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Abstract
This is the second and final part of ‘Topological twists of massive SQCD’. Part I is
available at Lett. Math. Phys. 114 (2024) 3, 62. In this second part, we evaluate the
contribution of the Coulomb branch to topological path integrals forN = 2 supersym-
metric QCD with N f ≤ 3 massive hypermultiplets on compact four-manifolds. Our
analysis includes the decoupling of hypermultiplets, the massless limit and the merg-
ing ofmutually non-local singularities at theArgyres–Douglas points.We give explicit
mass expansions for the four-manifoldsP2 and K3. ForP2, we find that the correlation
functions are polynomial as function of themasses, while infinite series and (potential)
singularities occur for K3. The mass dependence corresponds mathematically to the
integration of the equivariant Chern class of the matter bundle over the moduli space
of Q-fixed equations. We demonstrate that the physical partition functions agree with
mathematical results on Segre numbers of instanton moduli spaces.
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Contents

This is the second and final part of ‘Topological twists of massive SQCD’. Part I
is available as preprint at arXiv:2206.08943 [1]. The numbering of sections is con-
secutive to that of Part I, while each part contains its own reference list. Since Part
II has developed to a larger text than anticipated, the following interlude provides a
complementary and extended introduction to Part II. A combined document with part
I and part II can be found on here.
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7 Interlude

In this part II, we study topological partition functions for four-dimensional N = 2
supersymmetric QCD with N f = 0, . . . , 3 massive hypermultiplets. The low-energy
theory in flat space has a rather rich structure: The 2 + N f singular vacua move
on the Coulomb branch smoothly as a function of the masses, which we denote by
m = (m1, . . . , m N f ). The vacua can collide in two distinct ways, depending on the
Kodaira type of the corresponding singular fibre in the Seiberg–Witten geometry.
If r I1 singularities for r mutually local dyons merge, they form a new singularity
of Kodaira type Ir . When singularities corresponding to mutually non-local dyons
collide, they rather lead to Kodaira type I I , I I I or I V singularities, which give
rise to superconformal Argyres–Douglas (AD) theories [2, 3]. In general, if two or
more masses of the hypermultiplets align, the flavour symmetry enhances and a Higgs
branch opens up.

It is an interesting question how this singularity structure is reflected in the topo-
logical theory. For the mass deformation of N = 4 Yang-Mills, the N = 2∗ theory,
this has been analysed in [4, 5], which connects Vafa–Witten and Donaldson–Witten
invariants. The structure for SQCD bears much resemblance to that case, yet the mul-
tiple masses and AD singularities give rise to richer structure with more intricacies.
Before discussing our findings and results, we give an overview of previous literature,
including part I.

7.1 Literature overview

For a generic compact four-manifold X , the topological partition function of SQCD
takes the form of a sum of a u-plane integral �J

μ and a Seiberg–Witten (SW) contri-
bution [6],

Z J
μ(m) = �J

μ(m) +
2+N f∑

j=1

Z J
SW, j,μ(m). (7.1)

The partition function depends on three distinct collections of parameters: The masses
m, the metric J and a set of fluxes μ for the theory (such as a ’t Hooft flux for the
gauge bundle and background fluxes for the flavour group). Geometrically, the mass
dependence of Z J

μ(m) contains information on intersection numbers of Chern classes
on gauge theoretic moduli spaces [7].

The u-plane integral �J
μ(m) vanishes for manifolds with b+

2 > 1 [6]. Manifolds
with b+

2 = 0, 1 are therefore of special interest, since they have the right topology to
probe the full Coulomb branch.Wewill restrict to X with b+

2 ≥ 1. For b+
2 = 1, the SW

contribution canbe found from theu-plane integral bywall-crossing as a function of the
metric J . While the u-plane integral depends on X only through its intersection form
on H2(X ,Z), the SW invariants can distinguish between homeomorphic manifolds
with distinct smooth structures.

In part I, we have defined the u-plane integral �J
μ(m) of massive SQCD. For fixed

fluxes μ on a given four-manifold X , it is essentially determined by the SW solution
for the Coulomb branch or u-plane of the theory. The fibration of the SW curve over
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the u-plane has been identified as a rational elliptic surface (RES) S(m), which is
also known as the Seiberg–Witten surface [8–16].1 This geometry encodes much of
the data of the supersymmetric low-energy effective theory. The analytical structure
of the u-plane integral is therefore to a great extent determined by that of the surface
S(m). As explained in part I, the u-plane integral can be mapped to a fundamental
domain F(m) associated with the elliptic surface S(m), and collapses to a finite sum
over cusps, elliptic points and interior singular points of the fundamental domain (see
(6.22)). In terms of the SW surface, we calculate the sum of the u-plane integrand
over the singular fibres of S(m), which fall into Kodaira’s classification. The possible
configurations of singularities for rational elliptic surfaces have been classified as well
[17, 18].

A notable intricacy for the evaluation is the fact that the mass dependence of the
surface S(m) is not globally smooth, which gives rise to branch points and branch cuts
for N f ≥ 1 [19]. This requires a careful regularisation of the fundamental domain: It
must be chosen to not cross any branch points in the renormalisation of the integral.
Moreover, as the masses are varied, the singular fibres in S(m) can split or merge. In
the limit where an Argyres–Douglas (AD) point emerges, the fundamental domain is
‘pinched’ at the AD point and it splits into two [19]. See, e.g. Fig. 10.

As mentioned above, the SW contribution ZSW, j,μ can be determined by a wall-
crossing argument from their corresponding cusps of the u-plane integral. Due to their
application to Donaldson invariants in the pure N f = 0 theory, they have been studied
predominantly for singularities of type I1, corresponding to one massless monopole or
dyon. The generalisation to SQCD proceeds analogously, since in such configurations
all singularities are of type I1 as well [6]. Partition functions for the massless theories
are determined in [20, 21].

The partition functions of Argyres–Douglas theories on four-manifolds have been
studied from various perspectives [22–32]. While the u-plane integrand is regular at
any smooth point on the Coulomb branch, it can diverge at the elliptic AD points. In
contrast to the strong coupling singularities of type Ir , their contribution to correlators
exhibits continuous metric dependence rather than discrete wall-crossing. Besides, the
expansion of the integrand at elliptic points has a very different flavour than at cusps,
and has been largely unexplored in the literature. The study of such elliptic points is
also of interest due to other types of singularities, such as theMinahan–Nemeschansky
SCFTs [33, 34].

Other intriguing connections between theories can be realised by compactifica-
tion, which relates invariants associated with geometries of different dimensions. This
connects, for instance, the Donaldson invariants, Floer homology, Gromov-Witten
invariants and K-theoretic versions [35–41], and allows to conjecture QFTs them-
selves as invariants [42, 43].

7.2 Summary of results

In order to study the analytical structure of topological partition functions explicitly,
we focus on two manifolds: the complex projective plane P2 and K3 surfaces. For P2,

1 See [15] for a recent review on Seiberg–Witten geometry.
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only the u-plane integral contributes, while for K3 there is only the SW contribution.
The dependence on the masses can be studied in various special limits, such as large
and small masses, and limits to AD theories. In part I, we argued that the twisted theory
can be coupled to background fluxes for the flavour group. In this part II, by explicit
computation we demonstrate that this indeed provides a refined family of theories with
nonzero partition functions.

As announced in part I,we evaluateu-plane integrals usingmockmodular forms and
Appell–Lerch sums. For P2, various choices of mock modular forms have appeared in
the literature, which all differ by an integration ‘constant’, in this case a holomorphic
modular form. Since the anti-derivative of the integrand must transform under all
possible monodromies on the u-plane of SQCDwith arbitrary masses, this singles out
a specific SL(2,Z) mock modular form: It is the q-series H (2) of Mathieu moonshine
[44, 45], which relates the dimensions of irreducible representations of the sporadic
group M24 to the elliptic genus of the K3 sigmamodelwithN = (4, 4) supersymmetry.
Including either surface observables or nontrivial background fluxes, this function
generalises to an SL(2,Z) mock Jacobi form, giving an interesting refinement.

For four-manifolds with b2 = 1, the weak coupling cusp contributes to all correla-
tion functions, while the strong coupling cusps never contribute. For all four-manifolds
with b+

2 > 0 that admit a Riemannian metric of positive scalar curvature, the SW
invariants are zero due to a well-known vanishing theorem [35, 43, 46, 47]. Hence
by SW wall-crossing, the strong coupling contributions to the u-plane integral are
expected to vanish as well. We confirm this by an analysis of the u-plane integrand
at the singularities for such manifolds, including the del Pezzo surfaces d Pn . Further-
more, we prove that in the absence of background fluxes for the flavour group, the
branch points never contribute to u-plane integrals.

Our calculations for P2 agree with previous results in the literature, which were
available for massless SQCD [20]. A consistency check available only for massive
SQCD is the infinite mass decoupling limit, which precisely matches with that of the
proposed form of correlation functions in the UV theory. The limit of the u-plane
integral takes the form as given in (8.23), and we use it to check our explicit results for
P
2: If all hypermultiplets are decoupled, one recovers the Donaldson invariants of P2.

Our results agree precisely with [48, 49] for N f = 0 and [20] for massless N f = 2
and N f = 3. The UV formula provides another consistency check in the form of a
selection rule for observables. For instance, correlation functions of point observables
on P

2 with canonical ’t Hooft flux are valued in the polynomial ring of the masses,
where the virtual rank and degree of the Chern class of the matter bundle as well as the
virtual dimension of the instanton moduli space can be read off from the exponents
of the masses and dynamical scale. The coefficients are then (rational) intersection
numbers on the moduli space of solutions to the Q-fixed equations.

Coupling the hypermultiplets to background fluxes for the flavour group allows to
formulate the theory for arbitrary ’t Hooft fluxes. We determine the couplings to the
background fluxes for N f = 1, 2 by integration of the SW periods, and evaluate the
correlation functions on P2. For nontrivial background flux, the results depend on the
expansion point, i.e. small or large masses. This is due to the pole structure of the
(elliptic) mock Jacobi form H (2), which we determine precisely.
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Fig. 9 The singularity structure on the Coulomb branch with N f heavy hypermultiplets consists of two

singularities approaching the monopole and dyon points ±�2
0 of pure SU(2) SYM, while N f singularities

are asymptotically large. We associate the two singularities of O(�2
0) and weak coupling u = ∞ to the

instanton component (blue), while the other N f singularities are attributed to the abelian (or monopole)
component (orange). In contrast to the case of small masses, for large masses the two components are well
separated

As discussed in part I, the superconformal Argyres–Douglas theories present them-
selves in the fundamental domain of massive SQCD as elliptic points. We expand the
u-plane integrand around any singularity of type I I , I I I and I V . The anti-derivative
of the photon path integral is a non-holomorphic modular form, which we evaluate at
elliptic points using the Chowla–Selberg formula. This formula expresses the value of
modular forms at elliptic points as products of the Euler gamma function at rational
numbers. Interestingly, elliptic points are all zeros of the function H (2). Together with
the holomorphic expansion of the measure factor, whose order of vanishing at any
elliptic point we determine, we show that for four-manifolds with odd intersection
form and canonical ’t Hooft flux the u-plane integrand is regular and thus there is no
contribution from AD points in those cases. Our results for the expansion at elliptic
points can be readily generalised to other u-plane integrals containing elliptic points.

Further, we derive the general form of SW contributions for SU(2) SQCD and
evaluate correlation functions of point observables for X = K3. If the masses are
large, N f singularities move on the u-plane to infinity, while two converge to ±�2

0,
giving the SW singularities of the pure N f = 0 theory. This allows to attribute the N f

singularities at large |u| to the monopole component of the moduli space of Q-fixed
equations, while the union of the monopole, dyon and weak coupling contribution
corresponds to the instanton component. See Fig. 9. Note the distinction between the
monopole contribution to the instanton component and the monopole component.

The contributions of the ‘instanton’ singularities to point observables on K3 are
Laurent series in the inverse mass 1

m , which turn out to be generating functions of
Segre numbers. Segre classes first appeared in the context of moduli of vector bundles
in an article by Tyurin [50]. They were later generalised for higher-rank bundles
over projective surfaces in [51]. Recently, the correspondence between higher-rank
Segre numbers on moduli spaces of stable sheaves on surfaces and their Verlinde
numbers [7, 37, 52] has been proven [53]. We establish the relation between the
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physical partition functions and these geometric invariants by an explicit mapping
using the SW geometry. The coefficients of the ‘monopole’ contribution lack such a
mathematical interpretation. However, combining it with the instanton contribution
eliminates the (infinite) principal part of the series, resulting in a polynomial in the
masses. See for instance Table 12.

For Ir singularities with r ≥ 2, the SW invariants are not readily well defined,
since the moduli space can be non-compact and the integrals require regularisation
[43, 47, 54]. The SW invariants for Ir singularities with r > 1 are invariants for the
multi-monopole equations, and require higher-order corrections in the local variables
[21]. The SW invariants are in this case nonvanishing for nonzero Spinc structures.
We calculate the simplest nontrivial case, which is an I2 singularity in N f = 2 with
equal masses on K3. An apparent feature is the potentially divergent behaviour of the
SW partition function near the superconformal Argyres–Douglas points. We propose
that these divergences are rendered finite by sum rules for the Ir SW invariants for
different r (see (12.49)), generalising earlier results for sum rules for I1 SW invariants
[26, 27, 29]. A calculation in N f = 3 with the same type I I I AD point as in N f = 2
reproduces the same sum rules for the I1 and I2 SW invariants. This suggests that
the constraints on the topology from the regularity at any AD point are determined
completely by the universality class of the superconformal theory. We note that the
collision of I1 points to an Ir point also exhibits a mass singularity. This singularity
is expected to be related to the appearance of a non-compact Higgs branch [43, 55],
and therefore does not give rise to new sum rules.

Imposing the sum rules, in all cases we study the correlation functions are then
polynomials in the masses. The type I I I AD point can also be approached away from
the equal mass locus in N f = 2, where three I1 singularities collide rather than an
I2 and an I1. The two limits agree up to a divergent term ∼ (m1 − m2)

−2, which is
a consequence of a non-compact Higgs branch appearing as m1 → m2 [7, 43, 55].
The I2 SW contribution thus naturally regularises the singular limit of colliding I1
singularities.

Organising the SWcontributions of the pure N f = 0 theory to a correlation function
with exponentiated observables, the generating function in many cases satisfies an
ordinary differential equation with respect to the point observable. Four-manifolds
whose SW invariants enjoy this property are said to be of (generalised) simple type.
An example are the K3 surfaces, where the corresponding generating functions for
massless SQCD have been studied [21]. We generalise this analysis to the massive
theories, and show that for generic masses the differential equation is determined
by the physical discriminant associated with the massive theory (see (12.74)). When
mutually local singularities collide (as is the case in massless N f = 2, 3), zeros
of the discriminant collide, and give rise to higher-order zeros of the characteristic
polynomial of the ODE. Such general structure results on generating functions are
also of interest regarding the asymptology of correlation functions for many fields
[56]. Due to the rich phase structure of the SQCD Coulomb branch, it is not obvious
if the generating function of correlation functions as a formal series is well defined,
that is, if it defines an entire function on the homology ring H∗(X ,C).
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7.3 Outline of part II

This part II is organised as follows. In Sect. 8, we discuss various aspects of the u-
plane integral of massive SQCD, such as the contributions from singular points, the
measure factor including gravitational couplings and the decoupling limit. In Sect. 9,
we calculate auxiliary expansions of various Coulomb branch functions near special
points, such asweak coupling, strong coupling cusps and branch points. In Sect. 10, we
formulateu-plane integrals over fundamental domains in the presence of branchpoints,
analyse the components of the integrand in detail and derive conditions on the cusps
to contribute to correlation functions. In Sect. 11, we calculate u-plane integrals of
massive SQCD on the complex projective plane P2, with N f ≤ 3 arbitrary masses and
with nontrivial background fluxes. In Sect. 12 we rederive the SW contributions for I1
singularities by awall-crossing argument at the strong coupling cusps.We furthermore
propose the formof SWcontributions for I2 singularities, calculate point correlators on
K3 and discuss the AD limit and the relation to Segre invariants. Finally, we propose
generalised simple type conditions for generic as well as coincident masses. In Sect.
13, we discuss the contributions of AD points to the u-plane integral. We conclude
with a brief discussion in Sect. 14. Various useful expansions, derivations, proofs and
formulas can be found in the appendices D, E, F and G.

8 Further aspects of topological path integrals

This section discusses further aspects and preliminaries of topological path integrals.
Section 8.1 discusses the different contributions to the topological path integral. Sec-
tion 8.2 discusses the measure of the u-plane contribution. In Sect. 8.3, we study the
behaviour of the path integral under decoupling of hypermultiplets in the infinite mass
limit.

8.1 General structure

For a generic compact four-manifold, the topological partition function of SQCD takes
the form (7.1). As discussed before, the u-plane integral �J

μ receives contributions
from the weak coupling cusp, τ → i∞, and the N f + 2 strong coupling singularities,
such that we can express Z J

μ as

Z J
μ(m) = �J

μ,∞(m) +
2+N f∑

j=1

�J
μ, j (m) + Z J

SW,μ, j (m). (8.1)

In Sects. 10 and 11, we will discuss and calculate the u-plane integral for generic and
specific four-manifolds. In Sect. 12 we will derive the action ZSW, j for the theory
near u∗

j from the u-plane integral using wall-crossing. The reason for this is that wall-
crossing of the total partition function can only be due to the non-compact direction in
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field space, i.e. |u| → ∞ [6]. Thus, the wall-crossing of the strong coupling u-plane
contributions �J

μ, j (m) must cancel that of Z J
SW,μ, j (m).

If the masses are tuned to an AD point, the partition function naturally splits into
a contribution from a small neighbourhood of the AD point, and its complement in
the u-plane [29]. This works out rather nicely when lifted to domains in the τ -plane.
On the AD mass locus, the fundamental domain splits into a component including
the original weak coupling regime, and a strong coupling component associated to
the vicinity of the AD point in the u-plane [19]. The strong coupling singularities
{1, . . . , 2+ N f } accordingly split in two sets S and S′, with S ∪ S′ = {1, . . . , 2+ N f }
and the singularities in S′ merging in the AD point. Furthermore, the fundamental
domains in τ -space include the elliptic points e in S and its complement e′ in S′.
Schematically, we arrive at the following

Z J
μ(mAD) = �J

μ,∞(mAD) + �J
μ,e(mAD) + lim

m→mAD

∑

j∈S

�J
μ, j (m) + ZSW,μ, j (m)

+ �J
μ,e′(mAD) + lim

m→mAD

∑

j ′∈S′
�J

μ, j ′(m) + ZSW,μ, j ′(m).

(8.2)

The limit on the right hand side occurs since each summand for fixed j can diverge.
The sum over j may remain finite as a consequence of sum rules [26]. The terms on
the second line correspond to the vicinity of the AD point in the u-plane,

Z J
ÃD,μ

= �J
μ,e′(mAD) + lim

m→mAD

∑

j ′∈S′
�J

μ, j ′(m) + ZSW,μ, j ′(m), (8.3)

where the tilde on ÃD indicates that Z J
ÃD,μ

is the contribution to the partition function
of SQCD from the neighbourhood of the AD point, rather than the partition function
of the intrinsic AD theory.

The 2+N f singularities of (8.1) are split up into the sum over j and j ′.We illustrate
this in Fig. 10. In order for the limit Z J

μ(m) → Z J
μ(mAD) to be smooth, it is natural

to expect that �J
μ,e(m) = −�J

μ,e′(m). We will discuss the contributions from the AD

points in detail in Sect. 13. It is an interesting question how to extract from Z J
ÃD,μ

(8.3)

the partition function Z J
AD,μ of the superconformal AD theory based on the ‘zoomed

in’ AD curve [2]. The latter partition function is determined, for instance, in [29].
Roughly, Z J

AD,μ is the leading term of Z J
ÃD,μ

. We make some further comments in
Sect. 12.3, and leave a more thorough analysis for future work [55].

We close this subsection with some further notation. We will often omit the mass
m from the argument of Z J

μ. Moreover, we denote the insertion of observables by
straight brackets,

Z J
μ[O] = 〈O〉J

μ , (8.4)

and similarly for the terms on the rhs of (8.2). Two common observables are the

exponentiated point and surface observables e
2pu/�2

N f and eI (x). For these observables,
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Fig. 10 When the mass for the N f = 1 theory is tuned to the AD value, the partition function (8.2) receives
contributions from two disjoint regions. The first region (purple) is precisely the fundamental domain in
the limit m → mAD, while the other one (green) is the ‘zoomed in’ domain, as studied, for instance, in [2,
19, 26, 29]. The two domains are connected through the AD point (orange), whose boundary arcs (red and
yellow) both have angle 2π

3

we also use p and x as arguments of Z J
μ,

Z J
μ(m, p, x) = Z J

μ(p, x) = Z J
μ[e2pu/�2

N f
+I (x)]. (8.5)

See Sec. 4.3 in part I for more details.

8.2 Measure factor

We recall that the metric-independent part of the path integral is the measure factor
(5.2). It contains the topological couplings

A = αN f

(
du

da

)1/2

, B = βN f �
1/8
N f

(8.6)

of the theory to the Euler characteristic χ and the signature σ of the four-manifold
X . While the functions αN f and βN f are independent on τ , they can be functions of
other moduli such as the masses m and the dynamical scale �N f , or the UV coupling
τUV for N f = 4 or N = 2∗. The functions A and B essentially do not change in form
by including matter because the kinetic terms of the hypermultiplets have no explicit
τ -dependence [6]. This suggests that αN f and βN f do not have a strong dependence
on N f .

Furthermore, αN f and βN f cannot depend on any masses since otherwise the path
integral would have additional global mass singularities, which are not physically
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motivated [26]. This argument includes the conformal fixed points [2, 3], as these
singularities occur only for special values and not on the whole u-plane. Thus αN f

and βN f depend only on the scale �N f . This furthermore agrees with the fact that the
gravitational factors need to reproduce the anomaly associated to the fields that have
been integrated out, which eliminates a possible dependence of α and β on m [26].

Since the couplings A and B are contained in the low-energy effective action as
χ log A + σ log B, both A and B are necessarily dimensionless. With

[ du
da

] = 1 and
[�N f ] = 2(N f + 2), this fixes the dimensionality

αN f = αN f ,0�
− 1

2
N f

,

βN f = βN f ,0�
− 1

4 (N f +2)
N f

,

(8.7)

where αN f ,0, βN f ,0 ∈ C are dimensionless numbers. These gravitational couplings
have been recently calculated for several families of theories [15, 57–59].

Using the decoupling limits, we find for the normalisation (5.2) and the constants
α and β,

KN f ,0 = 1

π
, αN f ,0 = 2

1
4 , βN f ,0 = 2 e

π i
8 N f . (8.8)

The phase in βN f ,0 originates from the decoupling of the discriminant, as we will
discuss momentarily.

The effective gravitational couplings appear in the u-plane integrand as a product
KN f α

χ
N f

βσ
N f

. Due to the fact that χ + σ = 4 for manifolds with (b1, b+
2 ) = (0, 1),

there is a normalisation ambiguity [29]

(KN f , αN f , βN f ) ∼ (κ−4KN f , καN f , κβN f ), (8.9)

giving the same result for any κ ∈ C. In particular, in the u-plane integral only the
ratio

βN f

αN f

= βN f ,0

αN f ,0
�

− N f
4

N f
(8.10)

is fixed. This agrees with [57] for N f = 0, . . . 4 and the general considerations in
[26]. From our result (8.8), we find

βN f ,0

αN f ,0
= 2

3
4 e

π i
8 N f . (8.11)

For N f = 0, the unambiguous ratio β0,0
α0,0

= 2
3
4 agrees with [56], and matches with

explicit computations of Donaldson invariants.
Since the u-plane integral computes intersection numbers on the moduli space, it

should be properly normalised to be dimensionless. With A and B dimensionless, the
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only dimensionful quantity in the measure factor is the Jacobian da
dτ . Thus

KN f = KN f ,0�
−1
N f

= 1

π �N f

(8.12)

produces a dimensionless u-plane integral, with KN f ,0 ∈ C the number in (8.8).
Combining all the scales fixed by dimensional analysis and using χ + σ = 4, we

have
NN f := KN f α

χ
N f

βσ
N f

= KN f ,0α
χ
N f ,0

βσ
N f ,0�

−(3+σ N f /4)
N f

. (8.13)

This total normalisation factorNN f will be important in the decoupling of the u-plane
integral, as we will study in the subsequent subsection.

With the above analyses, we can now present the measure ν(τ, {k j }) (5.2) in a
more tangible fashion. Let us first consider k j = 0 for all j and set ν(τ, {0}) = ν(τ).
Substituting Eq. (4.15) for A and B, and [19, Eq. (3.13)], we find

ν(τ) = − 16π i

4 − N f
NN f

1

PM
N f

(
du

da

)−σ/2−1

�
1+σ/8
N f

, (8.14)

where the polynomials PM
N f

appearing in generalisations of the Matone relation [60]
are given in [19, Eq. (3.15)], and NN f is given by (8.19). We can further substitute
[19, Eq. (3.9)] for �N f , to express ν(τ) as

ν(τ) = NN f

(−1)N f +1π i

4 − N f
2− 3

4σ−2e−π i N f
σ
8 �

(2N f −8)(σ/8+1)
N f

η(τ)3σ+24

PM
N f

(
du

da

)σ+11

.

(8.15)

These substitutions significantly simplify explicit calculations.

8.3 Decoupling limit

This section will discuss the decoupling limit of the u-plane integral and compare with
the decoupling (3.20) from the UV in Sect. 3.3. The u-plane integral (5.1) reads

�
J ,N f

μ,{k j }(p, x,mN f ,�N f ) = NN f

∫

F(mN f )

dτ ∧ d τ̄
da

dτ

(
du

da

) χ
2

�
σ
8
N f

N f∏

i, j=1

e−π iwi j B(ki ,k j ) � J
μ(τ, z) e

2p u
�2

N f

+x2G N f

,

(8.16)

where z is given in (5.4). Here, we have combined the N f -dependent normalisation
factors in NN f (8.13), which facilitates the decoupling analysis.
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Table 1 Decoupling flow of
components of the u-plane
integrand

(m1, . . . , m N f ) (m1, . . . , m N f −1)

F(mN f ) F(mN f −1)

u u
du
da

du
da

da
dτ

da
dτ

−�N f /m2
N f

�N f −1

�2
N f

G N f �2
N f −1G N f −1

In the scaling limit (2.18), the curve (2.17) for given N f flows to the curvewith N f −
1. The flow of some of the ingredients of the u-plane integrand has been determined
in [19, 61, 62]. We summarise them in Table 1.

The formulation of the u-plane integral in the presence of background fluxes intro-
duces the further couplings v j andw jk , which we defined in (2.12) [1, 5]. While these
are difficult to determine in general, we can study their behaviour under decoupling
hypermultiplets using the semi-classical prepotential (2.7). If we send m N f → ∞
while keeping m N f �

4−N f
N f

= �
4−(N f −1)
N f −1 and a fixed, we find that

v
j
N f

→ v
j
N f −1,

v
N f
N f

→ −1

2
(nN f + 1),

w
jk
N f

→ w
jk
N f −1 − δ jk

i

π
log

(
�N f −1

�N f

)
,

w
N f N f
N f

→ − i

π
log

(
m N f

�N f

)
,

τN f → τN f −1, (8.17)

for all 1 ≤ j < N f and 1 ≤ k ≤ N f . The off-diagonal components ofw jk only receive
contributions from higher-order terms in the large a expansion of the prepotential, and
we leave a determination of their decoupling limit for future work.

The point and surface observables p and x are multiplying the dimensionless quan-
tities u

�2
N f

and G N f . However, as is apparent from Table 1, they both rather need to be

multiplied by �2
N f

in order to enjoy a well-defined scaling limit. This can be achieved

by multiplying p by

(
�N f

�N f −1

)2

and multiplying x by
�N f

�N f −1
.2 Then, the resulting

exponentials will simply flow to the ones for the theory with N f − 1 flavours.

2 Such redefinitions of the point and surface observables are familiar from superconformal rank one theories,
such as the N = 2∗ theory [5], the SU(2) N f = 4 theory [31] and the (A1, A2) Argyres–Douglas theory
[29].
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With the above kept in mind, it is now straightforward to decouple every term in the
expression (8.16) separately. By multiplying it with the inverse normalisationN−1

N f
, it

becomes dimensionful; however, all components decouple as given in Table 1 and the
result is N−1

N f
�N f −1. The decoupling −m−2

N f
�N f → �N f −1 tells us that we need to

multiply �N f also by (−m−2
N f

)
σ
8 , which combines with the discriminant �σ/8

N f
to have

a well-defined limit. The minus sign is then absorbed in βN f ,0, see (8.8). Using the

definition of the double scaling limit m N f �
4−N f
N f

= �
4−(N f −1)
N f −1 , we find the useful

relation which holds in the limit,

(−m−2
N f

)
σ
8
NN f −1

NN f

=
(

�N f

�N f −1

)3+σ

, (8.18)

where the exponent on the rhs for general four-manifolds is 3 + σ = 1
4 (7σ + 3χ).

This can be confirmed using the definition (8.13), with the numerical constants (8.8)
inserted, giving the normalisation factor NN f for all N f and all σ ,

NN f = 21+3σ/4 eπ iσ N f /8

π �
3+N f σ/4
N f

. (8.19)

From (8.17), we also see that we have nontrivial decouplings of the couplings vN f

and w
jk
N f

. From the double scaling limit, we have another useful formula

�N f

m N f

=
(

�N f

�N f −1

)5−N f

, (8.20)

which combinedwith the decoupling limits (8.17) tells us that, to leading order (C jk =
e−π iw jk ),

C
(N f )

j j → �N f

�N f −1
C

(N f −1)
j j , j �= N f ,

C
(N f )

N f N f
→
(

�N f

�N f −1

)5−N f

.

(8.21)

The dependence on v j is only through the elliptic variable of the theta function (4.11),
and from (8.17) we see that we pick up an extra phase

eπ i(nN f +1)B(kN f ,k)
, (8.22)

in the decoupling of v
N f
N f

. In Sect. 11 and in particular in (5.30) we concluded that
the u-plane integral is only well defined if the magnetic winding numbers n j satisfy
n j ≡ −1 mod 4. Using that nN f + 1 ≡ 0 mod 4, one finds that the phase (8.22)
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equals 1, such that the decoupling does not introduce any additional phases in the theta
function.

Combining everything, the decoupling limit of the full u-plane integral now reads

lim
m N f →∞
�N f →0

(
�N f

�N f −1

)−α

�
J ,N f

μ,{k j }N f

((
�N f

�N f −1

)2

p,
�N f

�N f −1
x,mN f ,�N f

)

= �
J ,N f −1
μ,{k j }N f −1

(
p, x,mN f −1,�N f −1

)
,

(8.23)

where we repeat the exponent

α = 1

4

(
− 3χ − 7σ + (5 − N f ) c1(LN f )

2 +
N f −1∑

j=1

c1(L j )
2
)
. (8.24)

from (3.21). We see that the decoupling matches precisely with the UV calculation
(3.20). In the case where all the c1(L j ) = 0, this reproduces the result [26, (2.10)].

Remarks about the phase of the partition function

Our convention (2.16) for the weak coupling limit is favourable since it is valid for all
N f [19]. On the other hand, it differs from previous literature. Notably for N f = 0,
u differs by a sign, such that the monopole and dyon singularity are interchanged. As
a consequence, the partition functions determined here differ by a phase compared
to the literature. In particular, Zμ[e2pu] differs from 〈

epO〉
z of [46, Eq. (2.17)] by a

phase,

Zμ[e2pu] = −eπ iλ/2 e2π iμ2
〈
epO

〉

z
(8.25)

with z = 2μ, and αa = 0.
A related aspect is the choice of fundamental domain. Reference [19] described a

framework for mapping out the fundamental domain for N = 2 SQCD with generic
masses. Yet there is some ambiguity in the choice of this domain. In this brief sub-
section, we study this ambiguity here for N f = 0 and connect it to characteristic
classes.

In the decoupling limit, it is important to choose a consistent frame for τ → i∞
such that the decoupling does not involve shifts. The frame found in [19] differs from
the one in the broad literature by T 2, or alternatively by the action of r , with r the
generator of the unbroken Z4 R-symmetry for nonvanishing a. Let us thus study the
effect of this transformation on the u-plane integral.

