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Abstract
We propose a new notion of singularity in general relativity which complements the
usual notions of geodesic incompleteness and curvature singularities. Concretely, we
say that a spacetime has a volume singularity if there exist points whose future or past
has arbitrarily small spacetime volume: in particular, smaller than a Planck volume.
From a cosmological perspective, we show that the (geodesic) singularities predicted
by Hawking’s theorem are also volume singularities. In the black hole setting, we
show that volume singularities are always hidden by an event horizon, prompting a
discussion of Penrose’s cosmic censorship conjecture.

Keywords Black holes · Big Bang · Singularity theorems · Cosmic censorship ·
Quantum gravity · Lorentzian geometry

Mathematics Subject Classification 83C75 (primary) · 53C50 (secondary)

1 Introduction

The concept of singularity is central in general relativity. Already early on, it was
discovered that certain solutions of the Einstein Equations feature unbounded compo-
nents of the metric tensor. In some cases, such as the event horizon of Schwarzschild
spacetime, this turned out to be due to a bad choice of coordinates. In other cases,
such as the center of the Schwarzschild solution, a consensus developed that there is a
“real” singularity. Since then, an overwhelming amount of evidence for the existence
of black holes, which are described by singular spacetimes such as Schwarzschild or
Kerr, has been found. Furthermore, in cosmology there is a consensus that the whole
Universe originates from an initial singularity, the Big Bang. Yet the nature and inter-
pretation of singularities remains a debated and intricate topic, even the concept of
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singularity itself being rather loosely defined [16]. In this paper, we offer a new point
of view on the definition of singularities in General Relativity.

Our current understanding of singularities is largely based on the works of Penrose
[32] (about black holes) and shortly after Hawking [23] (in the cosmological setting).
The key idea is to consider a spacetime to be singular if it is incomplete, which could
mean [4, Chap. 6.2]

• Timelike geodesically incomplete,
• Null geodesically incomplete,
• Bounded acceleration incomplete.

Timelike geodesic incompleteness has the physical interpretation that there exists
observers at rest who, after a finite proper time, reach the “end” of spacetime. Similarly,
bounded acceleration incompleteness has the same interpretation for observers that
may be accelerated. Null geodesic incompleteness is more difficult to interpret, given
that the affine parameter of a null geodesic does not correspond to an observable
quantity.

The power of the concept of incompleteness lies in the singularity theorems of
Hawking and Penrose, which show that generic spacetimes satisfying some physically
reasonable conditions are geodesically incomplete (timelike inHawking’s theoremand
null in Penrose’s). The singularity theorems have since been improved in many ways:
Their assumptions have been relaxed to account for more realistic physical scenarios
[21, 28, 31], and the differentiability of the spacetimemetric has been lowered [18–20],
showing that the predicted singularities are not just an artifact caused by assuming too
much regularity. However, in the case of Penrose’s theorem, so far no one hasmanaged
to strengthen the conclusion: While the theorem is commonly interpreted as to show
the existence of a black hole, all it really predicts is the existence of an incomplete
null geodesic, but it does not, for instance, predict the existence of a horizon.

In this paper, we propose a new type of incompleteness. Unlike the above ones, it
is not based on the length of curves; instead, it makes use of the spacetime volume.

Definition 1.1 A spacetime (M, g) is future volume incomplete if for every ε > 0
there is a point x ∈ M with volg(I+(x)) < ε.

Here I+(x) denotes the chronological future of the event x [4, p. 55]. Similarly,
we can define past volume incompleteness using the past I−(x). We also use the
term volume singularity in a more vague sense when talking about volume incomplete
spacetimes.

In a volume incomplete spacetime, there are thus events whose future has a volume
smaller than a Planck (spacetime) volume. Physically, it is expected that on scales
smaller than those of the Planck units, quantum effects become dominant. In partic-
ular, there are theories of quantum gravity which predict that spacetime is discrete at
those scales [5], or becomes effectively two-dimensional [7]. Therefore, an observer
reaching a spacetime point p with volg(I+(p)) < VP is no longer capable of making
valid predictions using classical physics (here VP denotes the Planck spacetime vol-
ume). This signals a breakdown of General Relativity, and thus deserves being called
a singularity.
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Theorem 2.1 in Sect. 2 tells us that a sufficient condition for a chronological space-
time to be volume incomplete is the existence of a single point x withvolg(I+(x)) < ∞.
This condition is more manageable in practice, and allows us to easily show that
important geodesically singular spacetimes, such as Schwarzschild, are also volume
singular. More generally, we prove that volume singularities are always hidden by an
event horizon (except in the cosmological case where the whole spacetime originates
from the singularity). This suggests that the notion of volume singularity accurately
encodes our physical intuition about black holes, and leads us to reformulate Penrose’s
cosmic censorship conjectures into the statement that “physically realistic singulari-
ties are volume singularities". We also give this a concrete meaning by conjecturing
that under suitable assumptions, volg(I+(S)) < ∞ for a trapped surface S. The latter
conjecture, if proven, would provide a “volume" analogue of Penrose’s singularity
theorem, but with the much stronger conclusion that there is an event horizon, and
hence really of a black hole.

We also apply the concept of volume singularity in the cosmological setting. There,
we obtain a volume version of Hawking’s singularity theorem, based on previous work
by Treude and Grant [38]. Moreover, we also construct a time function in the style of
Andersson et al. [3] for Big Bang spacetimes.

Finally, note that volume singularities, just as geodesic singularities, do not provide
any information about the extendibility of the spacetime. In particular, one can con-
struct artificial, unphysical singularities by removing a portion of a given spacetime.
Hence one should only regard a spacetime to be truly singular if it has a singularity (in
the volume or geodesic sense) and it is inextendible. The most common criterion for
inextendibility is the blow-up of some curvature invariant (such as the Kretschmann
scalar), which moreover can be given a physical meaning in terms of tidal forces. Cur-
vature blow-up, however, only ensures that the spacetime metric cannot be extended
as a twice-continuously differentiable tensor (class C2). In order to account also for
weak solutions of the Einsten Equations, which can have regularity lower than C2,
other criteria have been developed [14, 22, 34, 35], but the problem of determining
(in)extendibility remains a hard one in general.

