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Abstract
E7+1/2 is an intermediate Lie algebra filling a hole between E7 and E8 in the Deligne–
Cvitanović exceptional series. It was found independently by Mathur, Muhki, Sen
in the classification of 2d RCFTs via modular linear differential equations (MLDE)
and by Deligne, Cohen, de Man in representation theory. In this paper we propose
some new vertex operator algebras (VOA) associated with E7+1/2 and give some
useful information at small levels. We conjecture that the affine VOA (E7+1/2)k is
rational if and only if the level k is at most 5, and provide some evidence from the
viewpoint of MLDE. We propose a conjectural Weyl dimension formula for infinitely
many irreducible representations of E7+1/2, which generates almost all irreducible
representations of E7+1/2 with level k ≤ 4. More concretely, we propose the affine
VOA E7+1/2 at level 2 and the rank-two instanton VOA associated with E7+1/2. We
compute the VOA characters and provide some coset constructions. These generalize
the previous works of Kawasetsu for affine VOA E7+1/2 at level 1 and of Arakawa–
Kawasetsu at level −5. We then predict the conformal weights of affine VOA E7+1/2
at level 3, 4, 5.
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1 Introduction

The Deligne–Cvitanović exceptional series of simple Lie algebras [15, 18]

A1 ⊂ A2 ⊂ G2 ⊂ D4 ⊂ F4 ⊂ E6 ⊂ E7 ⊂ E8 (1.1)

appears constantly in representation theory, number theory and theoretical physics.
These simple Lie algebras g exhibit many remarkable properties. For example, the
decomposition of the tensor products of the adjoint representations have some uniform
expressions such as

Sym2g = 1 + Y2 + Y ∗
2 , (1.2)

and the irreducible components in the decompositions have some miraculous dimen-
sion formulas (often called Deligne dimension formulas) as rational functions of the
dual Coxeter number h∨. For instance,

dim g = 2(5h∨ − 6)(h∨ + 1)

h∨ + 6
, (1.3)

dim Y2 = 5h∨2(2h∨ + 3)(5h∨ − 6)

(h∨ + 6)(h∨ + 12)
, (1.4)

dim Y ∗
2 = 270h∨2(h∨ + 1)(h∨ − 2)

(h∨ + 6)2(h∨ + 12)
. (1.5)
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In 1996, Cohen and deMan [13] found in total 25 such dimension formulas as rational
functions ofh∨. Interestingly, theynoticed that forh∨ = 24, all the dimension formulas
produce integer values such as dim g = 190, dim Y2 = 15504 and dim Y ∗

2 = 2640.
However, there exists no simple Lie algebra with such dual Coxeter number 24 and
dimension 190. This exotic algebra, now known as intermediate Lie algebra E7+1/2,
was eventually constructed by Landsberg and Manivel [38] using sextonions which is
a six dimensional algebra lying between the quaternions H and octonions O [40, 49].
The name of this algebra comes from the fact that h∨ = 24 is intermediate between
the dual Coxeter number 18 of E7 and 30 of E8, and that in many senses this algebra
fills the hole between E7 and E8 in the Deligne–Cvitanović exceptional series. The
construction is inspired from the observation that the last five Lie algebras in (1.1)
have h∨/3 − 2 as 0, 1, 2, 4, 8 which are precisely the dimensions of 0,R,C,H,O.

The existence of E7+1/2 was actually discovered earlier in physics. In 1988,
Mathur, Mukhi and Sen [41] used second order holomorphic modular linear differen-
tial equations (also known as Kaneko–Zagier equation [31]) to classify the 2d rational
conformal field theories (RCFT) with two characters (up to degeneracy), which is
equivalent to classify certain C2-cofinite rational VOAs of CFT type. They found that
there are ten possibilities in total, eight of which correspond exactly to the level 1 affine
VOA (g)1, where g belongs to the Deligne–Cvitanović exceptional series (1.1). For the
remaining two possibilities, one corresponds to the Galois shuffle of the well-known
Lee–Yang minimal model M(5, 2), while the other mysterious one has central charge
c = 38/5, non-vacuum conformal weight h = 4/5 and dimension (spin-1 currents)
190. It was observed in [41] that the well-known central charge formula for WZW
model (g)k

c = k dim(g)

k + h∨ (1.6)

still holds if taking h∨ = 24, dim g = 190 and level k = 1. For this reason, the
last case can be regarded as the affine VOA E7+1/2 at level 1. Such VOA was later
rigorously constructed by Kawasetsu [34] as an intermediate vertex subalgebra of the
lattice VOA VE8 . This suggests that the notion that E7+1/2 fills a hole between E7 and
E8 in the Deligne–Cvitanović exceptional series can be extended to vertex algebras.

The other known VOA associated with E7+1/2 is the affine VOA E7+1/2 at level
−5, which is an extension of the quasi-lisse affine VOA (g)−h∨/6−1 for the Deligne–
Cvitanović exceptional series studied by Arakawa and Kawasetsu [2]. These VOAs
originated in the context of 4d SCFT/2d VOA correspondence proposed by Beem,
Lemos, Liendo, Peelaers, Rastelli and van Rees [6]. The VOA (g)−h∨/6−1 for g =
A1, A2, D4, E6, E7, E8 describes the Schur sector of some special 4dN = 2 SCFTs
called rank-one Hg theories [5]. For example, the rank-one HD4 theory is just the
well-known 4d N = 2 SU (2) gauge theory with four fundamental matters which
has superconformal symmetry and also global symmetry D4. These 4d rank-one Hg

SCFTs have natural rank-n generalization, whose Higgs branch of vacua is the n
centered g-instanton moduli space (see e.g. [9]). Therefore, these 4d N = 2 SCFTs
are also called the instanton SCFTs.We follow the name to call theseVOAs of negative
levels with (possible) 4d SCFT origin as instanton VOAs. The vacuum character of
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these VOAs are expected to coincide with the Schur indices of the corresponding
4d SCFTs (if they exist), and the associated varieties of the VOAs are expected to
coincide with the Higgs branches of the SCFTs [5], which for the Class S type are also
the Moore-Tachikawa symplectic varieties [42]. See more discussions on the Class S
type in [1, 7].

Two natural questions arise. First, do there exist more VOAs associated with inter-
mediateLie algebra E7+1/2 besides the twoknownones at levels 1 and−5?Second, can
one find more irreducible representations of E7+1/2 besides those found by Cohen–de
Man [13] and Landsberg–Manivel [38]?We give affirmative answers to both questions
in this paper. For the first question, there are two directions of generalizations: from
affine VOA at level 1 to higher level k, and from rank-one instanton VOA to higher
rank-n. Recently, the (conjectural) characters of affine VOA (E7+1/2)2 were success-
fully obtained by a Hecke operation in [21, Section 7.1]. These characters provide
very useful information for our study. Though we still could not compute the char-
acters of affine VOA (E7+1/2)k for k > 2, we can predict all conformal weights and
rationality of these VOAs. For the rank-2 VOA, we can compute its vacuum character
from MLDE, and also for the rank-3, its vacuum character to a certain extent.

The basic assumptionwemake is that there is a one-to-one correspondence between
the E7+1/2 irreducible representations and the E7 irreducible representations. In
other words, E7+1/2 irreducible representations are marked by E7 Dynkin labels.
This assumption is true for level 1 and 2 representations, as at these two levels, the
affine characters have been constructed by Hecke operators or MLDEs. Under this
assumption, we predict the quadratic Casimir invariants of all E7+1/2 irreducible rep-
resentations (see (4.7)) and the dimensions of infinitely many of them (see Sect. 5).
The latter is owing to certain generalizations of the familiar Weyl dimension formula.

Some of our main results can be summarized as follows:

Conjecture 1.1 There exists rational affine VOA (E7+1/2)k at level k if and only if
1 ≤ k ≤ 5. For these levels, (E7+1/2)k has central charge 190k/(24 + k), and the
number r(k) of its characters coincides with that of the affine VOA (E7)k , and the
characters satisfy a MLDE with the same index l(k) as the one for (E7)k . Moreover,
the characters of VOA (E7+1/2)2 are defined in (3.3), and the conformal weights of
VOAs (E7+1/2)3, (E7+1/2)4 and (E7+1/2)5 are formulated in (4.10), (4.11) and (4.12),
respectively. The values of r(k) and l(k) are as follows

k 1 2 3 4 5

r(k) 2 6 12 25 44
l(k) 0 0 20 160 636

The possible irrationality of VOA (E7+1/2)k for k > 5 (if they exist) was pointed
out to us by Tomoyuki Arakawa and Kazuya Kawasetsu from the viewpoint of W -
algebras. We will provide new evidence from the viewpoint of MLDE in Sect. 4.4.

Coset constructions are very useful in the study of rational VOAs. We find two
coset constructions involving affine VOA (E7+1/2)2 which we summarize as follows.
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Conjecture 1.2 The following isomorphisms between the coset VOAs and the Virasoro
minimal models hold:

(E8)2

(E7+1/2)2
= Meff(13, 4) and

(E7+1/2)1 ⊗ (E7+1/2)1

(E7+1/2)2
= M(D6,A12)(13, 10).

(1.7)
Here Meff(13, 4) denotes the effective description of minimal model M(13, 4) with
effective central charge 23/26, and M(D6,A12)(13, 10) denotes the (D6, A12)-type non-
diagonal modular invariant of minimal model M(13, 10).

The notion of the effective description of minimal models and the non-diagonal modu-
lar invariants will be elaborated later. These new cosets may remind one of the familiar
maverick cosets found in 90s [20] such as

(E8)2

(E7)2
= (A1)2 ⊗ M(5, 4) and

(E7)1 ⊗ (E7)1

(E7)2
= M(5, 4). (1.8)

It is worth mentioning that the concept of intermediate Lie algebras is not new. In
fact, the intermediate Lie algebras An−1/2, Bn−1/2, Cn−1/2, Dn−1/2 and their highest-
weight representations have been extensively studied by Shtepin for the last three
decades [44–47]. A characteristic feature of these intermediate Lie algebras is the
multiplicity-free filtration. Shtepin also found some Weyl-type character formulas
and Weyl-type dimension formulas for the representations of these intermediate Lie
algebras. The intermediate Lie algebra E7+1/2 seems to be more difficult than these
classical types, in the meantime more extraordinary as it fills the hole in the Deligne–
Cvitanović exceptional series, thus share many similar remarkable properties like the
Deligne dimension formulas.

