
Letters in Mathematical Physics (2024) 114:14
https://doi.org/10.1007/s11005-023-01757-w

Almost multiplicity free subgroups of compact Lie groups
and polynomial integrability of sub-Riemannian geodesic
flows
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Abstract
Weclassify almostmultiplicity free subgroups K of compact simple Lie groupsG. The
problem is related to the integrability of Riemannian and sub-Riemannian geodesic
flows of left-invariant metrics defined by a specific extension of integrable systems
from T ∗K to T ∗G.

Keywords Invariant polynomials · Gel’fand-Cetlin systems · Multiplicity of
Hamiltonian action · (almost) multiplicity free spaces

Mathematics Subject Classification 37J35 · 17B63 · 17B80 · 53D20

1 Introduction

Let G be a compact connected Lie group with the Lie algebra g and K⊂G a connected
subgroup with the Lie algebra k. We fix an invariant scalar product 〈 ·, · 〉 on g. The
same notation is used to denote the restriction of the scalar product on the subalgebra
k. By the use of 〈 ·, · 〉, we identify g ∼= g∗ and k ∼= k∗. Let p be the orthogonal
complement of k in g and let prp and prk be the orthogonal projections onto p and k,
respectively.
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It is well known that the symplectic leaves of the Lie–Poisson bracket

{ f , g}|x = −〈x, [∇ f (x),∇g(x)]〉 (1)

on g are adjoint orbits O(a) = AdG(a), a ∈ g. With the above sign convention, the
Hamiltonian equation of the Hamiltonian H with respect to the Lie-Poisson bracket
reads

ẋ = X H (x), X H (x) = [x,∇H(x)]. (2)

Therefore, since the vector field corresponding to the infinitesimal adjoint action of
ξ ∈ g on x is given by [ξ, x], the adjoint action of K on an orbit O is Hamiltonian
with the momentum mapping

�(x) = − prk(x), x ∈ O.

Recall that the Hamiltonian action of a compact connected Lie group K on a
2m-dimensional symplectic manifold M2m with the equivariant momentum mapping
� : M2m → k∗ ∼= k is multiplicity free if the algebra of K–invariant functions is
commutative [16].More generally, the Hamiltonian action of a compact connected Lie
group K on a symplectic manifold M2m has multiplicity 2c(M2m, K ) (or complexity
c(M2m, K )) if the Poisson algebra of K -invariant functions has exactly 2c additional
independent functions, besides Casimir functions. In other words, the dimension of
a generic symplectic leaf in the “singular Poisson manifold” M2m/K is 2c. In the
case of a free action, the multiplicity is the dimension of a generic symplectic reduced
space �−1(μ)/Gμ, μ ∈ �(M2m).

In our case, the complexity c(O, K ) of AdK -action on a generic G-adjoint orbit
O ⊂ g will be denoted by c(g, k). If c(g, k) = 0, K is called a multiplicity free
subgroup of G. There are equivalent definitions of multiplicity free subgroups within
the framework of the representation theory, and the classification of multiplicity free
subgroups K of compact Lie groups G is given by Krämer [22] (see also Heckman
[17]). If G is a simple group, the pair of corresponding Lie algebras (g, k) is

(Bn, Dn), (Dn, Bn−1), or (An, An−1 ⊕ u(1)).

Definition 1 We say that K is an almost multiplicity free subgroup of G if the adjoint
action of K on a generic G–adjoint orbitO ⊂ g has the multiplicity two, i.e., c(g, k) =
1.

In this paper we prove the statement announced in [20] that the pair of Lie algebras
(g, k) corresponding to the almost multiplicity free subgroups K ⊂ G belongs to the
following list:

(An, An−1), (A3, A1 ⊕ A1 ⊕ u(1)), (B2, u(2)),

(B2, B1 ⊕ u(1)), (B3, g2), (g2, A2).
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In Sect. 2 the problem is related to the integrability of the Euler equations of left-
invariant metrics on G, obtained by a specific extension of left invariant metrics on
K with integrable geodesic flows (Proposition 2). The proof of the classification of
almost multiplicity free subgroups is given in Sect. 3 (Theorem 4). Finally, in Sect. 4,
we apply the results in the problem of integrability of sub-Riemannian geodesic flows
on Lie groups.