Outline The paper starts with a general discussion of volume incompleteness. We
consider specific black hole spacetimes in Sect. 3, followed by a more abstract treat-
ment of “volume” black holes and cosmic censorship in Sect. 4. In Sects. 5 and 6 we
turn to the cosmological setting, proving a Hawking style singularity theorem and
constructing a cosmological volume function, respectively. We end the paper with a
conclusions section summarizing the main results and open problems.

2 General properties and examples of volume singularities

We start by providing a more practical characterization of volume incompleteness for
chronological spacetimes (that is, those without closed timelike curves).

Theorem 2.1 A chronological spacetime (M, g) is future volume incomplete if and
only if it contains a point x0 ∈ M such that volg(I+(x0)) < ∞.
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The proof makes use of the following fact, which will also be useful elsewhere in
the paper, so we state it as a lemma.

Lemma 2.2 Let x, y be two points such that volg
(
I+(x)

)
< ∞ and I+(y) � I+(x).

Then
volg

(
I+(y)

)
< volg

(
I+(x)

)
.

Proof Choose a point z ∈ I+(x) \ I+(y). Then I−(z) ∩ I+(y) = ∅, since otherwise
z ∈ I+(y) by transitivity. It follows that also U := I+(x) ∩ I−(z) is disjoint from
I+(y). Since moreover U is non-empty and open, it has nonzero volume. Therefore

volg
(
I+(y)

)
< volg

(
I+(y)

) + volg (U ) ≤ volg
(
I+(x)

)
,

completing the proof. ��
Proof of Theorem 2.1 Let

v(x) := volg
(
I+(x)

)
,

f (x) := inf
{
v(z) | z ∈ I+(x)

}
, (1)

noting that for all x ∈ M with v(x) < ∞ and y ∈ I+(x),

v(y) < v(x), (2)

f (y) ≥ f (x), (3)

v(x) > f (x). (4)

Here (2) holds by Lemma 2.2 since if y ∈ I+(x), then by chronology of M , I+(y) �

I+(x) (the inclusion follows by transitivity, andmust be strict because y /∈ I+(y)). But
then the infimum in (1) for y is over a smaller set than for x , proving also (3). Finally, (4)
follows because one can always find a suitable y ∈ I+(x) with v(x) > v(y) ≥ f (x).

Next, assume that there exists x0 ∈ M with v(x0) < ∞. Then f (x0) < ∞ by (4).
If f (x0) = 0, we are done, so assume for the sake of contradiction that f (x0) > 0.
Construct a sequence of points (xi )i∈N such that xi+1 ∈ I+(xi ) and

v(xi+1) ≤ v(xi ) + f (xi )

2
. (5)

Such a sequence exists because, given xi , (1), (2) and (4) together allow one to find
xi+1. Since f (xi ) ≥ f (x0) > 0, and by (2) also v(xi+1) < v(xi ), we have that
v(xi ) → v∞ > 0 as i → ∞. Therefore

volg

(
⋂

i∈N
I+(xi )

)

= lim
i→∞ v(xi ) > 0,

and hence
P :=

⋂

i∈N
I+(xi ) �= ∅.
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Thus we can choose a point x∞ ∈ P . Notice that by (2)

v(x∞) ≤ lim
i→∞ v(xi ),

and by (3)
f (x∞) ≥ lim

i→∞ f (xi ),

where the limit exists because f (xi ) < v(x0) < ∞ for all i ∈ N. On the one hand,
combining these two inequalities with (4) shows that

lim
i→∞ v(xi ) ≥ v(x∞) > f (x∞) ≥ lim

i→∞ f (xi ).

On the other hand, taking the limit i → ∞ in (5) shows that

lim
i→∞ v(xi ) ≤ lim

i→∞ f (xi ).

Acontradiction is reached, showing that in fact f (x0) can only be zero, and the theorem
follows. ��

We end this section with two examples to illustrate that, without any assumptions,
the notions of geodesic and volume singularity are logically independent.

Example 2.3 (Geodesically complete but volume incomplete) Let n ≥ 3, let M =
(1,∞) × Sn and let h be the round metric on the n-sphere Sn . Equip M with the
Lorentzian metric

g = −dt2 + t−1h.

Then (M, g) is future volume incomplete by Theorem 2.1, since

volg
(
I+(x)

)
< volg ({t > tx }) = volh(S

n)

∫ ∞

tx
t−

n
2 dt < ∞

for all x ∈ M (here tx denotes the value of the t-coordinate at x , and note the integral
is finite since n ≥ 3). Nonetheless, (M, g) is future causally geodesically complete.
While it is obvious that the t-lines are complete, it is less so that all causal geodesics
are complete. Therefore, we proceed to compute the geodesics explicitly.

By symmetries of the sphere, we know that the projection onto Sn of any geodesic
γ must remain restricted to the equator (when we choose the equator to be tangent to
the projection of the initial tangent vector to γ ). Moreover, the sphere admits a Killing
vector field V tangent to the equator, which we can choose to be normalized on the
equator. The geodesics therefore admit a constant of motion

L = g(γ̇ , V ) = 1

t
θ̇ , (6)

where θ denotes the natural angular coordinate along the equator, and the dot denotes
differentiation with respect to the affine parameter of γ . In the cases of interest, γ
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satisfies

− δ = −ṫ2 + 1

t
θ̇2, (7)

for δ = 0, 1 (δ = 0 corresponds to a null geodesic, and δ = 1 to a timelike geodesic
parametrized by arclength). Isolating θ̇ from (6) and (7), equating the ensuing expres-
sions, and performing simple algebraic manipulations yields

ṫ =
√
L2t + δ.

Here we have chosen the square-root with a + sign because we are only interested in
future-directed geodesics. We solve this ordinary differential equation by separation
of variables, obtaining

t(s) = L2

4
(s + C)2 − δ

L2 (8)

for some integration constant C . Substituting t(s) into (6) and integrating, we further-
more obtain

θ(s) = L3

12
(s + C)3 − δ

L
s + D, (9)

with another integration constant D appearing.
We can establish the dependence of the constants L,C, D on the starting point

(t0, θ0) and the initial velocity (ṫ0, θ̇0) by evaluating (6), (8) and (9) at s = 0, obtaining

L = θ̇0

t0
, C = 2

L

√

t0 + δ

L2 , D = θ0 − L3C3

12
.