Besides, E7+1/2 is closely related to W -algebras. For example, the characters of
affine VOA (E7+1/2)1 coincide with the Ramond twisted irreducible characters of W -
algebras W−5(E8, fθ ) where fθ is the minimal nilpotent element associated with the
highest root θ [35]. Such a nice coincidence might persist to higher levels. Moreover,
E7+1/2 seems to be also related to a 12 dimensional self-duality equation found by
Devchand [19]. We expect to see more applications of E7+1/2 in the future.

2 Known results about E7+1/2

2.1 Affine VOA E7+1/2 at level 1

The affine VOA (E7+1/2)1 was constructed as an intermediate vertex subalgebra of
lattice VOA VE8 by Kawasetsu [34]. We review the known features of this VOA
here. Historically, for level 1 Deligne–Cvitanović exceptional series (1.1), there are
two characters χ0 and χh as the solution of second order MLDE found in the Mathur–
Muhki–Sen classification [41], see also [33] for the rigorous classification. The second
order holomorphic MLDE, i.e., the Kaneko–Zagier equation [31] is

[D2 + λE4]χ = 0. (2.1)
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The central charge, the non-vacuumconformalweight, and the coefficient in theMLDE
can be expressed uniformly by the dual Coxeter number h∨ as

c = 2(5h∨ − 6)

(h∨ + 6)
, h = h∨

h∨ + 6
, and λ = (6 − 5h∨)(6 + 7h∨)

144(6 + h∨)2
. (2.2)

With the dual Coxeter number h∨ = 24 for E7+1/2, the second order MLDE for
the characters of affine VOA (E7+1/2)1 becomes

[
D2 − 551

3600
E4

]
χ = 0. (2.3)

The two solutions of the MLDE have the following Fourier expansions

χ0 = q− 19
60 (1 + 190q + 2831q2 + 22306q3 + 129276q4

+ 611724q5 + 2511667q6 + · · · ), (2.4)

χ 4
5

= q
29
60 (57 + 1102q + 9367q2 + 57362q3 + 280459q4

+ 1181838q5 + 4435740q6 + · · · ). (2.5)

They compute the graded dimensions of VOA (E7+1/2)1 and its intermediate module
[34]. A nice coset construction of VOA (E7+1/2)1 proved in [34] is

(E7+1/2)1 = (E7)1

M(5, 3)
= (E7)1 ⊗ Meff(5, 3). (2.6)

Here Meff(5, 3) denotes the effective description of minimal model M(5, 3), which
has effective central charge 3/5.1 The character relations of this coset were given
in [34, Equation 7,8], which allows one to obtain the flavored characters, i.e., to
express the Fourier coefficients of the character q-series as linear combinations of E7
irreducible representations. Benefited from our new results, we are able to express the
flavored characters of VOA (E7+1/2)1 by E7+1/2 irreducible representations in (5.53)
and (5.54).

Another simple coset involving VOA (E7+1/2)1 is

(E7+1/2)1 = (E8)1

(LY )1
. (2.8)

1 The effective description Meff (p, q) of non-unitary minimal model M(p, q), i.e., p − q > 1, makes
a shuffle among the vacuum and non-vacuum conformal primaries, while keep the characters unchanged.
The effective central charge and effective conformal weights are given by

ceff = 1 − 6

pq
, and heffr ,s = (pr − qs)2 − 1

4pq
, 1 ≤ r < q, 1 ≤ s < p, pr > qs. (2.7)
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Here (LY )1 is the Lee–Yang model at level 1, which is the effective minimal model
Meff(5, 2). It has central charge 2/5 and non-vacuumconformalweight 1/5, contrast to
the original minimal model M(5, 2)which has central charge−22/5 and non-vacuum
conformal weight −1/5. The character relation of coset (2.8) is simply

χ
(E7+1/2)1
0 χ

(LY )1
0 + χ

(E7+1/2)1
4
5

χ
(LY )1
1
5

= χ
(E8)1
0 . (2.9)

The above character relation canbe refinedby turningon theg fugacities, i.e., extending
modular forms to Jacobi forms. Naively, one might suspect the left hand side has one
less elliptic fugacities than the right hand side. However, this can be remedied by
refining the (LY )1 characters to the supercharacter of Lie superalgebra B0,1 (i.e.,
osp(1|2), see e.g. [14]) at level 1, which can also regarded as the affine characters of
intermediate Lie algebra A1/2 at level 1.

Recently, the two characters of (E7+1/2)1 were realized by Harvey and Wu as
the T19 Hecke image of the Lee–Yang model [29, Section 5.2], see also [30]. One
consequence of the Hecke relation is that each character of (E7+1/2)1 can be written
as a degree 19 homogeneous polynomial of the two Lee–Yang characters [33]:

χ0 = φ19
1 + 171φ14

1 φ5
2 + 247φ9

1φ
10
2 − 57φ4

1φ
15
2 , (2.10)

χ 4
5

= φ19
2 − 171φ14

2 φ5
1 + 247φ9

2φ
10
1 + 57φ4

2φ
15
1 , (2.11)

where φ1, φ2 are the Roger–Ramanujan functions

φ1 = q− 1
60

∞∏
n=0

1

(1 − q5n+1)(1 − q5n+4)
, φ2 = q

11
60

∞∏
n=0

1

(1 − q5n+2)(1 − q5n+3)
.

(2.12)

From the leading Fourier coefficients of the non-vacuum character (2.5), we can
recognize the fundamental representation of E7+1/2 is 57. The fundamental and adjoint
representations of E7+1/2 decompose under the embedding E7 ⊂ E7+1/2 as

57 = 56 + 1, (2.13)

190 = 133 + 56 + 1. (2.14)

It is easy to check both sides have the same indices (defined in (3.2)) as 6 and 24,
respectively.

2.2 Affine VOA E7+1/2 at level−5

The affine VOA (E7+1/2)−5 is the analogy of one-instanton VOA (g)−h∨/6−1 for the
Deligne–Cvitanović exceptional series. These non-unitary and irrational VOAs come
from the study on 4d SCFT/VOA correspondence [5, 6, 8]. They have negative central
charge c = −2 − 2h∨. The vacuum characters of these VOAs satisfy a different
uniform second order modular linear differential equation [2]

123



13 Page 8 of 33 K. Lee et al.

[
D2 − (h∨ + 1)(h∨ − 1)

144
E4

]
χvac = 0. (2.15)

Notice the coefficient of E4 here is different from the one for the level 1 series discussed
in the last subsection. The MLDE (2.15) does not have the second rational solution
when h∨ is a multiple of 6. Instead it has a Log solution besides the vacuum character,
see e.g., [5, Appendix C]. The associated variety of VOA (g)−h∨/6−1 for the Deligne–
Cvitanović exceptional series has been studied in [3].

When h∨ = 24, the vacuum character of the VOA (E7+1/2)−5 is expected to satisfy
the second order MLDE [

D2 − 575

144
E4

]
χvac = 0. (2.16)

It is easy to solve the vacuum character as

χvac = q
25
12 (1+190q +15695q2 +783010q3 +27319455q4 +725679750q5 +· · · ).

(2.17)
As shown in [32, 33], this is a quasi-modular form with exact expression

χvac = E ′
4

240η10
P3

( E6

�1/2

)
− η2Q3

( E6

�1/2

)
, (2.18)

where P3(x) = x3 + 904x , Q3(x) = x2 + 442 [32, Theorem 2]. Benefited from the
study on irreducible representations of E7+1/2 which will be discussed later, we are
able to determine the flavored vacuum character (up to the prefactor) as

1 + 190q + (15504+190+1)q2 + (749360 + 2 · 15504 + 2640 + 2)q3

+ (24732110+1770496+749360+17765 + 3 · 15504 + 2640 + 3 · 190 + 2)q4

+ . . . . (2.19)

We observe that all representations appearing here are bosonic, a term which will be
defined in Sect. 5.

Interestingly, for g = D4, E6, E7, the VOA (g)−h∨/6−1 was recently suggested
to connect with the curved βγ system on the cone over the complex Grassmannian
Gr(2, 4), the complex orthogonal Grassmannian OG+(5, 10) and the complex Cayley
plane OP

2, respectively [22]. In particular, the E6 case is related to the pure spinor
formulation of 10 dimensional superstring theory. It is intriguing to consider whether
the VOA (E7+1/2)−5 has analogous connections.

3 Affine VOA E7+1/2 at level 2

How can we define affine VOA (E7+1/2)k for k > 1? Assuming the general formulas
for the central charge and conformal weights of the affine VOA generated by a simple
Lie algebra still hold, then for affine VOA (E7+1/2)k , we have
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ck = 190k

24 + k
, and hλ = C2(Rλ)

2(24 + k)
. (3.1)

Here C2(Rλ) is an analogy of quadratic Casimir invariant for simple Lie algebras.
Different from the case of simple Lie algebras, C2(Rλ) is no longer defined by 〈λ +
2ρ, λ〉 in general, even if one introduces a modified Weyl vector ρ for E7+1/2, e.g.,
(4.4).

Nevertheless, we can still determine the quadratic Casimir invariant for some rep-
resentations of E7+1/2 from VOA characters. For example, from the non-vacuum
conformal weight 4

5 of VOA (E7+1/2)1, we derive C2(57) = 40. Recall the index I
of a representation R is related to the quadratic Casimir invariant by

I (R) = |R| × C2(R)

2 dim(g)
. (3.2)

See e.g., textbook [20, p 512]. It follows that I (57) = 6. For the adjoint representation,
we have that I (190) = h∨ = 24 and thus C2(190) = 48.

