλ,k′, j |, ∀k, k′
(A11)

for every real number a. This implies

∑

j ′

√
cλ,k′, j ′ |rλ,k′, j ′ 〉〈rλ,k′, j ′ |

=
⎛

⎝
∑

j ′

(
cλ,k′, j ′

)1/4 |rλ,k′, j ′ 〉〈rλ,k′, j ′ |
⎞

⎠

⎛

⎝
∑

j ′

(
cλ,k′, j ′

)1/4 |rλ,k′, j ′ 〉〈rλ,k′, j ′ |
⎞

⎠

=
⎛

⎝
∑

j ′

(
cλ,k′′, j ′

)1/4 |rλ,k′′, j ′ 〉〈rλ,k′′, j ′ |
⎞

⎠

⎛

⎝
∑

j ′

(
cλ,k, j ′

)1/4 |rλ,k, j ′ 〉〈rλ,k, j ′ |
⎞

⎠ .

(A12)
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Substituting (A12) into (A10) gives

∑

kk′k′′

√
PK (k)PK (k′′)PK (k′)eiθλ,k−iθλ,k′′

∑

j j ′′

√
cλ,k, j cλ,k′′, j ′′

〈rλ,k′′, j ′′ |rλ,k, j 〉|mλ,k, j 〉〈mλ,k′′, j ′′ | ⊗ |k〉〈k′′|
=

∑

kk′′

√
PK (k)PK (k′′)eiθλ,k−iθλ,k′′

∑

j j ′′

√
cλ,k, j cλ,k′′, j ′′

〈rλ,k′′, j ′′ |rλ,k, j 〉|mλ,k, j 〉〈mλ,k′′, j ′′ | ⊗ |k〉〈k′′|
= TrHλ

|φλ〉〈φλ|,

(A13)

which confirms (A9).
Combining this with (A6) and noting that

I ⊗ √
TrHλ

|φλ〉〈φλ||�̃λ,k〉|k〉 =
∑

k′

√
PK (k′)PK (k)eiθλ,k′−iθλ,k

∑

j j ′

(
cλ,k, j cλ,k′, j ′

)1/4

〈rλ,k, j |rλ,k′, j ′ 〉|rλ,k, j 〉|mλ,k′, j ′ 〉 ⊗ |k′〉,
(A14)

we get

√
G(ρAB)

√
G ◦ B(ρAB)

−1B(ρAB)
√
G ◦ B(ρAB)

−1√G(ρAB)

=
∑

λλ′k

√
P	(λ)P	(λ′)eiθλ,k−iθλ′,k

∑

k′k′′

√
PK (k′)PK (k′′)PK (k)eiθλ,k′−iθλ,k+iθλ′,k−iθλ′,k′′

∑

j j ′

(
cλ,k, j cλ,k′, j ′

)1/4 〈rλ,k, j |rλ,k′, j ′ 〉
∑

l j ′′

(
cλ′,k,l cλ′,k′′, j ′′

)1/4 〈rλ′,k′′, j ′′ |rλ′,k,l〉

|rλ,k, j 〉〈rλ′,k,l | ⊗ |mλ,k′, j ′ 〉〈mλ′,k′′, j ′′ | ⊗ |k′〉〈k′′|
=

∑

λλ′

√
P	(λ)P	(λ′)

∑

k′k′′

√
PK (k′)PK (k′′)eiθλ,k′−iθλ′,k′′

∑

j ′ j ′′

√
cλ,k′, j ′

√
cλ′,k′′, j ′′ |rλ,k′, j ′ 〉〈rλ′,k′′, j ′′ | ⊗ |mλ,k′, j ′ 〉〈mλ′,k′′, j ′′ | ⊗ |k′〉〈k′′|

= |�〉〈�|,
(A15)

where in the second equality we used (A11). This confirms (23).
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