Note that we had already fixed the norm of the tangent vector to the geodesic in (7),
which is why there are three and not four constants, and ṫ0 does not appear explicitly
in their expressions. However, (8) only fixes C2, and it is the fact that ṫ0 > 0 (as the
geodesic is future directed) which forces us to choose C > 0. Thanks to this, t(s) is
increasing and hence t(s) ∈ (1,∞) for all s ∈ [0,∞). Since neither (8) nor (9) blow
up for finite affine parameter s, it follows that all causal geodesics are future-complete.

Conversely, there exist many geodesically incomplete spacetimes which are vol-
ume complete, such as maximally extended Kerr spacetime. However, the maximal
extension of Kerr is not globally hyperbolic, whence we cooked up a new example to
illustrate that global hyperbolicity is not an issue. Our example bears resemblance to
the one in [16, p. 531], but is both timelike and null incomplete.

Example 2.4 (Geodesically incomplete but volume complete) Consider M = R2

equipped with the Lorentzian metric

g = −�(u, v)dudv,

which is conformal to the Minkowski metric written in null coordinates u = t − x ,
v = t + x . Hence (M, g) is globally hyperbolic. We divide M into three regions:

A = {(u, v) | 1 < u}, B = {(u, v) | 0 ≤ u ≤ 1}, C = {(u, v) | u < 0},
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Fig. 1 The spacetime in Example 2.4, with a future incomplete timelike geodesic γ

depicted in Fig. 1a. We then set the conformal factor to

�(u, v) =

⎧
⎪⎨

⎪⎩

1 if (u, v) ∈ A,

e−v if (u, v) ∈ C,

smoothly extended to (u, v) ∈ B.

On the one hand, (M, g) is future volume complete since for any x ∈ M , already
I+(x) ∩ A has infinite volume, so surely also volg(I+(x)) = ∞. On the other hand,
region C contains incomplete null and timelike geodesics. To see this, define a new
coordinate w = −e−v on region C , with range w ∈ (−∞, 0), so that the metric takes
the form g = −dudw. Therefore region C is isometric to a wedge of Minkowski
spacetime, and all causal geodesics in C are incomplete (see Fig. 1b). Those along
whichu → 0may enter region B and are hence not necessarily incomplete in thewhole
spacetime M , but those along which u �→ 0 are inextendible and hence incomplete
also in M . See, for instance, the curve γ in Fig. 1.

3 The singularities in Schwarzschild, Reissner–Nordström and Kerr
spacetimes

In this section, we discuss the most important black hole spacetimes in the context of
volume singularities.

Proposition 3.1 In Schwarzschild spacetime, points p in the interior region (with rp <

2m) have volg
(
I+(p)

)
< ∞, while points in the exterior region (with rp > 2m) have

volg
(
I+(p)

) = ∞.

Proof We work in the usual coordinates where the expression of the Schwarzschild
metric is

g = −
(
1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1

dr2 + r2d�.
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Interior A future-directed timelike curve γ starting at p0 = (t0, r0, θ0, φ0) with
r0 < 2m must satisfy

∣∣∣∣1 − 2m

r0

∣∣∣∣

2

ṫ2 ≤
∣∣∣∣1 − 2m

r

∣∣∣∣

2

ṫ2 < ṙ2,

because g(γ̇ , γ̇ ) < 0 and because r is strictly decreasing along γ . Naming

C :=
∣∣
∣∣1 − 2m

r0

∣∣
∣∣

−1

,

we can write |ṫ | < C |ṙ |, which implies t ∈ (t0 − Cr0, t0 + Cr0). We conclude that

volg
(
I+(p0)

) ≤
∫ t0+Cr0

t0−Cr0

∫ r0

0
4πr2drdt = 8

3
πCr40 < ∞.

Exterior Let p0 = (t0, r0, 0, 0) with r0 > 2m. The curve

γ (s) =
(

t0 + s, r0,

∣
∣∣∣1 − 2m

r0

∣
∣∣∣
1

r20
s, 0

)

is null, and for s1 := Cr20π we have γ (0) = p0 and γ (s1) = (t0 + s1, r0, π, 0). By
spherical symmetry, we conclude that every point of the form (t0 + s1, r0, θ, φ) lies in
J+(p0), for all θ, φ. Furthermore, for s2 > s1, there exists 0 < ε < r0 −2m such that
for all r ∈ (r0 −ε, r0 +ε), (t0 + s2, r , θ, φ) is in the causal future of (t0 + s1, r0, θ, φ).
We conclude that the set

A := {(t, r , θ, φ) : t > t0 + s2, r ∈ (r0 − ε, r0 + ε)} ⊂ J+(p0).

But

volg(A) =
∫ ∞

t0+s2

∫ r0+ε

r0−ε

4πr2drdt = ∞,

and therefore also volg
(
I+(p)

) = volg
(
J+(p)

) = ∞. ��
Recall now the Reissner–Nordström metric

g = −
(
1 − 2m

r
+ e2

r2

)
dt2 +

(
1 − 2m

r
+ e2

r2

)−1

dr2 + r2d�.

The key difference compared to Schwarzschild is that here the factor in front of dt2 has
two zeros r±. In the sub-extremal case (meaning |e| < m), 0 < r− < r+ are distinct
and both lead to coordinate singularities. The hypersurface {r = r+} is the event
horizon,while {r = r−} is known as theCauchy horizon. The portionR×(r−,∞)×S2

of the spacetime is globally hyperbolic and hence uniquely determined by the Einstein
Equations given an initial data hypersurface. Beyond r−, the coordinate expression of
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Fig. 2 A part of the Penrose diagram of Reisner–Nordström spacetime. The point p and its future I+r>r− (p)
within the globally hyperbolic region (shaded) are chosen as in the proof of Proposition 3.2

the metric still makes sense (until it reaches a curvature singularity at r = 0). This
extension, however, is rather arbitrary since it is no longer globally hyperbolic and
hence not uniquely determined. Moreover, it contains another Cauchy horizon beyond
which one can extend further, for instance by periodically “stacking” copies of the
spacetime (this gives the maximal analytic extension, see [25, Chap. 9]).

Proposition 3.2 The globally hyperbolic region {r > r−} of Reissner–Nordström
spacetime is volume incomplete, with volg

(
I+(p)

)
< ∞ for all p with r > r+

(i.e. all p lying beyond the event horizon). On the other hand, the maximal analytic
extension of Reissner–Nordström spacetime is volume complete.