The characters of affine VOA E7+1/2 at level 2 were recently realized as the T19
Hecke image of minimal model M(13, 2) [21, Section 7.1]. We record the Fourier
coefficients in the following:

χ0 = q− 95
156 (1 + 190q + 18335q2 + 448210q3 + 6264585q4 + 62455698q5 + . . . ),

χ 10
13

= q
25
156 (57 + 10830q + 321575q2 + 4979330q3 + 53025295q4 + . . . ),

χ 12
13

= q
49
156 (190 + 20596q + 537890q2 + 7761500q3 + 79066030q4 + . . . ),

χ 18
13

= q
121
156 (1045 + 48070q + 910955q2 + 10983690q3 + 99272435q4 + . . . ),

χ 19
13

= q
133
156 (2640 + 109155q + 1979610q2 + 23245740q3 + 206319480q4 + . . . ),

χ 21
13

= q
157
156 (1520 + 51395q + 860890q2 + 9606457q3 + 82347710q4 + . . . ).

(3.3)

There are several strong pieces of evidence that these are indeed the characters of
(E7+1/2)2. We summarize as follows.

(1) All Fourier coefficients are positive integers. This can be proved from the definition
of Hecke operators and the property of minimal model characters.

(2) The spin-1 currents, i.e., the subleading Fourier coefficient of the vacuum character
χ0 is 190, which equals the dimension of E7+1/2.

(3) All initial Fourier coefficients appear as dimensions of irreducible representations
predicted by Cohen and de Man in [13]. Indeed, 1045, 2640, 1520 are the dimen-
sions of representations −Y ∗

4 , Y ∗
2 , Y ∗

3 in the notion of [13], respectively.
(4) All six primaries have the correct conformal weights. In fact, the quadratic Casimir

invariants of 1045, 2640, 1520 can be computed as 72, 76, 84, respectively, by the
following unique decomposition as E7 irreducible representations:

1045 = 912 + 133, (3.4)

2640 = 1539 + 912 + 133 + 56, (3.5)
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1520 = 1463 + 56 + 1. (3.6)

As the embedding E7 ⊂ E7+1/2 is maximal, the two sides of a representation
decomposition should have the same indices. Then from the known indices of E7
representations, one can compute the indices of the above E7+1/2 representations,
and then the quadratic Casimir invariants by (3.2).

Moreover, all six (or less) conformal weights of affine VOA (g)2 for g belonging
to the Deligne–Cvitanović exceptional series (1.1) including E7+1/2 can be obtained
from some simple rational functions of h∨. We collect the results in (8.4) in Appendix
I.

It was found in [21, Section 7.1] that the six characters in (3.3) satisfy a 6th order
MLDE:

[D6 + μ1E4D4 + μ2E6D3 + μ3E2
4 D2 + μ4E4E6D + (μ5E3

4 + μ6E2
6)]χ = 0,

μ1 = −1225

1872
, μ2 = 25205

36504
, μ3 = −1349885

3504384
, μ4 = 36703535

296120448

μ5 = − 57214927525

4804258148352
, μ6 = − 3824637775

450399201408
.

(3.7)
As a byproduct, we find the uniform 6th order holomorphic MLDE satisfied by the
level 2 affine characters associated with the Deligne–Cvitanović exceptional series
(1.1) including E7+1/2. All coefficients of the MLDE are written as some rational
functions of the dual Coxeter number. These results are collected in Appendix I.

We newly find two coset constructions involving VOA (E7+1/2)2. Firstly, we have2

(E8)2

(E7+1/2)2
= Meff(13, 4). (3.8)

Both sides have central charge 23
26 . Denote g = E7+1/2, we find the following precise

character relations. Since M(13, 4) and Meff(13, 4) have the same characters, here we
use the M(13, 4) primary labels:

χ
(E8)2
0 = χ1,3χ

(g)2
0 + χ1,5χ

(g)2
10
13

+ χ1,7χ
(g)2
12
13

+ χ1,11χ
(g)2
18
13

+ χ1,9χ
(g)2
19
13

+ χ1,1χ
(g)2
21
13

,

χ
(E8)2
15
16

= χ2,3χ
(g)2
0 + χ2,5χ

(g)2
10
13

+ χ2,7χ
(g)2
12
13

+ χ2,11χ
(g)2
18
13

+ χ2,9χ
(g)2
19
13

+ χ2,1χ
(g)2
21
13

,

χ
(E8)2
3
2

= χ3,3χ
(g)2
0 + χ3,5χ

(g)2
10
13

+ χ3,7χ
(g)2
12
13

+ χ3,11χ
(g)2
18
13

+ χ3,9χ
(g)2
19
13

+ χ3,1χ
(g)2
21
13

.

(3.9)

The three characters of (E8)2 correspond to 1, 248, 3875 irreducible representations,
respectively.

2 This coset is also found in an unpublished draft of Arakawa, Creutzig and Kawasetsu in a more general
context. We thank Creutzig for pointing out to us.
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The second coset construction is more intricate. Consider the following block-
diagonal modular invariant of M(13, 10).We choose the following extended primaries

χ1,i = χ
M(13,10)
1,i + χ

M(13,10)
1,13−i , i = 1, 2, . . . , 6, with weights 0,

1

13
,
7

13
,
18

13
,
34

13
,
55

13
, (3.10)

χ3,i = χ
M(13,10)
3,i + χ

M(13,10)
3,13−i , i = 1, 2, . . . , 6, with weights

8

5
,
44

65
,
9

65
, − 1

65
,
14

65
,
54

65
, (3.11)

χ5,i = χ
M(13,10)
5,i , i = 1, 2, . . . , 6, with weights

29

5
,
252

65
,
152

65
,
77

65
,
27

65
,
2

65
. (3.12)

They form the (D6, A12)-type modular invariant of M(13, 10):

Z(D6,A12) =
6∑

i=1

(|χ1,i |2 + |χ3,i |2 + 2|χ5,i |2). (3.13)

The classification of modular invariants of minimal models is a classical result (see
e.g., [20]). We then propose the coset

(E7+1/2)1 ⊗ (E7+1/2)1

(E7+1/2)2
= M(D6,A12)(13, 10). (3.14)

Both sides have central charge 38
65 .

3 We find the following precise character relations

χ
(g)1
0 ⊗ χ

(g)1
0 =χ1,1χ

(g)2
0 − χ1,6χ

(g)2
10
13

+ χ1,2χ
(g)2
12
13

− χ1,5χ
(g)2
18
13

+ χ1,3χ
(g)2
19
13

+ χ1,4χ
(g)2
21
13

, (3.15)

χ
(g)1
0 ⊗ χ

(g)1
4
5

= − χ5,1χ
(g)2
0 + χ5,6χ

(g)2
10
13

− χ5,2χ
(g)2
12
13

+ χ5,5χ
(g)2
18
13

− χ5,3χ
(g)2
19
13

− χ5,4χ
(g)2
21
13

,

(3.16)

χ
(g)1
4
5

⊗ χ
(g)1
4
5

=χ3,1χ
(g)2
0 − χ3,6χ

(g)2
10
13

+ χ3,2χ
(g)2
12
13

− χ3,5χ
(g)2
18
13

+ χ3,3χ
(g)2
19
13

+ χ3,4χ
(g)2
21
13

. (3.17)

Note the degeneracy 2 is consistent on the two sides of the coset relation. The negative
signs in the above character relations reflect the novelty of intermediate Lie algebra.

We remark that unlike the level 1 case, the two cosets we find for (E7+1/2)2 do not
give us explicit formulas for its six characters. It would be ideal if one can express
(E7+1/2)2 characters by familiar VOA characters, for example, by realizing the coset
(E7+1/2)2/(E7)2 as a product of some minimal models and WZW models. Besides,
the (E7+1/2)1 characters are known to have a certain Nahm sum expression [34,
Equation 9,10]. It would be interesting to find whether (E7+1/2)2 characters allow
similar expressions.

4 Affine VOA E7+1/2 at higher levels

An imminent question is how to define affine VOA (E7+1/2)k for level k > 2. Albeit
numerous trying, currently we do not know how to define it for level 3 or compute

3 The coset on the left hand side has the same central charge as M(13, 10) was recently noticed in [12, p
56].
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the characters. The Hecke operator approach unfortunately ceases to work for level
k > 2. Nevertheless, we can still make some reasonable speculations on the general
structure of affine VOA (E7+1/2)k . Our main inspiration comes from the similarity
between affine VOAs (E7+1/2)k and (E7)k for k = 1, 2.

It is well-known the number r(k) of characters of affine VOA (E7)k are generated
by the series

∑
r(t)xt = 1

(1 − x)2(1 − x2)3(1 − x3)2(1 − x4)

= 1 + 2x + 6x2 + 12x3 + 25x4 + 44x5 + 79x6 + O(x7). (4.1)

The characters of affine VOA (E7)k have good modularity, i.e., they form a weakly
holomorphic vector-valuedmodular form of degree r(k) andweight zero. In themean-
time, they must satisfy a MLDE of degree r(k) with a non-negative integer index l(k)

which counts the number of poles of the coefficients φi below.
The general form of a degree d MLDE is

[
Dd +

d−1∑
i=0

φi (τ )Di

]
χ(τ) = 0, (4.2)

where φi is ameromorphicmodular form of weight 2d−2i on SL(2,Z). Assume there
are in total d number of independent solutions in the form qαi

∑∞
j=0 ai j q j , q = e2π iτ .

Then the theory of MLDE yields that the index l is related to the degree d and the
exponents αi of the solutions by a Wronskian analysis [41]

l

6
= d(d − 1)

12
−

d∑
i=1

αi , where αi = − c

24
+ hi . (4.3)

See more review in, e.g., [21, Section 2.2]. It turns out that the index l of MLDE is
very useful information to study the structure of VOAs (E7+1/2)k , which eventually
leads to our main Conjecture 1.1. To obtain such information, we first introduce the
Weyl vector for E7+1/2 and a conjectural formula of the quadratic Casimir invariants
for the irreducible representations of E7+1/2.

4.1 Weyl vector

Define the Weyl vector for E7+1/2 as the sum of all positive roots, i.e.,

ρ = ρE7 + ρ56 = 1

2

(
�+ + 1

2
56

)
. (4.4)

The half weights of 56 are chosen to have positive intersection numbers with ρE7 .
Explicitly, we have in the fundamental weight basis

ρE7 = (1, 1, 1, 1, 1, 1, 1), ρ56 = (0, 0, 0, 1, 0, 1, 1). (4.5)
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133
1

8645
2

365750
3

27664
4

1539
5

56
6

912 7

Fig. 1 Dynkin diagram of E7 and irreducible representations associated with fundamental weights

190
1

17765
2

1089270
3

38760
4

2640
5

57
6

1045 7

Fig. 2 The analogy of Dynkin diagram for E7+1/2 and irreducible representations associated with funda-
mental weights. We call the three circled nodes fermionic fundamental weights

The E7 Dynkin diagram with node ordering is in Fig. 1. It is easy to find that for
g = E7+1/2 and h∨ = 24 we have

〈ρ, ρ〉E7 = h∨ dim(g)

12
= 380. (4.6)

This means that E7+1/2 satisfies the Freudenthal–de Vries strange formula just like
simple Lie algebras.