Let us denote by Iμ(τ, p, x) the integrand of (8.16), such that we have�μ(p, x) =∫
F0

Iμ(τ, p, x). Assuming that we are integrating over the ’standard’ choice F0 (see
Fig. 2), we can simply determine the difference between Iμ(τ, p, x) and Iμ(τ +
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2, p, x). Under T 2, we have the following transformations for N f = 0:

T 2 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

da
dτ → −i da

dτ
du
da → −i du

da

�1/8 → e−π i/4�1/8

u → −u

� J
μ(τ, τ̄ )→ e−2π iμ2

� J
μ(τ, τ̄ )

(8.26)

Then, using χ + σ = 4 we find that the integrand Iμ of the general u-plane integral
(8.16) transforms as

Iμ(τ + 2, p) = ie−2π iμ2
Iμ(τ,−p). (8.27)

Thus, the correlation function �J
μ(p) computed with some frame τ and �̃μ(p) =∫

F0
Iμ(τ + 2, p) computed with a frame τ + 2 relative to the first, differ by a factor

�J
μ(p) = ie−2π iμ2

�̃J
μ(−p) = ie− π i

2

∫
X P2(w2(E))�̃J

μ(−p). (8.28)

with P2 the Pontryagin square, P2 : H2(X ,Z2) → H4(X ,Z4). This is the mixed
anomaly between the U (1)R symmetry and the Z2 1-form symmetry of the N f = 0
theory [63]. Equation (8.28) demonstrates that the shift τ → τ + 2 in the integrand
couples the theory to an invertible TQFT [64, 65]. It is straightforward to also include
the dependence on the surface observable x here. Its transformation is x → −i x.

We note that for N f > 0, the theories with fundamental matter do not have a Z2 1-
form symmetry. Instead given the background fluxes for the flavour symmetry group,
{k j }, the ’t Hooft flux μ ∈ (L/2)/L is fixed. A sum over μ ∈ (L/2)/L as occurred
in gauging of the 1-form symmetry is thus not meaningful.

9 Behaviour near special points

This section collects various data of the ingredients of the u-plane integral near special
points, such as weak coupling, strong coupling and branch points. Readers mainly
interested in the results of the evaluation can skip this section.

9.1 Behaviour at weak coupling

The evaluation of u-plane integrals requires the expansion of various quantities at
weak coupling. We will concentrate on either small or large mass expansions. In the
large mass expansion, we express various quantities in terms of the order parameter
u0 of the N f = 0 theory, or uN f of the theory with N f flavours.

For example, for N f large and equal masses m, we can find the exact coefficients of
uN f as functions of u0 bymaking an ansatz uN f = ∑

n fn(u0) m−n and iteratively find
fn by satisfying the relation JN f (uN f ) = J0(u0) order by order in m−1. We list the
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results below and in Appendix E for N f = 1, 2, 3. For the evaluation of the correlation
functions in Sects. 11 and 12, higher-order terms than presented are required.

N f = 1
We can consider the q-expansion of u1(τ, m) as in [19, Eq. (4.18)]. The coefficients of
the q-series are polynomials in themass.While they are easily determined to all orders,
the modular properties are not manifest in this expansion. They are more apparent if
we consider an expansion in the mass m. We find for the large mass expansion of u1,

u1(τ, m) = u0(τ ) − 1

16
(4u0(τ )2 − 3�4

0)m
−2

− 1

27
u0(τ )(4u0(τ )2 − 3�4

0)m
−4 + O(m−6),

(9.1)

with u0 as in (2.29). We observe that this expansion for u1 obviously reduces to u0
in the m → ∞ limit. The expression is left invariant under �0(4) transformations
since u0 is a Hauptmodul for �0(4). Moreover, these terms are polynomial in u0, such
that H/�0(4) with Im τ � ∞ is a good fundamental domain for this regime. Further
subleading terms are given in Table 18 in Appendix E.2.

For (da/du)N f =1, we find using the definition (2.23) the following large mass
expansion,

(
da

du

)

1
=
(
da

du

)

0

(
1 + u0

8m2 + 10u2
0 + 3�4

0

256m4 + O(m−6)

)
, (9.2)

where (da/du)0 is the corresponding period for N f = 0. Further subleading terms
are given in Table 21.

In the presence of background fluxes, we also need the couplings v and w. We
determine expansions for these couplings from the prepotential F(a, m). To this end,
we determine using the Matone relation (2.24) expansions for a1 in terms of small
q = e2π iτ and large m. The q-series for fixed powers of m can be identified with a
quasi-modular form for the group �0(4). We find for the first few terms

a1(τ, m) = −i�0

(
ϑ2(τ )4+ϑ3(τ )4+2E2(τ )

6ϑ2(τ )ϑ3(τ )

)

− i�3
0

288m2

(
7ϑ2(τ )8+7ϑ3(τ )8−10ϑ2(τ )4ϑ3(τ )4+2(ϑ2(τ )4+ϑ2(τ )4)E2(τ )

ϑ2(τ )3ϑ3(τ )3

)
+ · · · .

(9.3)

The leading term corresponds to the one for N f = 0 [6]. Using this expression, we
can verify the identities of observables derived from the SW curve, and from the
prepotential (2.7), such as Eq. (2.13). For the prepotential, we use the expansion of
[62] up to a−18. As a result, expansions are valid up to about O(q3).

Substitution of a1(τ, m) in the couplingsw1 and v1 provides large mass expansions
for the couplings C = C11 = e−π iw11 (4.10) and e2π iv1 (2.12). For the coupling C ,
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we find

C =
(

�0

m

)4/3
(
1 −

(
�0

m

)2 2ϑ2(τ )4 + 2ϑ3(τ )4) + E2(τ )

12ϑ2(τ )2ϑ3(τ )2
+ O(m−4)

)
. (9.4)

For v1, we find

v1 = − 1√
2π

�0

m

1

ϑ2(τ )ϑ3(τ )
+ O(m−2), (9.5)

such that

e2π iv1 = 1 − 2i√
2

�0

m

1

ϑ2(τ )ϑ3(τ )
+ O(m−2). (9.6)

Using modular transformations, these expansions also provide large mass expansions
for the couplings near the strong coupling singularities.

Alternatively, we canmake expansions for smallm.Making only them-dependence
manifest, u1(τ, m), we have

u1(τ, m) = u1(τ, 0) + 3�3
1

8u1(τ, 0)
m −

(
1

3
+ 9

128 u1(τ, 0)2

)
m2 + O(m3), (9.7)

with u1(τ, 0) given in Eq. (2.30). Here, we see that this expansion is left invariant
under the monodromy group which leaves u1(0) invariant [19, 66]. On the other hand
u1(τ, 0) vanishes for τ = α = e2π i/3, such that this expansion is not a good function
on the full domain. It would be interesting to understand the nature of these poles,
which we leave for future work.

N f = 2
For N f = 2 with equal masses, m = (m, m), we consider first the large mass expan-
sion, relevant for the decoupling N f = 2 → 0. From the exact expression for the
order parameter (2.31), we find

u2(τ,m) = u0(τ ) − 1

8
(4u0(τ )2 − 3�4

0)m
−2 + 1

8
u0(τ )(u0(τ )2 − �4

0)m
−4

− 1

27
u0(τ )(u0(τ )2 − �4

0)
2m−8 + O(m−12).

(9.8)

Further subleading terms are listed in Table 19.
We can also consider the mass m = (0, m), which is relevant for the decoupling

limit from N f = 2 to N f = 1. For this choice, we find

u2(τ,m) = u1(τ, 0) − 27u1(τ, 0)3 + 33�6
1

3 · 27u1(τ, 0)
m−2

− �6
1(2

7u3
1(τ, 0) + 33�6

1)

3 · 215u1(τ, 0)3
m−4 + O(m−6).

(9.9)

This expansion is again singular for τ = α since u1(α, 0) = 0.

N f = 3
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We can similarly determine large mass expansions for N f = 3. For equal masses
m = (m, m, m), we have

u3(τ,m) = u0(τ ) − 3

16
(4u0(τ )2 − 3�4

0)m
−2

+ 3

27
u0(τ )(20u0(τ )2 − 19�4

0)m
−4 + O(m−6).

(9.10)

Further subleading terms are given in Table 20. Finally, for the large m expansion of
m = (0, 0, m), we find

u3(τ,m) = u2(τ, 0) − 1

27
(26u2(τ, 0)

2 − �4
2)m

−2

+ u2(τ, 0)

29
(26u2(τ, 0)

2 − �4
2)m

−4

− u2(τ, 0)

219
(26u2(τ, 0)

2 − �4
2)

2m−8 + O(m−10).

(9.11)

Singularities for N f = 1

We also list expansions for the strong coupling singularities. For N f = 1, these are the
roots of the discriminant which is a cubic equation, and can be determined explicitly.
Their large and small mass expansions are

u∗
1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�2
0 − 1

16

�4
0

m2 + 1

128

�6
0

m4 + O(m−6),

− 3

28/3
�2

1 − 1

21/3
�1m + m2

3
+ O(m3),

u∗
2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�2
0 − 1

16

�4
0

m2 − 1

128

�6
0

m4 + O(m−6),

−e4π i/3 3

28/3
�2

1 − e2π i/3 1

21/3
�1m + m2

3
+ O(m3),

u∗
3 =

⎧
⎪⎨

⎪⎩

m2 + 1

8

�4
0

m2 + O(m−6),

−e2π i/3 3

28/3
�2

1 − e4π i/3 1

21/3
�1m + m2

3
+ O(m3).

(9.12)

The largemass expansions foru∗
1 andu∗

2 agreewith the expansion (9.1) foru0 → ±�2
0.
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These singularities have two special properties. First, by Vieta’s formula, u∗
1+u∗

2+
u∗
3 = m2. For general N f = 0, . . . , 3, we have

2+N f∑

j=1

u∗
j =

N f∑

j=1

m2
j + �2

3

28
δN f ,3. (9.13)

More generally, if P is a polynomial, then
∑2+N f

j=1 P(u∗
j ) is a symmetric function in

the u∗
j , and by the fundamental theorem of symmetric polynomials can be written as

a rational function of the coefficients of the polynomial �N f .
Furthermore, for N f = 1 we have a special case that the curve depends only on�3

1.
This means that the discriminant locus {u∗

1, u∗
2, u∗

3} can only depend on �3
1, while the

individual u∗
j depends explicitly only on �1. This symmetry forces the u∗

j = u∗
j (�1)

to depend on �1 in a Z3 symmetric fashion,

u∗
j (α�1) = u∗

j+1(�1), (9.14)

with α = e2π i/3, and the labels j being modulo 3. This holds as long as the mass m
is finite and generic. For instance, the expansions around m = 0 in (9.12) obey this
symmetry. If we pick a specificmass, for instance,m = mAD = 3

4�1, this symmetry is
broken. Furthermore, expanding around m = ∞ singles out the singularity u∗

3, which
goes as u∗

3 ∼ m2, while u∗
1 and u∗

2 are related under �1 �→ α�1. Thus, the infinite
mass expansion (9.12) does not obey the Z3 symmetry (9.14).

9.2 Behaviour near strong coupling singularities

We list various general formulas near the strong coupling singularities u∗
j , j =

1, . . . , N f + 2. Similar formulas have also appeared, for example, in [26]. To analyse
the behaviour of uN f near u∗

j , we introduce a ‘local’ order parameter uN f , j , which is a
function of the local coupling τ j . For example, for j = 1, uN f ,1(τ1) = uN f (−1/τ1).
We let u∗

1 be the monopole singularity for τ → 0, u∗
2 the dyon singularity for τ → 2,

and j ≥ 3 label the additional hypermultiplet singularities.
From the invariant J of the SW curve, we deduce that near a strong coupling

singularity u∗
j of Kodaira type I1, uN f , j reads

uN f , j (τ j ) = u∗
j + (−1)N f �

2N f −8
N f

123 g2(u∗
j )
3

∏
� �= j (u

∗
j − u∗

�)
q j + O(q2

j ), q j = e2π iτ j ,

(9.15)
where uN f , j (τ j ) → u∗

j as τ j → i∞ (see [19] for details). The product in the denom-
inator has N f + 1 terms.

We define the coupling (da/du)N f ,1 near u∗
1 in terms of the weak coupling period

(da/du)N f as (
da

du

)

N f ,1
(τ1) = τ−1

1

(
da

du

)

N f

(−1/τ1), (9.16)
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Table 2 Table with values of s j ,
j = 1, . . . , N f + 2 for
N f = 0, 1, 2, for small equal

masses, α = e2π i/3

j N f

0 1 2

s1 1 1 1

s2 α2 α 1

s3 α2 α2

s4 α2

and analogously near the other singularities. From (2.23), it follows that near the strong
coupling singularity u∗

j , the local expansion (da/du)N f , j reads

(
da

du

)

N f , j
(τ j ) = 1

6

√√√√g2(u∗
j )

g3(u∗
j )

+ O(q j )

= 1

2
√
3

s1/2j g3(u
∗
j )

−1/6 + O(q j ),

(9.17)

where we introduced the phase s j as

s j := s j (m) := g2(u∗
j (m))

3g3(u∗
j (m))

2
3

. (9.18)

The period da
du evaluates thus to a constant at any In singularity u∗

j .
The s j are locally constant functions, with phase transitions at AD points. For

N f = 1, for instance, the phase changes depending on whether the ratio of g2 and g3
is calculated as a series with m < mAD or m > mAD. More generally, this function
is locally constant on R

N f \ LAD
N f

, where LAD
N f

is the locus in mass space where AD
points emerge on the u-plane (see [19, Section 2.3]). This is because g2 and g3 are
strictly nonzero away from the AD locus LAD

N f
, and s j (m)3 = 1 by definition. Thus

for any j ,
s j : RN f \ LAD

N f
−→ Z3 = {1, α, α2} (9.19)

is a smooth function on the finite union R
N f \LAD

N f
= ⋃

i Ui of open sets, valued in
Z3 and thus locally constant. For N f = 2, for instance, this partitions the real mass
space into three regions, on which the phases s j (9.19) are constant. In Fig. 1 of Part
I, these are the three regions separated by the AD locus (blue). We list values of the
s j in the Tables 2 and 3 for N f = 0, 1 and equal mass N f = 2.

The local coordinate a j = a − m j/
√
2 vanishes near the singularity u∗

j . From
(2.24) and (2.26), we obtain

da j

dτ j
= (−1)N f +1�

2N f −8
N f

16π i

4 − N f

23g2(u∗
j )
3

PM
N f

(u∗
j )

(
g2(u∗

j )

g3(u∗
j )

)3/2

q j + O(q2
j ). (9.20)
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Table 3 Table with values of s j ,
j = 1, . . . , N f + 2 for
N f = 0, 1, 2, for large equal

masses, α = e2π i/3

j N f

0 1 2

s1 1 1 1

s2 α2 α2 α2

s3 1 1

s4 1

Therefore a j behaves as

a j = (−1)N f +1�
2N f −8
N f

64

4 − N f

g2(u∗
j )
3

PM
N f

(u∗
j )

(
g2(u∗

j )

g3(u∗
j )

)3/2

q j + O(q2
j )

= (−1)N f +1�
2N f −8
N f

64

4 − N f
s3/2j

(
27g3(u∗

j )
)3/2

PM
N f

(u∗
j )

q j + O(q2
j ).

(9.21)

Note that since s j is a third root of unity, s3/2j = ±1.
We can generalise this to u∗

j being an In singularity, where for SU(2)N = 2 SQCD
the four cases n = 1, 2, 3, 4 are possible. Then we consider the expansions around
u∗

j . The discriminant reads

�N f (u) = 1

n!�
(n)(u∗

j )(u − u∗
j )

n + · · · , (9.22)

where �(n)(u∗
j ) = n!∏l �= j (u

∗
j − u∗

l ). The expansion of u(τ ) we can read off from

J(u) = NN f

g2(u)3

�N f (u)
, (9.23)

with NN f = 123(−1)N f �
2(N f −4)
N f

. It is

u = u∗
j +

(
n!NN f

g2(u∗
j )
3

�(n)(u∗
j )

) 1
n

q
1
n
j + · · · , (9.24)

where we used (9.22). Note that the coefficient of q
1
n
j has an ambiguity by an n’th

root of unity. We refrain from introducing another symbol for this ambiguity, but this
should be kept inmind here and in the formulae below. The exact solution of the theory
fixes the ambiguity, such as for N f = 2 with equal masses.
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The discriminant �N f has leading term q1
j near each strong coupling singularity

u∗
j , which can be read off form (9.23),

�N f = NN f g2(u
∗
j )
3q j + · · · . (9.25)

This holds for any value of n. In [19], we showed that �N f /PM
N f

= �̂N f /P̂M
N f

, where

if u∗
j is an n-th order zero of �N f of multiplicity n, then its multiplicity in �̂N f is 1.

In PM
N f

, it has multiplicity n − 1, and therefore it is not a root of P̂M
N f

. Therefore, we

can write PM
N f

(u) = (u − u∗
j )

n−1 P̂M
N f

(u) as a polynomial.

Finally, the period da
du evaluates to a constant for any In singularity u∗

j . Using
Matone’s relation (2.24), we then compute

da j

dτ j
= − 2π i

27(4 − N f )

N
1
n
N f

(n!) n−1
n

g2(u∗
j )

3
n + 3

2

g3(u∗
j )

3
2

�
(n)
N f

(u∗
j )

n−1
n

P̂M
N f

(u∗
j )

q
1
n
j + · · · . (9.26)

This agrees exactly with the earlier result (9.20) for n = 1. Instead of using Matone’s
relation, we can also calculate du

dτ from (9.24) directly. This gives a simpler result,

da j

dτ j
= 2π i

6n
(n!) 1

n N
1
n
N f

g2(u∗
j )

3
n + 1

2

g3(u∗
j )

1
2

1

�
(n)
N f

(u∗
j )

1
n

q
1
n
j + · · · . (9.27)

Identifying both leading terms (9.26) and (9.27), we find the interesting relation

P̂M
N f

(u∗
j ) = − 2

9(4 − N f )(n − 1)!
g2(u∗

j )

g3(u∗
j )

�
(n)
N f

(u∗
j ). (9.28)

We checked this relation for various mass configurations with n = 1, 2, 3, 4. It is
important to stress that it only holds on the discriminant locus �N f (u

∗
j ) = 0.

Using (9.27) and eliminating g2(u∗
j ) as above, this gives for the local coordinate

a j = (3s j )
3
n + 1

2

6
(n! NN f )

1
n

g3(u∗
j )

2
n − 1

6

�
(n)
N f

(u∗
j )

1
n

q
1
n + · · ·

= (3s j )
1
2

6g3(u∗
j )

1
6

(
n! NN f

g2(u∗
j )
3

�(n)(u∗
j )

) 1
n

q
1
n
j + · · ·

(9.29)

This agrees preciselywith (9.21) forn = 1. It also agreeswith an explicit calculation
of the asymptotics at the I2 singularity in N f = 2 with m = (m, m), again keeping in
mind the n’th root of unity ambiguity. The n-dependence of the leading term in (9.29)
is in fact the same as that of u − u∗

j , (9.24), as can be seen from the second line: Up
to the g3 prefactor, a j ∼ u − u∗

j .
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This concludes our analysis of Coulomb branch functions near strong coupling
singularities. Such expansions are relevant for the contributions of the singularities to
the u-plane integral aswell as the SWfunctions. For the latter, in some cases subleading
corrections are required, for instance, for the SW contributions of In singularities,
as we discuss in Sect. 12.2. These corrections can in principle be determined by a
perturbative analysis similar to the above. In some examples, exact expressions of
CB functions are available, and we can use the previous calculation for consistency
checks.

9.3 Behaviour near branch points

The fundamental domain for N f generic masses contains N f pairs of branch points,
connected by branch cuts [19]. In Sect. 6 of part I, we demonstrated that branch points
do not contribute to the u-plane integral, based on the assumption (6.18) that the
integrand is sufficiently regular near a given branch point.

In this subsection, we provide explicit evidence for this assumption, in the rather
generic example of N f = 2 with equal masses m. For this configuration, the full
integrand (without the couplings to the Spinc structure) can be expressed as a modular
form, which facilitates the analysis. We assume in the following that m > 0 with
m �= mAD = �2

2 , such that we are strictly away from the AD locus where the branch
points collide and annihilate each other.

After the exact analysis of the equal mass case, we then formulate the asymptotics
of the general integrand near a generic branch point, and prove that the assumption
(6.18) is always satisfied and thus branch points never contribute to the integrals.

Branch points of u

Consider the equal mass case in N f = 2. We list the relevant modular forms in
Appendix E.3. In [19], we found that the effective coupling of the branch point ubp =
2m2 − �2

2
8 is determined by f2B(τbp) = 0, such that3

u(τbp)

�2
2

= − f2B(τbp) + 16

128
, f2B(τ ) = 16ϑ4(τ )8

ϑ2(τ )4ϑ3(τ )4
. (9.30)

Then u(τbp) = ubp is solved by

τbp ∈ f −1
2B

(
−28 m2

�2
2

)
∩ F2(m, m), (9.31)

that is, we find all preimages of the branch point on the fundamental domainF2(m, m).
Since f2B is a Hauptmodul for the index 3 group �0(2), inside the index 6 domain
F2(m, m) there are consequently twodistinct points τbp.Using (9.31),we can eliminate

3 The definition of f2B differs slightly from [19].
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all but one of the Jacobi theta functions ϑ j from (E.13) to find

da

du
(τbp) = − i

4

ϑ4(τbp)
2

√
m (m2 − m2

AD)
1
4

. (9.32)

Since ϑ4 is holomorphic and nowhere vanishing onH, da
du (τbp) is never zero or infinite.

From Matone’s relation (2.24), we see that du
dτ diverges as O

(
(u − ubp)

−1
)
, since

�̂(τbp) = 4m2(m2 − m2
AD)2 remains finite. For τ near τbp, we can integrate this

equation to find

du

dτ
(τ ) = e

π i
4
√

πm(m2 − m2
AD)

3
4

ϑ4(τbp)
2

√
τ − τbp

+ O(1) (9.33)

for τ → τbp. This is sufficient to study the u-plane integrand near τbp. From da
dτ = da

du
du
dτ

and σ + χ = 4, we have that ν = du
dτ

( da
du

)−1+ σ
2 �

σ
8 . The discriminant �(τbp) =

4m2(m2 − m2
AD)3 is regular and nonzero. Thus, the power series of ν at τbp reads4

ν(τ) = (−1)
3+7σ
4 22−

3σ
4

√
π m(m2 − m2

AD)1+
σ
4

ϑ4(τbp)
σ

√
τ − τbp

+ O(1). (9.34)

Regarding thephotonpath integral, let us assume thatwecan express�(τ, τ̄ , z, z̄) =
∂τ̄ Ĝ(τ, τ̄ , z, z̄), then the function

ĥ(τ, τ̄ ) = ν(τ)Ĝ(τ, τ̄ , z, z̄) e
2pu(τ )/�2

N f
+x2G N f (τ )

(9.35)

provides an anti-derivative of the integrand, as required in Sect. 6. The other factors
of the integrand are regular: Due to (9.32), z(τbp) and thus Ĝ(τbp, z(τbp)) are regular.
The contact term (4.20) becomes a constant as well, for the same reason. Thus, up to
constants, we find

ĥ(τ ) ∼ m(m2 − m2
AD)1+

σ
4 Ĝ(τbp, z(τbp))e2pubp+x2G(τbp)

ϑ4(τbp)
σ

√
τ − τbp

+ O(1), (9.36)

in the notation (5.1). This shows that the integrand ĥ diverges at τbp; however, in a

subcritical fashion ∼ (τ − τbp)
− 1

2 . Equation (9.36) also suggests that the integrand
is not single-valued at τbp. However, a small circular path around τbp in F2(m, m)

describes a curve of angle 4π or winding number 2, as is clear, for example, from
Fig. 5. Since ĥ(τ ) has a Laurent series in

√
τ − τbp, it is single-valued around such a

path. Section 6 in part I then guarantees that the branch point does not contribute to
the u-plane integral.

4 We ignore the constants αN f and βN f here since they are irrelevant to the analysis.
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Branch points of da
du

Another potential source of branch points is the period da
du . Even if the masses m are

such that u(τ ) is modular for a congruence subgroup, da
du is in general not modular.

This is due to the square root da
du ∼

√
g2
g3

E6
E4

and the possible roots in u. Let us study if

the square root in da
du introduces another branch point, in the example of m = (m, m).

From (E.13), we find that any solution to ϑ4
2 + ϑ4

3 + √
f2 = 0 is a branch point

of da
du . Necessarily but not sufficiently, (ϑ4

2 + ϑ4
3 )2 = f2, whose only solution is

in fact independent on τ , it is m = mAD. Since we exclude the case m = mAD to
study the branch points, the denominator of da

du is never zero in H. This agrees with
the observation [19] that zeros of du

da in H are AD points, since there are none on
(0,∞)\{mAD}. The other radicand in da

du is f2, whose zeros are studied above. From
(9.32) we know that ϑ4

2 (τbp) + ϑ4
3 (τbp) is nonzero, otherwise da

du would have a pole at
τbp. We have shown that τbp is the only branch point (of a square root) for da

du , i.e.
da
du

has a regular series in
√

τ − τbp.

Branch points of the integrand

With the intuition from the equal mass case, we can formulate the behaviour of the
general u-plane integrand around a branch point. As pointed out in [19, Section 3.3],
for N f generic masses there are N f pairs of branch points connected by branch cuts.
The branch points correspond in all cases to a square root of u(τ ). Let us assume that
ubp = u(τbp) is a branch point that is not simultaneously an AD point.5 The expansion
of u(τ ) at τ = τbp thus reads

u(τ ) = ubp + cbp(τ − τbp)
1
2 + · · · . (9.37)

Then it is clear that
u′(τ ) ∼ (τ − τbp)

− 1
2 . (9.38)

On the other hand, from η24 ∼ ( da
du

)12
�N f [19] it is clear from η(τbp) �= 0 and

�N f (ubp) �= 0 that da
dτ (τbp) �= 0 is a nonzero constant. Thus da

dτ = da
du

du
dτ has the same

asymptotics at τbp as du
dτ . Excluding the couplings to the background fluxes, from (5.2)

it is then clear that
ν(τ) ∼ (τ − τbp)

− 1
2 . (9.39)

Since du
da (τbp) �= 0 we have z(τbp) �= 0 and we thus expand the non-holomorphic

modular form Ĝ at a regular point. It can accidentally vanish, but by varying τbp
slightly the value is generically nonzero. In either case, we have

ĥ(τ, τ̄ ) ∼ (τ − τbp)
n, n ≥ −1

2
. (9.40)

5 This only excludes the case in N f = 3 where the branch point is also an AD point of type I V . Our
argument works regardless, as the integrand becomes less singular in that case.
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This justifies the assumption made in Sect. 12 and demonstrates that branch points
never contribute to u-plane integrals.

The bound n ≥ − 1
2 is not sharp, indeed, as long as n > −1 the branch point will not

contribute. Consider, for instance, a theory which includes branch points of a k-th root
of u, with k ∈ N. In that case, there is no contribution either, since n = 1

k − 1 > −1.
Finally, since we lack modular expressions for the extra couplings v j and w jk , we

leave it for future work to determine whether those couplings have branch points or
singularities.

10 u-plane integrals and (mock) modular forms

We proceed by discussing the evaluation of the u-plane integrals near the different
special points. Below we consider N f generic masses, and in particular m /∈ LAD

N f
. To

explicitly evaluate the u-plane integral, we make use of the theory of (mock) modular
forms [56, 67–70], as discussed in Sect. 12. As before, we specialise to four-manifolds
with (b1, b+

2 ) = (0, 1).

10.1 Fundamental domains

In the vicinity of special points, the fundamental domains simplify. We will consider
here two cases, namely the large mass expansion and the small mass expansion.

Verifying the IR-decoupling limit (8.23) through the u-plane integral requires a
precise definition of the integral (8.16). Specifically, the integrand as well as the
integration domain must be determined in a region which is compatible with the
decoupling limit. As found in [19], when m N f → ∞ there is always a branch point
τbp whose imaginary part ybp = Im(τbp) grows as a function of m N f . If m N f is large,
we can take expansions of the Coulomb branch parameters in two regions. ForN = 2
SQCD, implicit, yet exact, expressions for τbp have been determined in [19] (see
(9.31) for an example). In the region with Im(τ ) > ybp, the order parameter u(τ ) has
periodicity 4 − N f . For Im(τ ) < ybp rather, the periodicity is that of the decoupled
theory, which is 4− (N f − 1). Since in the limit m N f → ∞ the periodicity at u = ∞
is 4 − (N f − 1), we need to choose a cut-off Y− < ybp for the fundamental domain
F(mN f ) in order to find the consistent limit.

In order to integrate over the whole fundamental domain, we must take the cut-off
Y → ∞. If we choose ybp > Y → ∞, then necessarily m N f → ∞. In other words,
choosing the cut-off Y < ybp is only a consistent choice in the decoupling limit. For
a finite mass m N f , we can choose Y > ybp, such that for Y → ∞ we do not cross
the branch point(s). This is illustrated in Fig. 11 for the example of the decoupling in
N f = 1. In making a large mass expansion, we will assume that 1/m is infinitesimally
small, such that ybp → ∞, and disappears from the fundamental domain.

Let us denote the regulated fundamental region by

FY (m) = {τ ∈ F(m) | Im(τ ) < Y }. (10.1)
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Fig. 11 For the definition of the u-plane integral over the fundamental domainF(m) in N f = 1 with a large
mass m, there are two different choices Y± for the cut-off, with Y+ > ybp or Y− < ybp and ybp = Im(τbp)

the imaginary part of the branch point. The integration requires taking the limit Y → ∞. The green region
is the one we choose for the decoupling limit

We can choose two different cut-offs Y±, with Y+ > ybp or Y− < ybp, which serve
two different purposes. For any finite m, we define the integral (8.16) as (we suppress
most variables for clarity)

�μ(m) = lim
Y+→∞

∫

FY+ (m)

Iμ(τ, τ̄ ), (10.2)

and renormalise it as described in [71]. As reviewed in Sect. 6, the contribution from
the arc at Im(τ ) = Y → ∞ is the constant term of the holomorphic part of the
anti-derivative h(τ ),6

�∞
μ (m) = Coeffq0 [h(τ,m)]. (10.3)

In the decoupling limit rather, we make an expansion in 1/m N f of the integrand,
and integrate over FY−(m) with Y− → ∞ term by term in the expansion. This results
in

�∞
μ (m) = Coeffq0 Serm−1

N f
[h(τ,m)], m = (m1, . . . , m N f −1, m N f ). (10.4)

One can similarly make mass expansions near other special points in mass space, such
as distinct small masses,

�∞
μ (m) = Coeffq0 Serm[h(τ,m)] (10.5)

6 We use the notation also developed in [41].
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or AD mass m ∈ LAD
N f

. We will find that these prescriptions agree in many examples.
However, in some cases they also lead to different results. To avoid cluttering, we have
chosen not to add additional labels to �∞

μ (m) to specify the evaluation prescription.
We will rather specify this when we present the results.

For N f > 1, there are of course generally N f > 1 branch points τbp, j , j =
1, . . . , N f . The above analysis then proceeds with Y+ > max j Im τbp, j and Y− <

min j Im τbp, j .

10.2 Factorisation of9J
�

One can split the study of u-plane integrals into two classes of four-dimensional
manifolds, depending on their intersection form being even or odd (see Sect. 3.1 for
relevant aspects of four-manifolds). We can use the analysis of [56, Sec. 5] without
much alteration andwe simply outline the rough ideas. For simplicity,we only consider
the odd lattices, and refer to [56] for the case of even lattices. The first important step
is to factorise the indefinite theta function appearing in the u-plane integrand. For odd
intersection form, we can diagonalise the quadratic form to

Q = 〈1〉 ⊕ (b2 − 1)〈−1〉. (10.6)

This implies that the components K j of a characteristic vector K are odd for all
j = 1, . . . , b2.7 The lattice L can be factorised as L = L+ ⊕ L−, where L+ is a
one-dimensional positive definite lattice and L− is a (b2 − 1)-dimensional negative
definite lattice. The polarisation corresponding to this decomposition is J = (1, 0),
where 0 is the (b2 − 1)-dimensional zero-vector. We will also employ the notation
k = (k1, k−) ∈ L where k1 ∈ Z + μ1, k− ∈ L− + μ− and μ = (μ1,μ−).