Proof Let p ∈ {r− < r < r+}. Consider the chronological future I+
r>r−(p) in the

region {r > r−}, and take its closure in the full (extended) spacetime, as depicted in
Fig. 2. The closure is compact, and therefore it has finite volume (w.r.t. the volume
measure on the extended spacetime). But then the set I+

r>r−(p) in the un-extended
spacetime must also have finite volume. Notice here that Penrose diagrams are con-
structed using conformal diffeomorphisms (which in particular are homeomorphisms
and hence preserve compactness), and that in the picture we suppress the radial coor-
dinates (but of course S2 is compact). In the maximal analytic extension, on the other
hand, since from any point it is possible to avoid the curvature singularity and enter
the next periodic region, clearly the volume of the future is infinite for any point. ��

Notice that the same conclusion holds for sub-extremal Kerr spacetime, which has
the same structure of an event horizon, beyond it a Cauchy horizon, and beyond that a
curvature singularity (the so-called ring singularity). Beware that in the case of Kerr,
there are closed timelike curves beyond the Cauchy horizon, making Theorem 2.1
inapplicable. In any case, we conclude that the concept of volume incompleteness is
able to capture the incompleteness of the maximal Cauchy developments, but it is
unable to detect the curvature singularities in the extensions. Whether this is a draw-
back or not is debatable, since according to the strong cosmic censorship conjecture,
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anything lying beyond the Cauchy horizon is unphysical. In particular, the Cauchy
horizon is believed to be unstable, as illustrated by Penrose’s blue-shift argument (see
[25, Chap. 10]). In the next section, we discuss in a more abstract context how the
notion of volume incompleteness can be related to cosmic censorship.

4 General black hole spacetimes

In order to study black holes in an abstract way, we first need to give a definition
of black hole that appropriately encodes the intuitive idea of a spacetime region that
cannot be escaped. The usual approach is to define what it means to “escape” by
defining future null infinity I+, so that its chronological past I−(I+) corresponds to
the possible starting points of observers escaping to infinity. Hence its complement
M\I−(I+) must be the black hole, and the boundary between the two, the event
horizon. Traditionally, I+ is defined as a subset of the conformal boundary of the
spacetime, i.e. one conformally embeds the spacetime into a larger manifold. This
raises the question of existence and uniqueness of such embeddings, which has been
addressed by Chruściel [10]. One can also avoid this question altogether by defining
I+ via the causal boundary (instead of the conformal one), as has been done by Costa
e Silva et al. [11, 12]. A completely different way to define black hole is to instead
formalize what it means to “fall into the singularity”, which is the philosophy behind
the works of Müller [30] (using geodesic incompleteness) andWheeler [40] (via Scott
and Szekeres’ abstract boundary). We develop our own “volumetric” approach in this
section.

Consider the subset of spacetime given by

B := {x ∈ M | volg
(
I+(x)

)
< ∞}.

If (M, g) is chronological and B �= ∅, then by Theorem 2.1, (M, g) is volume incom-
plete. We interpret B as the union of the interiors of all “volume" black holes in our
spacetime. For ease of exposition, wewill assume that there is only one such black hole
(i.e. thatB is connected). By transitivity of the chronological relation, we immediately
obtain the following result.

Proposition 4.1 The set B is a future set, i.e. I+(B) ⊆ B.
Proposition 4.1 tells us that observers inside of the regionB cannot leave it. Thus the

boundary ∂B corresponds to the event horizon (in the sense of a one-way membrane
bounding the black hole interior). For connected spacetimes M , we have ∂B �= ∅
unless B = M . The latter case would correspond to a big crunch (or an ultra-massive
spacetime [36]) rather than a black hole, since it wouldmean that the entire Universe is
swallowed by the singularity. We thus concentrate on the case B �= M in this section.

Recall that Penrose’sWeakCosmicCensorship (WCC) conjecture informally states
that singularities in physically realistic spacetimes cannot be globally naked, mean-
ing that they must be hidden by an event horizon. This is thus satisfied for volume
singularities, in the above sense. Penrose’s Strong Cosmic Censorship (SCC) conjec-
ture further states that singularities in physically realistic spacetimes cannot be locally
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naked, meaning that the spacetime must be globally hyperbolic (see [25, Chap. 10]
for a detailed discussion of cosmic censorship). The following proposition naturally
characterises global hyperbolicity of the region B.
Proposition 4.2 The following are equivalent:

1. For every future-inextendible future-directed causal curve γ : [0, b) → M whose
starting point x = γ (0) satisfies volg(I+(x)) < ∞, we have

lim
s→b

volg
(
I+(

γ (s)
)) = 0.

2. The region B := {x ∈ M | volg
(
I+(x)

)
< ∞} is globally hyperbolic.

Proof 1 �⇒ 2. The region B can be equipped with a time function τ(x) :=
volg(I+(x)), which is just a time-reversed version of the regular cosmological vol-
ume function considered in Sect. 6. It then follows from Theorem 6.3 thatB is globally
hyperbolic.

2 �⇒ 1. Assume 1 is not true, meaning that there is some inextendible causal
curve γ : [0, b) → M with volg(I+(γ (0))) < ∞ but volg(I+(γ (s))) �→ 0. By
transitivity of the timelike relation, we have

volg

⎛

⎝
⋂

s∈[0,b)
I+(γ (s))

⎞

⎠ = lim
s→b

volg
(
I+(γ (s))

)
> 0,

where in particular the limit exists (but is nonzero by assumption). Thus we can
choose a point y ∈ ⋂

s∈[0,b) I+(γ (s)) �= ∅. But then the causal diamond J (γ (0), y)
contains the inextendible curve γ : [0, b) → M , hence J (γ (0), y) is non-compact, in
contradiction to global hyperbolicity. ��

We are left to wonder whether the singularities appearing in physically realistic
spacetimes are volume singularities, and how to even make such a statement precise.
Indeed, turning the cosmic censorship conjectures of Penrose into precise mathemat-
ical conjectures is not so straightforward. The most popular approach when it comes
to WCC, due to Christodoulou [8], is to define “physically realistic spacetime” as a
solution of the Einstein equations for generic asymptotically flat initial data, and “pos-
sessing an event horizon” as theMaximal GloballyHyperbolic Development (MGHD)
of said initial data possessing a complete null infinity I+ (cf. beginning of this section).
Similarly, SCC from this point of view requests the MGHD to be inextendible (since
it is globally hyperbolic by definition, so the question is rather if it “is everything there
is”).