The fundamental weights w4, w6, w7 (recall ρ56 = w4 + w6 + w7) are special. In
some sense they are like fermions, i.e., with odd nature, thus we call them fermionic
fundamental weights. We draw the Dynkin diagram of E7 and E7+1/2 and mark the
irreducible representations associated with the fundamental weights in Figs. 1 and 2.
Luckily the dimensions of all these seven irreducible representations of E7+1/2 can
be deduced from the dimension formulas in [13].

Notice that ρ = w1 +w2 +w3 + 2w4 +w5 + 2w6 + 2w7. We modify the comarks
of w4, w6 and w7 from 3, 1 and 2 to 6, 2 and 4, respectively. In this case, E7+1/2 has
comarks

a∨ = (1, 2, 3, 4, 6, 2, 2, 4),

and the summation of comarks gives the dual Coxeter number h∨ = 24.

4.2 Quadratic Casimir invariants

We introduce the set of fermionic fundamental weights as Sodd = {w4, w6, w7}. We
conjecture the following universal formula for the quadratic Casimir invariants of
irreducible representations of E7+1/2:

C2(Rλ) = 〈λ + 2ρ, λ〉E7 + 〈λ, λ〉odd, (4.7)
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where the bilinear form 〈, 〉odd is defined by the matrix

Mi j =

⎧
⎪⎨
⎪⎩

1/2, i, j ∈ Sodd, i = j,

−1/2, i, j ∈ Sodd, i �= j,

0, otherwise.

. (4.8)

More explicitly, we have

C2(Rλ)

= 2[n1(n1 + 3n2 + 4n3 + 3n4 + 2n5 + n6 + 2n7 + 23) + n2(3n2 + 8n3

+ 6n4 + 4n5 + 2n6 + 4n7 + 45) + n3(6n3 + 9n4 + 6n5 + 3n6 + 6n7 + 66)

+ n4(4n4 + 5n5 + 2n6 + 4n7 + 52) + n5(2n5 + 2n6 + 3n7 + 36)

+ n6(n6 + n7 + 19) + 2n2
7 + 34n7]. (4.9)

Clearly, the quadratic Casimir invariant C2 of arbitrary irreducible representation of
E7+1/2 is even. The conjectural formula (4.7) successfully reproduces all known C2
invariants for level 1 and 2 irreducible representations discussed in Sect. 3. It also
passes many checks for higher level irreducible representations to produce indices
that are always a multiple of 6. This entangles with the study on the representation
dimensions, which will be discussed in more detail in Sect. 5. One more evidence
is that the conjectural C2 formula (4.7) along with (4.3) results in exactly the same
index l(k) for (E7+1/2)k with the one for (E7)k for k = 3, 4, 5, which are summarized
in Conjecture 1.1. We believe these are not coincidences. We collect the quadratic
Casimir invariants for both E7 and E7+1/2 irreducible representations relevant to the
current paper in Tables 1, 2 and 3.

Naively, one may hope to have a bilinear form 〈, 〉E7+1/2 such that the above C2
(4.7) is just 〈λ + 2ρ, λ〉E7+1/2 . Unfortunately, we could not find a proper definition of
such a form.

4.3 Rational affine VOA E7+1/2 at levels 3, 4, 5

Assuming there is a one-to-one correspondence between the irreducible modules of
E7+1/2 and those of E7, and the conjectural conformal weight formula (3.1) and C2
formula (4.7) hold, we can easily compute all conformal weights. Affine VOA E7+1/2

at level 3 has central charge c = 190
9 .We predict that there exist 12 conformal primaries

and the conformal weights from small to big are

hi =
{
0,

20

27
,
8

9
,
4

3
,
38

27
,
14

9
,
5

3
,
16

9
,
56

27
,
19

9
,
20

9
,
22

9

}
. (4.10)

The conductor4 is N = 108. We do not find a proper Hecke image interpretation for
the characters of this VOA. A significant difference from affine VOA (E7)3 is that the

4 The g.c.d of the denominators of exponents αi .
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latter has a non-diagonal modular invariant, while (E7+1/2)3 apparently cannot have
since there is no integral difference among the conformal weights.

Similar with the level 2 case, all 12 (or less) conformal weights of affine VOA (g)3
for g belonging to the Deligne–Cvitanović exceptional series (1.1) and E7+1/2 can be
obtained from some simple rational functions of dual Coxeter number h∨. We collect
the results in (8.12).

Affine VOA E7+1/2 at level 4 has central charge c = 190
7 . We predict that there

exist 25 conformal primaries and the conformal weights from small to big are

hi =
{
0,

5

7
,
6

7
,
9

7
,
19

14
,
3

2
,
45

28
,
12

7
,
25

14
, 2,

57

28
,
15

7
,
31

14
,
16

7
,
33

14
,
17

7
,
5

2
,
18

7
,
19

7
,

11

4
,
39

14
,
20

7
,
20

7
, 3,

23

7

}
. (4.11)

The conductor is N = 84. Due the appearance of weight-3/2 primary, we suspect this
theory may be fermionizable and possibly can be realized as certain fermionic Hecke
image of a c = 10

7 fermionic RCFT [39]. We remark that affine VOA (E6)4 allows
fermionization [4] and can be realized by fermionic Hecke operator [39, Section 4.5].

Affine VOA E7+1/2 at level 5 has central charge c = 950
29 . We predict that there

exist 44 conformal primaries and the conformal weights from small to big are

hi =
{
0,

20

29
,
24

29
,
36

29
,
38

29
,
42

29
,
45

29
,
48

29
,
50

29
,
56

29
,
57

29
,
60

29
,
62

29
,
64

29
,
66

29
,
68

29
,
70

29
,
72

29
,

72

29
,
75

29
,
76

29
,
77

29
,
78

29
,
80

29
,
80

29
,
83

29
,
84

29
,
84

29
, 3,

88

29
,
90

29
,
92

29
,
93

29
,
94

29
,
95

29
,
96

29
,
98

29
,

99

29
,
100

29
,
102

29
,
104

29
,
105

29
,
110

29
,
120

29

}
. (4.12)

The conductor is N = 348.We expect this theory can have somenon-diagonalmodular
invariants since there exist many integral differences among the conformal weights.

4.4 Irrationality of affine VOA E7+1/2 at level higher than 5

If affine VOA E7+1/2 at level k > 5 exists and is rational, then all characters of
(E7+1/2)k should become a vector-valued modular form and satisfy a MLDE with
integer index l. However, assuming our conjectural formula (4.7) on the quadratic
Casimir invariants is correct, it is easy to compute all the exponents and then the index
l. We collect the computational results in the following table.

k 6 7 8 9

r(k) 79 128 208 318
E7 l(k) 2384 6804 19015 46056
E7+1/2 l(k) 23837

10
210906

31
152105

8
506574

11
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Clearly, these contradict with the fundamental property of MLDE that the index l
should be integers. This is strong evidence that the affine VOA E7+1/2 at level k > 5
(if it exists) is no longer rational.

5 A conjectural Weyl dimensional formula

It is an important question to determine all irreducible representations of intermedi-
ate Lie algebra E7+1/2, in particular all their dimensions. To this end, we study the
Weyl-type dimension formula for E7+1/2. Our trial Weyl dimension formulas are only
successful in two special situations, with no fermionic fundamental weight in which
case we have (5.1), and with one single fermionic fundamental weight in which case
we have (5.3). Our two dimension formulas pass many consistency checks including

(1) For arbitrary integrable λ �= 0, the dimension |Rλ| for E7+1/2 should be an
integer larger than the |Rλ| for E7.

(2) For arbitrary λ = nθ , the |Rλ| should reproduce the dimension proved by Lands-
berg and Manivel [38].

(3) The representation dimensions predicted by Cohen and de Man [13] should be
recovered.

(4) The index I for arbitrary Rλ should be a multiple of 6. This is inspired from the
fact that all E7 irreducible representations have indices as a multiple of 6.

(5) The index should remain the same in arbitrary representation decomposition
E7+1/2 ⊂ E8 and E7 ⊂ E7+1/2.

We collect all information we obtain on the E7+1/2 irreducible representations with
level k ≤ 4 in Table 1, with level k = 5 in Table 2, and with higher levels that appeared
in [13] in Table 3. As comparison, we also list the information on the correspondent
E7 irreducible representations, i.e., with the same highest weight. In these Tables, for
all E7+1/2 representations named by Cohen and de Man in [13], we have marked their
names. Except that the−Y ∗

5 interpretation of the fundamental representation 57 seems
to be new, which will be discussed in Sect. 5.2.