The sum over fluxes (4.11) now factorises as [56, Eq.(5.45)]

� J
μ(τ, τ̄ , ρ, ρ̄) = −i(−1)μ1(K1−1) fμ1(τ, τ̄ , ρ+, ρ̄+)�L−,μ−(τ, ρ−), (10.7)

where

fμ(τ, τ̄ , ρ, ρ̄) = ieπ iμe−2π yb2
∑

k∈Z+μ

∂τ̄

(√
2y(k + b)

)
(−1)k−μq̄k2/2e−2π i ρ̄k,

�L−,μ−(τ, ρ−) =
∑

k−∈L−+μ−

(−1)B(k−,K−)q−k2−/2e−2π i B(ρ−,k−).

(10.8)
If the elliptic variable ρ is zero,�μ vanishes unlessμ = ( 12 , 0) mod Z

b2 [56]. In that
case, it evaluates to

�( 12 ,0)(τ, τ̄ ) = i K1+1

2
√
2y

η(τ)3ϑ4(τ )b−
2 . (10.9)

7 Proof: We have that k2 + B(K , k) = ∑b2
j=1(2δ j ,1 − 1)k j (k j + K j ). Let k j = 0 for j �= m. Then

km (km + Km ) ∈ 2Z. If km is odd, then km + Km must be even and therefore Km is odd.
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We will also need the dual theta series

�D,L−,μ−(τ, ρD,−) =
∑

k−∈L−+K−/2

(−1)B(k−,μ−)q−k2−/2e−2π i B(ρD,−,k−). (10.10)

In order to write the integrand as a total anti-holomorphic derivative one can use the
theory of mockmodular forms andAppell–Lerch sums [5, 6, 56, 68, 70]. An important
constraint is that the anti-derivativemust be awell-defined function on the fundamental
domain for τ , and thus transform appropriately under duality transformations of the
theory.

As discussed in Sect. 9.1, in the large mass limit the duality group is �0(4), such
that we can use results for the N f = 0 theory [56]. We write fμ(τ, τ̄ , ρ, ρ̄) as

fμ(τ, τ̄ , ρ, ρ̄) = ∂ F̂μ(τ, τ̄ , ρ, ρ̄)

∂τ̄
, (10.11)

with F̂μ a specialisation of the Appell–Lerch sum M and its completion, which we
define in Appendix D.3. The holomorphic parts of F̂μ are given by [56, Eqs.(5.51)
and (5.53)]

F1
2
(τ, ρ) = − w

1
2

ϑ4(τ )

∑

n∈Z

(−1)nqn2/2− 1
8

1 − wqn− 1
2

,

F0(τ, ρ) = i

2
− i

ϑ4(τ )

∑

n∈Z

(−1)nqn2/2

1 − wqn
,

(10.12)

where w = e2π iρ .
To evaluate the contributions from the strong coupling cusps, we introduce further-

more the ‘dual’ functions FD,μ [56, Equations (5.63) and (5.64)],

FD,μ(τ, ρ) = − w1/2

ϑ2(τ )

∑

n∈Z

qn(n+1)/2

1 − (−1)2μwqn
. (10.13)

We note that F1
2
has a finite limit for ρ → 0,

F1
2
(τ ) = lim

ρ→0
F1

2
(τ, ρ). (10.14)

If the subscript μ is clear from the context, we will occasionally drop it and denote
F = F1

2
. The first terms of the q-series are

F1
2
(τ ) = 2q

3
8

(
1 + 3q

1
2 + 7q + 14q

3
2 + O(q4)

)
. (10.15)

This q-series is proportional to the McKay–Thompson series H (2)
1A,2 [72]. See also the

OEIS sequence A256209.
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The duality groups are different for small masses, or other special points in themass
space. For such cases, other anti-derivatives are required. The most widely applicable
anti-derivative will transform under SL(2,Z). As we review in detail in Appendix
D.3, anti-derivatives are not unique one can add an integration constant, i.e. a weakly
holomorphic function of τ . There are in fact three well-known mock modular forms
with precisely the same shadow ∼ η3, namely F , 1

24 H and 1
2 Q+.8

Their completions are non-holomorphic modular functions for�0(2), SL(2,Z) and
�0(2), respectively. In [56], itwas shown that for N f = 0 either of these three functions
can be used for the evaluation of u-plane integrals, and they give the same result. This
is possible because all three functions transform well under the monodromies on the
u-plane. For N f = 1 and N f = 3 on the other hand, F and Q+ do not have the right
monodromy properties, since they do not transform under T 3 or T . This singles out
the function H , which transforms under all possible monodromies for all N f .

The function H is related to F1
2
as

H(τ ) = 24 F1
2
(τ ) − 2

ϑ2(τ )4 + ϑ3(τ )4

η(τ)3
, (10.17)

with F1
2
as above. This function iswell known as the generating function of dimensions

of representations of the Mathieu group [44, 45],

H(τ ) = 2 q−1/8
(
−1 + 45 q + 231 q2 + 770 q3 + O(q4)

)
, (10.18)

and transforms under SL(2,Z).
Including either surface observables or the coupling to the background fluxes

requires an elliptic generalisation, which has to transform under SL(2,Z) in order to
be applicable to u-plane integrals with small masses. In Appendix D.4, we construct
such an SL(2,Z) mock Jacobi form H(τ, ρ), and discuss the relation to F1

2
(τ, ρ).

Deriving a similar expression related to F0 which transforms under SL(2,Z) is more
involved, since F0(τ, ρ) has a pole at ρ = 0 (due to the term n = 0 in the sum
(10.12)). We leave it for future work to find such an elliptic generalisation of F0. In
Appendix D.3, we study further properties of the above mock modular forms in great
detail, while their elliptic generalisations including zeros and poles are discussed in
Appendix D.4.

8 We may view the relation between H , F and Q+ as follows. Following [73, Section 5], there is a short
exact sequence

0 −→ M !
k −→ Mk

S−→ M2−k , (10.16)

where Mk is the space of all classical modular forms of weight k, M !
k is the larger space of weakly

holomorphic modular forms of weight k, and Mk is the space of mock modular forms of weight k. The
‘shadow map’ S associates the shadow S [h] to each mock modular form h ∈ Mk . This shadow map is
surjective, but clearly not injective, sinceS [F1

2
] = S [ 1

24 H ] = S [ 12 Q+] ∝ η3. We are thus considering

the preimageS−1[η3], which contains F1
2
, H and Q+. As wewill discuss inmore detail in Sect. 13.3, their

differences can be understood as integration ‘constants’. Roughly speaking, we can understand S−1[�]
as the space of anti-derivatives of �.
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10.3 Constraints for contributions from the cusps

In this subsection, we consider the u-plane integrals with vanishing external fluxes,
k j = 0. We consider the leading behaviour of the integrand near cusps, and determine
selection rules for the cusps to have potential nonzero contributions.

Point observables

Let us first assume that the intersection form of X is odd. If we turn off the surface
observable x, we can evaluate the u-plane integral (6.22) for generic masses. As found
above, if J = (1, 0b−

2
) then� J

K
2
(τ, 0) vanishes whenever b−

2 > 0. This gives the result

�
J ,N f
K
2

[e2pu] = 0, b−
2 > 0. (10.19)

Let us therefore proceed with b−
2 = 0, such that σ = 1 and χ = 3. We calculate

u-plane integrals for such manifolds in great detail in Sect. 11.
In this case, the Siegel–Narain theta function (10.9) becomes

� J
K
2
(τ, τ̄ ) = −i K1

−i

2
√
2y

η(τ)3. (10.20)

We can use the fact that −i
2
√
2y

η(τ)
3 = ∂τ̄ F̂1

2
(τ, τ̄ ) is the shadow of the mock modular

form F := F1
2
, defined in (10.12).

As discussed in Sect. 6, the u-plane integral can then be expressed as a sum over
q0-coefficients of the integrand evaluated near the cusps, labelled by j ,

�
J ,N f
K
2

[e2pu] = − i K1

24

∑

j

w jCoeffq0
j

[
ν(α jτ)H(α jτ) e2pu(α j τ)

]
. (10.21)

Here, α j ∈ SL(2,Z) give the cosets in the fundamental domain (2.28), and w j is the
width of the cusp j .

Let us study which cusps contribute to the sum (10.21). We have that H(τ ) =
O(q− 1

8 ) for τ → i∞. One furthermore finds

u(τ ) = O(q
− 1

4−N f ),
du

da
(τ ) = O(q

− 1
2(4−N f ) ),

da

dτ
= O(q

− 1
2(4−N f ) ), �(τ) = O(q

− 2+N f
4−N f ).

(10.22)

in the weak coupling frame. Then the measure factor goes as

ν(τ) = O(q
− 12+σ N f

8(4−N f ) ), (10.23)
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which holds for generic masses and b+
2 = 1. For σ = 1 the exponent is 1

8 − 2
4−N f

≤
− 3

8 , where equality holds for N f = 0. Combining with the exponent − 1
8 of H , the

exponent of the leading term in the q-expansion of νHu� (10.21) is

ν(τ) H(τ ) u(τ )� = O(q
− 2+�

4−N f ). (10.24)

Since both 4 − N f > 0 and 2 + � > 0, this exponent is strictly negative. We confirm
through explicit calculations in Sect. 11 that indeed for generic masses also the q0

term is present. This shows that the cusp i∞ generally contributes to �
J ,N f
K
2

[e2pu] to
all orders in p, for all N f ≤ 3.

This is not true for the strong coupling cusps, j ∈ Q. These cusps are in fact simpler
to analyse, since the measure ν at strong coupling becomes a constant. In order to see
this, recall that u D(τ ) = O(1) and

( du
da

)
D = O(1) (see Sect. 9.2 for more details).

We also have �D(τ ) = O(q), such that we are left with studying da
dτ = da

du
du
dτ . Near a

singularity u∗
j , the local coordinate reads u D(τ ) − u∗

j = O(q
1
n ), where n is the width

of the cusp j (corresponding to an In singularity). For asymptotically free SQCD, the

possibilities are n = 1, 2, 3, 4. Therefore, we have that
( du
dτ

)
D = O(q

1
n ) and thus

νD(τ ) = O(q
1
n + σ

8 ). (10.25)

Since H is mock modular for SL(2,Z), also HD(τ ) = O(q− 1
8 ). Thus, we find that

the lowest q-exponent of the contribution to an In cusp is

νD(τ ) HD(τ ) u D(τ )� = O(q
1
n + σ

8 − 1
8 ). (10.26)

For our choice of period point J = (1, 0b−
2
), we can set σ = 1. Then the leading

exponent is 1
n > 0, such that the q0 coefficient vanishes. Thus for manifolds with

σ = 1, the strong coupling cusps never contribute to correlation functions�
J ,N f
K
2

[e2pu]
of the point observable.

The correlation functions for the point observable on manifolds with odd intersec-
tion form then receive contributions only from weak coupling. Since the width of the
cusp at infinity is wi∞ = 4 − N f , we can simplify (10.21) substantially,

�
J ,N f
K
2

[e2pu] = − i K1(4 − N f )

24
Coeffq0

[
ν(τ) H(τ ) e2pu(τ )

]
. (10.27)

In [56], it is observed that for N f = 0, correlation functions of point observables are
(up to an overall dependence on the canonical class) universal for any four-manifold
with odd intersection form and given period point J . The reason for this is that the
topological dependence of the measure factor ν ∼ ϑ

−b2
4 cancels precisely with the

holomorphic part of the Siegel–Narain theta function � J
μ ⊃ ϑ

b2
4 . This is not true for

N f > 0, which one may also see by comparing (10.19) with (10.27).
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Surface observables

We can also consider correlation functions of surface observables x ∈ H2(M) sup-
ported on the compact four-manifold X . Following Sect. 10.2, � J

K
2
for the choice

J = (1, 0b−
2
) factorises as

� J
K
2
(τ, ρ) = −i K1 f 1

2
(τ, ρ1)�L−,μ−(τ, ρ−), (10.28)

with μ = (μ+,μ−) ≡ ( 12 ,
1
2 , . . . ,

1
2 ) mod Z

b2 . Due to (10.8), we have that

�L−,μ−(τ, ρ−) =
b2∏

k=2

−i Kk+1ϑ1(τ, ρk), (10.29)

where ρ− = (ρ2, · · · , ρb2). The function f 1
2
(τ, ρ) is the shadow of the mock modular

form 1
24 H(τ, ρ), as in (D.50). This allows to evaluate (6.22), where we also include

the point observable,

�
J ,N f
K
2

[eI−(x)] = −i K1

24

∑

j

w j

× Coeffq0
j

[
ν(τ j )e

2pu(τ j )/�
2
N f

+x2G(τ j )
H(τ, ρ1, j )

b2∏

k=2

(−i Kk+1)ϑ1(τ j , ρk, j )

]
,

(10.30)

where we calculate the local q j series around the cusps j and extract the constant term.
Let us check that the case x = 0 is consistent with the previous result. Consider thus
that ρ = 0 in above formula. If b−

2 > 0 and consequently b2 ≥ 2, then all factors in the
product vanish, since ϑ1(τ, 0) ≡ 0. This reproduces (10.19). If b−

2 = 0 on the other
hand, then the product is over an empty set and therefore equal to 1. By construction
H(τ, 0) = H(τ ), and the limit to (10.21) is obvious.

When do strong coupling cusps contribute?

In (10.26), it was found that the contribution of strong coupling cusps to the u-plane
integral depends on an intricate way on the four-manifold X and on the type of cusp.
For instance, let u∗

j be an In singularity, such that the local expansion reads u D(τ ) =
u∗

j + O(q
1
n ). Then, the smallest exponent in the q-series of the measure factor νD

whose coefficient is strictly nonzero is 1
n + σ

8 , independent of themass configurationm
giving rise to that In singularity. Consider nowanSQCDmass configuration containing
singularities of type In and Im which can be merged by colliding some masses. If the
signatureσ is such that the smallest exponent of theq-series of the integrand is positive,
then their individual contributions vanish. However, if the In and Im singularities
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merge to an In+m singularity, the lowest exponent can become non-positive and there
can be a contribution to the u-plane integral. The simplest example would be two I1
singularities colliding to an I2 singularity.

For the complex projective plane X = P
2, this does not occur, since for any In

singularity and any N f the smallest exponent is strictly positive, 1n . This is in agreement
with the theorem that for N f = 0 and for four-manifolds with b+

2 (X) > 0 that admit
a Riemannian metric of positive scalar curvature the Seiberg–Witten invariants vanish
[35, 46].9 The theorem has been shown to generalise also to N f > 0 [43, 47]. See
[75] for a survey on four-manifolds with positive scalar curvature.

To test whether this vanishing theorem also holds for the multi-monopole SW
equations, we can calculate u-plane integrals for manifolds X of small signature that
admit metrics with positive scalar curvature. Such a class of four-manifolds are the del
Pezzo surfaces d Pn . They are blow-ups of the complex projective plane at n points,
where n = 1, . . . , 8. For n = 9, it is known as 1

2K3. These surfaces have b+
2 (d Pn) = 1

and signatureσ(d Pn) = 1−n. The canonical class ofd Pn is K = −3H+E1+· · ·+En ,
with Ei the exceptional divisors of the blow-up, and H the pullback of the hyperplane
class from P

2. The intersection form can be brought to the form

Qd Pn =
(
1 0
0 −1n

)
, (10.31)

with 1n the n × n identity matrix. From this it follows that K 2
d Pn

= 9 − n, which
is the degree of d Pn . As explained in Sect. 10.2, for manifolds with odd intersection
form, the components K j of the characteristic vector K are odd for all j = 1, . . . , b2.
Without external fluxes k j = 0, the u-plane integrals are well defined if μ = 1

2 K
mod L . On the other hand, the Siegel–Narain theta function for J = (1, 0, . . . , 0)
vanishes identically unlessμ = ( 12 , 0, . . . , 0) mod Z

b2 . This shows that without sur-
face observables and without external fluxes, the u-plane integrals necessarily vanish
for the del Pezzo surfaces d Pn with n ≥ 1.

If we include surface observables, the θ1(τ, ρk) in Eq. (10.30) transform to
θ1(τ j , ρk, j ) with the leading term in the q j expansion of ρk, j a nonvanishing con-
stant (where we use

( du
da

)
D = O(1) and the S-transformation (D.12)). The leading

term of ϑ1 is θ1(τ j , ρk, j ) ∼ q1/8
j , such that the product over b2 − 1 of these gives

q−(σ−1)/8
j . As a result, the σ dependence of the measure is cancelled by � J

μ , and the

local asymptotics is O(q
1
n ) for any σ . We conclude that the strong coupling cusps do

not contribute after inclusion of surface observables. It would be interesting to explore
if nonvanishing background fluxes affect this conclusion.

9 This is a consequence of the Bochner-Lichnerowicz-Weitzenböck formula, which relates the Dirac oper-
ator to the scalar curvature via the connection Laplacian. If a given metric has positive curvature, the kernel
of the Dirac operator is empty. See [74] for an overview.
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10.4 Wall-crossing

An intrinsic feature of u-plane integrals for b+
2 = 1 is the metric dependence and the

wall-crossing associated with it. The metric dependence of the Lagrangian is encoded
in the period point J ∈ H2(X ,R), which generates the space H2(X ,R)+ of self-
dual two-cohomology classes and is normalised as Q(J ) = 1. It depends on the
metric through the self-duality condition ∗J = J . Using a period point J , we can
project some vector k ∈ L to the positive and negative subspaces H2(X ,R)± using
k+ = B(k, J )J and k− = k − k+.

Even when including the background fluxes, the dependence of the u-plane inte-
grand on the metric is only through the Siegel–Narain theta function � J

μ . The metric

dependence is then captured through the difference �J
μ − �J ′

μ for two period points
J and J ′, which we aim to evaluate. To this end, we note that the difference

� J
μ(τ, z) − � J ′

μ (τ, z) = ∂τ̄ �̂
J ,J ′
μ (τ, z) (10.32)

is a total derivative to τ̄ , with

�̂J J ′
μ (τ, τ̄ , z, z̄) =

∑

k∈L+μ

1
2

(
E(
√
2y B(k + b, J )) − sgn(B(k, J ′))

)

× eπ i B(k,K )q−k2/2e−2π i B(k,z)

(10.33)

and

E(u) = 2
∫ u

0
e−π t2dt = Erf(

√
πu) (10.34)

a rescaled error function E : R → (−1, 1). We have under the S- and T -
transformations,

�̂J J ′
μ (−1/τ,−1/τ̄ , z/τ, z̄/τ̄ ) = i(−iτ)b2/2 exp(−π i z2/τ)

× eπ i B(μ,K ) �̂J J ′
K/2(τ, τ̄ , z − μ + K/2, z̄ − μ + K/2),

�̂J J ′
μ (τ + 1, τ̄ + 1, z, z̄) = eπ i(μ2−B(K ,μ))�̂J J ′

μ (τ, τ̄ , z + μ − K/2, z̄ + μ − K/2).
(10.35)

Since the couplings to the background fluxes are holomorphic, the inclusion of the
latter is not affected by a total τ̄ derivative. This allows to express �J

μ − �J ′
μ as an

integral of the form I f (defined in (6.1)) for some function f satisfying ∂τ̄ ĥ = y−s f ,
where we can read off

ĥ(τ, τ̄ ) = ν(τ ; {k j }) �̂J J ′
μ (τ, τ̄ , z, z̄) e

2pu/�2
N f

+x2G N f . (10.36)

Then, according to (6.3), we can write

�J
μ − �J ′

μ = −
∫

∂F(m)

dτ ĥ(τ, τ̄ ), (10.37)
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which may be evaluated using the methods in Sect. 6. In particular, it can be evaluated
using the indefinite theta function �J J ′

μ , which is the holomorphic part of �̂J J ′
μ . The

contribution from the singularity at infinity is

[
�J

μ − �J ′
μ

]

∞ = KN f

∫ 1/2+iY

−1/2+iY
dτ

da

dτ
Aχ Bσ

N f∏

j,k=1

C
B(ki ,k j )

i j

× �̂J J ′
μ (τ, τ̄ ,

∑

j

k jv j ,
∑

j

k j v̄ j ),

(10.38)

where we left out the observables. The contributions from the strong coupling singu-
larities follow from modular transformations and will be discussed in Sect. 12.

11 Example: four-manifolds with b2 = 1

Let us study in detail the u-plane integrals (10.27) for the point observable on four-
manifolds with b2 = 1.

The complex projective plane P
2 is the most well-known example. The complex

projective plane has σ = 1, χ = 3 and thus b2 = 1, furthermore K = K1 = 3. With
the exact results from [1, 56], condensed in Sect. 10, it is straightforward to evaluate
(10.27) for arbitrary masses.

In this section, we compute the vev �
N f
1
2

[u�] for the point observable, which in the
notation of [56] is related to the exponentiated observable as

�
N f

μ,{k j }[e
2pu/�2

N f ] :=
〈
e
2pu/�2

N f

〉N f

μ,{k j }
=

∞∑

�=0

1

�!

(
2p

�2
N f

)�

�
N f

μ,{k j }[u�]. (11.1)

If the background fluxes k j = 0 on X = P
2 are vanishing, in part I we argued that

the theory is consistent only if we restrict to w̄2(X) ≡ w̄2(E) mod 2L . For N f = 1
for instance, we can choose μ = 1/2. For this flux, we can also turn on any integral
background flux k1 ∈ Z. If we turn off the ’t Hooft flux μ = 0 rather, the consistent
formulation on P

2 requires half-integer background fluxes k1 ∈ Z + 1/2.
In the following two subsections, we consider the large mass and small mass calcu-

lations for �
N f
1/2 with k j = 0, while in Sect. 11.3 we turn on nonvanishing background

fluxes k j for both μ = 0 and μ = 1/2.

11.1 Largemass expansion with vanishing background fluxes

Wefirst consider the largemass expansion for equal massesmi =: m for N f = 1, 2, 3,
in the absence of background fluxes. This allows to normalise the integral, by requiring
that the decoupling limit m → ∞ for �1/2[1] reproduces the N f = 0 result. We will
demonstrate thatwith this normalisation, the decoupling limit of other observables also
matches with N f = 0 as expected. As shown in Sect. 10.3, there are no contributions
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from the strong coupling cusps for N f ≤ 3 and X = P
2. Since the holomorphic part

of the integrand is a function of u, large m expansion of the latter can be determined
as described in Sect. 9.1.

From (2.18), we find for the decoupling formula for equal masses

�4
0 = m N f �

4−N f
N f

. (11.2)

In the largem limit, the domain is a truncatedH/�0(4) domain for all N f , as discussed
in Sect. 10.1. Combining the measure factor (8.15) applied to X = P

2 with (10.27)
and (11.2), we find in the notation of (10.4),

�1/2
[
e
2pu/�2

N f
] = (−1)N f

2

4 − N f

m3N f

�
N f
N f

1

�12
0

× Coeffq0Serm−1

[(
du

da

)12
η(τ)27

PM
N f

F1
2
(τ ) e

2pu/�2
N f

]
.

(11.3)

Here, we have used the holomorphic part F1
2
of the anti-derivative F̂1

2
. It is straight-

forward to check that other choices of anti-derivative, such as 1
24 Ĥ give the same

result.
We first present the series in a form which makes the decoupling limit manifest. To

this end, we list the coefficients of (p/�2
1)

� as function of �0 and m, up to the overall
prefactor (m/�N f )

N f . For N f = 0, we have

�1/2
[
e2pu/�2

0
] = 1 + 19

32
�4

0
p2

�4
0

+ 85

768
�8

0
p4

�8
0

+ O(p5). (11.4)

For N f = 1, we then find

�1/2
[
e2pu/�2

1
] = m

�1

(
1 − 7

32

�4
0

m2

p

�2
1

+ 19

32
�4

0
p2

�4
1

− 7

64

�8
0

m2

p3

�6
1

+
(

85

768
�8

0 + 1093

393216

�12
0

m4

)
p4

�8
1

+ O(p5, m−8)

)
.

(11.5)
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For N f = 2, we find

�1/2
[
e2pu/�2

2
] = m2

�2
2

(
1 + 3

26
�4

0

m4 +
(

− 7

24
�4

0

m2

)
p

�2
2

+
(
19

32
�4

0 + 23

256

�8
0

m4 + 53

217
�12

0

m8

)
p2

�4
2

−
(

7

32

�8
0

m2 + 421

49152

�12
0

m6

)
p3

�6
2

+
(

85

768
�8

0 + 2421

65536

�12
0

m4 + 2161

3145728

�16
0

m8

)
p4

�8
2

+O(p5, m−8)
)

.

(11.6)

Finally, for N f = 3 we find

�1/2
[
e2pu/�2

3
] = m3

�3
3

(
1 + 9

26
�4

0

m4 + 5

218
�12

0

m12

(
−21

25
�4

0

m2 − 3

26
�8

0

m6

)
p

�2
3

+
(
19

25
�4

0 + 69

28
�8

0

m4 + 1659

217
�12

0

m8

)
p2

�4
3

−
(
21

26
�8

0

m2 + 3305

3 × 214
�12

0

m6

)
p3

�6
3

+
(

85

768
�8

0 + 13433

217
�12

0

m4 + 13397

220
�16

0

m8

)
p4

�8
3

+O(p5, m−9)

)
.

(11.7)

For the m → ∞ decoupling limit (8.23), we multiply by the factor (�0/�N f )
α with

α = −4 for P2. Eliminating �0 by (8.20), this removes precisely the prefactors in
the expressions (11.5), (11.6) and (11.7). We thus find a consistent decoupling limit
(8.23) to the N f = 0 result (11.4) for all three cases.

To facilitate comparison of these results with the UV expression (3.19), we have
presented the data in an alternative form inTables 4, 5 and 6.Here, correlators�1/2[u�]
are listed as functions of m and �N f . The monomial in m and �N f is expressed as

�
vdim(M

Q,N f
k )

N f
m−∑ j rk(W j

k )

mr
. (11.8)
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Table 4 Table with values of
�1/2[u�] for N f = 1 � �1/2[u�] for N f = 1

0
m

�1

1 − 7

26
�2
1m2

m2

2
19

26
�2
1m2

m0

3 − 21

28
�5
1m3

m2

4
85

29
�5
1m3

m0 + 1093

218
�8
1m4

m4

Table 5 Table with values of �1/2[u�] for N f = 2

� �1/2[u�] for N f = 2

0
m2

�2
2

+ 3

64

m4

m4

1 − 7

25
m4

m2

2
19

26
m4 + 23

27
�2
2m6

m4 + 53

218
�4
2m8

m8

3 − 21

27
�2
2

m6

m2 − 421

216
�4
2m8

m6

4
85

28
�2
2m6 + 7263

217
�4
2m8

m4 + 2161

221
�6
2m10

m8 + 1811

230
�8
2m12

m12

Table 6 Table with values of �1/2[u�] for N f = 3 and equal masses m j = m. We leave theO(. . . ) terms
undetermined due to large running time of the Mathematica notebook. As explained in the main text, we
expect these terms to match with the expressions in Table 9 determined using the small mass expansion

� �1/2[u�] for N f = 3

0
m3

�3
3 m0

+ 9

26
m6

�2
3 m4

+ 5

218
m12

m12

1 − 21

26
m6

�2
3 m2

− 3

27
m9

�3 m6 − 15

217
m12

m10 + O(m0)

2
19

26
m6

�2
3

+ 69

29
m9

�3 m4 + 1659

218
m4 + 55

221
�3m15

m12 + O(m2)

3 − 63

28
m9

�3 m2 − 3305

216
m12

m6 − 477

218
�3m15

m10 + O(m4)

4
85

29
m9

�3
+ 40299

218
m12

m4 + 40191

221
�3m15

m8 + 150471

228
�2
3m18

m12 + O(m5)
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The exponent of the mass m is the virtual rank (3.13) of the matter bundle, that is, the
rank of the obstruction bundle W j

k . The exponent of the scale �N f can be identified
with the (complex) virtual dimension (3.17) of the moduli space (see also (3.19)). The
exponent r is the degree of the Chern class of the matter bundle. For N f = 1, we have

dim(MQ
k ) = 3k − 4,

dim(Mi
k) = 4k − 3,

rk(Wk) = −k − 1.

(11.9)

With s the exponent of p, the data in Tables 4, 5 and 6 satisfy the selection rule
(3.23). Moreover, since the integration is over the instanton moduli space, we have
the selection rule 4p + 2r = dimR(Mi

k). If the obstruction bundle is a proper bundle

rather than a sheaf, we have r ≤ −∑ j rk(W j
k ). We find that this is the case for all data

in these tables. Thus, even though the evaluation of the u-plane integral was performed
in terms of a 1/m expansion, the results in the tables have a goodm → 0 limit.Wewill
discuss this in more detail in the following Sect. 11.2 on the small mass expansion.
It is furthermore noteworthy that for fixed � the coefficients have the same sign. The
results of the next few sections show only a few exceptions to this.

From the large powers of 2 in the denominators, we deduce that the normalisation
is not precisely consistent with integral Chern classes in the large m expansion. We
discuss this in more detail in the next subsection, where we give results for generic
masses m j . Mathematically, these invariants are known as (virtual) Segre numbers
of X [51]. We comment more on this connection in Sect. 12 on four-manifolds with
b+
2 > 1.

11.2 Small mass expansion with vanishing background fluxes

For small masses, the integration domains are now naturally the small mass pertur-
bations of the domains for the massless theories. See, e.g. Figure 3 and 6 for the
massless N f = 1 and N f = 2 domains. The regularised integration domains suitable
for the integration are described in Sect. 10.1, and the weak coupling cusps have width
4 − N f . For the anti-derivative of �1/2, we take the SL(2,Z) mock modular form
H(τ ) (10.17), which transforms consistently on any of these domains.

With the normalisation determined above, we have for the small mass result

�1/2
[
e
2pu/�2

N f
] = (−1)N f

2�
12−2N f
N f

Coeffq0Serm

[(
du

da

)12
η(τ)27

PM
N f

H(τ )

24
e
2pu/�2

N f

]
.

(11.10)
For the massless case, Table 7 gives the first 8 nonzero intersection numbers for

massless N f = 0, 1, 2, 3. For N f = 0, the results match precisely with [48]. The
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results for N f = 2, 3 are in agreement with the results for �
N f ,H ,1
k,m,n in Ref. [20].10

We observe that the intersection numbers grow quickly as function of �. It would be
interesting to study the asymptotic behaviour of these series similar to the case N f = 0
in [56], and leave this for future work.

We notice that in the massless N f = 0, 1, 2 theories there are constraints for

�
N f
1
2

[u�] to be nonzero:
N f = 0 : � ≡ 0 mod 2,

N f = 1 : � ≡ 1 mod 3,

N f = 2 : � ≡ 0 mod 2.

(11.11)

This matches with the virtual dimensions of the moduli space for P2,

vdim(MQ
k ) = (4 − N f )k − 3 − N f /4. (11.12)

If vdim(MQ
k ) is even for μ = 1/2, is precisely of the form in (11.11).

To treat generic masses, we introduce for N f = 2, 3 the mass combinations,

M2 l =
N f∑

j=1

m2 l
j , M ′

4 =
∑

i< j

m2
i m2

j , PN f =
N f∏

j=1

m j . (11.13)

For N f = 2, 3,we then findTables 8 and 9,which agreewith the largemass calculation
in Tables 5 and 6 by setting mi = m.

