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Abstract
A simple condition is given that is sufficient to determine whether a measure that is
absolutely continuous with respect to a Gaußian measure on the space of distributions
is reflection positive. It readily generalises conventional lattice results to an abstract
setting, enabling the construction of many reflection positive measures that are not
supported on lattices.
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1 Introduction

Reflection positivity is one of the pillars of Euclidean quantum field theories. It is
readily established for wide sets of Gaußian measures but for non-Gaußian measures,
the author feels that—with the exception of measures supported on lattices—there
is no general framework that can be easily applied. For measures that are absolutely
continuous with respect to Gaußianmeasures, that is fixed in this article by introducing
the set of θ -splitting functions, which can work as densities to directly generalise the
latticemethods used, e.g. in [1]. The result is very simple:Given a θ -invariant reflection
positive Gaußian measure and applying a measurable density to it that is θ -splitting,
the outcome is a reflection positive measure.

In general, physically relevant measures in d ≥ 3 dimensions are typically not
absolutely continuous with respect to the Gaußian free field measure. Hence, one still
needs to find ways to regularise the models of interest in order to apply the theorems
in this work. However, reflection positivity is preserved by the weak convergence of
measures (see, e.g. [6]), since it implies the pointwise convergence of corresponding
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characteristic functions. Hence, any limit point of a sequence of regularised models
corresponding to reflection positive measures is reflection positive as well.

2 Preliminaries

A locally convex space is a real topological vector space whose topology is induced
by some family of seminorms. The dual of a locally convex space X equipped with
the strong dual topology will be denoted by X∗

β . Inner products denoted with round
brackets (·, ·) are taken to be R-bilinear. Throughout this work, d ∈ N is fixed. We
shall work on the spaces

D := D(Rd+1) and D+ := D(R>0 × R
d). (1)

of real test functions with their canonical LF topologies [2, p. 131–133]. Let us denote
the corresponding continuous restriction map by π+ : D∗

β → (D+)∗β (see, e.g. [2, p.
245–246]). D and D+ as well as their strong duals D∗

β and (D+)∗β are complete [2,
Theorem 13.1], barrelled [2, p. 347], nuclear spaces [2, p. 530] (hence, reflexive by
[3, p. 147]) that are also Lusin spaces [4, p. 128] and thus in particular Souslin spaces.

Theorem 2.1 [5, Lemma 6.4.2.(ii), Lemma 6.6.4] Let X and Y be Souslin spaces.
Then, the Borel σ -algebra of X × Y coincides with the σ -algebra generated by all
products of Borel sets in X and Y , respectively.

In this work, a measure is taken to be a countably additive nonnegative function
on a σ -algebra. A Borel measure is thus a measure on a Borel σ -algebra and a
Radon measure is a Borel measure that is inner regular over compact sets. A centred
Gaußian measure on a locally convex space X is a Borel probability measure with
the property that the pushforward measures by elements of X∗ are centred Gaußians
or the Dirac delta measure δ0 at the origin. One can in general consider non-Radon
Gaußian measures on locally convex spaces. However, every Borel measure on the
spacesD∗

β, (D+)∗β and countable products thereof is automatically Radon [5, Theorem
7.4.3].

A subset A ⊆ X is μ-measurable with respect to a measure μ on some σ -algebra
A on X if it is in the Lebesgue completion Aμ of A with respect to μ. Similarly, a
function f : X → [−∞,∞] is μ-measurable if the preimage of every Borel subset
of [−∞,∞] is in Aμ. Likewise, f : X → [−∞,∞] is μ-integrable if f is μ-
measurable and

∫ | f |dμ < ∞. A subset A ⊆ X is μ-negligible if it is a subset of
some B ∈ A with μ(B) = 0.

The pushforward of a Borel measure μ on a Hausdorff space X by a continuous
function f : X → Y to a Hausdorff space Y will be denoted by f∗μ. It is automati-
cally a Borel measure on Y and if μ is Radon, so is f∗μ [5, Theorem 9.1.1.(i)]. The
convolution of two Borel measures μ and ν on a Souslin locally convex space X is
given by μ ∗ ν = s∗(μ × ν) where s : X × X → X , (x, y) �→ x + y. This is well
defined by Theorem 2.1.
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To every finite Borel measure μ on a locally convex space X , we associate its
characteristic function μ̂ : X∗ → C with

φ �→
∫

X
exp [iφ (x)] dμ (x) . (2)

It is well known that two Radon measures on a locally convex space are equal if and
only if their characteristic functions are equal [5, Lemma 7.13.5]. Moreover, if μ is a
centred Gaußian measure on X , its characteristic function is given by

μ̂ (φ) = exp

[

−1

2
(φ, φ)L2(μ)

]

(3)

for all φ ∈ X∗ [6, Theorem 2.2.4, Corollary 2.2.5].