We introduce a new concept to distinguish two types of irreducible representations.
We first define bosonic weights of E7+1/2 as the those weights with even number
of fermionic fundamental weights, and fermionic weights as those with odd number.
Then we define bosonic representations of E7+1/2 as the irreducible representations
with bosonic highest weights, and fermionic representations as those with odd highest
weights. One can think this as the typical quantum property that two fermions can pair
as a boson. This concept turns out to be very useful when we discuss the properties
of tensor product decompositions and flavored affine characters of E7+1/2. We use
F/B to denote fermionic/bosonic representations in Tables 1, 2 and 3. Notice that
all E7+1/2 representations appearing in [13] are bosonic, except for the three negative
ones−Y ∗

4 ,−G∗ and−H∗. This is actually not surprising as all representations in [13]
come from the tensor products of adjoint representation 190 which is bosonic itself.
The general rules of tensor product decompositions will be discussed in Sect. 5.4.
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Table 1 All irreducible representations of E7 and E7+1/2 with level k ≤ 4. At each level, we order the
weights by the C2 of E7+1/2

k λ E7 C2 I/6 E7+1/2 C2 I/6 CdM [13] F/B

1 0000010 56 57
2 1 57 40 1 −Y ∗

5 F

2 1000000 133 36 3 190 48 4 g B

2 0000001 912 105
2 30 1045 72 33 −Y ∗

4 F

2 0000100 1539 56 54 2640 76 88 Y ∗
2 B

2 0000020 1463 60 55 1520 84 56 Y ∗
3 B

3 1000010 6480 133
2 270 9728 90 384 − F

3 0100000 8645 72 390 17765 96 748 X2 B

3 0001000 27664 165
2 1430 38760 112 1904 −G∗ F

3 0000011 40755 84 2145 87040 114 4352 C∗ B

3 0000110 51072 177
2 2832 102410 120 5390 − F

3 0000030 24320 189
2 1440 25840 132 1496 −H∗ F

4 2000000 7371 76 351 15504 100 680 Y2 B

4 1000001 86184 185
2 4995 150480 124 8184 − F

4 1000100 152152 96 9152 392445 128 22032 A B

4 1000020 150822 100 9450 237405 136 14161 D∗ B

4 0100010 362880 209
2 23760 812592 140 49896 − F

4 0010000 365750 108 24750 1089270 144 68796 X3 B

4 0000002 253935 112 17820 347490 152 23166 I∗ B

4 0000101 861840 229
2 61830 1896960 154 128128 − F

4 0001010 980343 116 71253 3023280 156 206856 F∗ B

4 0000021 885248 237
2 65728 − 160 − − F

4 0000200 617253 120 46410 2078505 160 145860 J B

4 0000120 915705 124 71145 − 168 − − B

4 0000040 293930 132 24310 − 184 − − B

Bold values are representations of the algebra

5.1 Irreducible representations of purely bosonic weights

For any E7+1/2 weight λ = ∑
i=1,2,3,5 niwi , ni ∈ N which we call purely bosonic

weights, we find the following Weyl dimension formula for the E7+1/2 irreducible
representations

dim(Rλ) =
∏

α∈�+〈λ + ρ, α〉∏
α∈ 1

2 56
〈λ + ρ, α〉

∏
α∈�+〈ρ, α〉∏

α∈ 1
2 56

〈ρ, α〉 . (5.1)

The 〈, 〉 is the E7 bilinear form. We check that this formula always produces integer
dimensions for purely bosonic weights. The resulting dimensions from small to large
are
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Table 2 All irreducible representations of E7 and E7+1/2 with level k = 5. We order the weights by the
C2 of E7+1/2

λ E7 C2 E7+1/2 C2 I/6 CdM [13] F/B

2000010 320112 217
2 723520 144 45696 − F

1100000 573440 114 1770496 150 116480 C B

1001000 2282280 249
2 4961280 166 361216 − F

1000011 3424256 126 11316305 168 833833 E B

0100001 3792096 265
2 10342080 176 798336 − F

1000110 4522000 261
2 13911040 174 1061632 − F

0100100 7142499 136 28139760 180 2221560 F B

1000030 2273920 273
2 − 186 − − F

0100020 7482618 140 − 188 − − B

0010010 13069056 285
2 44233728 190 3686144 − F

0001001 11316305 144 49244580 192 4146912 X4 B

0000012 9480240 293
2 − 196 − − F

0001100 14910896 297
2 44651520 198 3877632 − F

0000111 23969792 150 − 200 − − B

0001020 17926272 305
2 − 204 − − F

0000210 14220360 313
2 59991360 208 5472896 − F

0000031 12609597 156 − 210 − − B

0000130 11376288 325
2 − 220 − − F

0000050 2785552 345
2 − 240 − − F

Bold values are representations of the algebra

Table 3 Irreducible representations of E7 and E7+1/2 from [13] with level k ≥ 6. All representations here
are bosonic

k λ E7 C2 E7+1/2 C2 I/6 CdM [13]

6 3000000 238602 120 749360 156 51272 Y3
6 2000100 6619239 140 26001690 184 2098382 D

6 0200000 13728792 156 64489040 204 5770072 H

6 1010000 24386670 152 111532869 200 9783585 I

7 2100000 19046664 160 89109240 208 8129264 G

8 4000000 5248750 168 24732110 216 2343042 Y4

Bold values are representations of the algebra

1, 190, 2640, 15504, 17765, 392445, 749360, 1089270, 1770496, 2078505,

24732110, 26001690, 28139760, 64489040, 89109240, 111532869,

252065970, 605537790, 737502480, 1050163440...
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Assuming the conjectural formula (5.1) is correct, we collect the representation dimen-
sions with purely bosonic weights in Tables 1, 2 and 3. They have a perfect match
with the prediction of [13].

TheWeyl dimension formula (5.1) is in fact the analogy of the Theorem 3.2 of [37]
which applies to D4, F4 and E6, E7, E8 there.When n2 = n3 = n5 = 0, (5.1) reduces
to the proved dimension formula for nθ representations [38, Theorem 7.1], where θ is
the fundamental weight generating the adjoint representation. To be precise, we find

dim(nθ) = (2n + 23)

2393205976114133172191231

22∏
j=1

(n + j)
18∏
j=5

(n + j)
15∏
j=8

(n + j) (5.2)

It is easy to check this is equivalent to the a = 6 case of [38, Theorem 7.1].

5.2 Irreducible representations with a fermionic fundamental weight

When fermionic fundamental weights are involved, the original Weyl dimension for-
mula (5.1) does not produce integer values. In general, we did not find a proper
modified formula for the representation dimension with arbitrary weight. Neverthe-
less,when there is only one single fermionic fundamentalweight, i.e., n4+n6+n7 = 1,
n1,2,3,5 ∈ N, we do find a reasonable dimension formula that always gives positive
integer dimensions and reproduces all relevant representation dimensions predicted
by Cohen and de Man [13]. We conjecture that for any weight λ = ∑7

i=1 niwi with
n4 + n6 + n7 = 1, the representation dimension is

dim(Rλ) =
∏

α∈�+〈λ + ρ, α〉∏
α∈ 1

2 56

(〈λ + ρ, α〉 − 〈λ, α〉odd)
2

∏
α∈�+〈ρ, α〉∏

α∈ 1
2 56

〈ρ, α〉 . (5.3)

Here 〈, 〉odd is the correction bilinear form defined in (4.8), which makes 〈λ+ρ, α〉−
〈λ, α〉odd an integer for all α ∈ 1

256. Note there is an extra 2 in the denominator, which
may be related to the fermionic nature of this type of representations. We find for
λ = w6, w7, w4, the above formula produces 57, 1045 and 38760, respectively, which
are the dimensions of fundamental representation and representations −Y ∗

4 and −G∗
in [13].We believe these are not coincidences. Assuming the conjectural formula (5.3)
is correct, we collect relevant representation dimensions in Tables 1 and 2. The first
two new representations we predict are 9728 and 102410, both are level-3 fermionic
representations. For representationswithmore thanone fermionic fundamentalweight,
such as 1520, unfortunately we could not find a Weyl-type formula to reproduce their
dimensions.

As a side remark, we make an interesting observation that the fundamental repre-
sentation Rw6 = 57 can actually be regarded as a new −Y ∗

5 representation following
the name rules of Cohen–de Man [13]. The dimension of Yk = kθ representations for
the Deligne–Cvitanović exceptional series including E7+1/2 was given by Landsberg–
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Manivel in [37] (up to a negative sign) as

dim Yk = − (2k − 1)λ − 6

k!λk(λ + 6)

k∏
i=1

((i − 1)λ − 4)((i − 2)λ − 5)((i − 2)λ − 6)

(iλ − 1)((i − 1)λ − 2)
, (5.4)

where λ = −6/h∨. It was noticed in [13] that the map λ∗ = 1 − λ always induce
another Deligne dimension formula. Denote the representation induced from Yk by
such map as Y ∗

k . Then for, e.g., g = F4, E6, E7, E7+1/2, E8, we compute the Y ∗
5

representation as 0, 1, 0,−57,−248. In the same spirit, the Y ∗
6 representation are

0, 0, 0, 0,−1. Even higher Y ∗
k representations always vanish. In comparison, Y ∗

3 of
G2 is its fundamental representation 7 and Y ∗

4 of F4 is its fundamental representation
26.

As special cases of (5.3), for nθ + w6 representations, we find

dim(nθ + w6) = 1

2363195976114133172191231
23∏
j=1

(n + j)
19∏
j=5

(n + j)
15∏
j=9

(n + j). (5.5)

The first few dimensions are 57, 9728, 723520, 32248320, 990880020, 22764833280
... For nθ + w7 representations, we find

dim(nθ + w7) = 2n + 25

2393195976113133172191231

24∏
j=1

(n + j)

19∏
j=6

(n + j)
15∏

j=10

(n + j). (5.6)

The first few dimensions are 1045, 150480, 9741680, 386601930, 10759940730...
For nθ + w4 representations, we find

dim(nθ + w4) = n + 13

2363185975114133172191231

25∏
j=1

(n + j)
19∏
j=7

(n + j)
11∏
j=9

(n + j)
17∏

j=15

(n + j).

(5.7)
The first few dimensions are 38760, 4961280, 290801745, 10596418560...

5.3 Decomposition E7 ⊂ E7+1/2 ⊂ E8

First consider the decomposition E7 ⊂ E7+1/2. We make the basic assumption that

R
E7+1/2
λ = RE7

λ +
∑

C2(μ)<C2(λ), l(μ)≤l(λ)

mμ RE7
μ , 0 ≤ mμ ≤ 2. (5.8)
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Here C2 and l are the quadratic Casimir invariant and level for E7 representations. In
fact, mostly 0 ≤ mμ ≤ 1. This reflects the key feature of multiplicity-free filtration
gr−1 ⊂ gr−1/2 ⊂ gr for the classical types studied by Shtepin [44–47]. However, we
notice that for some E7+1/2 representations, there will be no possible decomposition
to E7 if restricting 0 ≤ mμ ≤ 1 for all mμ. Therefore, we release the restriction to
0 ≤ mμ ≤ 2, which turns out to have a unique solution for all E7+1/2 representations
under consideration. We believe this assumption (5.8) on the decomposition E7 ⊂
E7+1/2 should be valid at least for small and low level E7+1/2 representations.