The negative powers of 2 can also be understood as follows. An insertion of u�,
gives rise to a factor 23� in the denominator since 2u corresponds to a 2nd Chern
character. Then, the factors of 2 in the tables suggest that the class cl, j in (3.19) is not
an integral class, but that 23 l/2cl, j is. Thus, each power of u gives rise to a factor of

2−3, while that of the matter bundle is 2−3 rk(W
N f
k ),

As a result, we find that in the massless case

2dN f (�)
�

N f
1
2

[
( u
�2

N f

)�
] ∈ Z, (11.14)

10 The characteristic classes of the matter bundle ω j ,MO in [20] are normalised such that 2ω j,MO is an
integral class. Moreover, the Tables in [20] are for point class insertions which correspond to 2u in our
notation.
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8
97

25
31

6
37

81
27

66
80

−3
36
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Table 8 Table with values of �1/2[u�] for N f = 2 and generic masses m j

� �1/2[u�] for N f = 2

0
P2
�2
2

+ 3

26

1 − 7

26
M2

2
19

26
N2
2 + 23

29
�2
2N2 + 53

218
�4
2

3 − 421

217
�2
2M2 − 21

28
�2
2M2N2

4
85

29
�2
2N3

2 + 1093

218
�4
2M4 + 3085

216
�4
2N2

2 + 2161

221
�6
2N2 + 1811

230
�8
2

Table 9 Table with values of �1/2[u�] for N f = 3 and generic masses m j

� �1/2[u�] for N f = 3

0
P3
�3
3

+ 3

26
M2

�2
3

+ 5

218

1 − 7

26
M ′
4

�2
3

− 3

27
P3
�3

− 5

217
M2 + 45

230
�2
3

2
19

26
P2
3

�2
3

+ 23

29
M2P3
�3

+ 53

218
M4 + 125M ′

4
216

+ 55

221
�3M3 + 25

230
�2
3M2 + 489

242
�4
3

where dN f is given by11

dN f (�) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3�, N f = 0

4� + 2, N f = 1,

6� + 6, N f = 2,

12� + 18, N f = 3.

(11.16)

In themassive cases, the vevs�
N f
1
2

[( u
�2

N f

)�] are dimensionless, and so can only depend

on the dimensionless ratios μ j = m j/�N f . By the above argument, the negative
powers of 2 are maximal for the top Chern class. Therefore,

2dN f (�)
�

N f
1
2

[
( u
�2

N f

)�
] ∈ Z[μ1, . . . , μN f ] (11.17)

11 It turns out that dN f is not linear or quadratic in N f . One formula that fits all four values of N f is

dN f (�) = 3� + N f

2
(2 + �)(N2

f − 2N f + 3). (11.15)
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Table 10 List of thefirst few�0[u�] for N f = 1onP2 with nonvanishing backgroundfluxes, k1 = 1
2 , 3

2 , 5
2 .

The expansion is determined up to O(m−6), O(m−6) and O(m−10), respectively

� k1 = 1
2 k1 = 3

2 k1 = 5
2

0 − 3
4
√
2

m1

m1 − 9
4
√
2

�2
1

m2 − 15
4
√
2

�6
1

m6

1 0 − 31
64

√
2

�5
1

m3 − 155
64

√
2

�9
1

m5

2 − 13
64

√
2
�3
1m − 39

64
√
2

�5
1

m − 567
212

√
2

�8
1

m4 − 65
64

√
2

�9
1

m5

3 113
213

√
2
�6
1 + 50175

223
√
2

�9
1

m3 − 867
212

√
2

�8
1

m2 − 1225
210

√
2

�12
1

m6

4 − 879
213

√
2
�6
1m2 − 2637

213
√
2
�8
1 − 7305

217
√
2

�11
1

m3 − 4395
213

√
2

�12
1

m4

are valued in the polynomial ring in the masses μ j over the integers, with the same
denominators dN f (�) as in the massless case.

11.3 Nonvanishing background fluxes

As described in Part I and above, we can introduce nontrivial background fluxes
k1, . . . , kN f ∈ H2(X ,Z/2).

For X = P
2 and N f = 1, the consistent formulation of the theory on P

2 requires
that k1 ∈ Z+ 1/2 for μ = 0, while k1 ∈ Z for μ = 1/2. We first determine the series
for the large mass expansion, and using the mock Jacobi form Fμ(τ, ρ) (10.12). The
exponentiated point correlator then reads

�μ[e2pu/�2
1 ] = −2

3

m3

�1

1

�12
0

× Coeffq0Serm−1

[(
du

da

)12
η(τ)27

PM
1

Ck21 Fμ(τ, k1v) e2pu/�2
1

]
.

(11.18)

For the couplings C := C11 (4.10) and v := v1 (2.12), we substitute the expansions
(9.4) and (9.5) to sufficiently high order. The result for�0[u�] is listed in Table 10 and
for �1/2[u�] in Table 11. The results are consistent with the decoupling limit (8.23).

As discussed in the previous section, a small or generic mass calculation requires
an anti-derivative that transforms under SL(2,Z) rather than under a subgroup. In
Appendix F, we perform the calculation for N f = 1 and N f = 2 with generic masses,
using the mock Jacobi form H(τ, ρ) (D.50) for μ = 1

2 rather than F1
2
(τ, ρ). For

specific choices of the background fluxes, the naive evaluation using this function
gives different results depending on the evaluation point: For large masses, the point
correlators have a well-defined m → ∞ limit, for small masses they have a good
massless limit m → 0, while for generic masses, i.e. without expanding in the masses
at all, the correlators do not have either of these limits. Possible obstructions for this
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Table 11 List of the first few
�1/2[u�] for large mass N f = 1

on P2 with background flux,
k1 = 1, 2, 3. The expansion is
determined up to O(m−6),
O(m−10) and O(m−16)

respectively

� k1 = 1 k1 = 2 k1 = 3

0 1
�3
1

m3 + 15
64

�6
1

m6
�8
1

m8 + 45
32

�11
1

m11

1 0 21
64

�6
1

m4
7
8

�11
1

m9

2 19
64

�3
1m

m0
19
64

�6
1

m2
19
64

�11
1

m7 + 201
256

�14
1

m10

3 − 11
29

�6
1 0 237

29
�14
1

m8

4 85
29

�6
1m2 85

29
�9
1

m
85
29

�14
1

m6 + 64775
217

�9
1

m

involve a pole τ0 of the anti-derivative H(τ, ρ(τ )), which is not related to the branch
point but rather due to solutions of v j (τ0) = 1

2 inside the fundamental domain. In
Appendix F, we analyse this issue in some detail and discuss possible resolutions.

12 Contributions from strong coupling singularities

In this section, we analyse the mass dependence of the contributions from strong
coupling singularities, or SW contributions, by analysing the wall-crossing of the u-
plane integral. The general form of these contributions was determined in [6], and
studied in various cases, for instance, for the massless theories on specific manifolds
in [21, 76] and for generic masses in [26, 31, 43].

The type of a strong coupling singularity is determined by theKodaira classification
of singular fibres (see Table 25). The monopole and dyon singularities of the pure
N f = 0 theory are examples of I1 singularities.12 The collision of n mutually local
I1 singularities gives rise to an In singularity. If rather n = 2, 3, 4 mutually non-local
singularities collide, we get type I I , I I I or I V Argyres–Douglas points. Both types
of collisions can have nontrivial consequences for the partition functions in the limit.

Most of this section will deal with the I1 SW contributions for generic four-
manifolds. Under various assumptions, we also generalise the arguments to I2
contributions. For K3, we calculate the SW contributions in various examples in
N f = 1, 2, 3, and study the limit to the AD mass locus in some detail. In Sect. 12.4,
we relate the contributions from the instanton component in some examples to Segre
numbers [51, 80]. In Sect. 12.5, we discuss the general structure of SW partition func-
tions for arbitrary configurations, extending the notion of generalised simple type
conditions familiar from the pure N f = 0 case.

12 This viewpoint depends on the global form of the theory, in this case that of pureN = 2 SYMwith gauge
algebra su(2) [77]. In particular, the SW curves for the various global forms are related by compositions
of isogenies, which do not leave the type of In singular fibres invariant [78, 79]. We will comment on this
further in the conclusions (Sect. 14).
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12.1 SW contributions of I1 singularities

Let us first study I1 singularities. This is the case for generic masses with arbitrary
number N f of flavours. The Seiberg–Witten contribution from the strong coupling
cusp j = 1, . . . , N f + 2 reads [6],

Z J
SW, j,μ =

∑

c

�
n(c)
N f

SW(c; J ) Res
a j =0

[
e−SSW , j

a1+n(c)
j

]
(12.1)

where n(c) is the complex dimension of the monopole moduli space

n(c) = 1

8
(c2 − 2χ − 3σ), (12.2)

and the exponentiated action takes the form

e−SSW , j = κ j Aχ
j B

σ
j C

k21
j DB(k1,c)

j Ec2
j Fμ, j , (12.3)

where we specialise to N f = 1 for simplicity. The general form for the contribution of

the j-th singularity with general N f contains a product
∏N f

i,k=1 C
B(ki ,kk )
ik, j and similar

for D j , as explained in part I. Here, Fμ, j is short hand for the four couplings,

Fμ, j = f μ2

1, j f B(K ,μ)
2, j f B(c,μ)

3, j f B(k1,μ)
4, j . (12.4)

For four-manifolds with b+
2 = 1, SW invariants are metric dependent [46, 81]. If

B(c, J+) > 0 and B(c, J−) < 0, then [82–84]

SW(c; J+) − SW(c; J−) = −(−1)n(c), (12.5)

The SW invariant furthermore satisfies [46, 83]

SW(−c) = (−1)χhSW(c), (12.6)

with χh = χ+σ
4 the holomorphic Euler characteristic.

Changing the known result [46] to our convention using (8.27), the result for N f = 0
is

Zμ[e2pu] = −21−χh+λeπ iλ/2
∑

c

SW(c) (−1)B(c−K ,μ)

×
(

eπ iχh/2e2pu∗
1 + e2π iμ2

e2pu∗
2

) (12.7)

with λ = 2χ + 3σ .
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For instance, for X = K3, we have σ = −16, χ = 24, χh = 2, K = 0 and thus
λ = 2χ + 3σ = 0. Furthermore, SW(c) = 1 for c = 0, and vanishes otherwise. The
result for K3 and N f = 0 is then [85, 86]

Zμ[e2pu] = 1

2

(
e2pu∗

1 − e2π iμ2
e2pu∗

2

)
. (12.8)

From the relation in Sect. 10.4 between the wall-crossing of the u-plane integral
and SW contributions, we have for the j-th singularity,

[
�J+

μ − �J−
μ

]

j
= κ j

∑

c

(−1)n(c) 1
2 (sgn(B(c, J+)) − sgn(B(c, J−)))

× �
n(c)
N f

Res
a j =0

[
a−1−n(c)

j Aχ
j B

σ
j C

k21
j DB(k1,c)

j Ec2
j Fμ, j

]
.

(12.9)

We substitute χ = 4 − σ in the right hand side, such that

[
�J+

μ − �J−
μ

]

j
= −κ j

∑

c

(−1)(c
2−σ)/8 1

2 (sgn(B(c, J+)) − sgn(B(c, J−)))

× �
(c2−σ)/8−1
N f

Res
a j =0

[
a−(c2−σ)/8

j A4
j (B j/A j )

σ Ck
2
1

j DB(k1,c)
j Ec2

j Fμ, j

]
.

(12.10)

Contribution frommonopole cusp u∗
1

The left hand side is the contribution from the u-plane integral for j = 1, which is
obtained using the substitution τ = −1/τ1. We introduce

A1(τ1) = τ
1/2
1 A(−1/τ1),

= 23/4�−1/2
N f

s−1/4
1 (27g3(u

∗
1))

1/12 + · · · ,

B1(τ1) = B(−1/τ1),

C1(τ1) = e−π iv21/τ1 C(−1/τ1),(
da

dτ

)

1
(τ1) = τ−3

1

(
da

dτ

)
(−1/τ1),

v1(τ1) = τ1 v(−1/τ1).

(12.11)
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The substitution brings the analogue of the integral (10.38) near singularity j = 1 to
the form

[
�J+

μ − �J−
μ

]

1
= −eπ iσ/4KN f lim

Y→∞

∫ 1/2+iY

−1/2+iY
dτ j

(
da

dτ

)

1
Aχ
1 Bσ

1 C
k21
1 eπ i B(μ,K )

×
∑

k∈L+K/2

1
2 (sgn(B(c + b1, J+)) − sgn(B(c + 2b1, J−)))

× eπ i B(k,K ) q−k2/2
1 e−2π i B(k,k1v1)e−2π i B(k,K/2−μ)

= −2π i eπ iσ/4KN f

×
∑

c

1
2 (sgn(B(c + 2b1, J+)) − sgn(B(c + 2b1, J−)))

× Res
a1=0

[
A4
1(B1/A1)

σ C
k21
1 q−c2/8

1 e−π i B(c,k1v1)eπ i B(c+K ,μ)

]

(12.12)

where we substituted c = 2k and b1 = k1 Im(v1). We assume that v1 = O(q1) for
τ1 → 0. We hope to check this in the future.

Comparing (12.10) and (12.12), we can read off the couplings for singularity j = 1,

κ1A4
1/�N f = 2π i KN f A4

1,

e−π i/8(a1/�N f )
1/8B1/A1 = eπ i/4B1/A1,

C1 = C1,

D1 = e−π iv1 ,

(−a1/�N f )
−1/8E1 = q−1/8

1 ,

Fμ,1 = eπ i B(c+K ,μ).

(12.13)

In the large mass expansion, the leading behaviour for C1 and D1 for N f = 1 can
be determined from (9.4) and (9.6) by letting τ → 0. For the other couplings, we
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substitute (8.13),

A1 = 21/2eπ i/8κ
−1/4
1 �

−1/2
N f

(
du

da

)1/2

1

= 2 eπ i/8κ
−1/4
1 s−1/4

1 �
−1/2
N f

(27g3(u
∗
1))

1/12,

B1 = 21/4eπ i/2κ
−1/4
1 �

1/8
N f

B1

a1/8
1

= 25/4eπ i(N f +5)/8κ
−1/4
1 s−3/16

1 �
−(2N f +3)/8
N f

×
(
(4 − N f )PM

N f
(u∗

1) (27g3(u
∗
1))

1/2
)1/8

,

E1 =
(

(−1)N f s−3/2
1 �

2N f −9
N f

64

4 − N f

(
27g3(u∗

1)
)3/2

PM
N f

(u∗
1)

)1/8

.

(12.14)

Combining all the factors for k1 = 0, we find assuming the simple type condition,

ZSW,1,μ = κ
1−χh
1 22χh+λe

π i
2 (χh+λ)(−1)N f χhs−3χh/2−λ/8

1 �
(2N f −3)χh−λ

N f

×
(
(4 − N f )PM

N f
(u∗

1)
)−χh

(27g3(u
∗
1))

χh/2+λ/6

×
∑

c

SW(c) eπ i B(c+K ,μ).

(12.15)

In order to fix κ1, we apply this to X = K3 with k1 = 0,

ZSW,1,μ = −24

κ1
�

−6+4N f
N f

(4 − N f )
−2 (PM

N f
(u∗

1))
−2 27g3(u

∗
1), (12.16)

where we used that s1 is a third root of unity. Comparing with (12.8) for N f = 0, we
then find κ1 = −2. This holds for generic N f since this number is independent of the
masses. Substitution in (12.15) and using (12.6) and s1 = 1 gives

ZSW,1,μ = −21+χh+λe
π i
2 (χh+λ)(−1)N f χh�

(2N f −3)χh−λ

N f
C

k21
1

×
(
(4 − N f )PM

N f
(u∗

1)
)−χh

(27g3(u
∗
1))

χh/2+λ/6

×
∑

c

SW(c) eπ i B(c−K ,μ)e−π iv1B(k1,c).

(12.17)

This agrees for N f = 0, with the well-known SW contribution at the monopole cusp
[46, eq. (2.17)]. Using (9.28) for n = 1, this matches for any N f with [6, 26].
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Contribution from dyon cusp u∗
2

Let us also consider the contributions from the other cusps. The local coupling τ2
reads in terms of the effective coupling τ = 2− 1/τ2, such that τ → 2 for τ2 → i∞.
We introduce the following couplings

A2(τ2) = τ
1/2
2 A(2 − 1/τ2),

= 23/4�−1/2
N f

s−1/4
2 (27g3(u

∗
2))

1/12 + · · · ,

B2(τ2) = B(2 − 1/τ2),

C2(τ2) = e−π iv22/τ2 C(2 − 1/τ2),(
da

dτ

)

2
(τ2) = τ−3

2

(
da

dτ

)
(2 − 1/τ2),

v2(τ2) = τ2 v(−1/τ2).

(12.18)

Then, we find from the u-plane for wall-crossing

[
�J+

μ − �J−
μ

]

2
= −2π i e−2π iμ2

eπ iσ/4KN f

×
∑

c

1
2 (sgn(B(c + 2b1, J+)) − sgn(B(c + 2b1, J−)))

× Res
a2=0

[
A4
2(B2/A2)

σ C
k21
2 q−c2/8

2 e−π i B(c,k1v2)eπ i B(c+K ,μ)

]
.

(12.19)

Following the same steps as for the monopole cusp, we find for the various couplings

A2 = 2 eπ i/8κ
−1/4
2 s−1/4

2 �
−1/2
N f

(27g3(u
∗
2))

1/12,

B2 = 25/4eπ i(N f +5)/8κ
−1/4
2 s−3/16

2 �
−(2N f +3)/8
N f

×
(
(4 − N f )PM

N f
(u∗

2) (27g3(u
∗
2))

1/2
)1/8

,

C2 = C2,

D2 = e−π iv2

E2 =
(

(−1)N f s−3/2
2 �

2N f −9
N f

64

4 − N f

(
27g3(u∗

2)
)3/2

PM
N f

(u∗
2)

)1/8

,

Fμ,2 = eπ i B(c+K ,μ)−2π iμ2
.

(12.20)
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This then gives for k1 = 0 (which requires μ = K/2 for N f = 1),

ZSW,2,μ = κ
1−χh
2 22χh+λe

π i
2 (χh+λ)(−1)N f χhs−3χh/2−λ/8

2 �
(2N f −3)χh−λ

N f

×
(
(4 − N f )PM

N f
(u∗

2)
)−χh

(27g3(u
∗
2))

χh/2+λ/6

×
∑

c

SW(c) eπ i B(c+K ,μ)−2π iμ2
.

(12.21)

Applying this to X = K3, we find

ZSW,2,μ = −24

κ2
e−2π iμ2

�
−6+4N f
N f

(4 − N f )
−2 (PM

N f
(u∗

2))
−2 27g3(u

∗
2). (12.22)

For N f = 0, we have 27g3(u∗
2) = −1 = eπ i . With s2 = e4π i/3 (see Tables 2 and 3),

we thus arrive at κ2 = −2. The general contribution from this cusp is

ZSW,2,μ = −21+χh+λe
π i
2 (χh+λ)(−1)N f χhs−3χh/2−λ/8

2 �
(2N f −3)χh−λ

N f
C

k21
2

×
(
(4 − N f )PM

N f
(u∗

2)
)−χh

(27g3(u
∗
2))

χh/2+λ/6

×
∑

c

SW(c) eπ i B(c−K ,μ)−2π iμ2
e−π iv2B(k1,c).

(12.23)

Contribution from hypermultiplet cusp u∗
3

We will continue with the contribution from a singularity associated to one of the
fundamental hypermultiplets. We label this singularity as u∗

3, and we assume that
this singularity is approached for τ → 1 ∈ Q. This is case for the hypermultiplet
singularity in the N f = 1 theory. The contribution from hypermultiplet singularities
in other theories, possibly at other points in Q, can be determined similarly.

The coupling τ then reads τ = 1 − 1/τ3 in terms of the local coupling τ3 near the
singularity j = 3. For simplicity, we fix μ = K/2 such that we can choose vanishing
background fluxes for the flavour symmetry. Then the wall-crossing of the u-plane
integral at u3 reads

[
�J+

K/2 − �J−
K/2

]

3
= −2π i e−π iσ/2 KN f

×
∑

c

1
2 (sgn(B(c + 2b1, J+)) − sgn(B(c + 2b1, J−)))

× Res
a3=0

[
A4
3(B3/A3)

σ C
k21
3 q−c2/8

3 e−π i B(c,k1v3)eπ i B(c+K ,K/2)
]

,

(12.24)

where we used that K 2 = σ mod 8.
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We then find for the various couplings

A3 = 2 eπ i/8κ
−1/4
3 s−1/4

3 �
−1/2
N f

(27g3(u
∗
3))

1/12,

B3 = 25/4eπ i(N f +3)/8κ
−1/4
3 s−3/16

3 �
−(2N f +3)/8
N f

×
(
(4 − N f )PM

N f
(u∗

3) (27g3(u
∗
3))

1/2
)1/8

,

C3 = C3,

D3 = e−π iv3 ,

E3 =
(

(−1)N f s−3/2
3 �

2N f −9
N f

64

4 − N f

(
27g3(u∗

3)
)3/2

PM
N f

(u∗
3)

)1/8

,

FK/2,3 = eπ i B(c+K ,K/2).

(12.25)

We assume that the normalisation κ3 equals κ1 = κ2 = −2. We then arrive for the
general expression at

ZSW,3,K/2 = −21+χh+λe
π i
2 (χh−λ)(−1)N f χhs−3χh/2−λ/8

3 �
(2N f −3)χh−λ

N f
C

k21
3

×
(
(4 − N f )PM

N f
(u∗

3)
)−χh

(27g3(u
∗
3))

χh/2+λ/6

×
∑

c

SW(c) eπ i B(c,K/2)e−π iv3B(k1,c).

(12.26)

We have thus derived the SW contributions (12.17), (12.23), (12.26) for singularities
at the cusps τ = 0, 2, 1, as is the case, for instance, in N f = 1 with a generic mass.

12.2 SW contributions of I2 singularities

In the SW curves for N f ≥ 2, Ir singularities with 1 < r ≤ 2N f − 2 can occur for
special values of the masses. Indeed, as shown in (2.22), such higher Ir singularities
occur precisely if some of the N f masses (anti-)align. In such cases, there is a singular
point on the Coulomb branch where r mutually local dyons become massless. The
‘maximal’ I2N f −2 singularity occurs precisely in the massless case.13

Let us consider such a configuration with an Ir>1 singularity. The (complex) virtual
dimension of the r -monopole equation reads [47]

nr (c) = r(c2 − σ) − 2(χ + σ)

8
. (12.27)

For r > 1, themoduli spacesMr are non-compact. There is a global symmetry SU (r+
1) which acts on the moduli space of r -monopole equations. The non-compactness

13 For N f = 4, in the massless limit the six singularities collide in an I∗
0 singularity, rather than an I6.
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can be mitigated by studying the equivariant cohomology of Mr with respect to
the SU (r + 1) action [7]. This corresponds to deforming the Ir singularities to I1
singularities by making the masses generic, for which the spaces M1 are compact.

We will proceed quite heuristically in the following by assuming the existence
of well-defined numerical Seiberg–Witten invariants SWr for Ir singularities, and a
wall-crossing formula for these invariants similar to (12.5). We will then show for K3
that smoothness of the partition function as function of the mass implies sum rules
for SW2 invariants in terms of ordinary SW1 invariants. The existence of a smooth
limit is nontrivial, even with the freedom to fix SW2(c) with n2(c) ≤ 0. We therefore
consider it worthwhile to include it here.

We will consider r = 2 in what follows. We let the singularity u∗
3 be of type I2.

This makes the analysis suited for the case of N f = 2 with m1 = m2, as can be seen
from Fig. 5. Analogously to (12.1), the contribution from this singularity then reads

Z J
SW,3,μ =

∑

c

SW2(c; J )�
n2(c)
N f

Res
a3=0

[
a−1−n2(c)
3 e−SSW ,3

]
, (12.28)

where SW2(c; J ) is a SW invariant for the r -monopole equations. These invariants
are not expected to depend on the same four-manifold data as the I1 SW invariants.
An alternative way to express this contribution is as the q0

3 term,

Z J
SW,3,μ =

∑

c

SW2(c; J )�
n2(c)
N f

Coeffq0
3

[
1

π i

da3
dτ3

a−1−n2(c)
3 e−SSW ,3

]
. (12.29)

Moreover, in the absence of background fluxes, the effective action takes the form

e−SSW ,3 = κ3Aχ
3 Bσ

3 Ec2
3 Fμ,3. (12.30)

In analogy with (12.5), we assume that these invariants change under wall-crossing as

SWr (c; J+) − SWr (c; J−) = −(−1)nr (c). (12.31)

The relation between the u-plane wall-crossing and the SW contributions then gives

[
�J+

μ − �J−
μ

]

3
= κ3

∑

c

(−1)nr (c) 1
2 (sgn(B(c, J+)) − sgn(B(c, J−)))

× �
n2(c)
N f

Res
a3=0

[
a−1−n2(c)
3 Aχ

3B
σ
3 Ec2

3 Fμ,3

]
.

(12.32)

By substitution of χ + σ = 4, this becomes

[
�J+

μ − �J−
μ

]

3
= −κ3

∑

c

(−1)(c
2−σ)/4 1

2 (sgn(B(c, J+)) − sgn(B(c, J−)))

× �
(c2−σ)/4−1
N f

Res
a3=0

[
a−(c2−σ)/4
3 A4

3(B3/A3)
σEc2

3 Fμ,3

]
.

(12.33)
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To proceed, we assume that the I2 singularity is at τ → 1 in the fundamental
domainF(m), and choose vanishing background fluxes for simplicity. As a result, the
’t Hooft flux is fixed μ = K/2. We can determine the couplings A3, . . . ,Fμ,3 by
comparing (12.24) and (12.33). This gives

A3 = 21/2eπ i/8κ
−1/4
3 �

−1/2
N f

(
du

da

)1/2

3
,

B3 = 21/4κ−1/4
3 e−π i/8�

1/4
N f

B3

a1/4
3

,

E3 = e−π i/4�
−1/4
N f

a1/4
3 q−1/8

3 ,

FK/2,3 = eπ i B(c+K ,K/2),

(12.34)

where (
da

du

)

3
(τ3) = τ−1

3

(
da

du

)
(1 − 1/τ3). (12.35)

I2 singularity in N f = 2

We continue by sketching the determination of these couplings for the I2 singularity in
the N f = 2 theory with equal masses. The functions u and da/du are known exactly
for this theory [19, Section 5.1], we recall them in (E.13),14 It is then straightforward
to determine couplings near the I2 singularity τ = 1 − 1/τ3 → 1. For example,
(da/du)3 is given by (E.18), with leading terms in (E.19).

One similarly determines the first terms in the q3−expansions of u3 (E.20), and
a3 (E.21) at this singularity. Substitution in (12.34) then allows to the determine the
contribution from the I2 singularity for the equal mass theory.

12.3 Results for K3

Using the above formulas, it is straightforward to explicitly calculate SWcontributions
for specific four-manifolds, for generic as well as specific masses. We focus in this
subsection on evaluations for X = K3, and discuss N f = 1, 2, 3 separately.

N f = 1

For simplicity, we consider a vanishing background flux, k1 = 0, such that μ = 0
necessarily. The full correlation function (8.4) then reads,

Z0(m)[u�] =
3∑

j=1

ZSW , j,0(m)[u�]. (12.36)

14 We have corrected the sign of da/du in (E.13) compared to [19, Eq. (5.4)] such that da/du → i23/2 q1/4

per our convention (2.16) for the weak coupling limit.
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Table 12 Table with values of Z0[u�] for N f = 1

� Z0(m)[u�] for N f = 1

0 64
m2

�2
1

1 64
m4

�2
1

+ 8�1m

2 64
m6

�2
1

+ 16�1m3 + 9

4
�4
1

3 64
m8

�2
1

+ 24�1m5 + 9

2
�4
1m2

4 64
m10

�2
1

+ 32�1m7 + 31

4
�4
1m4 + 27

16
�7
1m

5 64
m12

�2
1

+ 40�1m9 + 12�4
1m6 + 45

16
�7
1m3 − 243

1024
�10
1

6 64
m14

�2
1

+ 48�1m11 + 69

4
�4
1m8 + 9

2
�7
1m5 + 1215

1024
�10
1 m2

We can evaluate this for generic mass m using the topological data mentioned above
Equation (12.8). This gives the results listed in Table 12.

Similarly to the case for the u-plane integral for P2 without background fluxes,
large mass and small mass expansions of the singularities u∗

j and their contributions
give identical results, which demonstrates that these correlation functions are smooth
functions of m. Given the intricate cubic roots (see discussion around (9.12)), it is
remarkable that the mass expansions terminate at finite order.15

The dimension of the moduli space and the rank of the matter bundle are

dim(MQ
k ) = 3k − 2,

dim(Mi
k) = 4k − 6,

rk(Wk) = −k + 4.

(12.37)

This is positive for small k, and as a result the dimension of the moduli space of non-
Abelian monopoles is larger than the moduli space of instantons for these values. The
point observable u is a 4-form on themoduli spaceMQ

k of non-Abelian SW equations.

15 This is possibly a consequence of Vieta’s formula (9.13): Both small and large mass expansions of the
singularities u∗

j are infinite series, while their sum is
∑3

j=1 u∗
j = m2. By the fundamental theorem of

symmetric polynomials, a similar statement can be made about sums
∑2+N f

j=1 P(u∗
j ) with P a polynomial.

However, as is clear from the explicit expressions (12.17), (12.23), (12.26), the correlators Z0[u�] are sums
of such kind with P a rational function.
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Large mass limit and expansion
The decoupling limit m → ∞ (8.23) applied to Z0[u�] does not exist, since the
contribution of u∗

3 diverges. There is thus no smooth decoupling limit to the N f = 0
result as before for P2. However motivated by the distinction between the monopole
and instanton component, see Fig. 9 in Sect. 7, we can consider the partition function
for the instanton component as the sum of the contribution of u∗

1 and u∗
2,

Z i
0(m)[u�] = ZSW ,1,0(m)[u�] + ZSW ,2,0(m)[u�]. (12.38)

Then, the decoupling limit applied to Z i
0(m)[u�] is consistent with the N f = 0 result,

that is to say, it vanishes in the limit. This is due to the dimension of the moduli space
not being a multiple of 4 in this case, such that insertions of point observables give a
vanishing answer.

We can consider the large mass expansion of Z i
0. In contrast to Z0(m)[u�], this is

an infinite series. The first few terms are,

Z i
0(m)[u0] = −3

4

�4
1

m4 − 5

16

�7
1

m7 − 63

512

�10
1

m10 − 99

2048

�13
1

m13 + · · · ,

Z i
0(m)[u1] = −�4

1

m2 − 7

16

�7
1

m5
− 175

1024

�10
1

m8 − 273

4096

�13
1

m11 + · · · ,

Z i
0(m)[u3] = −5

8

�7
1

m3 − 245

1024

�10
1

m6 − 189

2048

�13
1

m9 − 4719

131072

�16
1

m12 + · · · ,

(12.39)

The infinite series demonstrate that infinitely many instanton sectors contribute. For
example, we deduce from Z i

0[u0] that the top Chern class has maximal degree
2 dim(Mi

k) and thus exceeds the rank of the matter bundle. In other words, it is
actually a matter sheaf rather than a matter bundle.

Small mass expansion
Instead of a large mass expansion, one can also make a small mass expansion of the
contributions of u∗

1 and u∗
2. The coefficients turn out to be complex numbers, obscuring

their interpretation as intersection numbers.Moreover, the expansion involves negative
powers of�1, which suggests that the terms arise from sectors with negative instanton
numbers k. Altogether, the large m expansion thus seems more physical.

Limit to AD mass
In Sect. 8.1, we argued that in an AD limit m → mAD, we can split the singularities
into two sets S and S′, where the singularities in S′ collide in the AD point, while the
ones in S are not involved in the limit. The contribution from S′ we denote in (8.3) by
ZÃD. In our notation, the singularities u∗

2 and u∗
3 then give the contribution ZÃD.

In the limit m → mAD = 3
4�1 for N f = 1, the contributions from u∗

2 and u∗
3

diverge individually as (m − mAD)− 1
2 , where the coefficients for u∗

2 and u∗
3 differ by

a minus sign. Their sum is correspondingly regular, and we find a finite limit ZÃD.
The conditions for a smooth limit were studied in [26], and led to sum rules for SW
invariants and the notion of superconformal simple type. For the type I I AD point
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on K3, there is no such sum rule, which is indeed not necessary because the partition
function itself is regular without any constraints.