Theorem 2.2 Let f : X → Y be a continuous map from a Souslin space X to a
Hausdorff space Y . Then, for every Borel set B ⊆ X, f (B) is measurable by any
Radon measure on Y .

Proof Since every Borel subset of a Souslin space is Souslin [4, p. 96 Theorem 3],
this follows directly from [6, Theorem A.3.15]. 	

Corollary 2.3 Let p : X → Y be a continuous map from a Souslin space X to a
Hausdorff space Y and μ a Radon measure on X. Then, every function f : Y →
[−∞,∞] with the property that f ◦ p is μ-measurable is (p∗μ)-measurable.

Proof First, note that p(X) is (p∗μ)-measurable by the preceeding theorem. Now,
letting B ⊂ [−∞,∞] be a Borel set, we have

p−1
(
f −1 (B)

)
= A ∪ N1 (4)

for some Borel subset A ⊆ X and some μ-negligible set N1 ⊆ X . For brevity, let
N2 = Y\p(X), which is clearly (p∗μ)-negligible. Then,

f −1 (B) =
[
f −1 (B) ∩ p(X)

]
∪

[
f −1 (B) ∩ N2

]

= p
(
p−1

(
f −1 (B)

))
∪

[
f −1 (B) ∩ N2

]

= p (A) ∪ p (N1) ∪
[
f −1 (B) ∩ N2

]
.

(5)

p(A) is (p∗μ)-measurable by the preceeding theorem and p(N1) as well as f −1(B)∩
N2 are clearly (p∗μ)-negligible. 	


We close this section by a simple lemma on positive semidefinite matrices.

Lemma 2.4 [7, Satz VII] Let N ∈ N and A, B be positive semidefinite N×N matrices
with respect to the standard inner product on C

N . Then, the matrix (Am,n Bm,n)
N
m,n=1

given by component-wise multiplication is positive semidefinite.
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Proof Diagonalising B by a unitary matrix U , we obtain

Bm,n =
N∑

a=1

U∗
m,aλaUn,a (6)

for some nonnegative numbers λ1, . . . , λN . Hence, for any c ∈ C
N ,

N∑

m,n,a,b=1

c∗
m Am,n Bm,ncn =

N∑

a=1

λa

N∑

m,n=1

(
Um,acm

)∗
Am,n

(
Un,acn

) ≥ 0. (7)

	


3 Reflection positivity

On R
d+1, we define the operation of time reflection which we shall denote by

θ : R
d+1 → R

d+1, (x1, . . . , xd+1) �→ (−x1, x2, . . . , xd+1). By a slight abuse of
notation, θ extends continuously and linearly to D and D∗

β in the obvious way.

Definition 3.1 [1, p. 90] Let μ be a finite Borel measure on D∗
β . Then, μ is reflection

positive if for every sequence (φn)n∈N in D+, every sequence (cn)n∈N of complex
numbers and every N ∈ N,

N∑

m,n=1

c∗
mμ̂ (φm − θφn) cn ≥ 0. (8)

Furthermore, μ is θ -invariant if θ∗μ = μ.

To begin with, let us recapitulate two of the most important (in the author’s opinion)
theorems on reflection positive measures along with their proofs.

Theorem 3.2 [1, Theorem 6.2.3] Let μ be a finite, reflection positive Borel measure
on D∗

β with the property that for every φ ∈ D+ the function R → C, t �→ μ̂(tφ) has
an analytic continuation to some neighbourhood of zero in the complex plane. Then,
(φ, θφ)L2(μ) ≥ 0 for all φ ∈ D+.

Proof For λ > 0 letψ1 = λφ,ψ2 = 0, c1 = λ−1 and c2 = −λ−1. Sinceμ is reflection
positive, we obtain

0 ≤
2∑

m,n=1

c∗
mμ̂ (ψm − θψn) cn

= 1

λ2

∫

D∗
β

(exp [iλT (φ − θφ)] − exp [−iλT (φ)] − exp [−iλT (θφ)] + 1) dμ (T ) .