The two sides of (5.8) are bound to have the same dimensions and indices. By
explicitly scanning all possibilities, we are able to uniquely determine lots of decom-
positions under E7 ⊂ E7+1/2: for level 1 and 2, we have presented them in (2.13),
(2.14) and (3.4)–(3.6), where all multiplicities mμ satisfy 0 ≤ mμ ≤ 1. For level 3
representations, we find the following unique decomposition:

9728 = 6480 + 1539 + 1463 + 133 + 2 · 56 + 1, (5.9)

17765 = 8645 + 6480 + 1539 + 912 + 133 + 56, (5.10)

38760 = 27664 + 8645 + 1539 + 912, (5.11)

87040 = 40755 + 27664 + 8645 + 6480 + 1539 + 2 · 912 + 133, (5.12)

102410 = 51072 + 40755 + 6480

+1539 + 1463 + 912 + 133 + 56, (5.13)

25840 = 24320 + 1463 + 56 + 1. (5.14)

Notice that themultiplicity 2 begins to appear for 9728 and 87040, which are fermionic
and bosonic representations, respectively. For level 4 representations, we have the
following unique decomposition:

15504 = 7371 + 6480 + 1463 + 133 + 56 + 1 (5.15)
150480 = 86184 + 7371 + 40755 + 8645 + 6480 + 912 + 133, (5.16)
392445 = 152152 + 86184 + 7371 + 51072 + 40755 + 27664 + 8645 + 2 · 6480

+ 1463 + 2 · 1539 + 912 + 133 + 56 (5.17)
237405 = 150822 + 24320 + 51072 + 6480 + 2 · 1463 + 1539 + 133 + 2 · 56 + 1, (5.18)
812592 = 362880 + 150822 + 152152 + 51072 + 40755 + 27664 + 8645

+ 2 · 6480 + 1463 + 2 · 1539 + 912 + 133 + 56, (5.19)
1089270 = 365750 + 362880 + 152152 + 86184 + 40755 + 2 · 27664 + 2 · 8645

+6480 + 1539 + 912, (5.20)
347490 = 253935 + 86184 + 7371, (5.21)
1896960 = 861840 + 253935 + 365750 + 152152 + 2 · 86184 + 7371 + 40755

+27664 + 8645 + 6480, (5.22)
3023280 = 980343 + 861840 + 365750 + 362880 + 152152 + 86184 + 51072

+ 2 · 40755 + 2 · 27664 + 2 · 8645 + 6480 + 1539 + 912. (5.23)
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There are three remaining irreducible representations marked in Table 1 which we
could not determine the decompositions as we do not know their dimensions. For
level 5, we can only determine the decomposition of two irreducible representations

723520 = 320112 + 150822 + 152152 + 7371 + 24320 + 51072 + 2 · 6480
+ 2 · 1463 + 1539 + 133 + 2 · 56 + 1, (5.24)

1770496 = 573440 + 362880 + 320112 + 150822 + 152152 + 86184 + 51072

+ 40755 + 8645 + 7371 + 2 · 6480 + 1463 + 1539 + 912 + 133 + 56.
(5.25)

For level 6, we can only determine the decomposition of one smallest irreducible
representation

749360 = 320112 + 238602 + 150822 + 24320 + 7371

+6480 + 1463 + 133 + 56 + 1. (5.26)

It would be desirable to understand the factor 2 appearing here and there in the
above decompositions.

For E7+1/2 ⊂ E8 decomposition, our strategy is to first look at the decomposition
E7 × SU (2) ⊂ E8 and find the E7 representation Rλ with the largest C2. Then
it is reasonable to assume that in E7+1/2 ⊂ E8 decomposition, the highest E7+1/2
representation also has weight λ. Once we know the E7 × SU (2) ⊂ E8 and all the
relevant E7 ⊂ E7+1/2 decompositions, we can do the deduction from high C2 to low
C2 one by one to find the precise E7+1/2 ⊂ E8 decomposition. Indeed, we are able to
uniquely determine the following decompositions under E7+1/2 ⊂ E8 for the first 11
irreducible representations of E8 as follows.

248 = 190 + 57 + 1, (5.27)

3875 = 2640 + 1045 + 190, (5.28)

27000 = 15504 + 9728 + 1520 + 190 + 57 + 1, (5.29)

30380 = 17765 + 9728 + 2640 + 190 + 57, (5.30)

147250 = 87040 + 38760 + 17765 + 2640 + 1045, (5.31)

779247 = 392445 + 150480 + 102410 + 87040 + 17765 + 15504

+9728 + 2640 + 1045 + 190, (5.32)

1763125 = 749360 + 723520 + 237405 + 25840 + 15504 + 9728

+1520 + 190 + 57 + 1, (5.33)

2450240 = 1089270 + 812592 + 392445 + 87040 + 38760 + 17765

+9728 + 2640, (5.34)

4096000 = 1770496 + 723520 + 812592 + 392445 + 237405 + 102410

+ 15504 + 17765 + 2 · 9728 + 2640 + 1520 + 190 + 57, (5.35)

4881384 = 2078505 + 1896960 + 347490 + 392445 + 150480 + 15504, (5.36)
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6696000 = 3023280 + 1896960 + 1089270 + 392445 + 150480 + 87040

+38760 + 17765. (5.37)

For each decomposition, we have checked that the two sides have the same indices.
We also checked the consistency with both sides decomposed to E7 irreducible rep-
resentations. It is interesting to remark that the multiplicity is not always one, e.g., for
4096000, which is the only level-5 irreducible representation of E8 among the above
11 ones.

The next E8 irreducible representation 26411008 should involve several E7+1/2
representations that we do not know the dimension or decompositions to E7, thus it is
not possible to determine its E7+1/2 ⊂ E8 decomposition based on the current data.

5.4 Tensor product decompositions

Unlike the tensor product decomposition for simple Lie algebras, we notice that for
intermediate Lie algebra E7+1/2, the tensor product decomposition of irreducible
representations often involves negative signatures. One reason for this unorthodox
phenomenon might be that there actually exist more representations of E7+1/2 than
we anticipate. However, we will not pursue this possibility in the current paper.

Some tensor product decompositions involving only bosonic representations have
been studied in [13], in particular the tensor products of (up to four) adjoint represen-
tations. For example, for 190 of E7+1/2, [13] gave

Sym2190 = 15504 + 2640 + 1, (5.38)

Alt2190 = 17765 + 2640. (5.39)

We will focus on the tensor products involving fermionic representations.
To compute the tensor product decomposition of E7+1/2 representations Rλ and Rμ,

we first convert Rλ and Rμ into E7 irreducible representations under E7 ⊂ E7+1/2,
then compute the tensor product decompositions of all pairs of E7 irreducible repre-
sentations, and finally convert the result back to E7+1/2 irreducible representations
following the same deduction method used in Sect. 5.3 for E7+1/2 ⊂ E8 decompo-
sitions. Clearly this process is unique. For example, by this method we are able to
determine the tensor product decompositions of fundamental representation 57 as

Sym257 = 1520 + 190 − 57, (5.40)

Alt257 = 2640 − 1045 + 1. (5.41)

For the fermionic representation 1045, we find its tensor product decompositions as

Sym21045 = 347490 + 392445 − 150480 − 102410 + 87040 − 38760

+17765 − 9728 + 2 · 1520 + 190 − 57, (5.42)

Alt21045 = 1089270 − 812592 + 237405 + 15504 − 25840 + 87040

− 38760 − 9728 + 2 · 2640 − 2 · 1045 + 1. (5.43)
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Moreover, we obtain the following tensor product decompositions involving the
fundamental representation 57:

190 × 57 = 9728 + 1045 + 57, (5.44)
1045 × 57 = 87040 + 17765 + 2640 + 1520 + 190 − 38760 − 9728 − 1045 − 57, (5.45)
2640 × 57 = 102410 + 38760 + 9728 + 1045 + 57 − 1520, (5.46)
1520 × 57 = 102410 + 38760 + 25840 + 9728 + 1045 + 57

−87040 − 2640 − 1520, (5.47)
9728 × 57 = 392445 + 237405 + 87040 + 17765 + 15504 + 2640 + 1520 + 190

−150480 − 38760 − 9728 − 1045, (5.48)
17765 × 57 = 812592 + 150480 + 38760 + 9728 + 1045, (5.49)
38760 × 57 = 3023280 − 1896960 + 347490 + 1089270 − 812592 + 237405

+ 392445 − 150480 − 25840 − 102410 + 2 · 87040 − 2 · 38760
+17765 − 9728 + 2640 + 1520. (5.50)

We also find the following decompositions of tensor products between an irreducible
representation and the adjoint representation

1045 × 190 = 150480 + 38760 + 9728 + 1045 + 57 − 1520, (5.51)

1520 × 190 = 237405 + 87040 + 2640 + 1520 − 38760 − 1045. (5.52)

Recall we use F/B to denote a fermionic/bosonic irreducible representation of
E7+1/2. Based on the above explicit computations, we observe that the tensor product
decomposition of type B × B or F × F has all bosonic representations with positive
signs and all fermionic ones with negative signs. On the other hand, the tensor product
decomposition of type B × F has all fermionic representations with positive signs and
all bosonic ones with negative signs. These resemble the coupling between bosons
and fermions in quantum mechanics except for the negative part.