In an attempt to use volume incompleteness as a tool to formalize the cosmic
censorship conjectures (à la Penrose), a logical first step is to try to establish a “volume
version” of Penrose’s singularity theorem, which could read as follows.

Conjecture 4.3 Let (M, g) be a globally hyperbolic spacetime satisfying the strong
energy condition, and S ⊂ M a future trapped surface. Then volg

(
I+(S)

)
< ∞.
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Penrose’s theorem shows that singularities (in the geodesic sense) form under
generic conditions, and Conjecture 4.3 would further show that an event horizon is
formed. While the assumptions are tentative, we have strengthened the null energy
condition from Penrose’s theorem to the strong energy condition. The latter gives
a much stronger control over the volumes, in particular allowing for volume com-
parison results. We use this in Sect. 5 to obtain a volume analogue of the Hawking
singularity theorem. Penrose’s theorem, however, is more difficult to adapt given the
fact that a trapped surface has codimension 2 (while in Hawking’s theorem we have a
codimension 1 submanifold).

A more ambitious programme is to use one of the known characterizations of
singularities (e.g. causal geodesic incompleteness), and attempt to prove that under
physically realistic assumptions, these are also volume singularities.

Conjecture 4.4 (Volumetric WCC) In a generic physically realistic spacetime, every
future incomplete causal geodesic enters the set B.
Conjecture 4.5 (Volumetric SCC) In a generic, physically realistic, and inextendible
spacetime,

volg
(
I+(γ (s))

)
→ 0

along every future incomplete causal geodesic.

The names are chosen because Conjecture 4.4 predicts the existence of an event
horizon in the sense on Proposition 4.1, while Conjecture 4.5 is stronger and implies
global hyperbolicity of the black hole interior by Proposition 4.2. We have formulated
these conjectures in a bold way, but one can also think of them as criteria for the
existence of an event horizon and for global hyperbolicity, if instead of considering
all “physically realistic” spacetimes, one restricts to more specific situations. In any
case, it of course remains to specify what “physically realistic" means. In order to rule
out trivial counterexamples (e.g. Minkowski with some region removed), one should
assume either inextendibility of the spacetime, or that it is a MGHD of some initial
data. Since Conjecture 4.5 aims to predict global hyperbolicity, the second option
would make it trivial, so we have formulated it required inextendibility. A weaker
causality condition, such as causal simplicity, is still appropriate. One should also
assume that the Einstein Equations hold for some reasonable matter model, either in a
strict sense, or through energy conditions. Finally, the genericity assumption is needed
(as it is in the IVP formulation), in order to rule out Kerr or Reissner–Nordström as
counterexamples. Again, it remains to specify exactly what “generic” means.

5 The cosmological volume singularity theorem

In this section, we prove that the geodesic singularities predicted by Hawking’s the-
orem are also volume singularities. Our proof is based on the work of Treude and
Grant [38], where an alternative proof for Hawking’s theorem is given, using volume
comparison techniques. See also Graf [18] for a review of volume comparison results
in the same spirit (assuming only g ∈ C1,1(M)), and for the version of Hawking’s
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theorem which we generalize [18, Thm. 4.2]. This is an extended version thereof, in
the sense that it allows for the Ricci tensor to be bounded from below by any constant
(instead of zero, as in the original formulation by Hawking), as long as one adapts
the mean curvature bound on the initial Cauchy surface accordingly (see also [15,
Thm. 1.2]).

We assume all Cauchy surfaces to be smooth and spacelike. Otherwise we follow
the conventions of [38].

Definition 5.1 ([38, Def. 5]) Let (M, g) be a (n + 1)-dimensional spactime, � ⊂ M
a Cauchy surface and κ, β ∈ R be constants. We say that (M, g, �) satisfies the
Cosmological Comparison Condition CCC(κ, β) if

1. Ric(v, v) ≥ nκ for all v ∈ T M with g(v, v) = −1,
2. The mean curvature H of � satisfies H ≤ β.

Theorem 5.2 Let (M, g) be a globally hyperbolic (n+1)-dimensional spacetime and
� ⊂ M a Cauchy hypersurface with areag(�) < ∞. Assume that M and � satisfy
the CCC(κ, β) with β < 0 and κ ≥ − (β/n)2, or with κ > 0 and any β ∈ R. Then
volg(I+(�)) < ∞ and (M, g) is volume incomplete.

A special case of � having finite area is when � is compact. Note also that if we
only assume that the projection onto � (following the flow of the normal vector field)
of I+(x) has finite area for some x ∈ I+(�), we can still conclude that volg(I+(x)) <

∞.
The proof proceeds by comparing the volumes in our spacetime (M, g) to volumes

in the model space Mκ,β = (aκ,β, bκ,β)×Nκ,β . Here Nκ,β is one of the three Rieman-
nian n-dimensional simply connected spaces of constant curvature (Sn, Rn , or Hn).
We equip Mκ,β with the Lorentzian metric

gκ,β := −dt2 + f 2κ,βhκ,β

where hκ,β is the Riemannian metric on Nκ,β and

fκ,β : (aκ,β, bκ,β) → R.

The manifold Nκ,β , the (possibly infinite) interval (aκ,β, bκ,β) and the function fκ,β

are determined by the values of κ, β as in [18, Table 1].

Proof of Theorem 5.2 Case β < 0, κ = −(β/n)2. In this case

fκ,β = exp
(
−√|κ|t

)
,

and in particular fκ,β is defined for all t ∈ R. For any B ⊂ { fκ,β = 0}, [38, Eqns. (6)
& (15)] imply that

volκ,β B+
B (t) = areaκ,β B

fκ,β(0)n

∫ t

0
fκ,β(s)nds = areaκ,β B

2n
√|κ|

(
1 − exp

(
−√|κ|t

))
,
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where B+
B (t) = (0, t) × B. Then by [38, Thm. 9]

volg I
+(�) = lim

t→∞ volg B
+
�(t) ≤ areag �

areaκ,β B
lim
t→∞ volκ,β B+

B (t) = areag �

2n
√|κ| < ∞,

where B+
�(t) is the image of (0, t) under the flow of the geodesics normal to �.