More specifically, we calculate ZÃD[1] = 320
9 , while the contribution from u∗

1 is
4
9 . All together it reproduces the result in Table 12 at m = mAD. For � = 1, the first
cusp contributes − 5

12�
2
1, and the sum of u∗

2 and u∗
3 is ZÃD[u1] = 80

3 �2
1. Their sum

again agrees with the table. We can in fact calculate the AD contribution for any �,16

ZÃD[u�] = 320

9

(
3�2

1

4

)�

= ZÃD[1] u�
AD, (12.40)

where uAD = 3
4�

2
1. Clearly, all point correlators are nonzero. This is an indication that

the selection rule associated with the SCFT is not valid in this case [28, 29, 87]. This
selection rule reads 3� = 1 for K3 in the absence of surface observables, and so it
does not have any solutions for point observables only. We conclude that this selection
rule is not valid for the AD point of the SQCD curve. Rather, it holds for the AD curve
obtained by promoting the deformation parameters to operators and assigning scaling
dimensions [2, 26, 29]. This explains our notation ZÃD, where we keep ZAD for the
partition function calculated from the AD curve.

Notably, from (12.40) it follows that

ZÃD[u�] = 0, � ≥ 1, (12.41)

where u = u − uAD is the Coulomb branch parameter with the AD point at its origin.
That is, the 0-observable u is a null vector of the ÃD theory, which is in agreement
with the selection rule (see also [29]). We will discuss the relation to SW contributions
of AD curves in a future work [55].

N f = 2

We continue with the N f = 2 theory. For distinct masses, m = (m1, m2) with
m1 �= m2, this theory has four strong coupling singularities of type I1. We find for the
partition function,

Z0(m)[u0] = 32�2
2

(
1

(m1 − m2)2
+ 1

(m1 + m2)2

)

= 32�2
2

(m1 − m2)2
+ 8�2

2

m2
2

+ O(m1 − m2).

(12.42)

The divergence is due to the monopole contributions of the singularities u∗
3 and u∗

4.
The singular behaviour near the equal mass limit, m = (m, m), has an interest-

ing interpretation in terms of vertex algebras [43]. The singularity is expected to be

16 This implies that ZÃD[e2pu ] = ZÃD(1)e2puAD . This generating function Z1
ÃD

(p) := ZÃD[e2pu ] then
satisfies �( 12 ∂p)Z1

ÃD
(p) with �(u) = u − uAD, similar to the structure result in Sect. 12.5.

123

J. Aspman et al.98 Page 58 of 120



cancelled by a contribution from the Higgs branch (we will comment on this further
below).

The equal mass limit is non-singular for the contributions from u∗
1 and u∗

2. For the
partition function of the instanton component (12.38) with equal masses, we find

Z i
0(m)[u0] = 4�5

2

m2

(
1

(�2 + 2m)3
+ 1

(�2 − 2m)3

)

= −3

2

�6
2

m6 − 5

4

�8
2

m8 − 21

32

�10
2

m10 − 55

512

�14
2

m14 + · · · ,

Z i
0(m)[u1] = −�6

2

m4 − 21

16

�8
2

m6 − 25

32

�10
2

m8 − 91

256

�12
2

m10 − 9

64

�14
2

m12 + · · · ,

Z i
0(m)[u3] = −5

4

�8
2

m4 − 115

128

�10
2

m6 − 113

256

�12
2

m8 − 373

2048

�14
2

m10 + · · · .

(12.43)

The equal mass case and multi-monopole SW invariants
Instead of taking the equal mass limit of Z0(m), one can evaluate the partition function
directly at m1 = m2 = m. While this gives a finite answer, the theory now involves a
strong coupling cusp of type I2. The Q-fixed equation is a multi-monopole equation,
and will thus involve a generalisation of the SW invariant for I1 singularities as dis-
cussed in Sect. 12.2. Even though the limit m1 → m2 is singular for the sum of the
contributions from u∗

3 and u∗
4, one obtains a finite answer if one works directly in the

equal mass theory m1 = m2 = m. This was demonstrated for m = 0 in [21].
To this end, let us recall that for a nonvanishing contribution, the virtual dimension

of the monopole moduli space (12.27) should be nonnegative, while at the same time
c2+ = 0. These two conditions have no solutions for a generic Kähler point J except
for c = 0, but can have a finite number of solutions for special choices of J .

For K3, the requirement that (12.27) is nonnegative is c2 ≥ 16( 1r − 1). Together
with the condition that c+ = 0 and that c is a Spinc structure, this gives the following
possibilities

r = 1 : c2− = 0 n1(c) = 0

r = 2 : c2− = 0,−8, n2(c) = 2, 0

r = 3 : c2− = 0,−8, n3(c) = 4, 1,

r = 4 : c2− = 0,−8, n4(c) = 6, 2.

(12.44)

The contributions from different c can have different signs, such that the total
contribution can be metric independent, even if individual contributions are metric
dependent.

Returning to the case r = 2, using the exact expressions in Appendix E.3, for the
contribution from c = 0 we obtain

− SW2(0)
16�2

2

κ3

(57�4
2 − 48�2

2 m2 + 64m4)

(�2
2 − 4m2)3

, (12.45)
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and for the contribution from c2 = −8

−
∑

c,c2=−8

SW2(c)
2�6

2

κ3(�
2
2 − 4m2)3

. (12.46)

In the massless limit, these contributions (12.45) and (12.46) match with [21, Eq.
(4.6)] (with c = 2λKY). The total result then becomes

Z0(m)[u0] = 2�6
2

(�2
2 − 4m2)3

⎛

⎝4�2
2 + 48m2

m2 SW1(0) −
∑

c,c2=−8

SW2(c)

κ3

−8(57�4
2 − 48�2

2m2 + 64m4)
SW2(0)

κ3

⎞

⎠ ,

(12.47)

where we substituted the contribution from u∗
1 plus u∗

2 given in Eq. (12.43), and made
the dependence on SW1(0) explicit.

While this is finite for generic m, we notice a divergence for the individual con-
tributions as the mass approaches the AD mass, m → mAD = �2/2. On the other
hand, the previous discussion and results for N f = 1 give an indication that the
combined contribution of the three cusps may become a (Laurent) polynomial in m.
In addition to (12.47), there is a contribution from the non-compact Higgs branch.
It is unclear, however, how the Higgs branch dynamics could cancel the divergence
for m → mAD = �2/2. Although heuristically, we are then led to the idea that
the 2-monopole invariants SW2 satisfy special relations to ensure smoothness at
mAD = �2/2. This is similar to the constraints on the SW invariants from the AD
mass locus in other theories [26].

To deduce the relations for SW2, note that both contributions from c = 0 (12.45)
and c2 = −8 (12.46) have a cubic singularity at m = mAD. Correspondingly, their
sum is regular in the AD limit if three linear combinations of the invariants SW2(c)
vanish. Remarkably, there is a linear dependence among these three combinations,
and the AD limit is regular if17

∑

c:c2=−8

SW2(c) + 392 SW2(0) − 64κ3 SW1(0) = 0,

∑

c:c2=−8

SW2(c) + 520 SW2(0) − 128κ3 SW1(0) = 0.
(12.48)

These vanishing combinations are reminiscent of the sum rules for the type I I AD
theory [26]. The unique solution to these equations, setting SW1(0) = 1, is

SW2(0)

κ3
= 1

2
,

∑
c, c2=−8 SW2(c)

κ3
= −132. (12.49)

17 If we eliminate κ3, we find
∑

c:c2=−8 SW2(c)+264SW2(0) = 0. This condition alone is not sufficient
for the regularity of the limit.
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Table 13 Table with values of Z0[u�] for N f = 2 with equal mass m and SW2 invariants as in (12.49)

� Z0[u�] for N f = 2

0
8�2

2
m2

1 88�2
2 − �4

2
m2

2 2�4
2 + �6

2
8m2 + 232�2

2m2

3 − 27�6
2

8 + 440�2
2m4 − �8

2
64m2 + 33�4

2m2

4 − 7�8
2

16 + 712�2
2m6 + 116�4

2m4 + �10
2

512m2 − 23�6
2m2

4

5 − 161�10
2

512 + 1048�2
2 m8 + 275�4

2 m6 + 11�6
2 m4

4 − �12
2

4096m2 − 115�8
2 m2

32

We list correlation functions
〈
u�
〉
for small � in Table 13 for this solution. Since the

correlation functions are polynomials in m, the AD limit m → mAD is smooth. More
generally, we expect that the multi-monopole invariants SWr>1 can be deduced in this
way from the I1 SW invariants.

We do stress though that the analysis of themulti-monopole suggests that SW2(c) =
0, c �= 0, for generic metric since there are no solutions to c+ = 0. It is thus an
interesting question whether (12.49) can be derived starting from the multi-monopole
equations.

Comparing different limits
In [26, 27], the collision of two I1 singularities to a type I I AD point has been
considered, which is the only existing limit in N f = 1. For N f ≥ 2 on the other hand,
higher type AD points appear, which allow for a larger variety of possible collisions. If
we have two masses, for instance, we can form a type I I I AD point in three possible
ways (see Fig. 12). Carefully calculating the three possible limits of partition functions
should allow us to study the precise form of the contribution from the Higgs branch
(see also [7, 43, 54, 88–91]).

We can now compare the calculation of the SW contribution from the type I I I
Argyres–Douglas point, as illustrated in Fig. 12. As required, the limit m → mAD
for the I2 + I1 contribution is smooth, and from Table 13 we find that it equals 32.
Calculating the limit of I1 + I1 + I1 from any direction away from m1 = m2, we
can use the expansion (12.42) for N f = 2, where we expand all singularities around
m1 = m2. This expansion agrees with setting say m1 = mAD = 1

2�2 and considering
the limit m2 → mAD, as in Fig. 12. In this limit, the constant part in (12.42) evaluates
to 32 as well, such that the two limits I1 + I1 + I1 → I I I and I2 + I1 → I I I agree
precisely, up to the divergent term 32�2

2/(m1 − m2)
2. Thus the SW2 invariant for the

I2 contribution naturally regularises the singular limit of colliding two I1 singularities.
This is another nontrivial constraint on the relations (12.49).
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Fig. 12 Plot of the mass space (m1, m2) in N f = 2. The AD locus (blue) consists of two contours giving
rise to a Coulomb branch (CB) with each one I I AD point. When the loci meet, the CB contains a type
I I I point (green). This point can be approached from three distinct configurations: Away from m1 = m2,
the limit is I1 + I1 + I1 → I I I (brown). On the line m1 = m2 (orange), there is a I2 singularity, with a
limit I2 + I1 → I I I (purple). Finally, on the generic AD locus there is a I I singular point with a limit
I I + I1 → I I I (cyan). On any point on the I2 line m1 = m2, a Higgs branch with geometry C2/Z2 meets
the Coulomb branch

N f = 3

Another configuration suitable for studying I2 singularities is m = (m, 0, 0) in N f =
3, which for generic mass m is (I ∗

1 , 2I2, I1). See, for example, [19] for more details.
The two I2 singularities u± = 1

8m�3 become the I4 singularity in the massless limit
m → 0, while the I1 singularity m∗ = m2 + 1

28
�2

3 collides with either u+ or u− for

m → ±mAD := 1
16�3. We can calculate the sum over the two I2 SW contributions

and the I1 SW contribution. For this, we solve the sextic equation associated with the
SW curve [19] and calculate the local expansions a, du

da ,
da
dτ and �3 near the cusps u±

using either of the two respective solutions near the cusps. We find again that the AD
limit m → mAD is regular if we impose sum rules on the SW invariants. With the
expressions (12.34), we find that the AD limit is regular if and only if (12.49) holds.
This may be viewed as a consequence of the fact that the SW curves for m = (m, m)

and m = (m, 0, 0) are isogenous [92].
We list some values of Z0[u�] in Table 14. The order 6 pole comes from the mass

singularity, since for N f = 3 we have ((m1 − m2)(m2 − m3)(m3 − m1))
χh ∼ m6 for

all masses vanishing. One qualitative difference to N f = 2 is that the mass divergence
for m → 0 disappears for larger �, i.e. Z0[u�] is regular as m → 0 for � ≥ 5. For the
I2 singularity in N f = 2, the leading term is always m−2+ regular, for any �.
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Table 14 Table with values of
Z0[u�] for N f = 3 with
m = (m, 0, 0) and
SW2-invariants as in (12.49)

� Z0[u�] for N f = 3

0 320
�6
3

m6

1 192
�6
3

m4

2 64
�6
3

m2 − �8
3

m4

3 64�6
3 − 3

�8
3

m2

4 64m2�6
3 + 7

4
�8
3 + 1

64

�10
3

m2

5 64m4�6
3 + 2m2�8

3 − 401

210
�10
3

12.4 Relation to results for algebraic surfaces and Segre numbers

The coefficients in the mass expansions such as (12.39) and (12.43) are known in
the mathematical literature as Segre numbers [80]. Yet, in the UV formulation (see
Sect. 3.3), correlation functions are intersectionnumbers obtainedby integratingChern
classes on the moduli space. In this Section, we aim to explain the connection between
Chern classes and Segre classes, and provide a relation between SWpartition functions
and these geometric invariants.

Brief review of Segre classes of moduli spaces

The (total) Segre class s(E) of a vector bundle is a characteristic class, which is
suitable for the analysis of intersection theory in singular settings.18 In this context,
the more familiar Chern classes are defined in terms of the Segre classes. To this end,
one defines for a vector bundle E the following formal power series,

st (E) =
∞∑

j=0

s j (E) t j , (12.50)

in terms of the Segre classes s j (E). We refer for their definition to [93, Section 3.1].
The Chern classes c j (E) are then defined by the inverse of st (E),

ct (E) =
∞∑

j=0

c j (E) t j = st (E)−1. (12.51)

It can be shown that ct (E) is a polynomial whose degree is bounded by rk(E).
Segre classes first appeared in the context of moduli of vector bundles in an article

by Tyurin [50]. Lehn [94] put forward an algorithmic description for the evaluation

18 We refer the reader to [93] for definitions, in particular the Sects. 3.1 and 3.2.
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of top Segre classes for Hilbert schemes of points, which corresponds physically to
U (1) gauge theory. His conjecture was recently proven in [95]. Reference [96] gives
proofs for various conjectures relating Segre andVerlinde numbers ofHilbert schemes.
Segre classes were introduced in [51] for higher-rank bundles over projective surfaces.
Reference [53] gives proofs for these higher-rank conjectures for K3 surfaces as well
as for the Segre-Verlinde correspondence. Segre classes have also appeared in a series
of work by Feehan and Leness on SW invariants for specific monopole moduli spaces
[97–100]. See also [101] for a recent survey on recent conjectures on the various
correspondences.

Comparison between Segre numbers and physical correlation functions

In order to demonstrate the correspondence between Segre numbers and physical
partition functions, let us first give the mathematical presentation. For simplicity, we
fix the gauge group to be SU(2), and will not consider surface observables. Then
ρ = 2, s = N f and L = 0 in [51, 80]). Conjecture 2.8 in [51] reads in terms of the
universal functions V , W , . . . ,

∑

k

z
1
2 dim(Mi

k )

∫

Mi
k

c(αM) μD(p)�

= 22−χh+λV c2(α) W c1(α)2 Xχh Y c1(α)·K X Z K 2
X T �

×
∑

c

εa·μ SW(K X − 2a) Y c1(α)·a
1 Za2

1 ,

(12.52)

where αM is related to α using the universal bundle, and we used that the SW basic
class c is related to a by c = K X − 2a. The functions V , W , X , T are explicitly
determined in [51, 80] for arbitrary rank. This leads typically to an infinite series in
the parameter z, which suggests that αM is a sheaf rather than a vector bundle.

Clearly, the structure of (12.52) is very similar to that of (12.3), and we can relate
the functions A1,B1, . . . to combinations of the functions V , W , . . . .

We discuss in the following the agreement of some of the functions in both the
physical and mathematical approach.

N f = 1

Let us begin with the case of only one mass. The expansion in z is expressed by
introducing an auxiliary variable t through z = t(1 + t/2)1/2. This relation can be
inverted, which we denote by t(z).19 The universal functions then read as function of

19 The square of the relation z = t(1 + t/2)1/2 is cubic in t , such that we find the solution

t(z) = 1

3

⎛

⎝ 3
√
27z2 + 3

√
3
√
27z4 − 16z2 − 8 + 4

3
√
27z2 + 3

√
3
√
27z4 − 16z2 − 8

− 2

⎞

⎠ , (12.53)
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t as [51],

W (t) = (1 + 1
2 t)−1,

X(t) = (1 + 1
2 t)−3/4 (1 + 3

4 t)−1/2,

T (t) = 2t(1 + 3
8 t).

(12.54)

By comparing (12.3) and (12.52), we deduce that X is proportional toA12
1 /B8

1. Using
(12.14), we then find the relation

X (t(z))2 = 48m5/2

�
9/2
1

g3(u∗
1)

PM
1 (u∗

1)
2
. (12.55)

with the identification

z = 1

2

(
�1

m

) 3
2 = �2

0

2m2 . (12.56)

Comparison of (12.3) and (12.52) also identifies T and u∗
1. Indeed with the relation

(12.56), we arrive at
T (t(z)) = −m−2 u∗

1. (12.57)

This equivalence is due to the identity

�1(−m2T (t(z))) = 0, (12.58)

where �1 is the discriminant of N f = 1. These identities are consequences of the SW
geometry alone. For instance,we can prove the first identity using the definition (12.54)
and reducing the sextic polynomial�1(−m2T (t(z))) in t(z) using t3+2t2−2z2 = 0.

For N f = 1, there is a Z3 symmetry (9.14) that relates all three singularities u∗
j

under Z3 rotations of �1. This would suggest that if one singularity u∗
1 is related to

universal functions generating the Segre invariants (as in (12.58)), then it must be
true also for the other singularities. This is, however, not the case, as can be seen by
expanding t(z) as a series in z, which is a (regular) Taylor series at z = 0 (see footnote
19). If we rotate �1 �→ ζ3�1, the variable z (12.56) is mapped to −z. Thus under
the change of variables t ↔ z relating the SW invariants to Segre invariants, the Z3
symmetry collapses to a Z2 symmetry, relating the contributions u∗

1, u∗
2 constituting

the instanton component. We find,

u∗
2(�1) = u∗

1(ζ3�1) = −m2T (t(−z)), (12.59)

while u∗
3 cannot be expressed through T .

If we expand at m = 0 rather, we have the fullZ3 symmetry u∗
j (ζ3�1) = u∗

j+1(�1)

with j mod 3. Expanding t(z) (12.53) for large z gives a Laurent series in z
2
3 at

which can be expanded either at z = 0 or z = ∞.

For instance, we have t(z) = z +O(z2) as z → 0, and t(z) = 2
1
3 z

2
3 +O(z− 2

3 ) as z → ∞. In calculations,
we must expand t(z) in z first in order to obtain the correct phases.
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z = ∞. Rotating �1 �→ ζ3�1 gives z �→ eπ i z and thus three different solutions t(z),
and therefore

u∗
1 = −m2T (t(z)),

u∗
2 = −m2T (t(eπ i z)),

u∗
3 = −m2T (t(e−π i z)).

(12.60)

For large masses, the singularity u∗
3 corresponds to the hypermultiplet that decouples,

and thus is associated with the monopole component. For small masses on the other
hand, the three singularities u∗

1,2,3 are indistinguishable. This can also be seen from the

fact that u∗
2 and u∗

3 merge as we increase the mass from m = 0 to mAD = 3
4�1. Thus,

the labels of the singularities u∗
j are not meaningful throughout the whole parameter

space of the masses. As a consequence, it is not possible to attribute either u∗
1,2,3 to

the monopole component, which enables the identification (12.60).
To include a background flux for N f = 1, we identify c1(α) = k1 and c2(α) = 0.

Comparison of (12.3) and (12.52) relates W and C1. Indeed, using the large mass
expansion (9.4) in terms of modular forms, we can compare the first terms near u∗

1,
that is, in the limit τ1 = −1/τ → i∞. This matches indeed with the relation

W = m

�1
C1. (12.61)

Returning to the specific K3 geometry, we have χh = 2, while K X = 0. The odd
powers of z of (12.52) agree with the large mass expansions in Eq. (12.39) up to an
overall power in z. In fact, we can express the contribution from the u∗

1 singularity for
K3 in terms of X , W and T ,

Z0,1[u∗�
1 ] = 1

2
(−1)�m2�

(
�1

m

) 5
2+k21

X (t(z))2 W (t(z))k
2
1 T (t(z))� . (12.62)

N f = 2

Using the equal mass m1 = m2 = m theory for N f = 2, we can also check the
matching with Segre invariants. For simplicity, we consider the theory only in the
absence of background fluxes.

The auxiliary variable t is equal to z in this case. With s = N f = 2, one finds for
X from [51],

X(z) = (1 + z)−3/2. (12.63)

Then with the identification

z = �2

2m
= �2

0

2m2 , (12.64)

one finds the same expansion as for the contribution of the monopole cusp u∗
1. On

the other hand, we find a slightly different value when point observables are inserted,
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T (z) = 2z, whereas u∗
1 = −�2m − �2

2
8 . Of course, both insertions capture the same

information.

12.5 Generalised simple type

To conclude this Section on SW partition functions for SU(2) SQCD, we study a
generalisation of the simple type condition familiar from the pure SU(2) theory.

Let us define the generating functional of Seiberg–Witten invariants (b+
2 > 1)

Z
N f
μ [e2pu/�2

N f ] :=
∞∑

�=0

1

�!
(

2p
�2

N f

)�

Z
N f
μ

[
u�
]
, (12.65)

where Zμ is the sum over the contributions of all the N f + 2 strong coupling cusps.
In the following, we drop labels such as ‘SW’ and μ to avoid cluttering the notation,
and denote the functions by Z N f .

General structure results about such generating functionals are known since the
work of Kronheimer andMrowka [102–104] (see also [83, 105]). For instance, a four-
manifold is of generalised simple type if there exists an integer n ≥ 0 such that the
generating function satisfies

(
∂2

∂ p2
− 4

)n

Z0(p) = 0, (12.66)

wherewe focus on the dependence of Z N f (p) := Z N f [e2pu/�2
N f ] on p only. The order

is the minimum of all n such that (12.66) holds. It has been shown that if b+
2 (X) > 1,

then the order of generalised simple type manifolds does not depend on the choice of
’t Hooft fluxμ, that is, it only depends on the four-manifold. In fact, all four-manifolds
with b+

2 > 1 are of finite type. A manifold is said to be of Donaldson simple type if it
is of simple type with n = 1. While all four-manifolds with b+

2 > 1 are of generalised
simple type, it is not known if there are simply-connected manifolds with b+

2 > 1
which are not of Donaldson simple type. Donaldson invariants for manifolds which
are not of simple type have been studied in [106–108].

For instance, for X a K3 surface the result is

(
∂2

∂ p2
− 4

)
Z0(p) = 0. (12.67)

In the pure SU(2) case, acting with the operator ∂2p − 4 on correlation functions is
analogous to an insertion of the discriminant � into the u-plane integral [6]. Since
at the monopole and dyon cusps, �D(τ ) = q + O(q2), this increases the overall
q-exponent of the integrand by one. For arbitrary signature, inserting �n with large
enough n will annihilate the partition function.

In [21, 76, 109], it has been observed that the SW contribution in massless SQCD
satisfies a similar, but higher-order differential equation. In the massless N f = 1
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theory, the generating functional satisfies [21]

(
∂3

∂ p3
+ 27

32

)
Z1(p) = 0, (12.68)

which can be directly confirmed from the sum over (12.16). This differential equation
has a three-dimensional solution space which is spanned by the functions e2pu∗

j , where
�1(u j ) = 0 are the three roots of the massless N f = 1 discriminant, and u := u/�2

1.
The three coordinates can in this case be easily determined, and are just proportional
to u∗

j . This gives [21]

Z1(p) = −26

32

3∑

j=1

u∗
j e

2p u∗
j . (12.69)

In the massive case, to the best of our knowledge such a result is not known in the
literature. By collecting the results for massive N f = 1 on K3 (such as in Table 12)
into a generating function, we obtain the relation

(
∂3

∂ p3
− 2μ2 ∂2

∂ p2
− 9

2
μ

∂

∂ p
+ 8μ3 + 27

32

)
Z1(p) = 0, (12.70)

where μ = m/�1 is the dimensionless mass. Solutions to this equation take a similar
form to (12.69), with coefficients now more complicated functions of the dimension-
less singular points u∗

j .

I1 singularities

We can in fact easily find the simple type condition for SQCDwith N f generic masses.
If we write the contribution from each cusp as (we again drop some dependence in
the notation)

Z N f [u�] =
2+N f∑

j=1

Z
N f
j (u∗

j )(u
∗
j )

�, (12.71)

we resum it in (12.65) to find

Z N f (p) =
2+N f∑

j=1

Z
N f
j (

u∗
j

�2
N f

)e
2pu∗

j /�
2
N f . (12.72)

Let us consider the function f j (p) = ep u∗
j , where theu∗

j are roots of some polynomial,

�N f (u
∗
j ) = 0 (we consider�N f as a polynomial in u j = u/�2

N f
). Then these 2+ N f

functions f j form the basis of the 2+ N f -dimensional C-vector space of solutions to
the 2 + N f -order linear ODE �N f (∂p) f (p) = 0. This is clear from the fact that

�N f (∂p) f j (p) = �(u∗
j ) f j (p) = 0. (12.73)
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Indeed, �N f is the characteristic polynomial of this differential equation. In order to
apply this to (12.72), we need to multiply p again by 2, due to conventions. It follows
that

�N f (
1
2∂p)Z N f (p) = 0. (12.74)

This relation includes (12.67), (12.68) and (12.70) as examples, and it is expected to
hold for any configuration only involving I1 singularities. Similar to the case N f = 0,
we can understand (12.74) as inserting the discriminant�N f into the u-plane integral.
Since �D

N f
(τ ) = q + · · · for any cusp, this increases the exponent of the integrand

q-series by one, and will thus eliminate the contribution from the strong coupling
cusps to the partition function if applied sufficiently many times.

I2 singularities

From (12.74), it is possible to extract the behaviour of the generating function Z N f

in the case where some of the singularities collide. Consider, for example, the case
where all I1 singularities collide in an Ik singularity (this is not possible for the SW
curves (2.17), we aremerely illustrating the structure).When zeros of the characteristic
polynomialsmerge, the basis of the space of solutions to theODE seemingly collapses.
However, the dimension of the solution space is independent of the coefficients of the
characteristic polynomial, as it only depends on its degree. Let, for instance, �(u) =
(u −u0)

k and we consider the equation�(∂p) f (p) = 0. As an elementary calculation
shows,20 a basis of solutions is given by the functions f (p) = Pk−1(p)epu0 , with Pk−1
a polynomial of degree k − 1. This structure agrees with the results (4.6) and (4.10) in
[21]. For the higher Ik singularities, there are contributions from subleading terms, and
as mentioned above, only applies to �n

N f
for some power n. This follows necessarily

also from the structure of the ODE, since the generating function (12.72) is never of
the form f (p) = Pk−1(p)epu0 unless k = 1.

For In with n > 1, in particular massless N f = 2 and 3 where n = 2 and
n = 4 occur, the degree of the differential operator is known to in general exceed the
degree of the discriminant. For X = K3, it has been shown that in the massless case
DN f (

1
2∂p)Z N f (p) = 0, where D2 is a polynomial factor of �2

2, and D3 is a factor of
�7

3 [21].
We can confirm this by an explicit calculation. Let m1 = m2 = m in N f = 2, then

there are two I1 singularities u± and an I2 singularity u∗, in the same notation as [19].
The physical discriminant accordingly reads �2(u) = (u − u∗)2(u − u+)(u − u−).
Using the results from Sect. 12.2 (in particular, resumming the values in Table 13), we
can show that in this case the multiplicity of the I2 singularity increases to 3 in the
differential equation,

( 12∂p − u∗)3( 12∂p − u+)( 12∂p − u−)Z2(p) = 0. (12.75)

20 Let f0(p) = P(p)e pu0 , then (∂p −u0) f0(p) = P ′(p)e pu0 and thus 0 = �(∂p) f0(p) = P(k)(p)e pu0 .
Therefore, P is a polynomial of degree k−1, and thus any solution to 0 = �(∂p) f (p) is a linear combination

of the functions f0(p) = e pu0
∑k−1

n=0 an pn .
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In the massless limit m → 0, the singularities u± merge to another I2 cusp u0.
Calculating the I2 correlation functions for both u∗ and u0, we find that

( 12∂p − u∗)3( 12∂p − u0)
3Z2(p) = 0. (12.76)

This matches precisely with [21, (4.8)]. Thus whenever two I1 singularities in the
N f = 2 theory collide, in the ODE the linear factors are enhanced to cubic factors.

We can get another similar result for the massive configuration m = (m, 0, 0)
in N f = 3, which has discriminant �3(u) = (u − u+)2(u − u−)2(u − u∗). The
point correlators are given explicitly in Table 14. Resumming all point observable
correlators, we find that the generating functions satisfies

( 12∂p − u+)3( 12∂p − u−)3( 12∂p − u∗)Z3(p) = 0. (12.77)

In singularities

Higher In contributions have also been studied in [21]. For the I4 cusp of massless
N f = 3, the multiplicity of the corresponding factor in the generalised simple type
condition is 7. This motivates the following conjecture: Let m ∈ C

N f be a mass con-
figuration giving rise to a spectrum n(m) = (n1, n2, . . . ) of massless hypermultiplets
at each singularity, i.e. the physical discriminant is �N f (u) = ∏

j (u − u∗
j )

n j . Then
the generating function of SW invariants satisfies

∏

j

( 12∂p − u∗
j )
2n j −1Z N f (p) = 0. (12.78)

This in particular implies that �N f (
1
2∂p)

7Z N f (p) = 0 for all N f = 0, . . . , 4 and all
mass configurations, since n j ≤ 4 for N = 2 SU(2) SQCD [19, 110].

The reason for the enhanced exponents is the fact that for n j ≥ 1, the residues
receive contributions from subleading terms in the expansion. For n j = 2 in N f = 2
in particular, next-to-next-to-leading order terms of all quantities involved are required
for the calculation. Analogous to the above comment, we can thus always express the
generating function as

Z N f (p) =
∑

j

P2n j −2(p)e
2pu∗

j /�
2
N f , (12.79)

where u∗
j are the singularities with multiplicities n j , and P2n j −2(p) are polynomials

of degree 2n j − 2 in p with coefficients depending on the masses m.

13 Contribution from AD points

As discussed in part I, the superconformal Argyres–Douglas theories present them-
selves in the fundamental domain as elliptic points and can contribute to u-plane
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integrals. Partition functions of Argyres–Douglas theories have been studied in vari-
ous contexts, such as in the�-background [22–25] and in topological theories [26–32].

As demonstrated in, e.g. [5, 6, 29], the contribution from ‘interior’ points of the
u-plane, i.e. AD points or the UV point in N f = 4 or N = 2∗, exhibits continuous
metric dependence rather than discrete wall-crossing.21 Unlike the evaluation of the
contribution from the cusps, the contribution from the AD points for a specific choice
of period point J of the metric will then not be constant in the whole chamber of J .
Rather, under small deformations of J it is expected to vary continuously. Note that
this can only occur for b2 > 1, since for b2 = 1 and P2 in particular, the period point
is unique.

In this section, we focus on the asymptotic behaviour of the u-plane integrand and
derive conditions for the integral to be sufficiently singular near the AD point to pick
up a contribution. We find that for a large class of manifolds, the contribution from
any AD point in any theory vanishes.

While the following discussion can be applied to a large extent to general SW
curves, we want to stress that in this part II we calculate only the contributions from
the Coulomb branch of SU(2) SQCD, including the contribution from the AD points
to SQCD partition functions. As discussed before in Sect. 8.1, this can differ from the
Argyres–Douglas partition functions themselves, for which a similar analysis can be
done using the curves in [2].

13.1 Expansion at AD point

For generic masses, the SW surface for N f flavours is a rational elliptic surface with
an I ∗

4−N f
fibre at infinity corresponding to weak coupling, and 2 + N f isolated I1

singularities at strong coupling.22 For specific configurations of the masses, however,
the singularities can collide. For instance, when m N f is large and the other masses are
generic, one I1 fibremerges with the fibre I ∗

4−N f
to form a new fibre I ∗

4−(N f −1) at infin-
ity [19].Whenmi = ±m j for i �= j , two I1 singularities collide and become an I2 fibre
[1] (see also (2.22)). Finally, there is a locus DAD

N f
= 0 in mass space where fibres of

the type In collide and become an additive fibreA ∈ {I I , I I I , I V , I V ∗, I I I ∗, I I ∗}.
For the SW surfaces, the only possibilities are A ∈ {I I , I I I , I V }.