5.5 Flavored affine characters

With the decomposition data of E7+1/2 irreducible representations in Sect. 5.3, for-
mally we are able to determine the following decomposition of the Fourier coefficients
of the flavored characters of VOA (E7+1/2)1. For the vacuum character, we find

χ0 = q− 19
60 (1 + 190q + (1 + 190 + 2640)q2

+ (1 + 17765 + 2640 + 1520 + 2 · 190)q3

+ (2 + 17765 + 87040 + 3 · 2640 + 1520 + 15504 + 3 · 190 − 1045)q4

+ (392445 + 15504 + 2 · 87040 + 3 · 17765
+ 3 · 1520 + 4 · 2640 + 6 · 190 + 2

− 38760 − 1045 − 57)q5 + (1089270 + 237405 + 2 · 392445 + 4 · 87040
+ 3 · 15504 + 5 · 17765 + 5 · 1520 − 2 · 38760 + 9 · 2640
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+ 8 · 190 + 5 − 25840

− 9728 − 3 · 1045 − 57)q6 + (1770496 + 3023280 + 1089270 + 347490

+ 2 · 237405 + 5 · 392445 + 4 · 15504 + 9 · 87040 + 10 · 17765 + 10 · 1520
+ 13 · 2640 + 15 · 190 + 5 − 150480 − 25840 − 102410 − 5 · 38760 − 2 · 9728
− 5 · 1045 − 3 · 57)q7 + . . . ). (5.53)

We have checked the above Fourier coefficients with further decomposition to E7
irreducible representations. We notice that unlike the simple Lie algebra cases, the
decomposition of the Fourier coefficients of E7+1/2 affine characters could contain
negative signs. This may be not so surprising knowing that the affine A1/2 characters
also involve negative signs, which can be viewed as the supercharacters of affine Lie
superalgebra B0,1. Similarly for the non-vacuum character, we find

χ4/5 = q
29
60 (57 + (1045 + 57)q + (1045 + 9728 + 2 · 57 − 1520)q2 + (38760 + 2 · 9728

+ 3 · 1045 + 3 · 57 − 2640 − 1520)q3 + (150480 + 102410 + 2 · 38760
+ 4 · 9728 + 5 · 1045 + 6 · 57 − 87040 − 3 · 1520 − 2640 − 190)q4 + (812592

+ 2 · 150480 + 25840 + 2 · 102410 + 5 · 38760 + 8 · 9728 + 10 · 1045 + 9 · 57
− 237405 − 2 · 87040 − 17765 − 5 · 1520 − 3 · 2640 − 190 − 1)q5 + (723520

+ 1896960 + 2 · 812592 + 5 · 150480 + 2 · 25840 + 5 · 102410 + 11 · 38760
+ 15 · 9728 + 16 · 1045 + 16 · 57 − 347490 − 2 · 237405 − 392445 − 5 · 87040
− 2 · 17765 − 11 · 1520 − 5 · 2640 − 3 · 190 − 1)q6 + . . . ). (5.54)

Interestingly, we observe that for the vacuum character χ0, all E7+1/2 representations
with positive signs are bosonic, while all those with negative signs are fermionic. By
contrast, for the non-vacuum character χ4/5, all E7+1/2 representations with positive
signs are fermionic, while all those with negative signs are bosonic.

For the flavored characters of affine VOA (E7+1/2)2, we find the following decom-
positions of their Fourier coefficients

χ0 = q− 95
156 (1 + 190q + (1 + 190 + 2640 + 15504)q2 + (1 + 3 · 190 + 1520

+ 2640 + 15504 + 2 · 17765 + 392445)q3 + . . . ), (5.55)

χ 10
13

= q
25
156 (57 + (57 + 1045 + 9728)q + (3 · 57 + 2 · 1045 + 3 · 9728 + 38760

+ 102410 + 150480 − 1520)q2 + . . . ), (5.56)

χ 12
13

= q
49
156 (190 + (1 + 190 + 2640 + 17765)q + (1 + 3 · 190 + 1520 + 2 · 2640

+ 15504 + 2 · 17765 + 87040 + 392445)q2 + . . . ), (5.57)

χ 18
13

= q
121
156 (1045 + (57 + 1045 + 9728 + 38760 − 1520)q + . . . ), (5.58)

χ 19
13

= q
133
156 (2640 + (87040 + 17765 + 1520 + 2640 + 190)q + . . . ), (5.59)

χ 21
13

= q
157
156 (1520 + (1520 + 2640 + 87040 − 38760 − 1045)q + . . . ). (5.60)
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Similar to the level one case, it is easy to see that the affine characters χ10/13 and
χ18/13 have fermionic nature, while the rest four have bosonic nature. We conjecture
that all E7+1/2 representations appearing in χ10/13 and χ18/13 with positive signs are
fermionic, while those with negative signs are bosonic. The rest four characters have
exactly the opposite property. Since these flavored characters involve negative Fourier
coefficients, they might be viewed as supercharacters of some superalgebras related
to E7+1/2.

6 Rank-n instanton VOA

In this section, we turn to an entirely different type of VOAs called instanton VOAs,
originating from the conjectural 4d SCFT/VOA correspondence [6]. In Sect. 2.2, we
have reviewed the rank-one instanton VOA (g)−h∨/6−1 for the Deligne–Cvitanović
exceptional series and E7+1/2. The higher-rank generalization, especially the rank-two
instanton VOAs, for the Deligne–Cvitanović exceptional series have been proposed
in [9]. A new feature for the higher-rank generalization is the appearance of an extra
SU (2) factor. The level for rank-n instanton VOA for g = A1, A2, D4, E6, E7, E8
was given in [9] as

(g)−n(h∨+6)/6 × SU (2)−(n−1)(6+n(h∨+6))/12. (6.1)

The central charge was given as

c = −(6n2 + n(n + 3)h∨ − 2)/2. (6.2)

The explicit VOA constructions for the rank-two cases have been studied in [9].
Remarkably, it was found that the vacuum characters of rank-two instanton VOAs
for the Deligne–Cvitanović exceptional series satisfy an uniform fourth order twisted
modular linear differential equations with all numerical coefficients as rational func-
tions of h∨. The twisted means that the coefficient functions of the MLDE are �(2)
modular forms, instead of SL(2,Z) ones as in the positive level cases and the rank-one
case. Suppose a conjectural rank-two VOA associated with E7+1/2 exists, we expect
its vacuum character should satisfy a similar MLDE. The uniform fourth order twisted
MLDE [9, Equation (5.5)] by taking h∨ = 24 gives

[
D4 − 11

6
�0,1D3 −

(
4705

288
�0,2 − 2519

288
�1,1

)
D2 −

(
965

1152
�0,3 − 28601

1152
�1,2

)
D

+ 4594825�0,4

331776
+ 18025993�1,3

82944
− 25351319�2,2

110592

]
χ = 0, (6.3)

where �r ,s(τ ) = θ2(τ )4rθ3(τ )4s + θ2(τ )4sθ3(τ )4r . From this MLDE, we solve the
vacuum character of the conjectural rank-two VOA associated with E7+1/2 as

χvac = q131/24(1 + 193q + 380q3/2 + 18914q2 + 68060q5/2 + 1299299q3

+ 6168280q7/2 + 70763062q4 + 379716500q9/2 + . . . ). (6.4)
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We also find the flavored vacuum character up to the overall factor q131/24 as

1 + (190 + χ3)q + 190χ2q3/2 + (χ5 + (190 + 1)χ3 + 15504 + 2640 + 190 + 2)q2

+ (190χ4 + (2 · 15504 + 2640 + 2)χ2)q
5/2 + (χ7 + (190 + 1)χ5 + (2 · 15504 + 2640

+ 2 · 190 + 4)χ3 + 749360 + 392445 + 15504 + 2640 + 2 · 17765 + 4 · 190 + 2)q3

+ (190χ6 + (17765 + 15504 + 3 · 190 + 1)χ4 + (1770496 + 749360 + 392445

+ 2 · 17765 + 4 · 15504 + 2 · 2640 + 4 · 190 + 3)χ2)q
7/2 + . . . . (6.5)

Here χn is the character of the n-dimensional irreducible representation of SU (2).
This follows from a general ansatz for the Schur indices of rank-two instanton SCFTs
Hg in [26, Equation (5.26)],5 or [9, Equation (5.4)]. Notice that all irreducible repre-
sentations of E7+1/2 appearing in (6.5) are bosonic. We regard the nice behavior of
the above vacuum character as a strong support that rank-two VOA associated with
E7+1/2 indeed exists.

Consider the VOAs associated with higher rank moduli space of instantons. From
the general results for instanton VOA associated to Deligne–Cvitanović exceptional
series [9], it can be expected that the rank-n instanton VOA associated with E7+1/2
has global symmetry

(E7+1/2)−5n × SU (2)−(5n+1)(n−1)/2. (6.6)

It would be interesting to determine the vacuum character of these higher-rank instan-
ton VOAs. For example, it was conjectured in [9] that the Schur indices of rank-3
Hg theories, conjecturally equivalent to the vacuum characters of rank-3 instanton
VOAs, satisfy a uniform 7th order twisted MLDE. In particular, the 7th order MLDE
for g = D4 was given in [9, Equation (6.2)]. Following a general ansatz for the Schur
indices of rank-3 Hg theories [26, Equation (5.63)], we expect the vacuum character
of rank-3 instanton VOA associated to E7+1/2 has the following Fourier expansion
(up to the overall factor)

χvac = 1 + 193q + 384q3/2 + 19485q2 + 74496q5/2 + 1430318q3 + . . . . (6.7)

The flavored vacuum character is expected to be

1 + (χ3 + 190)q + (χ4 + 190χ2)q
3/2 + (χ5 + (2 · 190 + 1)χ3 + 15504 + 2640 + 190 + 3)q2

+ (χ6 + 2(190 + 1)χ4 + (2(15504 + 2640) + 190 + 3)χ2)q
5/2 + (2χ7 + (3 · 190 + 1)χ5

+ (4 · 15504 + 3 · 2640 + 3 · 190 + 8)χ3 + 749360 + 392445 + 17765 + 1520

+ 3(15504 + 2640) + 2 · 190 + 5)q3 + . . . . (6.8)

Notice again that all irreducible representations of E7+1/2 appearing in (6.8) are
bosonic.

5 In the notations of [26, Equation (5.26) and Table 5] the three relevant representations for E7+1/2 are
C6 = 1520, C7 = 392445 and B2 = 1770496.
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It is intriguing to consider whether one can genuinely construct 4d N = 2 SCFTs
in a certain sense corresponding to the rank-n instanton VOAs associated with E7+1/2.
Theymight even allow class S constructions from (2, 0) type A5n−1 SCFTs, following
the fact that 4d rank-n instanton SCFTs of D4, E6, E7, E8 can be obtained from class
S constructions of type A2n−1, A3n−1, A4n−1, A6n−1, respectively [10]. If class S
constructions can be found, it would be interesting to compute the Schur indices,
Hall–Littlewood indices and Macdonald indices of the SCFTs following [23, 24].