All other cases By [18, Thm. 4.2], (M, g) every future-directed timelike geodesic
starting from � is incomplete, with uniform bound on the lengths equal to bκ,β < ∞.
Therefore

I+(�) = B+
�(bκ,β),

and by [38, Thm. 9]

volg B
+
�(bκ,β) ≤ areag �

areaκ,β B
lim

t→bκ,β

volκ,β B+
B (t) < ∞,

where finiteness follows from a straightforward computation for each possible fκ,β

(see [18, Table 1]).
End of proof Having proven that volg(I+(�)) < ∞, it directly follows that

volg(I+(x)) < ∞ for all x ∈ � ∪ I+(�) (in fact even for all x ∈ M). Since globally
hyperbolic spacetimes are chronological, it follows by Theorem 2.1 that (M, g) is
future volume incomplete. ��

Note that the proof works for arbitrary κ , β, as long as there is a uniform bound
on the length of all geodesics starting from �. Therefore, in the class of spacetimes
satisfying areag(�) < ∞ and the CCC(κ, β), a uniform bound on the length of all
geodesics is strictly stronger than volume incompleteness. In particular, in the equality
case κ = − (β/n)2 with β < 0, there is a volume singularity but not all geodesics
are incomplete: this is precisely what happens in the corresponding model space of
constant curvature. In fact, it is a result ofAndersson andGalloway [2] that this happens
only in the model space.

Theorem 5.3 (Rigidity, [2, Prop. 3.4]) Let (M, g) be a globally hyperbolic (n + 1)-
dimensional spacetime and � ⊂ M a compact Cauchy hypersurface. Assume that M
and � satisfy the CCC(κ, β) with β ≤ 0 and κ = − (β/n)2. If all geodesics normal
to � are future-complete, then (J+(�), g) is isometric to [0,∞) × � with metric

−dt2 + exp
(
−2

√|κ|t
)
h,

where h is a Riemannian metric on �, constant in t .

Note that [2, Prop. 3.4] is formulated for β = −n (and time-reversed), but the proof
can easily be adapted to arbitrary β < 0 (cf. [19]). The theorem was also generalized
to Bakry–Émery spacetimes by Galloway and Woolgar [15].

We believe that a volume singularity theorem with integral curvature bounds is
also very much within reach by adapting geodesic versions due to Paeng [31] and
Graf et al. [21], both of which employ volume comparison techniques in their proof.
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Integral curvature bounds areweaker andmore realistic than pointwise ones, especially
when taking into account quantum properties of matter. In the future, we hope to
prove volume singularity theorems with even weaker assumptions, in regimes where
geodesic incompleteness might be too much to ask for.

6 The cosmological volume function

Andersson et al. [3] introduced the notion of regular cosmological time function for
Big Bang spacetimes where all geodesics are past incomplete. It is defined as the
supremum of the lengths of past directed causal curves starting at each point, and the
adjective regular refers to the same properties 1 and 2 as inDefinition 6.1 below. Earlier
and independently, Wald and Yip [39] had defined a similar time function, but without
the regularity property. In this section, we propose a similar construction to that of
Andersson, Galloway, and Howard for spacetimes with a past volume singularity. Our
notion also bears resemblance to the volume functions of Geroch [17], Hawking and
Sachs [24] and Dieckmann [13], but while they use an auxiliary finite measure, we
use the canonical volume measure volg induced by the spacetime metric. Also Major
et al. [26] have a similar construction of a time function measuring the volume “from
a Cauchy surface", while we measure the volume “from the Big Bang".

Definition 6.1 The cosmological volume function is defined as

τ(x) := volg(I
−(x)).

We say that τ is regular if additionally

1. τ(x) < ∞ for all x ∈ M ,
2. τ → 0 along all past-inextendible causal curves.

Notice that there are spacetimes, such as Example 2.3, which have a regular cos-
mological volume function but not a regular cosmological time function in the sense
of [3]. Both classes of functions share some key properties:

Lemma 6.2 Every regular cosmological volume function τ is continuous and
monotonously increasing along every future-directed causal curve.

At the end of this section, we prove that τ is even strictly increasing, hence a time
function.

Proof By transitivity of the chronological relation, we have that τ is increasing along
every future-directed causal curve. Lower semicontinuity of τ follows from [13, Prop.
1.4], up to the caveat that the measures in [13] are finite, while volg is not (in general).
However, by regularity of τ , volg(I−(x)) is finite for every x ∈ M , which is all that
is really needed.

By [13, Prop. 1.6], τ is upper semicontinuous if and only if (M, g) is past reflecting.
Thus our strategy is to assume that (M, g) is not past reflecting, and to use this to
construct a past-inextendible timelike curve γ̃ along which τ remains bounded below,
contradicting Definition 6.1. The construction of γ̃ is similar to that in [3, Prop. 2.1].
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For (M, g) to not be past reflecting means that there exist points x, y ∈ M such
that I+(y) ⊂ I+(x) but I−(x) �⊂ I−(y). Let (yn)n be a sequence of points in I+(y)
that converges to y. Fix an auxiliary complete Riemannian metric h on M . Since
I+(y) ⊂ I+(x), we may choose a sequence of past-directed causal curves (γn)n
from yn to x parametrized by h-arclength. Applying the limit curve theorem around
y, we obtain a past-directed limit curve γ starting at γ (0) = y (up to passing to a
subsequence, again denoted by γn). The curve γ cannot reach x , since this would
contradict our assumption that I−(x) �⊂ I−(y). Hence γ must be past-inextendible,
and in particular parametrized on [0,∞).

The last step is to construct an inextendible past-directed timelike curve γ̃ ⊂ I+(γ ).
It then follows that τ(γ̃ ) ≥ τ(x) > 0 by the following argument: Let s ∈ [0,∞).
Then there exists a ts ∈ [0,∞) such that γ (ts) ∈ I−(γ̃ (s)). But then, by definition
of γ and openness of I−(γ̃ (s)), there exists an n ∈ N such that γn(ts) ∈ I−(γ̃ (s)).
Since γn(ts) ∈ I+(x), it follows that τ(γ̃ (s)) ≥ τ(γn(ts)) ≥ τ(x).