One important distinction has to be done between the SQCD curves (2.17) and
the curves for the AD theories, discussed in [2] for instance. As recently reviewed
in [15], the fibre at infinity essentially determines the field theory by giving it a ‘UV
definition’: For SQCD with N f hypermultiplets it is I ∗

4−N f
, while for the AD curves

it is I I ∗, I I I ∗ and I V ∗ for the I I , I I I and I V AD theories (see, for instance, [14]).
On the other hand, the singular types I I ∗, I I I ∗ and I V ∗ themselves are associated
with theMinahan–Nemeschansky (MN) SCFTs [33, 34]. These theories do not appear
in SU(2) SQCD; however, the below analysis carries over to a large extent to such
singularities. In this section, we focus on the SQCD curves, with masses tuned such

21 See, for instance, [29, Equation (7.2)] for an example of an AD theory, and [6, Section 11.3] for the
N f = 4 and N = 2∗ theory.
22 See Table 25 in Appendix G for an explanation of the Kodaira classification of singular fibres.
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that an AD point appears. We plan to discuss the topological theory for the AD curves
in a future work [55].

When the SW surface contains such an additive fibre I I , I I I , I V , the functional
invariant J becomes either 0 (for I I and I V ) or 123 (for I I I ). As we identify it with
the modular j-invariant, these correspond to points τ0 in the fundamental domain with
j(τ0) either 0 or 123, which means that τ0 = γα or τ0 = γ i for some γ ∈ PSL(2,Z),
where α = e2π i/3 is a cube root of unity. Those are the elliptic points of PSL(2,Z). In
general, the fundamental domainF(m) for somemass configurationm is not modular;
however, in some cases F(m) is the fundamental domain for a subgroup of PSL(2,Z)

and then τ0 is an elliptic point for that subgroup [15, 16, 19].
Let us study the behaviour of the u-plane integrand23

I(τ, τ̄ ) = ν(τ)�(τ, τ̄ , z, z̄)e
2pu(τ )/�2

N f
+x2G N f (τ )

(13.1)

of (5.1) near τ0, where we drop some of the dependence for brevity. We also turn off
the background fluxes for now. Recall from (5.4) that the elliptic variable then reads
z = x

2π�N f

du
da . Let us assume that we can express �(τ, τ̄ , z, z̄) = ∂τ̄ Ĝ(τ, τ̄ , z, z̄),

then the function

ĥ(τ, τ̄ ) = ν(τ)Ĝ(τ, τ̄ , z, z̄) e
2pu(τ )/�2

N f
+x2G N f (τ )

(13.2)

is an anti-derivative of the integrand, as it satisfies ∂τ̄ ĥ(τ, τ̄ ) = I(τ, τ̄ ). Thus,
−d(̂h dτ) = dτ ∧ d τ̄ I, such that we can apply Stokes’ theorem and find that the
integral of dτ ∧ d τ̄ I(τ, τ̄ ) over F(m) is given by − ∫

∂F(m)
dτ ĥ(τ, τ̄ ).

As discussed in Sect. 6, near an elliptic point τ0 the integrand ĥ can be singular,
and there can be a contribution from a small contour integral with radius ε as ε → 0.
In order to find the contribution, we expand ĥ around an elliptic point τ0 as

ĥ(τ, τ̄ ) =
∑

m�−∞,n≥0

d0(m, n) (τ − τ0)
m (τ̄ − τ̄0)

n . (13.3)

Recall from part I that the contribution from the elliptic point τ0 is then

[I]τ0 = n0

k0
d0(−1, 0), (13.4)

where n0 and k0 are integers explained in Sect. 12.
It is crucial that ĥ is analytic in τ̄ near τ̄0, that is, the non-holomorphic expansion

(13.3) only contains nonnegative powers of τ̄ − τ̄0. As shown in [56], anti-derivatives
of � generally have poles in the elliptic variable. However, the poles can be avoided
for a certain choice of anti-derivative.

Deriving the non-holomorphic expansion (13.3) of the anti-derivative of ĥ of the
u-plane integrand for a generic four-manifold with period point J , ’t Hooft flux μ and

23 We omit the measure dτ ∧ d τ̄ in the discussion here.
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arbitrary AD configuration is a challenging task. Due to the product structure (13.2),
we can study the expansion of the anti-derivative Ĝ separately from the measure ν.
We discuss those expansions in the following subsections in as much generality as
possible. Our primary interest is to determine in which cases the expansion (13.3)
has a nonzero coefficient d0(−1, 0), which is why we mainly focus on the leading
exponent rather than the precise (nonzero) leading coefficients.

13.2 Measure factor

In this subsection, we discuss the leading behaviour of the u-plane measure ν in the
absence of background fluxes. Recall from (5.2) that in this case the measure factor is
proportional to

ν ∝ da

dτ

(
du

da

) χ
2

�
σ
8 . (13.5)

As noticed in [19, Section 3.1], AD points τ0 are characterised by the property that
du
da (τ0) = 0. In appendix G, we prove this rigorously for any elliptic surface containing
a singular fibre of type I I , I I I and I V .24 In order to work without square roots (2.23),
let us define

ω :=
(
du

da

)2

, (13.6)

which is proportional to g3
g2

E4
E6
. Then ω has an expansion

ω(τ) = dT(τ − τ0)
ordω + · · · (13.7)

at τ → τ0. The value of ordω depends on the precise configuration of singular fibres
in the elliptic surface; however, for the SQCD curves it is 1 in most cases. The value of
dT can be determined exactly as well (see appendixG). However, here we are primarily
interested in the leading behaviour, for which it is enough that dT �= 0.

In order to determine the expansion of ν at τ0, we define u0 = u(τ0), such that we
have an expansion

u(τ ) = u0 + cT(τ − τ0)
ordu, (13.8)

where we have defined u = u−u0. This is because unless u0 = 0, u does not vanish at
τ0 and so does not have a positive order of vanishing.25 Again, the order of vanishing
ordu as well as the nonzero coefficient cT can be determined exactly given a singular
elliptic surface. The value ordu turns out to partially characterise the type of AD point,
i.e. type I I , I I I or I V .

In the following, we focus only on the leading behaviour, such that it is enough to
calculate the orders of vanishing of all holomorphic functions involved. From (13.8),

24 Many of the results easily carry over to singularities of type I V ∗, I I I∗ and I I∗ as well.
25 In the following, we slightly abuse notation, and define ord f as a rational number such that f (τ ) ∼
(τ −τ0)

ord f +· · · for τ → τ0. This number can in particular also be negative. Furthermore, we distinguish
this order of vanishing as a function of τ from the order of vanishing of say the Weierstraß invariants g2
and g3 as a function of u, which we denote by o2, o3, etc., particularly in Appendix G.
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we can determine the order of vanishing of du
dτ , it is

ord
du

dτ
= ordu − 1. (13.9)

On the other hand, from (13.6) it is clear that

ord
da

du
= −1

2
ordω. (13.10)

Thus from da
dτ = da

du
du
dτ , it is clear that

ord
da

dτ
= −1

2
ordω + ordu − 1. (13.11)

The order of vanishing of the physical discriminant depends on the type of AD point
as well. We can use the identity η24 ∝ �/ω6 [19, Equation (3.9)], and using the fact
that η(τ0) �= 0, we have

ord� = 6 ordω. (13.12)

We have thus calculated the order of vanishing of the u-plane measure ν (13.5) for
any given elliptic point τ0, it is

ord ν = ordu − 1 + 1

4
(3σ + χ − 2) ordω. (13.13)

We can further use that χ + σ = 4 for manifolds with b+
2 = 1, since otherwise the

u-plane integral vanishes. Thus,

ord ν = ordu − 1 + σ + 1

2
ordω. (13.14)

It is important to notice that ordu and ordω are not given uniquely for a type (I I ,
I I I and I V ) of AD point. Rather, they can differ depending on the configuration
containing a given Kodaira singularity. The ‘degree of freedom’ is the undetermined
order of vanishing of the Weierstraß invariant g2 or g3 on the base P1. Since for the
SQCD curves g2 and g3 are polynomials of degree 2 and 3, however, this order of
vanishing is greatly restricted. Thus in practice, for the curves under consideration,
both ordu and ordω can take at most two values for a given type I I , I I I or I V . We
summarise these values in the following Table 15.26 We stress again that this result
(13.14) is the order of vanishing for any measure factor (13.5) calculated from an
arbitrary elliptic surface containing an additive fibre of type I I (∗), I I I (∗) or I V (∗)

(including the Minahan–Nemeschansky theories), and will be useful for the study of
other u-plane integrals.

For the manifolds under consideration, the signature is bounded as σ ≤ 1. Since
ordω > 0, this implies that the measure can become arbitrarily singular for manifolds

26 We do not know if the second possibility for type I I I is realised, but are also not able to rule it out.
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Table 15 The possible orders of vanishing of the SW curves at AD points I I , I I I , I V . The first three
columns are the order of vanishing at u0 of the Weierstraß invariants g2, g3 and the discriminant � as a
function of u, while ordu and ordω are the orders of vanishing of u and ω as a function of τ . The values
separated by commas give the two different possibilities. For arbitrary elliptic surfaces, the values of ordu
and ordω are given in Appendix G

A o2 o3 o� ordu ordω

I I 1, 2 1 2 3, 34 1, 14
I I I 1 2, 3 3 2, 23 1, 13
I V 2 2 4 3

2 1

with large−σ . Similarly, one can expect selection rules on the signature for the u-plane
integrand to be sufficiently singular to have a nonzero residue.

Finally, if we include background fluxes in the theory, the path integral acquires

couplings
∏N f

i, j=1 C
B(ki ,k j )

i j which enter the measure factor in (5.2). For N f = 2 with
equal masses we have expressions of Ci j in terms of modular forms, see, for instance,
(E.16). Since we do not know the coupling v analytically, however, it is difficult to
study the behaviour of those couplings at a given elliptic point τ0. We hope to come
back to this point in future work.

13.3 Photon path integral

Having discussed the singular behaviour of the measure factor at any given elliptic
AD point, we discuss in this subsection the series expansion of the anti-derivative Ĝ
of the Siegel–Narain theta function. This function has been determined in [56] for
a canonical choice of period point J ∈ H2(X ,R), i.e. either J = (1, 0) for odd
intersection forms on H2(X ,Z), or J = 1√

2
(1, 1, 0) for even intersection forms.

Including surface observables (or elliptic arguments in general), Ĝ takes the form of
a non-holomorphic completion of an Appell–Lerch sum.

Odd intersection form

Since it is rather involved to study the general expansion of Ĝ for all ’t Hooft fluxes μ

and values or σ of b2 simultaneously, let us focus onmanifolds X with odd intersection
form and a fixed flux. Consider the Siegel–Narain theta function forμ = (μ+,μ−) ≡
( 12 ,

1
2 , . . . ,

1
2 ) mod Z

b2 with K = (3, 1, . . . , 1), such that K 2 = 9 − n with n = b−
2

and μ ≡ K/2 mod L , as is the case for the del Pezzo surfaces d Pn for instance.
From (10.28) and (10.29), we have

� J
μ(τ, ρ) = i f (τ, ρ1)

b2∏

k=2

ϑ1(τ, ρk). (13.15)
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Then, � J
μ(τ, ρ) = ∂τ̄ Ĝ(τ, τ̄ , ρ, ρ̄) with

Ĝ(τ, τ̄ , ρ, ρ̄) = i Ĥ(τ, τ̄ , ρ, ρ̄)

b2∏

k=2

ϑ1(τ, ρk), (13.16)

where Ĥ(τ, τ̄ , ρ, ρ̄) is defined in (D.49). Since ρ → 0 for τ → τ0, we consider the
limit of (13.16) for ρ → 0. As explained in detail in Appendix D.4, the function
Ĥ(τ, τ̄ , ρ, ρ̄) has a well-defined Taylor series in (ρ, ρ̄), and for ρ, ρ̄ → 0 we have
Ĥ(τ, τ̄ , ρ, ρ̄) → Ĥ(τ, τ̄ ). On the level of the Siegel–Narain theta function � J

μ(τ, ρ),
the limit ρ → 0 exists since � is a well-defined function on H × C

b2 [70, 73, 111]:
For ρ = 0, �(τ, 0) is a non-holomorphic vector-valued modular form for SL(2,Z) of
weight ( n

2 , 0).
We can in fact study the Taylor series of the whole anti-derivative (13.16) in ρ,

while we focus on the leading contribution as ρ → 0. For the Taylor series of the
elliptic Jacobi theta series (D.11),

ϑ1(τ, ρ) =
∞∑

n=0

1

n!∂
n
ρϑ1(τ, 0)ρ

n, (13.17)

we determine
∂n
ρϑ1(τ, 0) = i(2π i)n

∑

r∈Z+ 1
2

(−1)r− 1
2 rnqr2/2. (13.18)

In the limit ρ → 0, we are primarily interested in the first nonzero term,

ϑ1(τ, ρ) = −2πη(τ)3ρ + O(ρ3). (13.19)

The Taylor series of Ĝ at ρ = 0 then reads

Ĝ(τ, τ̄ , ρ, ρ̄) = (−2π)b−
2 Ĥ(τ, τ̄ )η(τ )3b−

2 ρ2 . . . ρb2 + O(ρ2
k ). (13.20)

Chowla–Selberg formula

Let us determine the holomorphic expansion of this function at τ = τ0. The function
Ĥ(τ, τ̄ ) is a non-holomorphic modular form. If its value at the elliptic point τ0 is
nonzero, it has a regular Taylor expansion in τ − τ0 starting with a constant term. If
it vanishes at τ0 on the other hand, it has a positive order of vanishing, shifting the
holomorphic series of the remainder of the integrand. In order to find the leading term
in the expansion, we thus have to evaluate it at τ = τ0.

In many cases, explicit values of holomorphic modular forms at the elliptic fixed
points i and α of SL(2,Z) are specific combinations of powers of π and the Euler
gamma function� evaluated at rational numbers. This is a consequence of theChowla–
Selberg formula, which describes the value ofmodular forms at complexmultiplication
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points in terms of products of gamma functions.27 The Chowla–Selberg formula
expresses the value of any modular form f of weight k at a complex multiplication
(CM) point z ∈ H as

f (z) ∈ Q�k
K , (13.21)

where Q is the field of all algebraic numbers,28 and �K ∈ C
∗ is a complex number

that depends only on the imaginary quadratic field K containing z. Any τ0 in the
SL(2,Z)-orbit of the SL(2,Z) elliptic points i or α = e2π i/3 is a CM point, and the
period � is computed from the Chowla–Selberg formula (Theorem 1) as

�Q(i) = �( 14 )
2

4π
3
2

,

�Q(α) = 3
1
4 �( 13 )

3

4π2 ,

(13.22)

whereQ(i) andQ(α) are the quadratic fields generated by theCMpoints i andα. Since
the values (13.22) are known, the value f (z) of some elliptic point z of a modular form
f of weight k can now more easily be determined, since f (z)�−k

Q(z) is an algebraic
number. These can often be found using an integer relation algorithm such as the
LLL-algorithm (see, for instance, [112]).

The Chowla–Selberg formula is generally stated to apply to holomorphic modular
forms with algebraic Fourier coefficients for finite index subgroups of SL(2,Z). Gen-
eralisations to non-holomorphic modular forms [113] and mock modular forms [114,
115] have been explored in the literature; however, the full range of validity of this
formula is possiblly not determined yet.

A somewhat trivial example of the Chowla–Selberg formula concerns the anti-
derivative Ĥ . Its values at the elliptic points are

Ĥ(i, ī) = 0,

Ĥ(α, ᾱ) = 0.
(13.23)

These can be found from themodular transformations of Ĥ (see (D.27)): As it is a non-
holomorphic modular form for SL(2,Z) of weight ( 12 , 0), one evaluates the modular S
and ST transformation of Ĥ at their fixed points i andα, and themultipliers andweight
factors differing from one results in Ĥ(i, ī) and Ĥ(α, ᾱ) vanishing. The coefficients
of higher orders in the Taylor expansion can also be found, see Appendix D.4, and, for
instance, (D.38) and Table 16. In particular, Ĥ has a non-holomorphic Taylor series at
(τ, τ̄ ) = (τ0, τ̄0)with nonzero coefficient of (τ −τ0)

1(τ̄ −τ̄0)
0. Thus, the holomorphic

order of vanishing is ord Ĥ = 1.
The property that anti-derivatives of the photon path integral vanishes at elliptic

points is certainly not true in general. Indeed, anti-derivatives are only defined up to

27 See Appendix D.1 for a survey on the Chowla–Selberg formula.
28 An algebraic number is a number which is a root of a nonzero polynomial in one variable with integer
coefficients.
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integration constants, which can change properties of distinct anti-derivatives drasti-
cally.

Integration constant

There are two obvious way in which an integration ‘constant’ can be added. First,
we can add to Ĝ a weakly holomorphic modular function g of weight 1

2 . Indeed, for
this new anti-derivative ĥ = f (τ )(Ĝ(τ, τ̄ ) + g(τ )), it remains true that ∂τ̄ ĥ(τ, τ̄ ) =
I(τ, τ̄ ). Regarding the functions H and F defined in Sect. 10.2, and their completions
Ĥ and F̂ defined in Appendix D.3, their difference is the weakly holomorphicmodular
form (ϑ4

2+ϑ4
3 )/η3, as stated precisely in (10.17) and (D.29).Bynumerically evaluating

the Eichler integral and using the Chowla–Selberg formula, we find the following
values,29

F̂(i) = 1

2
�

1
2
Q(i), F̂(i + 1) = 0,

F̂(e
2
3π i ) = e− 5

24π i

2
2
3
√
3

�
1
2
Q(α)

, F̂(e
1
3π i ) = e

5
24π i

2
2
3
√
3
�

1
2
Q(α)

,

F̂( 12 + i
2 ) = e

3
8π i

2
3
4

�
1
2
Q(i), F̂( 1√

3
e
1
6π i ) = e

13
24π i

2
2
3

4
√
3
�

1
2
Q(α)

.

(13.24)

As is apparent, all coefficients of the Chowla–Selberg periods are algebraic numbers.

For example, the coefficient of F̂(e
2
3π i ) has minimal polynomial 216312x24+1. Since

F̂ is a non-holomorphic modular form of weight
( 1
2 , 0

)
for �0(2) (which is of index

3 in SL(2,Z)), these six values determine F̂(τ0) for any elliptic point τ0 of SL(2,Z).
In contrast to the modular form Ĥ , the holomorphic order of vanishing of F̂ at any
SL(2,Z) elliptic point is zero.

Alternatively, we can also add a weakly holomorphic function of weight 2 to ĥ
directly. The difference between the two places where the holomorphic function is
inserted is of course equivalent. The basis for the space ofweakly holomorphicmodular
forms for PSL(2,Z) is given by the derivatives of powers of j , ∂τ j l , j ∈ N. These are
given by

∂τ j l = −2π i l j l E6

E4
, (13.25)

with are holomorphic at i and α. In fact, they vanish at both i and α (we have
ord ∂τ j(τ )l = 3l − 1 at τ = α and ord ∂τ j(τ )l = 1 at τ = i). Thus, they do not
alter the residue.

13.4 AD contribution

We can now combine the results from the above considerations regarding the leading
behaviour of the anti-derivative ĥ (13.20). Recall from (5.4) that ord ρ = 1

2ordω. The

29 We omit the anti-holomorphic dependence in the notation.
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Dedekind eta-function η is nowhere vanishing in H. Thus from (13.20), we have

ord Ĝ = ord Ĥ + b−
2 ord ρ

= 1 + 1 − σ

2
ordω.

(13.26)

From the anti-derivative (13.2), we are missing the exponentiated observables,
2pu(τ )/�2

N f
and x2G N f (τ ). Of course, for τ near τ0 the first exponential is reg-

ular, since 2pu(τ )/�2
N f

→ 2pu(τ0)/�
2
N f

. For the surface observable, we need to
study the contact term (4.20), which contains the three functions E2, ω and u. In
Lemma 2 in Appendix D, we prove that E2(τ0) �= 0 for any elliptic point τ0. Thus,

ordG N f = ordω. (13.27)

Since the contact term is exponentiated, ex
2G N f (τ ), however, becomes a constant as

τ → τ0.30 This shows

ord e
2pu(τ )/�2

N f
+x2G N f (τ ) = 0. (13.28)

Combining now (13.14) and (13.26) in (13.2) we have ord ĥ = ord ν + ord Ĝ, which
gives

ord ĥ = ordu + ordω. (13.29)

Strikingly, the dependence on the signature of the manifold drops out. Moreover, this
value is bounded from below,

ord ĥ ≥ 1 (13.30)

as is clear from Table 15.31 In fact, for any elliptic surface containing a singular fibre
of type I I , I I I or I V , the order of vanishing (13.29) is strictly positive.

We have shown that in the absence of background fluxes, for a fixed ’t Hooft flux on
arbitrary four-manifolds with odd intersection form, the anti-derivative of the u-plane
integrand has an expansion (13.3) with

d0(−1, 0) = 0. (13.31)

That is, according to (13.4) the u-plane integrals for these manifolds do not acquire a
contribution from any possible AD point in N = 2 SQCD,

[I]τ0 = 0. (13.32)

30 This should be modified when the exponential is expanded and we study a particular coefficient in the
series in x. Here, we are interested mainly in the generating function.
31 If we allow for other elliptic surfaces with type I I , I I I and I V singular fibres, the value of ordu+ordω

is only bounded from below by 0, since it converges to 0 for either o2 → ∞ or o3 → ∞, whichever is
undetermined by the Kodaira classification. For rational elliptic surfaces, the Weierstraß invariants g2 and
g3 are polynomials of degree at most 4 and 6, and thus ordu + ordω is bounded from below by a positive
rational number.
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This result is not entirely unexpected, since this class of manifolds also includes
the del Pezzo surfaces d Pn , for which there is no SW contribution and thus also no
contribution from the strong coupling Ir cusps of the u-plane. Of course, AD points are
collisions of Ir and Ir ′ cusps, and it is conceivable that if there is no contribution from
those singularities if they are separated, their collision does not produce a contribution
either. See also Sect. 10.3 for the related discussion on the collision of mutually local
Ir and I ′

r singularities to an Ir+r ′ singularity.

14 Conclusion and outlook

In this part II, we formulated and evaluated topological partition functions for massive
SQCD on compact four-manifolds.

As addressed in the introduction, topological correlators take the form of a contin-
uous u-plane integral and a finite sum over the Coulomb branch singularities. In part
I, we argued that the u-plane integral can itself be expressed as a sum over the CB
singularities (see (6.22)). The SW curve fibered over the Coulomb branch constitutes
an elliptic surface S, whose singular fibres correspond to the CB singularities. The
possible singular fibres Fi of an elliptic surface fall into Kodaira’s classification. To
any surface S, we can associate its configuration of singular fibres {F1, . . . , Fk}. We
may therefore express topological correlation functions Z X

μ for fixed fluxes μ on a

given manifold X as a sum Z X
μ [S] = ∑k

i=1 �J
μ,i , where �J

μ,i is the contribution from
the singular fibre Fi . This proposal is valid for massive SU(2) SQCD, as well as the
topological N = 2∗ theory [5].

An important consistency check of this formulation and of correlation functions in
general is the invariance under reparametrisations of the theory. For a given 4dN = 2
theory, there can be multiple SW curves describing the same local low-energy physics
[5, 6, 64, 87, 116, 117].32 Recently, the choice of SW curve has been identified with
the choice of global structure of a rank one 4dN = 2 theory, i.e. the spectrum of line
operators [77]. The global forms of a given local theory are related by gauging 1-form
symmetries. On the level of the SW curve, the relation is provided by compositions
of isogenies [79]. An isogeny is given by a quotient S/α of the elliptic surface S
by an automorphism α induced by the 1-form symmetry group, which is a particular
subgroup of the Mordell–Weil group MW(S) [15]. The Mordell–Weil group sits in
a larger group Aut(S) of automorphisms of the surface S itself, which encodes the
1-form as well as the 0-form symmetries of the theory [13, 14, 79, 92]. Formulating
N = 2 theories on (especially non-spin) compact four-manifolds provides an ideal
testing ground for the effects of such higher-form symmetries and their anomalies
[63–65, 119–122]. It would thus be interesting and important to explore the action of
Aut(S) on topological correlators.

Formulating superconformal field theories on four-manifolds has been proven to
be a fruitful tool for understanding inherent features about the theories themselves,

32 This was first noticed in the pure 4d SU(2) theory, where the SW curves associated with �(2) [118] and
�0(4) [116] monodromy groups were understood to be related by a 2-isogeny and a change of normalisation
of the periods.
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as well as the topological invariants of the underlying spacetime. An example of the
former is the derivation of the conformal and flavour central charges of 4d N = 2
SCFTs from the topological twist, by comparing the U (1)R anomaly of the Coulomb
branch measure with the conformal anomaly of the trace of the energy–momentum
tensor generated by a background gravitational field [87]. Given these central charges
of an SCFT, topological correlators satisfy a selection rule due to the U (1)R anomaly
[28, 29, 32, 87, 123–125]. For rank 1 N = 2 SCFTs, this selection rule identifies
the anomalous R-charge of the vacuum with the R-charge of the operator whose
correlation function is evaluated.

Moreover, the existence of superconformal theories on a four-manifold X can give
new structural insights on the invariants of X . For the simplest Argyres–Douglas SCFT
H0, it was found that the regularity of topological partition functions in the critical
limit imposes sum rules on the classical Seiberg–Witten invariants [26]. All other
Argyres–Douglas theories, including the H1 and H2 theories appearing as critical
points in SU(2) SQCD, are associated with non-compact Higgs branches. For those
higherAD theories, postulating analogous sum rules is thereforemore intricate. Never-
theless, identifying the hypermultiplet masses as equivariant deformation parameters,
the Higgs branch singularities can be made precise [7, 43]. We plan to discuss the
interplay between Higgs branch singularities, sum rules and selection rules in more
detail in a future work [55].

While coupling SQCD to background fluxes for the flavour group makes the theory
well defined on non-spin manifolds X with arbitrary ’t Hooft flux, it renders the
evaluation of topological correlators more involved. One possible reason for this is
that the structure of poles and zeros of the background couplings can interfere with the
pole structure of the mock modular forms used in the evaluation. Another obstruction
comes from thebranchpoints of the integrand,whichonly in the absenceof background
fluxes are guaranteed to not affect the result. In Appendix F, we analyse the various
issues and discuss possible resolutions. It would be desirable to have amore systematic
treatment of this aspect.

The methods we employ to evaluate the topological partition functions of N = 2
SQCD are largely independent on the specific form of the underlying SW curves. The
SW curves for other 4d rank 1 N = 2 theories are (generally non-modular) elliptic
surfaces, where the ‘remaining’ Kodaira singularities absent in SQCD are the types
I I ∗, I I I ∗ and I V ∗, which are associated with the Minahan–Nemeschansky (MN)
SCFTs [33, 34]. It would therefore be interesting to formulate topological partition
functions of other 4d rank 1N = 2 theories, including all rank 1N = 2 SCFTs, which
are classified [78, 126–128].

Another interesting avenue for future research is the 5-dimensional uplift of 4dN =
2 theories, for instance, the 5-dimensional N = 1 SU(2) gauge theory compactified
on a circle [129, 130]. More generally, a family of 4d N = 2 theories is represented
by the Kaluza-Klein theories obtained by a circle compactification of the 5d N = 1
SU(2) theory with fundamental flavours, which have En flavour symmetry [131, 132].
See [15, 41, 133, 134] for related recent works on 5d topological partition functions.
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D Modular forms II

In this Appendix, we discuss aspects of modular forms relevant for this Part II. It
complements Appendix A of Part I. SectionD.1 gives a review of the Chowla–Selberg
formula, which is used in Sect. 13 in the expansion of the photon path integral around
the AD points. In Sect.D.2, we discuss additional properties of modular forms, such as
derivatives and special values. These are used in Sect. 13 for the expansion of modular
forms around elliptic points, as well as in Sect. 10 in the study of anti-derivatives of the
u-plane integrand. Finally, Sects.D.3 and D.4 list properties of mock modular forms
and mock Jacobi forms relevant to the evaluation of u-plane integrals.

D.1 Chowla–Selberg formula

Explicit values of modular forms at the elliptic fixed points i and α = e2π i/3 can often
be expressed as specific combinations of powers of π and the Euler gamma function
�. This is a consequence of the Chowla–Selberg formula, which describes the value
of modular forms at complex multiplication points in terms of products of gamma
functions. In order to understand the final formula, we need to introduce some basic
notions. We follow [135, §1 Section 6]. Generalisations to non-holomorphic modular
forms [113] and mock modular forms [114, 115] have been explored. In physics, it
has been used in the context of the BCOV conjecture [136]. Further results can be
found in [112, 137–146].

Elliptic curves over C can be viewed as quotients E = C/�, with � a lattice in
C. If E ′ = C/�′ is another curve and λ a complex number with λ� ⊆ �′, then
multiplication by λ induces an algebraic map from E to E ′. In particular, if λ� ⊆ �,
then we get a map from E to itself. Elliptic curves E = C/� which satisfy λ� ⊆ �

for some non-real value of λ are said to admit complex multiplication.
We can think of the upper half-plane H as a moduli space for elliptic curves. Then

the points in H that correspond to elliptic curves with complex multiplication (from
now on called CM points) are the numbers z ∈ H which satisfy a quadratic equation
over Z.

Examples of CM points are the SL(2,Z)-images γ τ0 of the SL(2,Z) elliptic points
τ0. We can easily check that for any γ = (

a b
c d

)
, the elliptic points γ i and γα satisfy

0 = (c2 + d2)(γ i)2 − 2(ac + bd)γ i + a2 + b2,

0 = (c2 − cd + d2)(γ α)2 + (b(c − 2d) + a(d − 2c))γ α + a2 − ab + b2.
(D.1)

The equations are strictly quadratic, since c2 + d2 = |ci + d|2 and c2 − cd + d2 =
|cα + d|2.
Definition 1 (Discriminant ofCMpoint)Thediscriminant of aCMpoint is the smallest
discriminant of the quadratic polynomial over Z of which it is a root.

For the elliptic points in (D.1), we can easily compute the discriminants −4 for
z = γ i and −3 for z = γα. Generally, discriminants of CM points are congruent to 0
or 1 modulo 4. For example, i = 1

2

√−4 and α = 1
2 (−1 + √−3).
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There is a one-to-one relation between primitive positive definite binary quadratic
forms of discriminant D and the set ZD of CM points with discriminant D. For fixed
D, there are only finitely many classes of such quadratic forms with discriminant D.
Their number is the class number h(D) of the discriminant D.33 Due to the bijection
with ZD , the class number h(D) = |�1\ZD| is given by the cardinality of the set of
�1-equivalent elements in ZD .

CM points z have many special properties. For instance, the value of j(z) or that of
any other modular function with algebraic coefficients evaluated at z is an algebraic
number.34 Furthermore, these singular moduli j(z) give explicit generators of the
class fields of imaginary quadratic fields.

Many results depend on the following

Proposition 1 Let z ∈ H be a CM point. Then j(z) is an algebraic number.

This is quite trivially true for the SL(2,Z) elliptic points: j(γ i) = j(i) = 123 and
j(γ α) = j(α) = 0, which are both roots of degree 1 polynomials over Z.

Proof We can use the fact that if z is a CM point, it is fixed Mz = z by some integer-
valued matrix M with positive determinant. Then j(τ ) and j(Mτ) are both modular
functions on the subgroup �1 ∩ M−1�1M of finite index in �1, so they are alge-
braically dependent and thus there is a polynomial P(X , Y ) in two variables such that
P( j(Mτ), j(τ )) = 0. Since the Fourier expansion of j has integer coefficients, the
coefficients of P can be chosen to lie inQ. Since Mz = z, j(z) is a root of the nonzero
polynomial P(X , X) ∈ Q[X ]. ��

The idea easily generalises to subgroups of �1:

Proposition 2 Let z ∈ H be a CM point and f a modular function for a finite index
subgroup of SL(2,Z) with algebraic Fourier coefficients. Then, f (z) ∈ Q.