7 E7+1/2 as a gauge algebra

In the rank-k instanton SCFT/VOA correspondence, we have seen the possibility of
E7+1/2 as a flavor algebra. An even more intriguing question is whether it is possible
to realize E7+1/2 as a gauge algebra. We find that if E7+1/2 can be realized as a
certain gauge algebra, then following a celebrated 3dmonopole formula of Benvenuti–
Hanany–Mekareeya [11], the 5d one E7+1/2 instanton Nekrasov partition function,
i.e., the K-theoretic one E7+1/2 instanton Hilbert series should be

ZNek
1 = vh∨−1

∞∑
n=0

v2nχ
g
nθ

= v23(1 + 190v2 + 15504v4 + 749360v6 + 24732110v8 + O(v10)). (7.1)

Herewehave factored out the center ofmotion contribution, such that the one-instanton
partition function only depends on v = eε+ but not on ε−. If turning off the E7+1/2
gauge fugacities, the character χnθ becomes the dim nθ and we obtain the following
rational expression for the infinite summation:

1

(v − v−1)46
(v±23 + 144v±21 + 7799v±19 + 217646v±17 + 3587175v±15

+ 37732006v±13 + 266204829v±11 + 1303208244v±9 + 4533843651v±7

+ 11399199625v±5 + 20952141111v±3 + 28356500429v±1), (7.2)

where v±n is a short notation for vn + v−n . Thus, this expression is palindromic
with respect to v as required by the symmetry of ZNek

1 . We regard this as strong
evidence that a 5d N = 1E7+1/2 gauge theory should exist in a certain sense. It is
intriguing to consider whether there exists a compact formula for ZNek

1 with E7+1/2
fugacities turned on. One possible approach is to use the correspondence between the
K-theoretic Nekrasov partition function and Hall–Littlewood index, see e.g., [23, 24].
Another possible approach is to generalize the derivation on the Hilbert series of the
one-instanton moduli space for simple Lie algebras in [36].

A 5d gauge theory can carry hypermultiplets in various representations. Carrying
an adjoint hypermultiplet makes it a 5d N = 1∗ E7+1/2 gauge theory, which might
allow a 6d description. We also expect a 5d N = 1 E7+1/2 gauge theory can carry at
most four fundamental 57 matters. It would be desirable to find the exact v expansion
formulas for the K-theoretic one instanton partition functions for these intermediate
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gauge theories. Many such formulas for exceptional gauge theories with matters have
been found in [17, 27].

One can even imagine E7+1/2 as a 6d gauge algebra. In particular, if a 6d (1, 0)
theory exhibits pure E7+1/2 gauge symmetry, it should be geometrically engineered
by a non-compact Calabi–Yau threefolds as certain elliptic fibration over OP1(−10).6

It seems that such base geometry could be realized by blowup down of a (−12)-curve
intersecting with two (−1)-curves which engineers a 6d (1, 0) pure E8 theory coupled
with two E-string theories. The Mori cone of the Calabi–Yau geometry for the quiver
theory has been discussed in [28, Section 4.2.7]. Besides, from [27, Section 7.4.3], we
know such 6d quiver theory does not have unity blowup equations. Thus the elliptic
genera of the self-dual strings are not easy to compute. One can further expect on
(−10+ 2n f )-curve, there may exist a 6d (1, 0) E7+1/2 gauge theory with n f number
of fundamental 57 hypermultiplets for n f = 0, 1, 2, 3, 4.

Furthermore, following a surprising conjecture of del Zotto and Lockhart on the
relation between Schur index and elliptic genus [16], we expect the one-string elliptic
genus of 6d (1, 0) pure E7+1/2 theory (if it exists) should have an exact relation with
the vacuum character of VOA (E7+1/2)−5 in (2.19).

8 The theta block associated with E7+1/2

Though we did not discuss the possible generalization of Weyl character formula or
Kac-Weyl character formula for E7+1/2, we would like to make a final remark on the
Macdonald-Weyl denominator and the theta block associated with E7+1/2, inspired
from the recent work of Gritsenko, Skoruppa and Zagier [25]. The existence of the
affineVOA (E7+1/2)k at small levels supports that the intermediate Lie algebra E7+1/2
might be extended to a generalized affine Lie algebra. We denote this conjectural
algebra by Ê7+1/2. Like affine Lie algebras (see [25]), the formal denominator

eρ̂
∏
α

(1 − e−α)mult(α)

may induce a theta block of type

ϑE7+1/2(τ, z) = η(τ)8
∏

r

ϑ(τ, 〈r , z〉E7
)

η(τ )
, τ ∈ H, z ∈ E7 ⊗ C, (8.1)

where ρ̂ is the Weyl vector of Ê7+1/2, α takes over all positive roots of Ê7+1/2, r runs
over all the 91 positive roots of E7+1/2, η is the Dedekind eta-function

η(τ) = q1/24
∞∏

n=1

(1 − qn), q = e2π iτ ,

6 This putative theory should not be confused with the 6d (1, 0) E7 gauge theory with half-hypermultiplet
1
2 56 [43], which is a well-known non-Higgsable cluster SCFT geometrically engineered by a non-compact
Calabi–Yau threefolds as an elliptic fibration over O

P1 (−7). The Mori cone of this Calabi–Yau geometry
has been discussed in [28].
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and ϑ is the odd Jacobi theta function

ϑ(τ, z) = q1/8ζ 1/2
∞∏

n=1

(1 − qn)(1 − qnζ )(1 − qn−1ζ−1), z ∈ C, ζ = e2π i z .

It is clear that ϑE7+1/2 defines a weak Jacobi form of weight 4 and index 24 for
E7. We conjecture that ϑE7+1/2 is further a holomorphic Jacobi form, that is, it is also
holomorphic at infinity (i.e., its Fourier expansion is of type [25, Equation (26)]). Such
a theta block is exceptional, because it is of critical weight and may be expressed as
a C-linear combination of pullbacks of Jacobi theta functions associated with some
positive definite lattices of rank 8 (see [25, Equation (36)]). This might be helpful to
determine the Fourier expansion of ϑE7+1/2 , and further find the infinite sum part of

the denominator identity for Ê7+1/2.
Let us consider the more general theta blocks

�d(τ, z) := η(τ)d
∏

r

ϑ(τ, 〈r , z〉E7
)

η(τ )
, d ∈ Z. (8.2)

From [48] we know that the holomorphic theta blocks of singular weights have a
one-to-one correspondence with affine Lie algebras. Therefore, if �d is holomorphic
at infinity then d ≥ 8. The conjecture above yields that d = 8 is the minimal number
such that �d defines a holomorphic Jacobi form. The number 8 may come from the
multiplicity of the imaginary roots of Ê7+1/2.
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Appendix I

As we reviewed, the level 1 affine characters of the Deligne–Cvitanović exceptional
series satisfy an uniform 2nd order MLDE (2.1). In this appendix we present the
uniform 6th order MLDE for the level 2 affine characters of the Deligne–Cvitanović
exceptional series. The central charge is

2(h + 1)(5h − 6)

(h + 2)(h + 6)
. (8.3)

Here we use h to represent the dual Coxeter number h∨ to shorten the expression. Each
conformal weight for the Deligne–Cvitanović exceptional series including E7+1/2 at
level 2 equals one value of the six rational functions

0,
h(h + 1)

(h + 2)(h + 6)
,

h

h + 2
,

5h(h + 3)

3(h + 2)(h + 6)
,
5h − 6

3(h + 2)
,
13h2 − 6h + 216

6(h + 2)(h + 6)
. (8.4)

It is quite nontrivial that the above six conformal weights always result in an 6th order
holomorphic MLDE, i.e., index l = 0, for arbitrary h∨. These conformal weights
and the vacuum character q1-term coefficient dim(g) enable us to uniquely fix the six
coefficients of 6th order MLDE as

[D6 + μ1E4D4 + μ2E6D3 + μ3E2
4 D2 + μ4E4E6D + (μ5E3

4 + μ6E2
6)]χ = 0,

(8.5)

where

μ1 = −43h4 + 41h3 − 1441h2 + 9168h − 22932

36(h + 2)2(h + 6)2
, (8.6)

μ2 = 249h6 + 2778h5 + 468h4 + 80080h3 − 370368h2 + 950400h − 945216

216(h + 2)3(h + 6)3
, (8.7)

μ3 = − 1

1296(h + 2)4(h + 6)4
(689h8 + 19063h7 + 96981h6 + 292042h5

+ 2264117h4 − 7550088h3 + 11641320h2 − 14000256h + 6413904), (8.8)

μ4 = 1

7776(h + 2)5(h + 6)4
(1000h9 + 45175h8 + 327973h7 + 463584h6

+ 9223896h5 − 14947800h4 − 4476960h3 + 1902528h2 + 5500224h − 31104), (8.9)

μ5 = − (h + 1)(5h − 6)

15552(h + 2)6(h + 6)6
(4025h9 + 11390h8 + 570314h7 + 208384h6 + 11337365h5

+ 6562770h4 − 2328840h3 − 47884176h2 − 56934576h − 48250080), (8.10)

μ6 = − (h + 1)(5h − 6)

5832(h + 2)6(h + 6)6
(25h10 − 25h9 + 21079h8 − 21355h7 + 887152h6

− 1084h5 + 7082880h4 − 3294576h3 + 3451680h2 + 16708032h + 17698176). (8.11)
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Similarly, for affine VOA associated with Deligne–Cvitanović exceptional series at
level three, we find the 12 conformal weights can be written as the rational functions
of h∨ as

0,
h(h + 1)

(h + 3)(h + 6)
,

h

h + 3
,

5h(h + 3)

3(h + 3)(h + 6)
,

5h − 6

3(h + 3)
,
13h2 − 6h + 216

6(h + 3)(h + 6)
, (8.12)

2(h + 1)

(h + 6)
,

2h

(h + 3)
,

5h(h + 4)

2(h + 3)(h + 6)
,

5h − 6

2(h + 3)
,

h(8h + 33)

3(h + 3)(h + 6)
,
7h2 − 12h + 216

2(h + 3)(h + 6)
. (8.13)

We notice that the above 12 conformal weights always result in a 12th order MLDE
with index l = 20 for arbitrary h∨.
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