(9)

By a classical theorem of Lukacs [8, p. 192], the moment-generating functions of
the pushforward measures φ∗μ, (θφ)∗μ and (φ − θφ)∗μ exist as integrals in some
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neighbourhood of zero. Consequently, we can take λ → 0 under the integral and
obtain

lim
λ→0

2∑

m,n=1

c∗
mμ̂ (ψm − θψn) cn =

∫

D∗
β

T (φ) T (θφ) dμ (T ) = 〈φ, θφ〉L2(μ) ≥ 0.

(10)
	


Theorem 3.3 [1, Theorem 6.2.2] Let μ be a θ -invariant Gaußian measure on D∗
β .

Then, μ is reflection positive if and only if (φ, θφ)L2(μ) ≥ 0 for all φ ∈ D+.
Proof ⇒: This is clear by the preceeding theorem.

⇐: Let (·, ·) denote the inner product in L2(μ) and let (φn)n∈N be a sequence in
D+, (cn)n∈N a sequence of complex numbers and N ∈ N. Then, θ -invariance implies

N∑

m,n=1

c∗
mμ̂ (ψm − θψn) cn =

N∑

m,n=1

c∗
mμ̂ (φm) exp [(φm, θφn)] μ̂ (φn) cn . (11)

Since μ̂ is real, the statement follows if (exp [(φm, θφn)])Nm,n=1 is a positive semidef-
inite matrix. Since (φm, θφn) = (θφm, φn) by the θ -invariance of μ, θ extends to a
positive semidefinite linear operator on the complexification of span{φn : n ∈ N}.
Consequently, ((φm, θφn))

N
m,n=1 is positive semidefinite. By decomposing the expo-

nential as a power series, the claim now follows from Lemma 2.4. 	

The main theorem of this article depends on the following simple property of a

function with respect to θ .

Definition 3.4 A function F : D∗
β → [−∞,∞] is called θ -splitting if there exists a

function G : (D+)∗β → [−∞,∞] such that

F = G ◦ π+ + G ◦ π+ ◦ θ. (12)

Theorem 3.5 Let μ be a θ -invariant reflection positive centred Gaußian measure on
D∗

β . Then, for any μ-measurable θ -splitting function F : D∗
β → [−∞,∞] with

exp ◦ F ∈ L1(μ), the finite Borel measure

ω = exp [F] · μ (13)

is reflection positive.

Proof Define

j : D∗
β → (D+)∗β × (D+)∗β T �→ (π+T , π+θT ) . (14)

j is clearly continuous such that the pushforward measure j∗μ is a Radon measure ν

on (D+)∗β × (D+)∗β . Now, let

F2 : (D+)∗β × (D+)∗β → R (T , K ) �→ G (T ) + G (K ) . (15)
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Then, for every T ∈ D∗
β ,

(F2 ◦ j) (T ) = G (π+T ) + G (π+θT ) = F (T ) , (16)

such that F2 is ν-measurable by Corollary 2.3. Turning to reflection positivity, let
(φn)n∈N be a sequence in D+ and note that

ω̂ (φm − θφn) =
∫

D∗
β

exp [iT (φm) − iT (θφn) + F (T )] dμ (T )

=
∫

D∗
β

exp [i j (T ) (φm,−φn) + (F2 ◦ j) (T )] dμ (T )

=
∫

((D+)∗β)2
exp [iT (φm) − i K (φn) + F2 (T , K )] dν (T , K )

=
∫

((D+)∗β)2
exp [iT (φm) − i K (φn) + G (T ) + G (K )] dν (T , K ) .

(17)
The above expression suggests to find a disintegration of ν that separates the T and K
variables. To that end, recall that μ is Gaußian such that for any φ,ψ ∈ D+, we have

ν̂ (φ, ψ) =
∫

D∗
β

exp [iT (φ) + iT (θψ)] dμ (T ) = exp

[

−1

2
‖φ + θψ‖2L2(μ)

]

.