Interestingly, this statement is equivalent to the following

Proposition 3 Let z ∈ H be a CM point and f a modular form of weight k for a
finite index subgroup of SL(2,Z) with algebraic Fourier coefficients. Then there is a
complex number �z (depending on z only), such that f (z) ∈ Q · �k

z .

Proposition 3 implies Proposition 2 by specialising to k = 0. Proposition 2 implies
Proposition 3 on the other hand since if f ∈ Mk and g ∈ Ml then f l/gk is a mod-

ular function and is thus algebraic at z, such that f (z)
1
k and g(z)

1 l are algebraically
proportional.

The number �z is defined only up to an algebraic number, and does not change up
to an algebraic number if z is mapped to Mz with some positive determinant integer-
valued matrix M . Thus, Proposition 3 lifts to arbitrary imaginary quadratic fields K ,

33 A generalisation of the class numbers are the Hurwitz class numbers, which are class numbers weighted
by the inverse of the order of the automorphism group in �1.
34 An algebraic number is a number which is a root of a nonzero polynomial in one variable with integer
coefficients. The set of all algebraic numbers forms an algebraic field, commonly denoted by Q.
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Proposition 4 Let K be an imaginary quadratic field. Then there exists a number
�K ∈ C

∗ such that
f (z) ∈ Q�k

K (D.2)

for all z ∈ K ∩H, all k ∈ Z and all modular forms f of weight k with algebraic Fourier
coefficients.

To find �K , we can compute f (z) for any modular form. For instance, we can
choose the non-holomorphic modular function�(τ) = y|η(τ)|4. As described above,
for general D we can look at CMpointswith discriminant D, of whichmodulo�1 there
are h(D), the class number of K . Since there is no distinguished element of ZD , we
take the product over�1\ZD and take the h′(D)-th root, where h′(D) = h(D)/ 1

2w(D)

is either 1
3 ,

1
2 or h(K ) depending on the value D = −3, D = −4 or D < −4 (these

numbers take into account the multiplicities of the elliptic fixed points i and α). Then
we have the following

Theorem 1 (Chowla–Selberg formula) Let K be an imaginary quadratic field with
discriminant D. Then,

∏

z∈�1\ZD

(
4π
√|D|�(z)

)2/w(D) =
|D|−1∏

j=1

�
(

j
|D|
)χD( j)

, (D.3)

where χD(·) := ( D
·
)

(the Legendre symbol) is the quadratic character associated to
K , and � is the Euler gamma function.

This formula was essentially found by Lerch [142] and rediscovered by Chowla
and Selberg [137] in the study of Epstein’s ζ -function.

Since η2 is a weight 1 modular form for �1, we can find the number �K .

Corollary 1 The number �K in Proposition 4 can be chosen to be

�K = 1√
2π |D|

⎛

⎝
|D|−1∏

j=1

�
(

j
|D|
)χD( j)

⎞

⎠
1/2h′(D)

. (D.4)

For the two CM points i ∈ Z−4 and α ∈ Z−3 generating the quadratic imaginary
fieldsQ(i) andQ(α), we can now easily compute their correspondingChowla–Selberg
periods,35

�Q(i) = �( 14 )
2

4π
3
2

,

�Q(α) = 3
1
4 �( 13 )

3

4π2 .

(D.5)

The fact that the periods for the quadratic fields Q(i) and Q(α) can be written by
powers of a single � function is a consequence of Euler’s reflection formula. For

35 They are periods in the sense of [147].
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larger discriminant CM points, the periods are generally products of �-functions at
multiple rational values.

Since the values (D.5) are known, the value f (z) of some elliptic point z of amodular
form f ofweight k can nowmore easily be determined, since f (z)�−k

Q(z) is an algebraic
number, which often can be determined using an integer relation algorithm such as
the LLL-algorithm [112, Section 2.6.1]. For instance, we have

E4(i) = 12�4
Q(i), E6(α) = 12

3
2 �6

Q(α), (D.6)

where the algebraic coefficients are solutions to the linear and quadratic equations
x = 12 and x2 = 123.

D.2 Derivatives and theta functions

Derivatives of modular functions are described by Ramanujan’s differential operator.
It increases the holomorphic weight by 2 and it can be explicitly constructed using
the theory of Hecke operators [148]. For the derivatives of the Jacobi theta functions
(A.2), one finds

Dϑ4
2 = 1

6ϑ
4
2

(
E2 + ϑ4

3 + ϑ4
4

)
,

Dϑ4
3 = 1

6ϑ
4
3

(
E2 + ϑ4

2 − ϑ4
4

)
,

Dϑ4
4 = 1

6ϑ
4
4

(
E2 − ϑ4

2 − ϑ4
3

)
,

(D.7)

where D := 1
2π i

d
dτ = q d

dq and E2 is the quasi-modular Eisenstein series (A.7) of

weight 2. The derivatives of ϑ2
j are given by Dϑ2

j = Dϑ4
j

2ϑ2
j
and therefore also in the

ring of quasi-modular forms.
All quasi-modular forms for �1 = SL(2,Z) can be expressed as polynomials in

E2, E4 and E6. Derivatives of modular forms are quasi-modular in a precise way:

Lemma 1 Let f ∈ Mk(�1) be a modular form of weight k. Then the Serre derivative
ϑk f := 1

2π i f ′ − k
12 E2 f is a modular form ϑk f ∈ Mk+2(�1).

As a consequence, the quasi-modular forms for �1 form a ring M̃∗(�1) =
C[E2, E4, E6]. We have the following

Proposition 5 The ring M̃∗(�1) is closed under differentiation. Specifically, we have

E ′
2 = 2π i

12
(E2

2 − E4),

E ′
4 = 2π i

3
(E2E4 − E6),

E ′
6 = 2π i

2
(E2E6 − E2

4).

(D.8)
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In the main text, we use the property that E2(τ0) is never zero for any τ0 in the
SL(2,Z) orbit of an SL(2,Z)-elliptic point (see also [149]):

Lemma 2 Let α = e2π i/3. The second Eisenstein series E2(γ i) �= 0 and E2(γ α) �= 0
for all γ ∈ PSL(2,Z).

Proof Consider the transformation property

E2(γ τ) = (cτ + d)2E2(τ ) − 6i

π
c(cτ + d) (D.9)

for γ = (
a b
c d

) ∈ SL(2,Z). From E2(i) = 3
π
and E2(α) = 2

√
3

π
we can easily compute

E2(γ i) = E2(i)|ci + d|2,
E2(γ α) = E2(α)|cα + d|2. (D.10)

None of the factors on the rhs are zero, since c, d ∈ Z. ��

Elliptic Jacobi theta functions

Weuse also the elliptic Jacobi theta functionsϑi (τ, v),ϑ j : H×C → C, j = 1, . . . , 4,
which we define as

ϑ1(τ, v) = i
∑

r∈Z+ 1
2

(−1)r− 1
2 qr2/2e2π irv,

ϑ2(τ, v) =
∑

r∈Z+ 1
2

qr2/2e2π irv,

ϑ3(τ, v) =
∑

n∈Z
qn2/2e2π inv,

ϑ4(τ, v) =
∑

n∈Z
(−1)nqn2/2e2π inv.

(D.11)

The Jacobi theta functions defined in (A.2) of Part I are ϑ j (τ ) = ϑ j (τ, 0) for j =
2, 3, 4. The S-transformation reads

ϑ1(−1/τ, v/τ) = −i
√−iτeπ i z/τ 2ϑ1(τ, v),

ϑ2(−1/τ, v/τ) = √−iτeπ i z/τ 2ϑ4(τ, v),

ϑ3(−1/τ, v/τ) = √−iτeπ i z/τ 2ϑ3(τ, v),

ϑ4(−1/τ, v/τ) = √−iτeπ i z/τ 2ϑ2(τ, v).

(D.12)
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The periodicity in v is
ϑ1(τ, v + 1) = −ϑ1(τ, v),

ϑ2(τ, v + 1) = −ϑ2(τ, v),

ϑ3(τ, v + 1) = +ϑ3(τ, v),

ϑ4(τ, v + 1) = +ϑ4(τ, v),

(D.13)

while the map v �→ v + τ sends

ϑ1(τ, v + τ) = −e−π i(τ+2v)ϑ1(τ, v),

ϑ2(τ, v + τ) = +e−π i(τ+2v)ϑ2(τ, v),

ϑ3(τ, v + τ) = +e−π i(τ+2v)ϑ3(τ, v),

ϑ4(τ, v + τ) = −e−π i(τ+2v)ϑ4(τ, v).

(D.14)

Their zeros are

ϑ1(τ, m + nτ) = 0,

ϑ2(τ, m + 1
2 + nτ) = 0,

ϑ3(τ, m + 1
2 + (n + 1

2 )τ ) = 0,

ϑ4(τ, m + (n + 1
2 )τ ) = 0,

(D.15)

with m, n ∈ Z. The elliptic Jacobi theta functions satisfy various generalisations of
the abstruse identity (A.4). We use the following identity,

ϑ2(τ, 0)
2ϑ2(τ, v)2 + ϑ4(τ, 0)

2ϑ4(τ, v)2 = ϑ3(τ, 0)
2ϑ3(τ, v)2. (D.16)

D.3 Mockmodular forms

In this Appendix, we introduce various mock modular forms and their relations that
are useful for the evaluation of u-plane integrals. For more comprehensive treatments,
we refer the reader to the available literature. See, for instance, [45, 73, 111, 150]. In
the context of elliptic AD points, we are also interested in evaluating their modular
completions at the elliptic fixed points in the fundamental domain.

Themock modular forms F and H

Following [111], we define the Appell–Lerch sum M(τ, u, v) as36

M(τ, u, v) = eπ iu

ϑ1(τ, v)

∑

n∈Z

(−1)nqn(n+1)/2e2π inv

1 − e2π iuqn
. (D.17)

36 See also [56] for more details.
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The important property of the Appell–Lerch function is that if we add the function

R(τ, τ̄ , u, ū) =
∑

n∈Z+ 1
2

(
sgn(n) − Erf

(
(n + a)

√
2π y

))
(−1)n− 1

2 e−2π iunq−n2/2,

(D.18)
the completion

F̂μ(τ, τ̄ , ρ, ρ̄) = −ieπ iνq−ν2/2w−ν
(
M(τ, ρ + μτ, 1

2τ)

+ i
2 R(τ, τ̄ , ρ + ντ, ρ̄ + ντ̄ )

)
,

(D.19)

where ν = μ − 1
2 , w = e2π iρ , transforms as a Jacobi form.

We study in the main text the mock modular form

F(τ ) = − 1

ϑ4(τ )

∑

n∈Z

(−1)nq
n2
2 − 1

8

1 − qn− 1
2

(D.20)

and its non-holomorphic completion

F̂(τ, τ̄ ) = F(τ ) − i

2

∫ i∞

−τ̄

η(w)3√−i(w + τ)
dw, (D.21)

which correspond to (D.19) with μ = 1
2 . The completion F̂ transforms as a non-

holomorphic modular form of weight
( 1
2 , 0

)
for �0(2),

F̂(τ + 2, τ̄ + 2) = −i F̂(τ, τ̄ ),

F̂( τ
τ+1 ,

τ̄
τ̄+1 ) = e

π i
4
√

τ + 1 F̂(τ, τ̄ ).
(D.22)

Since F̂ does not transform under the full SL(2,Z), it is useful to consider similar
(mock)modular formswhich do. The holomorphic function F is related to the q-series
H (2) =: H of Mathieu moonshine [44] in a simple way. We have [45, 56]37

H(τ ) = 2
ϑ2(τ )4 − ϑ4(τ )4

η(τ)3
− 24

ϑ3(τ )

∑

n∈Z

q
n2
2 − 1

8

1 + qn− 1
2

= 2q− 1
8

(
−1 + 45q + 231q2 + 770q3 + 2277q4 + · · ·

)
.

(D.23)

The q-series is the OEIS sequence A169717, and the Fourier coefficients are sums of
dimensions of irreducible representations of the sporadic group M24. This function
has been studied in detail in [151–155] and appears in the elliptic genus of the K3

37 Typo in [45].

123

J. Aspman et al.98 Page 88 of 120



sigma model with N = (4, 4) supersymmetry. It relates to F as [56]

F(τ ) = 1

24

(
H(τ ) + 2

ϑ2(τ )4 + ϑ3(τ )4

η(τ)3

)
, (D.24)

which gives an alternative representation for F ,

F(τ ) = ϑ2(τ )4

4η(τ)3
− 1

ϑ3(τ )

∑

n∈Z

q
n2
2 − 1

8

1 + qn− 1
2

. (D.25)

The completion

Ĥ(τ, τ̄ ) = H(τ ) − 12i
∫ i∞

−τ̄

η(w)3√−i(w + τ)
dw (D.26)

transforms as a non-holomorphic modular form for SL(2,Z) of weight ( 12 , 0),

Ĥ(τ + 1, τ̄ + 1) = e− π i
4 Ĥ(τ, τ̄ ),

Ĥ(−1/τ,−1/τ̄ ) = −√−iτ Ĥ(τ, τ̄ ).
(D.27)

Usingmodular transformationswhich fix the SL(2,Z) elliptic points τ = i and τ = α,
we can readily evaluate

Ĥ(i, ī) = 0,

Ĥ(α, ᾱ) = 0.
(D.28)

The completions Ĥ and F̂ are of course not unrelated. By comparing (D.21) with
(D.26) and using (D.24), we find

F̂(τ ) = 1

24

(
Ĥ(τ ) + 2

ϑ2(τ )4 + ϑ3(τ )4

η(τ)3

)
. (D.29)

This is precisely the modular completion of (D.24). Since the correction

r(τ ) = 2
ϑ2(τ )4 + ϑ3(τ )4

η(τ)3
(D.30)

is already modular, its modular completion vanishes. It is in fact a modular form for
�0(2) and transforms as

r(τ + 2) = −i r(τ ),

r( τ
τ+1 ) = e

π i
4
√

τ + 1 r(τ ).
(D.31)
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Another mock modular form with shadow η3 is the function Q+ introduced by
Malmendier and Ono [20, 68],

Q+(τ ) = 1

12
H(τ ) + 7

6

ϑ2(τ )4 + ϑ3(τ )4

η(τ)3

= 3ϑ2(τ )4 + 2ϑ3(τ )4

2η(τ)3
− 2

ϑ3(τ )

∑

n∈Z

q
n2
2 − 1

8

1 + qn− 1
2

= q− 1
8 (1 + 28q

1
2 + 39q + 196q

3
2 + 161q2 + 756q

5
2 + · · · ).

(D.32)

Its non-holomorphic completion

Q̂+(τ, τ̄ ) = Q+(τ ) − i
∫ i∞

−τ̄

η(w)3√−i(w + τ)
dw (D.33)

evaluates to

Q̂+(i, ī) = 7�
1
2
Q(i),

Q̂+(α, ᾱ) = 7 3
√
2√
3

�
1
2
Q(α),

Q̂+(1 + i, 1 + i) = 0,

(D.34)

where �Q(i) and �Q(α) are the Chowla–Selberg periods (D.5), which we introduced
in Sect. D.1. It is related to F by

Q+(τ ) = 2F(τ ) + ϑ2(τ )4 + ϑ3(τ )4

η(τ)3
. (D.35)

Laurent series of H

The Chowla–Selberg formula (Proposition 4) seems to be valid for the three com-
pletions F̂ , Ĥ and Q̂+ of mock modular forms of weight 1

2 . See equations (13.23),
(13.24) and (D.34). We can also use it to compute non-holomorphic Laurent/Taylor
series around special points. Regarding the u-plane integrand, we are interested in
expansions

f (τ, τ̄ ) =
∑

m�−∞,n≥0

1

m!n!d f
τ0

(m, n) (τ − τ0)
m (τ̄ − τ̄0)

n (D.36)

around some point (τ0, τ̄0). It is clear that if f does not have poles inH, then the series
is only over m ≥ 0. Furthermore, the Taylor coefficients are given by

d f
τ0

(m, n) = ∂m+n f (τ, τ̄ )

∂τm∂τ̄ n

∣∣∣ τ=τ0
τ̄=τ̄0

. (D.37)
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Table 16 The coefficients

d Ĥ
i (m, n)�

− 3
2

Q(i) of the

completion Ĥ . The coefficients
for m ≥ 1 and n = 0 do not
seem to be algebraic

m n
0 1 2

0 0 −6
√
2i −6

√
2

1 ∼ 6.22669i 3√
2

− 9i
2
√
2

2 ∼ −9.34004 9i
4
√
2

9
2
√
2

For Ĥ , we can compute some of these coefficients, which we give in Table 16.
For some coefficients, we find closed formulas,

d Ĥ
i (m, 1) = −3im+12

3
2−2m(2m − 1)!! �

3
2
Q(i),

d Ĥ
i (m, 2) = −3(−i)−m2

1
2−2m(2m − 1)!!(m + 2)�

3
2
Q(i),

(D.38)

where �Q(i) is the Chowla–Selberg period (13.22), and m ∈ N0. This is possible due

to the fact that ∂τ̄ Ĥ is proportional to η(τ)
3
/
√

y, whose derivatives are straightforward
to compute.

Similarly, for the expansion around (τ, τ̄ ) = (α, ᾱ) we find

d Ĥ
α (m, 1) = 22−m3

3
4− m

2 e
1
8 iπ(4m−3)(2m − 1)!! �

3
2
Q(α),

d Ĥ
α (m, 2) = 22−m3

1
4− m

2 e
1
8 iπ(4m+9)(2m − 1)!!(m + 2)�

3
2
Q(α)

.

(D.39)

The coefficients for n = 1 and n = 2 for both i and α are simply related by

d Ĥ
i (m, 2) = − i

2
(m + 2)d Ĥ

i (m, 1),

d Ĥ
α (m, 2) = − i√

3
(m + 2)d Ĥ

α (m, 1).
(D.40)

From Table 16, it is clear that the smallest value of m in the expansion (D.36) of Ĥ
at τ = i is m = 1. At τ = α, the same is true, as is clear from the nonzero constant
d Ĥ
α (1, 1) in (D.39). However, we have

d Ĥ
α (0, 0) = 0

d Ĥ
α (1, 0) = 0,

d Ĥ
α (2, 0) ∼ 22.8072 e

π i
8 .

(D.41)

D.4 Mock Jacobi forms

We can generalise the function H = H (2) to include an elliptic argument. For this, we
need to find a suitable elliptic generalisation of the holomorphic modular form (D.30)
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which is the difference of F̂ and Ĥ . Recall the elliptic generalisation

F(τ, ρ) = − w
1
2

ϑ4(τ )

∑

n∈Z

(−1)nqn2/2− 1
8

1 − wqn− 1
2

. (D.42)

We define the dual modular form

rD(τ ) := −(−iτ)−
1
2 r(−1/τ) = −ϑ4(τ )4 + ϑ3(τ )4

η(τ)3
. (D.43)

Then using the Jacobi identity (A.4), we have

r(τ ) − rD(τ ) = 6
ϑ3(τ )4

η(τ)3
. (D.44)

The difference between F̂(τ, τ̄ ) and F̂D(τ, τ̄ ) is a weakly holomorphic modular form
of weight 1

2 , since F̂ and F̂D have the same non-holomorphic part. This can be seen
from (D.29) and the fact that Ĥ is SL(2,Z)-invariant. This gives

F̂(τ, τ̄ ) − F̂D(τ, τ̄ ) = ϑ3(τ )4

4η(τ)3
= ϑ3(τ )3

2ϑ2(τ )ϑ4(τ )
. (D.45)

Including the elliptic variables, we find

F̂(τ, τ̄ , ρ, ρ̄) − F̂D(τ, τ̄ , ρ, ρ̄) = ϑ3(τ )2ϑ3(τ, ρ)

2ϑ2(τ, ρ)ϑ4(τ, ρ)
. (D.46)

This again follows from the fact that both F̂(τ, τ̄ , ρ, ρ̄) and FD(τ, τ̄ , ρ, ρ̄) have the
same non-holomorphic part, and F(τ, ρ)− FD(τ, ρ) must transform as a Jacobi form
of weight 1

2 and for ρ = 0 give back (D.45). The holomorphic functions F(τ, ρ) and
FD(τ, ρ) are given in (10.12) and (10.13). The rhs of (D.46) is a specialisation of the
Appell–Lerch sum M(τ, u, v) (D.17), which is another way to find it.

We are thus aiming for a function r(τ, ρ) such that

r(τ, ρ) − rD(τ, ρ) = 12
ϑ3(τ )2ϑ3(τ, ρ)

ϑ2(τ, ρ)ϑ4(τ, ρ)
(D.47)

and such that r(τ, 0) agreeswith (D.30). This function is given by elliptically extending
the arguments of some of the Jacobi theta functions of r(τ ),

r(τ, ρ) = 4
ϑ2(τ )2ϑ2(τ, ρ)2 + ϑ3(τ )2ϑ3(τ, ρ)2

ϑ2(τ, ρ)ϑ3(τ, ρ)ϑ4(τ, ρ)
. (D.48)
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A short calculation using the elliptic S-transformation (D.12) and the elliptic abstruse
identity (D.16) confirms this. Then we know that

Ĥ(τ, τ̄ , ρ, ρ̄) = 24F̂(τ, τ̄ , ρ, ρ̄) − r(τ, ρ), (D.49)

where the holomorphic part reads

H(τ, ρ) = 24 F(τ, ρ) − 4
ϑ2(τ )2ϑ2(τ, ρ)2 + ϑ3(τ )2ϑ3(τ, ρ)2

ϑ2(τ, ρ)ϑ3(τ, ρ)ϑ4(τ, ρ)

= − 4w1/2

(1 + w)
q−1/8 + 4(4 + 11w + 15w2 + 11w3 + 4w4)

w3/2(1 + w)
q7/8

+ O(q15/8),

(D.50)

with w = e2π iρ . As far as checked, the w-dependent higher order terms in the q-
expansion can be expressed as positive linear combinations of su(2) characters. In
particular, the polynomials are palindromic. Their coefficients appear to asymptote to
those of the series

(1 + w)

∞∏

k=1

1 + wk

1 − wk
= (1 + w)(−1;w)∞

2(w;w)∞

= 1 + 3w + 6w2 + 12w3 + 22w4 + 38w5 + 64w6 + O(w7).

(D.51)
It would be interesting to explore if the coefficients of this refined generating function
also have an interpretation within Mathieu Moonshine. The analysis in [156–158]
could be a possible avenue for this direction.

We have the following quasi-periodicity properties of the three elliptic functions
F , H and r ,

F(τ, ρ + 1) = −F(τ, ρ),

H(τ, ρ + 1) = −H(τ, ρ),

r(τ, ρ + 1) = −r(τ, ρ),

F(τ, ρ + τ) = −eπ iτ e2π iρ F(τ, ρ) − e
3
4π iτ eπ iρ,

H(τ, ρ + τ) = −eπ iτ e2π iρ H(τ, ρ) − 24 e
3
4π iτ eπ iρ,

r(τ, ρ + τ) = −eπ iτ e2π iρr(τ, ρ).

(D.52)

The mock Jacobi forms F and H are symmetric in ρ, which gives a palindromic
property of their Fourier coefficients,

F(τ,−ρ) = F(τ, ρ),

H(τ,−ρ) = H(τ, ρ).
(D.53)
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Poles of F and H

Since the functions F and H are quasi-periodic on the lattice Z ⊕ τZ, it is sufficient
to study its poles in the fundamental domain of the torus C/Z ⊕ τZ.

The function H(τ, ρ) has (possible) poles at

ρ = m

2
+ n

2
τ, m, n ∈ Z, (m, n) �= (0, 0), (D.54)

which come from the zeros (D.15) of the Jacobi theta functions in the denominator
of r(τ, ρ) (here, we can already exclude the cases where both m and n are even).
Meanwhile, F(τ, ρ) has poles at ρ = (n + 1

2 )τ , which follows from the definition
(D.42). Restricting to the fundamental domain, the complete pole structure of both F
and H are then ρ ∈ {0, 1

2 ,
τ
2 , 1

2 + τ
2 }. Let us study which of these elliptic values are

poles of r , F and H .
The zeros of the Jacobi theta functions ϑi are listed in (D.15). By construction, the

functions r , F and H have a smooth limit ρ → 0 and reduce to holomorphic functions
with the same symbol. Thus by (D.52), there are no poles on the lattice Z ⊕ τZ.

The potential poles of r , F and H are thus on the half-lattice points. Consider first
ρ = 1

2 . We find

F(τ, ρ) = −2πm(τ )(ρ − 1
2 ) + O((ρ − 1

2 )
3), (D.55)

with a nonzero holomorphic function m.
Out of the four Jacobi theta functions, only ϑ2 has a zero at ρ = 1

2 . We easily
calculate the Taylor expansions,

ϑ2(τ, ρ) = −2πη(τ)3(ρ − 1
2 ) + O

(
(ρ − 1

2 )
3
)

,

ϑ3(τ, ρ) = ϑ4(τ ) + O
(
(ρ − 1

2 )
2
)

,

ϑ4(τ, ρ) = ϑ3(τ ) + O
(
(ρ − 1

2 )
2
)

.

(D.56)

From (D.48), we then find

r(τ, ρ) = − 4

πϑ2(τ )
(ρ − 1

2 )
−1 + O

(
(ρ − 1

2 )
1
)

. (D.57)

Combining with (D.50) and (D.55), we thus find that H(τ, ρ) has a simple pole at
ρ = 1

2 with residue

Res
ρ= 1

2

H(τ, ρ) = 4

πϑ2(τ )
. (D.58)

At ρ = τ , both F(τ, τ ) and H(τ, τ ) are regular. At ρ = τ
2 , F , r and H have a pole.

We find

F(τ, ρ) = q
1
8

2π iϑ4(τ )
(ρ − τ

2 )−1 + O
(
(ρ − τ

2 )0
)

(D.59)
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Regarding r(τ, ρ), we calculate

ϑ2(τ, ρ) = q− 1
8 ϑ3(τ ) + O

(
(ρ − τ

2 )1
)

,

ϑ3(τ, ρ) = q− 1
8 ϑ2(τ ) + O

(
(ρ − τ

2 )1
)

,

ϑ4(τ, ρ) = 2π iq− 1
8 η(τ)3(ρ − τ

2 ) + O
(
(ρ − τ

2 )2
)

.

(D.60)

This gives

r(τ, ρ) = − 8iq
1
8

πϑ4(τ )
(ρ − τ

2 )−1 + O(1). (D.61)

Combining (D.59) and (D.61), we find

Res
ρ= τ

2

H(τ, ρ) = 4q
1
8

π iϑ4(τ )
. (D.62)

Finally, consider ρ0 = 1
2 + τ

2 . We find

F(τ, ρ0) = q
1
8

2i
. (D.63)

The Jacobi theta functions have leading terms

ϑ2(τ, ρ) = −iq− 1
8 ϑ4(τ ) + O

(
(ρ − ρ0)

1
)

,

ϑ3(τ, ρ) = 2π iq− 1
8 η(τ)3(ρ − ρ0) + O

(
(ρ − ρ0)

2
)

,

ϑ4(τ, ρ) = q− 1
8 ϑ2(τ ) + O

(
(ρ − ρ0)

1
)

.

(D.64)

This gives

r(τ, ρ) = − 4q
1
8

πϑ3(τ )
(ρ − ρ0)

−1 + O(1), (D.65)

and therefore

Res
ρ= 1

2+ τ
2

H(τ, ρ) = 4q
1
8

πϑ3(τ )
. (D.66)

In Table 17, we summarise the residues of r , F and H at all possible poles of these
functions. In particular, the poles of H are

poles
ρ∈C

H(τ, ρ) = {m
2 + n

2 τ } \Z ⊕ τZ

= {m
2 + n

2 τ | (m
2 , n

2 ) /∈ Z
2}.

(D.67)
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Table 17 The pole structure of
the functions F (D.42), H
(D.50) and r (D.48) including
residues at the half-lattice points

ρ0 Res
ρ=ρ0

F(τ, ρ) Res
ρ=ρ0

H(τ, ρ) Res
ρ=ρ0

r(τ, ρ)

0 0 0 0
1

2
0

4

πϑ2(τ )
− 4

πϑ2(τ )

τ

2

q
1
8

2π iϑ4(τ )

4q
1
8

π iϑ4(τ )

8q
1
8

π iϑ4(τ )

1

2
+ τ

2
0

4q
1
8

πϑ3(τ )
− 4q

1
8

πϑ3(τ )

Given the precise pole structure of H , we can study functions related to H which
have no poles for real ρ. To this end, we can add to H(τ, ρ) a meromorphic Jacobi
form which cancels those poles of H(τ, ρ).38 In this way, we arrive at

H̃(τ, ρ) = H(τ, ρ) − 8η(τ)3

θ1(τ, ρ)2

∑

j=2,3,4

(
θ j (τ, 2ρ)

θ j (τ, ρ)
− θ j (τ, ρ)3

θ j (τ )3

)
, (D.68)

which does not have a pole at either ρ = 0 or ρ = 1
2 . Indeed, H̃(τ, 0) = H(τ ) and

the Taylor series at ρ = 1
2 reads

H̃(τ, ρ) = 4ϑ2(τ )3
ϑ3(τ )2 − ϑ4(τ )2

ϑ3(τ )2ϑ4(τ )2
+ O

(
(ρ − 1

2 )
2
)

. (D.69)

While H̃ does not have poles at ρ = 0 or ρ = 1
2 , it has poles at ρ = τ

2 and ρ = 1
2 + τ

2 .
H̃ is periodic under ρ → ρ + 2. The first few terms of the q-expansion of H̃ are

H̃(τ, ρ) = q−1/8(−w1/2 − w−1/2)

+ (−16w2 + 19w3/2 − 64w + 26w1/2 + 160 + palindromic terms) q7/8 + · · · .

(D.70)

Similarly to the refinement H(τ, ρ) of H(τ ), it is an interesting question whether this
refinement H̃(τ, ρ) has an interpretation in the context of Mathieu moonshine.

E Mass expansions

In this Appendix, we list various expansions of Coulomb branch functions required
for the computation of topological correlation functions. In Sect. E.1, we comment
on the calculation of the couplings v j and w jk to the background fluxes. In Appendix
E.2, we give explicit series of the order parameter and the period du

da in a large mass
expansion, which are relevant particularly in Sect. 11.1. Due to the modular structure,

38 See [45] for a systematic study of poles of Jacobi forms.
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the equal mass N f = 2 theory is the simplest massive case where many results can
be obtained exactly. We study this configuration in detail in Sect. E.3.

E.1 Couplings to background fluxes

The background couplings v j and w jk , defined in (2.12), can be calculated either
directly from the prepotential [61, 62], or using the hypergeometric representation of
the periods. For the latter case, from [159, 160] we have

∂a

∂u
= 1

2 · 31/4g1/4
2

2F1

[
1

12
,
5

12
, 1; 12

3

J

]
,

∂aD

∂u
= i

2 · 31/4g1/4
2

(
3 log(12) 2F1

[
1

12
,
5

12
, 1; 12

3

J

]
− F∗

[
1

12
,
5

12
, 1; 12

3

J

])
,

(E.1)
where

F∗ [α, β, 1; z] = 2F1 [α, β, 1; z] log z+
∞∑

n=0

(α)n(β)n

(n!)2 zn
n−1∑

r=0

1

α + r
+ 1

β + r
− 2

r + 1
.

(E.2)
Here, J = 123g3

2/(g
3
2 − 27g2

3) is the J-invariant of the curve.
The periods can be in principle expanded around any point on the Coulomb branch,

and by integration and comparison with the prepotential (2.7) they can be found by
differentiation with respect to the masses m j . In practice, for generic masses this is
straightforward only for the weak coupling limit (2.16). In the following, we give
explicit expressions at weak coupling for N f = 1 and N f = 2.