2 Integrability of Euler equations related to the pairs (G,K)

2.1 Collective complete integrability

In the framework of Arnold–Liouville integrability, the complexity c(M2m, K ) can be
characterized as follows. Consider a K–invariant function F and the corresponding
Hamiltonian equation

ẋ = X F (3)

on M2m . According to the Noether theorem, the momentum mapping is conserved
along the flow of X F . In other words, we have {F,� ◦ q} = 0, where q is a function
on k. Besides, if q1 and q2 commute with respect to the Lie-Poisson bracket on k, then
Q1 = � ◦ q1 and Q2 = � ◦ q2 Poisson commute on M2m as well.

The complexity c a minimal number of Poisson commuting K -invariant functions
on M2m we need to add to the Noether functions �∗(R[k∗]) to obtain a complete
commutative set of m independent functions on M2m . In the case of multiplicity
free spaces, all K -invariant Hamiltonian flows are completely integrable by means
of Noether integrals - so called collective complete integrability [14]. There exist m
Lie-Poisson commuting functions q1, . . . , qm on k, such that Q1 = �◦q1, . . . , Qm =
� ◦ qm are independent Poisson commuting functions on M . Also, then we have that
all K–invariant functions are functionally dependent on Noether functions.

Similarly, in the case of a multiplicity two action, if we take a K -invariant function
F , which is not functionally dependent on Noether functions, there exist Lie-Poisson
commuting functions q1, . . . , qm−1 on k, such that F, Q1 = � ◦ q1, . . . , Qm−1 =
� ◦ qm−1 is a complete set of commuting functions on M2m . Thus, the Hamiltonain
flow of (3) is completely integrable. It has zero topological entropy as well, see [27].

2.2 Extension of integrable geodesic flows from K to G

The invariant polynomialsR[g]G are Casimir functionswith respect to the Lie-Poisson
bracket and generic adjoint orbits O are the regular level sets of the basic invariant
polynomials p1, . . . , pr , r = rank G. Thus, for the integrability of the Euler equa-
tions (2) we need, in addition, 1

2 dimO = 1
2 (dim g − rank g) independent commuting

functions. Then, according to the Arnold–Liouville theorem, a generic motion is a
quasi-periodic winding over δ0–dimensional invariant tori, where

123



14 Page 4 of 16 B. Jovanović et al.

δ0 = dim g − a(g), a(g):=1

2

(
dim g + rank g

)
.

Here, by a(g) we denoted the maximal number of independent Poisson commuting
functions on g.

In the study of integrable systems related to filtration of Lie algebras, Bogoyavlenski
[3] considered the following natural problem which we slightly reformulate for the
filtration k ⊂ g. For x ∈ g, we denote x = x0 + x1, x0 = prk(x), x1 = prp(x). Then
the decomposition g = k + p is reductive:

[k, p] ⊂ p. (4)

Let A0 : k → k be a positive definite symmetric operator and H0 = 1
2 〈A0(x0), x0〉

the Hamiltonian of the corresponding left-invariant metric on K . Assume that the
Euler equation

ẋ0 = [x0,∇H0(x0)] = [x0, A0(x0)] (5)

is completely integrable with a complete set of commuting first integrals (including
invariants) q1, . . . , qa(k). Bogoyavlenski conjectured that the Euler equation (2) with
the Hamiltonian of the form

H(x) = H(x0 + x1) = 1

2
〈A0(x0), x0〉 + s

1

2
〈x1, x1〉

are completely integrable as well [3]. Here s is a real parameter, greater then zero for
left-invariant Riemannian metrics.

Due to the relation (4), the corresponding Hamiltonian system can be rewritten into
the form

ẋ0 =[x0, A0(x0)], ẋ1 = [x1, A0(x0) − sx0]. (6)

In [20] the following statement was proved (see [20, Theorem 2] with n = 1 and
assume that the integrals in the first step are commutative).