It remains to construct γ̃ . Let yl := γ (l), and choose a z1 ∈ I+(y1). By
openness of I−(z1), and since y2 ∈ I−(y1) ⊂ I−(z1), we may choose z2 ∈
I−(z1) ∩ I+(y2) ∩ Bh

1/2(y2). Iterating this procedure, we obtain a sequence (zl)l
such that zl ∈ I−(zl−1) ∩ I+(yl) ∩ Bh

1/l(yl). Then we construct γ̃ by joining
all the past-directed timelike segments going from zl to zl+1. Moreover, by con-
struction liml→∞ zl = liml→∞ yl , which does not exist, and hence γ̃ is indeed
past-inextendible.

Summarizing, we have shown that if (M, g) is not past-reflecting, then the cos-
mological volume function τ is not regular. Thus if τ is regular, (M, g) must be
past-reflecting, and then by [13, Prop. 1.6], τ is continuous. ��

We have seen that regularity of τ implies that (M, g) must be past-reflecting. Next
we show that it even forces (M, g) to be globally hyperbolic. This is an interesting
fact on its own, and will later aid us in proving that τ is a time function.

Theorem 6.3 If (M, g) admits a regular cosmological volume function τ , then (M, g)
is globally hyperbolic.

Proof First we show that (M, g) is causal. Assume it is not, meaning there is a closed
causal curve γ : I → M . Then, by the push-up lemma, I−(γ (s)) = I−(γ (t)) for
all s, t ∈ I . It follows that s �→ τ(γ (s)) is the constant function, contradicting
regularity of τ . Hence (M, g) is causal, and it suffices to prove that the space of causal
curves between any two points is compact in the C0-topology in order to show global
hyperbolicity [29, Thm. 3.79].

Let y, z ∈ M be two points such that y ∈ J−(z), and let (γn)n denote any sequence
of past-directed causal curves starting at z and ending at y. By the limit curve theorem
[27, Thm. 2.53], there exists a limit curve γ∞ starting at z, which either ends at y or
is past-inextendible. In the latter case, since by Lemma 6.2 τ is continuous and τ ◦ γn
is bounded below by τ(y) for every n, also τ ◦ γ∞ is bounded below by τ(y) > 0.
This contradicts regularity of τ , so we conclude that the limit curve γ∞ ends at y. We
have thus shown that the space of causal curves between y and z is compact in the
C0-topology, and conclude that (M, g) is globally hyperbolic. ��
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Theorem 6.4 Every regular cosmological volume function τ is a time function. More-
over, the level sets of τ are future Cauchy surfaces. If volg(I−(γ (s))) → ∞ along all
inextendible future directed causal curves γ , then the level sets are Cauchy surfaces.

Proof Suppose that x and y are connected by a future-directed causal curve γ :
[0, 1] → M . Then I−(x) ⊆ I−(y) and hence τ(x) ≤ τ(y). By Lemma 2.2,
τ(x) = τ(y) is only possible if I−(x) = I−(y). Since by Theorem 6.3 the spacetime
(M, g) is globally hyperbolic, by the causal ladder [4, Fig. 3.3] it must be distinguish-
ing, and therefore I−(x) = I−(y) implies x = y. This concludes the proof that τ is a
time function, since it follows that τ must be strictly increasing along (non-constant)
future-directed causal curves, and continuity of τ was already established in Lemma
6.2.

Next we show that the level sets St := {x ∈ M | τ(x) = t} are future Cauchy
surfaces (cf. [3, Prop. 2.2]). Since τ is a time function, every St is closed, acausal
and edgeless. Moreover, since τ → 0 along every past-inextendible causal curve, it
follows that D+(St ) = {x ∈ M | τ(x) ≥ t} = J+(St ), which by definition means
that St is future Cauchy. Here D+(St ) is the future domain of dependence, meaning
the set of all points x ∈ M such that every past-inextendible causal curve starting at x
intersects St .

Finally, if volg(I−(γ (s))) → ∞ along all inextendible future directed causal curves
γ , then for every such γ , τ(γ (s)) → ∞ toward the future. Since by regularity of τ also
τ(γ (s)) → 0 toward the past, it follows by continuity of τ that every inextendible γ

intersects every level set St , and hence every St is a Cauchy surface (for 0 < t < ∞).
��

In fact, it suffices for the last statement to hold that lim volg(I−(γ (s))) attains the
same (possibly finite) value for all γ , but unless the spacetime is very symmetric, this
is only to be expected if the limit value is actually infinity. In any case, the fact that
the level sets are future Cauchy, combined with [6, Thm. 1.9 & Rem. 3.6], yields the
following corollary.

Corollary 6.5 Let (M, g) be a spacetime with regular cosmological volume function
τ . Then the causal relation on (M, g) is (globally) encoded in the null distance d̂τ .

The null distance was defined by Sormani and Vega [37] as a way to canonically
metrize the topology on a spacetime with a time function (see also [1, 33]). The depen-
dence on the choice of time function is undesired, and therefore the cosmological time
function of Andersson, Galloway, and Howard is often cited as a canonical choice. We
have thus shown that the cosmological volume function is a viable alternative. Another
way to see this is the following: The null distance d̂τ is a conformal invariant. Thus, in
order to uniquely recover the spacetime (M, g) from (M, d̂τ , τ ), it is necessary that τ
contains the information about the conformal factor. Since the conformal factor can be
equivalently given by specifying the Lorentzian length functional Lg or the canonical
volume element volg , both the cosmological time function or the cosmological volume
function are well suited for the task.

Finally, note that Andersson, Galloway, and Howard also show that their regular
cosmological time functions are locally Lipschitz continuous, with well-defined first
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and second derivative at almost every point [3, Thm. 1.2(v)]. It remains open if this is
also true for regular cosmological volume functions. One case where it is likely to hold
is when the spacetime obeys lower curvature bounds (i.e. energy conditions), since
those imply bounds on the growth of volumes [38] (see also proof of Theorem 5.2).
The differentiability of volume time functions in the traditional sense (i.e. for auxilary
finite measures) has been investigated by Chruściel, Grant, and Minguzzi, who also
provided an example where what we here call the cosmological volume function is
not C1, but still Lipschitz [9, Fig. 1].