N f = 1

For N f = 1, we find in this way the couplings v and C ,

v = 1

2
+ 4m

π�1
q
1
6 +

8
(
�3
1 − 4m3

)

π�3
1

q
3
6 +

64
(
374m5 − 135�3

1m2
)

45π�5
1

q
5
6 −

64
(
98800m7 − 49140�3

1m4 + 3969�6
1m
)

567
(
π�7

1

) q
7
6

+
64
(
−17�9

1 + 12320m9 − 7840�3
1m6 + 1188�6

1m3
)

3π�9
1

q
9
6

−
4096

(
m2

(
−120285�9

1 + 13017172m9 − 10103049�3
1m6 + 2241756�6

1m3
))

8019
(
π�11

1

) q
11
6

+
8m
(
824527431�12

1 + 1880795176960m12 − 1723243991040�3
1m9 + 503472153600�6

1m6 − 48655676160�9
1m3

)

85293π�13
1

q
13
6

+
16
(
12393�15

1 − 1513521152m15 + 1599037440�3
1m12 − 579532800�6

1m9 + 81786880�9
1m6 − 3533220�12

1 m3
)

5π�15
1

q
15
6

+O(q
17
6 ),

C = −4q
1
6 + 128m2

3�2
1

q
3
6 +

128
(
9�3

1m − 56m4
)

9�4
1

q
5
6 +

16
(
405�6

1 + 90112m6 − 27648�3
1m3

)

81�6
1

q
7
6
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−
4096

(
320m8 − 144�3

1m5 + 11�6
1m2

)

3�8
1

q
9
6 +

512m
(
−26973�9

1 + 16187392m9 − 9584640�3
1m6 + 1370520�6

1m3
)

729�10
1

q
11
6

−
16
(
12892365�12

1 + 125513498624m12 − 92649553920�3
1m9 + 19568812032�6

1m6 − 707678208�19m3
)

6561�12
1

q
13
6

+
256m2

(
204435�12

1 + 2078277632m12 − 1849688064�3
1m9 + 518246400�16m6 − 35288064�9

1m3
)

63�14
1

q
15
6 + O(q

17
6 ),

(E.3)

which we list to order O(q
5
2 ). We have determined them up to order O(q4).

Relating the q-expansion of v to that of the period da
du , we can compare the normal-

isation in the weak coupling limit,

v − 1

2
∼

√
8

π i
m
da

du
, (E.4)

as τ → i∞.
One can similarly make a small mass expansion. For C , we find

C = −4 q1/6(1 − 20 q + 2250 q2 + O(q3)

+ 128 q5/6(1 − 148 q + 27826 q2 + O(q3))
m

�1
+ O(m2).

(E.5)

For the small mass expansion of e2π iv1 , we have

e2π iv1 = −1 − 16i q1/2 + 128 q + 1408i q3/2 + O(q2)

− 8i q1/6(1 + 46i q1/2 − 240 q − 3200i q3/2 + O(q2))
m

�1
+ O(m2).

(E.6)

We note that the small mass expansion commutes with the small q expansion in (E.3).
As observed in [37], the coupling v can also be expressed in terms of du

da and a
power series in u. Since under the large u monodromy, v transforms to −v + 1, we
can rather consider v − 1, which transforms to −(v − 1) [1].39 This is also true for
du
da → − du

da , which has modular weight −1 as well. This suggests that the quotient of
v − 1 and du

da is invariant under any monodromy, and thus a function of u. A positive
power series in u can be excluded, as it would generate an arbitrarily large principal
part. For N f = 1 we can make the ansatz

v − 1

2
= − 1

16
√
2π i�1

du

da

∞∑

n=0

an

(
�2

1

u

)n

, (E.7)

where the coefficients an depend on the mass μ = m/�1. The first few coefficients

are a0 = 0, a1 = 8μ, a2 = 8μ3

3 − 1, a3 = 8μ5

5 + 2μ2, a4 = 8μ7

7 + μ4 − 3μ
4 etc. In the

39 We can confirm this directly from the q-series. It is also important to notice that at strong coupling, v
rather than v − 1 transforms modularly [1].
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massless case, we have the series (�1 = 1)

− u2
∞∑

n=0

an

un
= 1 − 1

24u3 + 7

2560u6 − 3

14336u9 + O(u−12). (E.8)

It would be interesting to express this series as a hypergeometric function, such as the
periods da

du as given in (E.1). See also [159, 161, 162] for related formulae.

N f = 2

If we keep the masses in N f = 2 distinct, we find

v1 = −n1

2
− 8im1

π�2

(
q1/4 +

(
16

3�2
2

(7m2
1 + 3m2

2) − 8m2

m1

)
q3/4 + O(q5/4)

)
. (E.9)

In the equal mass case, the couplings v1 = v2 = v, and in particular the couplings
C jk can be found exactly. See the series (E.15) and (E.16) in Sect.E.3.

E.2 Largemasses

In this Appendix, we list expansions of Coulomb branch functions in the large mass
limit. We consider N f hypermultiplets with equal masses mi = m, i = 1, . . . , N f .
When m is large, the scales �N f and �0 are related as

�4
0 = m N f �

4−N f
N f

. (E.10)

The order parameters uN f decouple precisely uN f → u0. We can find the large m
corrections by making the ansatz

uN f =
∞∑

n=0

c
N f
n (u0)m

−2n, (E.11)

and iteratively find c
N f
n by satisfying the relation JN f (uN f ) = J0(u0) order by order

in m−2. The fact that there are only even powers on m follows by direct inspection.

We list the coefficient functions c
N f
n in Tables 18, 19 and 20 for N f = 1, 2, 3.

Using the series (E.11), we can similarly compute du
da from the definition (2.23),

and expand it for large m as

(
du

da

)

N f

=
(
du

da

)

0

∞∑

n=0

d
N f
n (u0)m

−2n . (E.12)

We list the coefficients functions d
N f
n (u0) in the following Table 21.
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Table 18 Coefficient functions c1n of the large m expansion (E.11) of u1 in N f = 1

n c1n(u)

0 u

1 1
16

(
3�4

0 − 4u2
)

2 1
128

(
3�4

0u − 4u3
)

3 1
512�4

0

(
3�4

0 − 4u2
)

4
7
(
16u5−40�4

0u3+21�8
0u
)

32768

5
9�12

0 +32u6−60�4
0u4+15�8

0u2

16384

6
13u

(
4u2−3�4

0

)(
−89�8

0+48u4+8�4
0u2

)

4194304

7
3�4

0

(
3�4

0−4u2
)(

�8
0−8u4+9�4

0u2
)

131072

8 − 19u
(
4u2−3�4

0

)(
5883�12

0 +3520u6−15216�4
0u4+8244�8

0u2
)

2147483648

9 − 11
(
4u2−3�4

0

)(
5�16

0 +32u8−76�4
0u6−35�8

0u4+90�12
0 u2

)

16777216

10 − 5u
(
4u2−3�4

0

)(
550163�16

0 +396032u8+89344�4
0u6−2889312�08u4+2143504�12

0 u2
)

274877906944

Table 19 Coefficient functions
c2n of the large m expansion
(E.11) of u2 in N f = 2

n c2n(u)

0 u

1 1
8

(
3�4

0 − 4u2
)

2 1
8u
(

u2 − �4
0

)

3 0

4 − 1
128 u

(
u2 − �4

0

)2

5 0

6
u
(

u2−�4
0

)3

1024

7 0

8 − 5u
(

u2−�4
0

)4

32768

9 0

10
7u
(

u2−�4
0

)5

262144
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th
e
la
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e

m
ex
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n
(E
.1
1)

of
u
3
in

N
f

=
3

n
c3 n

(u
)

0
u

1
9�

4 0
16

−
3u

2 4

2
3 12
8

u
( 20

u
2

−
19

�
4 0

)

3
1 51
2

( −3
5�

8 0
−

12
8u

4
+

16
4�

4 0
u
2
)

4
3u
( 72

9�
8 0
+1

23
2u

4
−1

96
0�

4 0
u
2
)

32
76
8

5
−

21
( −3

�
12 0

+3
2u

6
−6

0�
4 0

u
4
+3

1�
8 0

u
2
)

16
38
4

6
u
( −9

63
7�

12 0
+4

24
32

u
6
−8

88
16

�
4 0

u
4
+5

60
20

�
8 0

u
2
)

41
94
30
4

7
3�

4 0

( �
4 0
−8

u
2
)(

�
4 0
−u

2
)(

3�
4 0
−4

u
2
)

13
10
72

8
−

3u
( 20

62
87

�
16 0

+1
23
05
92

u
8
−3

66
25
92

�
4 0

u
6
+3

82
92
80

�
8 0

u
4
−1

60
35
68

�
12 0

u
2
)

21
47
48
36
48

9

( u
−�

2 0

)(
�
2 0
+u
)(

4u
2
−3

�
4 0

)(
−5

9�
12 0

+4
57
6u

6
−6

29
2�

4 0
u
4
+1

75
9�

8 0
u
2
)

16
77
72
16

10
−

3u
( −6

21
21
9�

20 0
+3

28
14
08
0u

10
−1

05
10
72
00

�
4 0

u
8
+1

23
54
16
32

�
8 0

u
6
−6

36
42
59
2�

12 0
u
4
+1

30
15
30
0�

16 0
u
2
)

27
48
77
90
69
44
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Table 21 Coefficient functions d
N f
n of the large m expansion (E.12) of

(
du
da

)

N f
for N f = 1, 2, 3

n d1n (u) d2n (u) d3n (u)

0 1 1 1

1 − u
8 − u

4 − u
4

2 − 3
256

(
�4
0 + 2u2

)
1
32

(
u2 − 2�4

0

)
1
32

(
u2 − 2�4

0

)

3 − u
(
23�4

0+6u2
)

2048
1

128 u
(

u2 − 2�4
0

)
1

128 u
(

u2 − 2�4
0

)

4
−123�8

0+140u4−876�4
0u2

131072
−12�8

0−5u4+12�4
0u2

2048
−12�8

0−5u4+12�4
0u2

2048

5
3u
(
−599�8

0+364u4−908�4
0u2

)

1048576
−7u5+20�4

0u3−20�8
0u

8192
−7u5+20�4

0u3−20�8
0u

8192

E.3 Equal mass Nf = 2

For the case of N f = 2 with equal masses, we can give explicit closed-form expres-
sions for many Coulomb branch functions. For instance, we have [19] (see footnote
14)

u = −�2
2

8

ϑ8
4 + ϑ4

2ϑ4
3 + (ϑ4

2 + ϑ4
3 )

√
f2

ϑ4
2ϑ4

3

,

du

da
= −i�2

√
ϑ4
2 + ϑ4

3 + √
f2

ϑ2
2ϑ2

3

,

du

dτ
= π i�2

2ϑ
8
4

2(4m2

�2
2

+ 1)ϑ4
2ϑ4

3 + ϑ8
4 + (ϑ4

2 + ϑ4
3 )

√
f2

8ϑ4
2ϑ4

3
√

f2
,

da

dτ
= −π�2

8

ϑ8
4

ϑ2
2ϑ2

3

√
f2(ϑ4

2 + ϑ4
3 ) + ϑ8

4 + 2ϑ4
2ϑ4

3 (1 + 4m2

�2
2
)

√
f2(

√
f2 + ϑ4

2 + ϑ4
3 )

,

(E.13)

where we defined f2 = 16m2

�2
2
ϑ4
2ϑ4

3 + ϑ8
4 and we suppress the dependence on τ . The

physical discriminant is

� = (u − u∗
1)(u − u∗

2)(u − u∗
3)

2, (E.14)

where (u∗
1, u∗

2) = (u−, u+) with u± = �2
2
8 ± m�2, and u∗

3 = u∗ = m2 + �2
2
8 . Using

the solution for u above we can easily express also the discriminant in terms of theta
functions.

The fundamental domain was found in [19] and is shown in Fig. 5. Due to the
square roots there will also be branch points present, the paths of these as we vary the
mass are also indicated in the Figures.

In the equal mass case, the couplings v j to the background Spinc-structures are
equal, v1 = v2 =: v. Using the hypergeometric expressions for the periods and fixing
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the magnetic winding number n = −1, it is given by

v = 1

2
+ 8

π

m

�2

(
q1/4 +

(
8 − 160

3

m2

�2
2

)
q3/4 +

(
42 − 1536

m2

�2
2

+ 32256

5

m4

�4
2

)
q5/4 + O(q7/4)

)
.

(E.15)
Furthermore, we have

C11 = C22 = e−π iw11 = i
√
2

ϑ1(τ, v)2

ϑ4(τ, v)ϑ4(τ, 0)
= 4i

√
2

(
q1/4 − 64

m2

�2
2

q3/4 + O(q5/4)

)
,

C12 = e−π iw12 = ϑ4(τ, v)

ϑ4(τ, 0)
= 1 + 4q1/2 +

(
8 − 256

m2

�2
2

)
q + O(q3/2).

(E.16)

We can see that, even though v → 1
2 whenm → 0, the couplingsCi j remain dependent

on τ . In the massless limit, we find

C11(τ ) → i
√
2

ϑ2(τ )2

ϑ3(τ )ϑ4(τ )
,

C12(τ ) → ϑ3(τ )

ϑ4(τ )
,

(E.17)

where we denote ϑ j (τ ) = ϑ j (τ, 0) as before.
In the decoupling limit to the pure theory, m → ∞,�2 → 0, we expect v → 0 and

C jk → 1. We see that this agrees with the behaviour of C12 (since then ϑ4(τ, 0) =
ϑ4(τ, 0)), but not for C11, where we instead find zero.

Another important observation is that we have zeros and poles in Ci j for special
values of v. Namely, we have a double zero for C11 when v = l1 + l2τ and a pole
when v = l1 + l2τ + τ

2 , where l j are any integers. The value v = l1 + l2τ + τ
2

also corresponds to a simple zero of C12. We thus want to exclude these values from
the domain of v. The pole structure of Ci j might be important for finding the correct
modular completion as discussed in Appendix F. A similar story is occurs for the
N = 2∗ theory [5], where a stronger claim can be made due to a certain relationship
on theta functions involving v.

Behaviour near I2 singularity

We finish this Appendix with some details of the behaviour near the I2 singularities.
We can also determine the behaviour of the couplings near other singularities using
(E.13). For da/du near the singularity u∗

3, we obtain, for example,

(
da

du

)

3
(τ3) =

i

�2

ϑ2(τ3)
2ϑ4(τ3)

2

(ϑ2(τ3)4 − ϑ4(τ3)4 + (ϑ3(τ3)8 − 16(m2/�2
3)ϑ2(τ3)4ϑ4(τ3)4)1/2)1/2

.

(E.18)
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This gives for the leading term in the q-series,

(
da

du

)

3
(τ3) = − i√

2�2
2 − 8m2

+ O(q1/2
3 ). (E.19)

Similarly, we determine for the leading terms of u3,

u3(τ3) = u∗
3 + (2�2

2 − 8m2)2

�2
2

q1/2
3 + O(q3). (E.20)

Using integration of Matone’s relation (2.24), we find for the leading term of a3,

a3(τ3) = − i

�2
2

(2�2
2 − 8m2)3/2 q1/2

3 + O(q3). (E.21)

F Comments on nonvanishing background fluxes for P2

In Sect. 11.3, we have studied point correlators on P
2 with nonvanishing background

fluxes. Including background fluxes, for large masses we can use the mock Jacobi
form Fμ(τ, ρ), defined in (10.12), for any value of the background fluxes k j . For
small masses however, this function does not have the right behaviour under SL(2,Z)

monodromies. For μ = 1
2 , we can rather use the mock Jacobi form H(τ, ρ) (D.50),

and determine the u-plane integral in a small mass expansion,

�1/2
[
e
2pu/�2

N f
] = (−1)N f

2�
12−2N f
N f

Coeffq0Serm

[(
du

da

)12
η(τ)27

PM
N f

N f∏

i, j=1

C
B(ki ,k j )

i j

× 1

24
H(τ, v1k1 + · · · + vN f kN f )e

2pu/�2
N f

]
.

(F.1)

Alternatively, we can also calculate the series for finite masses, without expanding
first around m = 0,

�1/2
[
e
2pu/�2

N f
] = (−1)N f

2�
12−2N f
N f

Coeffq0

[(
du

da

)12
η(τ)27

PM
N f

N f∏

i, j=1

C
B(ki ,k j )

i j

× 1

24
H(τ, v1k1 + · · · + vN f kN f )e

2pu/�2
N f

]
.

(F.2)

For N f = 1, we use the expansions for C = C11 and v = v1 given in (E.5) and
(E.6). These expansions commute with the expansion for small q in (E.3). We list the
first few point correlators for small mass m, as in Eq. (F.1), in Table 22, while the ones
for fixed mass m, as in Eq. (F.2), are listed in Table 23. We find that the small mass
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Table 22 List of the first few �1/2[u�] for small mass N f = 1 on P
2 with background flux, k1 = 1, 2, 3.

The expansion is determined up to O(m5). One entry is left undetermined since the q0 of the integrand
deviates by O(q3) from its leading term

� k1 = 1 k1 = 2 k1 = 3

0 −1 − 8
3 − 512

9
m
�1

1 0 0 − 64
9 �2

1 − 512
9

m3

�1

2 − 19
64m�3

1 −m�3
1 − 8

3m4 − 128
9 �2

1 m2

3 11
29

�6
1

11
192�6

1 + 4
3m3�3

1 − 8
27�5

1m − 64
3 �2

1m4

4 − − 73
64�6

1m2 − 3�3
1m5 − 8m8

3
7
27�8

1 − 64
81�5

1m3

and fixed mass calculation agree for k1 even, and is different for k1 odd. We comment
on this issue below.

We can perform a similar analysis for N f = 2 with equal masses, where modular
expressions are available (see Appendix E.3). See in particular (E.15) for v and (E.16)
for Ci j . We list the results in Table 24.

Discussion

Comparing Tables 22 and 23 for small and fixed mass in N f = 1, we find that the
point correlators agree if k1 is even, but are different when k1 is odd. In the remainder
of this section, we discuss this obstruction in detail.

The previous results of correlation functions in the absence of background fluxes
give polynomials in the masses, see Sect. 11. Such expressions have a well-defined
small and large mass limit. This is a consequence of the SW curves having a smooth
massless and infinite mass limit. If we include background fluxes, from Table 23 we
can see that point correlators are polynomials in the mass if k1 is even, and Laurent
polynomials if k1 is odd. As one can check, these expressions do not have a consis-
tent small or large mass limit. Thus, it appears that odd background fluxes introduce
discontinuities in the mass dependence.

Another possibility for the deviation is the branch point which could contribute
to the u-plane integral. In Sect. 9.3, we proved that the branch point of the integrand
does not contribute for k j = 0. Including the background fluxes, this argument needs
to be revisited. However, it is not clear why this contribution would depend on the
parity of k j . A perhaps more evident explanation is that the anti-derivative used in the
calculation is not valid for finite and small mass, for instance, due to the appearance
of poles or branch cuts. Let us analyse this possibility.

InAppendixD.3, we study themodular and analytical properties of themock Jacobi
form H(τ, ρ). The pole structure is derived in Table 17, with the following result: For
any value ρ = m + nτ with m, n ∈ Z, the function H(τ, ρ) is regular. At the three
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half-lattice points ρ ∈ { 12 , τ
2 , 1

2 + τ
2 }, the function H has simple poles with residues

Res
ρ= 1

2

H(τ, ρ) = 4

πϑ2(τ )
,

Res
ρ= τ

2

H(τ, ρ) = 4q
1
8

π iϑ4(τ )
,

Res
ρ= 1

2+ τ
2

H(τ, ρ) = 4q
1
8

πϑ3(τ )
.

(F.3)

For N f = 1, we have z = k1v, where v is given in (E.3). We thus find that for k1 odd
there is a pole in H(τ, z) as q → 0. Thus near q = 0, we have the asymptotics

H(τ, z) =
{

−2q− 1
8 . . . k1 even,

(−1)
k1−1
2 �1

2k1m q− 7
24 k1 odd.

(F.4)

The sign comes from the quasi-periodicity (D.52) of H . Clearly, the pole introduces
negative powers of the mass m, even if it is considered to be small.

By considering the smallest exponents of all factors in the integrand, we can derive
a selection rule for the correlators � 1

2
[u�] with given k1 to not vanish. For N f = 1 on

X = P
2, we have

ν(τ) ∼ q
1
24 (4k21−13),

u(τ ) ∼ q− 1
3 ,

(F.5)

Then, � 1
2
[u�] can only be nonzero if the leading exponent of ν(τ)H(τ, k1v)u(τ )� is

≤ 0. This gives the selection rule

k21 ≤ 4 + 2 l, k1 even,

k21 ≤ 5 + 2 l, k1 odd.
(F.6)

These agree in particular with Table 23. A similar argument can be made also for
N f = 2, where some correlators vanish in Table 24. In particular, one can detect the
selection rules for k1 ≥ 3. For instance, for N f = 1 the partition function vanishes,

� 1
2 ,k1

[1] = 0, k1 ≥ 3. (F.7)

One possibility for the difference between smallm and largem calculations is a pole
of H due to a zero of v for odd k1. In Fig. 13 we sketch that this is indeed the case: We
can numerically evaluate the function v(τ) − 1

2 for N f = 1 and a small mass m, and
find zeros of this function inside the fundamental domain. For small mass m � mAD,
there is a zero v(τ0) = 1

2 on the line Re τ0 = 3
2 . On the same line, one instance of the

N f = 1 branch point moves to infinity if the mass m is increased beyond mAD. For a
small mass, the zero τ0 and the branch point τbp are thus well separated.
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Fig. 13 The fundamental domain of N f = 1 for a small positive mass m. The τbp are the two branch points
(green), which move on the branch point locus (green, dashed) as the mass is varied, see [19] for a detailed
discussion. Here, τ0 (orange) is the zero of the function v(τ) − 1

2 inside the fundamental domain. As the

mass is increased, this zero τ0 moves on the line (orange, dashed) with Re τ0 = 3
2 . This line coincides with

the branch point locus for the mass m above the ADmass, m > mAD = 3
4 . It is thus clearly not the same as

the branch point τbp for u(τ ). The locus of the zero τ0 is determined for m/�1 � 0.3. For larger masses,
the zeros cannot be accurately determined, since the coefficients in the q-series become very large

Based on this numerical evidence, let us assume that for a generic mass m, v(τ)− 1
2

has a simple zero inside the domainF1(m). Assuming that v is holomorphic at τ = 1
2 ,

we can locally write a Taylor series

v(τ) − 1

2
= c1(τ − τ0) + O

(
(τ − τ0)

2
)

. (F.8)

Combining this with (F.3), we find that for k1 = 1,

H(τ, z(τ )) = 4

πc1ϑ2(τ0)
(τ − τ0)

−1 + O(1). (F.9)

We thus see that the integrand has a pole at the point τ0.
This gives an explanation for obtaining different results in a large and small mass

calculation: For m → 0, we find τ0 → 3
2 + i∞. In the regularisation FY (m) of the

fundamental domain we discuss in Sect. 10.1, we choose Y � Im τ0, such that in the
limit Y → ∞ we do not cross the pole τ0 of H(τ, z(τ )). For a finite mass m, Im τ0 is
finite and sending Y → ∞ picks up a contribution from the pole τ0. For very large m,
we can express the integrand as a Taylor series in 1/m, with leading term the N f = 0
integrand. Thus, any possible pole τ0 moves to infinity as well. We choose Y < Im τ0
in this case, such that there is no contribution due to the pole. This discussion agrees
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with the observation that the large m calculation (Table 11) has a well-defined large
m limit, the small mass calculation (Table 22) has a well-defined m → 0 limit, while
the generic mass calculation (Table 23) does not have either limits.

A similar numerical study for the other two poles ρ ∈ { τ
2 , 1

2 + τ
2 } of H—modulo the

latticeZ⊕τZ—does not result in such a zero: It seems that v(τ) = τ
2 and v(τ) = 1

2+ τ
2

do not have solutions in the fundamental domain F1(m).
Let us also briefly discuss the cases of N f > 1. For equal mass N f = 2, we have

v = 1

2
+ 8

π

m

�2

(
q1/4 +

(
8 − 160

3

m2

�2
2

)
q3/4 + O(q5/4)

)
, (F.10)

and z = (k1 + k2)v. We thus see that for (k1 + k2) ∈ 2Z + 1 there is again a pole
in H(τ, z) for both m → 0 and q → 0. The values in Table 24 avoid these values.
Interestingly, we see that the pole structure of C11 for equal mass N f = 2, see (E.16),
does not have any overlap with that of H(τ, z) for any k1 + k2.

For general N f , we have v j − 1
2 ∈ O(q

− 1
2(4−N f ) ) for arbitrary masses. Then we

have z = ∑
j v j k j = 1

2 (k1 +· · ·+ kN f )+O(q
− 1

2(4−N f ) ), such that H(τ, z) has a pole
as q → 0 precisely if

∑
j k j is odd. This agrees with the two previous cases. On the

other hand, if
∑

j k j is even, we expect there to not be any poles.

A possible way to cure the issue of the pole at ρ = 1
2 is to add to the anti-derivative

H(τ, ρ) a holomorphic SL(2,Z) Jacobi form of the same weight and index as H ,
which cancels precisely the pole of H but does not introduce any additional poles. As
we discuss in Appendix D.4, H̃(τ, ρ) (D.68) is such a function, and compatible with
the monodromies as long as

∑
j k j ∈ 2Z. For these cases, using H̃ we find the same

point correlators as in Tables 22–24. These are, however, precisely the cases where
the large mass and small mass calculations agree, rendering the various limits well
defined. Meanwhile, for the cases

∑
j k j odd where the two calculations disagree,

using H̃ it is not possible to test if avoiding only the pole at ρ = 1
2 is sufficient to

obtain point correlators with a suitable infinite mass limit, since H̃ is not applicable
to those cases. We hope to clarify this issue in future work.

G A Kodaira invariant

In Sect. 13, we studied the order of vanishing of the u-plane integral at an arbitrary
elliptic AD point in an arbitrary configuration. See (13.14), for instance, for the order
of vanishing of the measure factor ν at any given AD point. In this Appendix, we
determine the values ordu and ordω from the data of the singular fibres of the elliptic
surface containing a singularity of a given type. Furthermore, we prove that these two
orders of vanishing are not independent, the relation is fully determined by the type
of AD point. We keep the discussion completely general, and the results are universal
formulas for arbitrary elliptic surfaces.

We consider the parametrisation u(τ ) ∈ P
1 such that there is an elliptic point τ0

with u(τ0) = u0, and we define u = u − u0. As a function of τ , we can then study
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Table 25 The Kodaira
classification of singular fibres
[163, 164]. The symbol A
denotes the type of singular
fibre. The value τ ∈ H denotes
the SL(2,Z) orbit corresponding
to A . Here, α = e2π i/3. Finally,
we define (o2, o3, o�) =
(ord g2, ord g3, ord�) as the
orders of vanishing of the
Weierstraß invariants g2, g3 and
the discriminant � on the base
of the elliptic surface

A τ o2 o3 o�

Ik i∞ 0 0 k

I∗
k i∞ 2 3 k + 6

I∗
0 τ ≥ 2 ≥ 3 6

I I α ≥ 1 1 2

I I∗ α ≥ 4 5 10

I I I i 1 ≥ 2 3

I I I∗ i 3 ≥ 5 9

I V α ≥ 2 2 4

I V ∗ α ≥ 3 4 8

the order of vanishing ordu as well as that of the holomorphic period

ω :=
(
du

da

)2

∝ g3
g2

E4

E6
. (G.1)

We then show that

oT := ordu

ordω
(G.2)

does not depend on the configuration involving an AD point of Kodaira type T, but
rather only on the Kodaira type T itself. In this Appendix, we use the notation ord f
for the order of vanishing of a function f of τ ∈ H, while we reserve the symbol o f

for the order of vanishing if f is considered as a function on the base u ∈ P
1.

Recall Kodaira’s classification of singular fibres, as given in Table 25. Let C =
(A , . . . ) be a configuration containing an additive fibre

A ∈ {I I , I I I , I V , I V ∗, I I I ∗, I I ∗} (G.3)

not being of type I ∗
k . For instance, inN = 2SU(2) SQCDwith N f ≤ 4hypermultiplets

we consider the surfaces C = (I ∗
4−N f

,A , . . . ) with an AD point of Kodaira type
A ∈ {I I , I I I , I V }. As is clear fromTable 25,whenA ∈ Aα := {I I , I V , I V ∗, I I ∗},
then o3 and o� are fixed, while when A ∈ Ai := {I I I , I I I ∗} then o2 and o� are
fixed, in both cases with the remaining o j being bounded from below.WhenA ∈ Aα ,

then the singular fibre corresponds to τ0 ∈ �1 ·α, whereα = e
2π i
3 , while whenA ∈ Ai

then τ0 ∈ �1 · i , with �1 := PSL(2,Z). Since J and j behave differently near those
points i and α, these families Aα and Ai of singular fibres thus need to be treated
separately.
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In order to compare the orders of vanishing of the various quantities, we use the
following Taylor expansions of the modular j-invariant,

j(τ ) = 1

3! j ′′′(α)(τ − α)3 + O
(
(τ − α)4

)
,

j(τ ) − 123 = 1

2! j ′′(i)(τ − i)2 + O
(
(τ − i)3

)
,

(G.4)

where crucially
j ′′′(α) = −21333

√
3iπ3�6

Q(α),

j ′′(i) = −2934π2�4
Q(i)

(G.5)

are nonzero, with �Q(α) and �Q(i) the Chowla–Selberg periods (D.5) associated with
the elliptic points α and i (see Appendix D.1 for a review). This is due to the fact that
E4 has a simple zero at τ = α and E6 has a simple zero at τ = i , which follows from
the valence formula for modular forms on �1 (see, for example, [135]).

The caseA ∈ A˛

When A ∈ Aα , then o3 and o� are fixed by A , while o2 can vary. We expand

j(τ ) = J(u) around τ = τ0 and u = u0, where u(τ0) = u0. From J = 123
g32
�
, we

have oJ = 3o2 − o�. Comparing with ord j = 3 this gives

ordu = 3

3o2 − o�

. (G.6)

Regarding ω, we have that ord E4
E6

= 1, while g3
g2

∼ uo3−o2 . We can then insert (G.6),
and find

ordω = 3o3 − o�

3o2 − o�

. (G.7)

Interestingly, the dependence of

o = ordu

ordω
= 3

3o3 − o�

(G.8)

on o2 drops out. Since for a fixedA ∈ Aα the only variable is o2, the ratio o is indeed
an invariant oA of the singular fibre A ∈ Aα itself.

The caseA ∈ Ai

When A ∈ Ai we have that j(τ0) = 123, such that we need to study the order of

vanishing of J − 123 = 123
g23
�
. While ord ( j − 123) = 2, we can compare this to

oJ−123 = 2o3 − o�. This gives the order of vanishing

ordu = 2

2o3 − o�

(G.9)
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Table 26 The quotient oA = ordu
ordω

depends only on the type A of additive fibre, not on the configura-
tion C = (A , . . . ) containing it. We compare this invariant to the dimension of the CB operator of the
corresponding rank 1 SCFT

A I I I I I I V I V ∗ I I I∗ I I∗

oA 3 2
3

2

3

4

2

3

3

5

�A
6

5

4

3

3

2
3 4 6

on the τ -plane. Now ord E4
E6

= −1, while g3
g2

∼ uo3−o2 where we insert (G.9). This
gives

ordω = o� − 2o2
2o3 − o�

, (G.10)

where both numerator and denominator are positive. We find

o = ordu

ordω
= 2

o� − 2o2
, (G.11)

where again the only free variable o3 drops out. Thus also for a fixed A ∈ Ai , the
ratio o is an invariant oA of the singular fibre A .

In Table 26, we compute oA for all additive fibresA (G.3). This proves the above
claim that oT is fixed for all given theories T containing an equivalent AD point, and
extends it to other rational elliptic surfaces as well, such as those describing the rank
1 En theories [15, 16, 131, 132] containing Minahan–Nemeschansky (MN) theories
[33, 34], where A ∈ {I V ∗, I I I ∗, I I ∗}.

We can combine the results of the quotient o in both cases Aα and Ai : From Table
25 we find that for Aα , we have o� = 2o3 and for Ai we have o� = 3o2. Inserting
these into (G.8) and (G.11) gives the much simpler formula

o = 6

o�

, (G.12)

which holds for all cases G.3. This can be easily confirmed from the results in Table
26.

By comparing these ratios of orders of vanishing with the dimensions of Coulomb
branch operators of the corresponding SCFT (see [14] for an overview), we find the
relation

oA = �A

2(�A − 1)
. (G.13)

Similar formulas for the dimensions�A in terms of the SWcurve exist [165–167]. For
instance, the dimension�A is related to the order of vanishing o� of the discriminant
on the base as [123]

�A = 1

1 − o�

12

. (G.14)
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