(18)
Furthermore, by Theorem 3.2, Cauchy–Schwartz and the θ -invariance of μ,

0 ≤ 〈φ, θφ〉L2(μ) ≤ 〈φ, φ〉L2(μ) . (19)

Moreover, since (D+)∗β is a reflexive, nuclear, barrelled space, there exist uniquely
determined Radon Gaussian measures P and Q on (D+)∗β with

P̂ (φ) = exp

[

−1

2
〈φ, φ〉L2(μ) + 1

2
〈φ, θφ〉L2(μ)

]

, (20)

Q̂ (φ) = exp

[

−1

2
〈φ, θφ〉L2(μ)

]

(21)

by Minlos theorem [5, Theorem 7.13.9]. Defining the diagonal map

� : (D+)∗β → (D+)∗β × (D+)∗β T �→ (T , T ) (22)

it is clear that

ν̂ (φ, ψ) = P̂ (φ) P̂ (ψ) Q̂ (φ + ψ) = P̂ (φ) P̂ (ψ) �̂∗Q (φ,ψ) (23)

for all φ,ψ ∈ D+. Equivalently, ν = (P × P) ∗ (�∗Q) by Theorem 2.1. Hence, it is
straightforward to verify that
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ω̂ (φm − θφn) =
∫

((D+)∗β )3
exp

[
i (T + L) (φm) − i (K + L) (φn)

+G (T + L) + G (K + L)
]
d (P × P × Q) (T , K , L) . (24)

Now, the functions

Hm (L) =
∫

(D+)∗β
exp [−i (T + L) (φm) + G (T + L)] dP (T ) (25)

for m ∈ N are well-defined Q-almost everywhere. Thus, using Fubini, we arrive at

N∑

m,n=1

c∗
mω̂ (φm − θφn) cn =

∫

(D+)∗β

∣
∣
∣
∣
∣

N∑

n=1

cnHn (L)

∣
∣
∣
∣
∣

2

dQ (L) ≥ 0 (26)

for any N ∈ N and any sequence (cn)n∈N of complex numbers. 	


This theorem is strikingly simple and can be applied very easily. Let us call a locally
convex space X together with a continuous, linear map j : X → D∗

β a θ -model space,
if there is a continuous, linear operator (slight abuse of terminology) θ : X → X such
that θ ◦ j = j ◦ θ .

Example 3.6 Examples of such θ -model spaces are, e.g. function spaces on θ -
symmetric lattice subsets of R

d+1, D or the space of Schwartz functions on R
d+1

together with their respective usual injections into D∗
β .

Remark 3.7 The above examples cover most of what is used in the literature on
Euclidean interacting quantum field theories and are also Souslin spaces.

We may now extend the definition of a θ -splitting function to θ -model spaces.

Definition 3.8 A function F : X → [−∞,∞] on a θ -model space (X , j) is called
θ -splitting if there exists a function G : X → [−∞,∞] such that

F = G ◦ π X+ + G ◦ π X+ ◦ θ (27)

Here, π X+ : X → X/ j−1(ker π+) is the canonical quotient map.

Corollary 3.9 Let (X , j) be a Souslin θ -model space. Furthermore, letμ be a Gaußian
measure on X with the property that j∗μ is θ -invariant and reflection positive. Then,
for anyμ-measurable θ -splitting function F : X → [−∞,∞]with exp◦F ∈ L1(μ),
the finite Borel measure

ω = j∗ (exp [F] · μ) (28)

is reflection positive.
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Proof Let G and π X+ be given as in Definition 3.8 and define the function G2 :
(D+)∗β → [−∞,∞] given by

T �→
{
G(π X+ x) if ∃ x ∈ X : T = π+ j x

0 else.
(29)

To see that G2 is well defined, note that if π+ j x = π+ j y for some x, y ∈ X , we have
that there is some T ∈ ker π+ with j(x− y) = T , i.e. x− y ∈ j−1(ker π+) = kerπ X+ .
Now, define the function F2 : D∗

β → [−∞,∞] given by

T �→ G2 (π+T ) + G2 (π+θT ) . (30)

Clearly, F2 ◦ j = F such that F2 is ( j∗μ)-measurable by Corollary 2.3. Consequently,
ω = exp[F2] · ( j∗μ) and Theorem 3.5 applies. 	


We finish this article by a simple example.

Example 3.10 Let S denote the space of Schwartz functions on R
d+1. Define j : S →

D∗
β by j(φ)(ψ) = ∫

Rd+1 ψφ for all φ ∈ S and ψ ∈ D. Moreover, let μ be a Gaußian
measure on S with the property that j∗μ is θ -invariant and reflection positive. Note
that this excludes the Gaußian measure on the space S∗ of tempered distributions
modelling the Klein-Gordon field. However, regularised versions of that measure will
work, see, e.g. [9, Example 6.2]. Furthermore, let F : S → R, φ �→ −λ

∫
Rd+1 φ4 for

some λ > 0. Then,

F(φ) = −λ

∫

R>0×Rd
φ4 − λ

∫

R>0×Rd
(θφ)4 (31)

provides a θ -splitting of F .
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