7 Conclusions

We have introduced the new notion of volume incompleteness as an alternative to
geodesic incompleteness. The physical motivation is that if the future of a spacetime
point has volume less than a Planck volume, thenwe expect quantum effects to become
important for any prediction that an observer at that point would make, signaling a
breakdown of General Relativity.

We have seen that the Schwarzschild and (non-maximally extended, sub-extremal)
Kerr spacetimes are volume incomplete. More generally, volume singularities have
the desirable feature that they are automatically hidden by a horizon. This leads us to
conjecture that all singularities in realistic spacetimes should be volume singularities,
as a new alternative way to formalize Penrose’s cosmic censorship conjecture. In terms
of future research, a very promising direction is laid down by Conjecture 4.3, that is,
to prove a volume version of Penrose’s singularity theorem which then automatically
predicts the existence of an event horizon.

In the cosmological setting, we have argued that volume incompleteness should be
seen as weaker than geodesic incompleteness, and have proven a basic Hawking-style
singularity theorem. This opens the door to new singularity theorems in scenarios
where proving geodesic incompleteness might not be possible. We have also defined
a new type of time function for volume incomplete cosmological spacetimes, which
is well-behaved in some situations where previous notions were not. Applications of
the latter include the study of the null distance.
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10. Chruściel, P.T.: Conformal boundary extensions of Lorentzianmanifolds. J. Differ. Geom. 84(1), 19–44
(2010)

11. Costa e Silva, I. P., Flores, J. L., Herrera, J.: A novel notion of null infinity for c-boundaries and
generalized black holes. J. High Energy Phys. 9, 123 (2018)

12. Costa e Silva, I. P., Flores, J. L., Herrera, J.: Hausdorff closed limits and the c-boundary II: null infinity
and black holes. Classical Quantum Gravity 36(18), 185007 (2019)

13. Dieckmann, J.: Volume functions in general relativity. Gen. Relat. Gr. 20(9), 859–867 (1988)
14. Galloway, G.J., Ling, E., Sbierski, J.: Timelike completeness as an obstruction to C0-extensions.

Commun. Math. Phys. 359(3), 937–949 (2018)
15. Galloway, G.J., Woolgar, E.: Cosmological singularities in Bakry-Émery spacetimes. J. Geom. Phys.

86, 359–369 (2014)
16. Geroch, R.: What is a singularity in general relativity? Ann. Phys. 48(3), 526–540 (1968)
17. Geroch, R.: Domain of dependence. J. Math. Phys. 11, 437–449 (1970)
18. Graf, M.: Volume comparison for C1,1-metrics. Ann. Global Anal. Geom. 50(3), 209–235 (2016)
19. Graf, M.: Singularity theorems for C1-Lorentzian metrics. Commun. Math. Phys. 378(2), 1417–1450

(2020)
20. Graf, M., Grant, J.D.E., Kunzinger, M., Steinbauer, R.: The Hawking-Penrose singularity theorem for

C1,1-Lorentzian metrics. Commun. Math. Phys. 360(3), 1009–1042 (2018)
21. Graf, M., Kontou, E.-A., Ohanyan, A., Schinnerl, B.: Hawking-type singularity theorems for world-

volume energy inequalities (2022). arXiv:2209.04347 [gr-qc]
22. Graf, M., Ling, E.: Maximizers in Lipschitz spacetimes are either timelike or null. Class. Quant. Gr.

35(8), 087001 (2018)
23. Hawking, S.W.: The occurrence of singularities in cosmology. I. Proc. R. Soc. Lond. Ser. A 294,

511–521 (1966)
24. Hawking, S.W., Sachs, R.K.: Causally continuous spacetimes. Commun. Math. Phys. 35, 287–296

(1974)
25. Landsman, K.: Foundations of General Relativity. Radboud University Press, From Einstein to Black

Holes, Nijmegen (2021)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2209.04347


71 Page 20 of 20 L. García-Heveling

26. Major, S., Rideout, D., Surya, S.: On Recovering continuum topology from a causal set. J. Math. Phys.
48, 032501 (2007)

27. Minguzzi, E.: Lorentzian causality theory. Living Rev. Rel. 22(1), 3 (2019)
28. Minguzzi, E.: A gravitational collapse singularity theorem consistent with black hole evaporation. Lett.

Math. Phys. 110(9), 2383–2396 (2020)
29. Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes. In: Recent developments in pseudo-

Riemannian geometry. ESI Lect. Math. Phys. Eur. Math. Soc., Zürich, (2008), pp. 299–358
30. Müller, O.: Horizons. Adv. Theor. Math. Phys. 19(4), 747–760 (2015)
31. Paeng, S.-H.: Hawking’s singularity theorem under a bounded integral norm of Ricci curvature. J.

Geom. Phys. 183, 11 (2023)
32. Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)
33. Sakovich, A., Sormani, C.: The null distance encodes causality. J. Math. Phys. 64(1), 012502 (2023)
34. Sbierski, J.: On the proof of the C0-inextendibility of the Schwarzschild spacetime. J. Phys. Conf. Ser.

968, 012012 (2018)
35. Sbierski, J.: On holonomy singularities in general relativity and theC0,1

loc -inextendibility of space-times.
Duke Math. J. 171(14), 2881–2942 (2022)

36. Senovilla, J.M.M.: Ultra-massive spacetimes. Port. Math. 80(1/2), 133–155 (2023)
37. Sormani, C., Vega, C.: Null distance on a spacetime. Class. Quant. Gr. 33(8), 085001 (2016)
38. Treude, J.-H., Grant, J.D.E.: Volume comparison for hypersurfaces in Lorentzian manifolds and sin-

gularity theorems. Ann. Global Anal. Geom. 43(3), 233–251 (2013)
39. Wald, R.M., Yip, P.: On the existence of simultaneous synchronous coordinates in spacetimes with

spacelike singularities. J. Math. Phys. 22(11), 2659–2665 (1981)
40. Wheeler, J.: On the definition of black holes: bridging the gap between black holes and singularities.

Ann. Phys. 455, 169356 (2023)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Volume singularities in general relativity
	Abstract
	1 Introduction
	2 General properties and examples of volume singularities
	3 The singularities in Schwarzschild, Reissner–Nordström and Kerr spacetimes
	4 General black hole spacetimes
	5 The cosmological volume singularity theorem
	6 The cosmological volume function
	7 Conclusions
	Acknowledgements
	References