Theorem 1 The equations (6) are integrable in a noncommutative sense by means
of commuting integrals Q1 = pr∗k q1, . . . , Qa(k) = pr∗k qa(k) and the set of
AdK –invariants R[g]K on g. A generic motion is a quasi-periodic winding over δ–
dimensional invariant tori, where

δ = a(k) − rank g + dim prp(g(x)) ≤ δ0 = dim g − a(g). (7)

Here we take a generic element x ∈ g and g(x) = {ξ ∈ g | [ξ, x] = 0} is the
isotropy algebra of x .

Mishchenko and Fomenko stated the conjecture that noncommutative integrability
implies the Liouville integrability by means of an algebra of integrals that belong
to the same functional class as the original one [25]. The conjecture is solved in a
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smooth category [6] and in polynomial category when noncommuting integrals form
finite dimensional Lie algebras (see [4, 29, 31]). Note that from a point of view of the
dynamics, noncommutative integrability is stronger than the Liouville one. Isotropic
tori, level sets of noncommutative integrals, can be reorganized into Lagrangian tori,
level sets of commuting integrals, in a many different ways. Thus, Lagrangian tori
are resonant and not an intrinsic property of the system.

In our case, we assume that qi are polynomials and the polynomial conjecture
reduces to the construction of a Lie-Poisson commutative set P1, . . . , Pb of AdK –
invariant polynomials,

b = b(g, k):= a(g) − a(k) = 1

2
(dim p + rank g − rank k), (8)

independent of the polynomials on k (see [20]):

b = dim prp span {∇ Pi (x) | i = 1, . . . ,b}, for a generic x ∈ g.

The simplest situation is the case when the algebra of AdK –invariants is already
commutative. Then the inequality (7) becomes the equality:

δ = a(k) − rank g + dim prp(g(x)) = dim g − a(g) = δ0,

and for the additional integrals we can take the invariants p1, . . . , pr (some of the
integrals can be dependent since r can be different from b(g, k)). The system (6) is
integrable in the usual Arnold–Liouville (or commutative) sense. Since themomentum
mapping of the K -action on the adjoint orbitO ⊂ g is given by � = − prk ◦ı (ı is the
inclusion), it is obvious that this condition is equivalent to the fact that the AdK -action
on a generic orbit O is multiplicity free.

For example, SO(n − 1) and U (n − 1) are multiplicity free subgroups of SO(n)

and U (n), respectively. Therefore, considering the chains of subalgebras

so(2) ⊂ so(3) ⊂ · · · ⊂ so(n − 1) ⊂ so(n),

u(1) ⊂ u(2) ⊂ · · · ⊂ u(n − 1) ⊂ u(n),

and taking the lifts of the invariants from so(k) and u(k) (k ≤ n), by induction, we
obtain a complete commutative set of polynomials on the Lie algebras so(n) and u(n)

(see Thimm [30]). Since the paper [15], the corresponding integrable systems are
refereed as Gel’fand-Cetlin systems on so(n) and u(n). Namely, Gel’fand and Cetlin
constructed canonical bases for a finite-dimensional representation of the orthogonal
and unitary groups by the decomposition of the representation by a chain of sub-
groups [11, 12]. The corresponding integrable systems on the adjoint orbits can be
seen as a symplectic version of the Gelfand-Cetlin construction [15], which moti-
vated Guillemin and Sternberg to introduce an important notion of multiplicity free
Hamiltonain actions [14, 16].

The next natural step is to consider a subgroup K ⊂ G when apart from AdG–
invariants, for a complete commutative set of AdK –invariants we can take arbitrary
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AdK –invariant polynomial P , which is not in the center ofR[g]K , that is, when K is an
almost multiplicity free subgroup of G. Then δ = δ0 −1 in (7) and among commuting
polynomials P, p1, . . . , pr , Q1, . . . , Qa(k) there are a(g) independent ones providing
the usual Arnold–Liouville (or commutative) integrability of the equations (6). For a
polynomial integral P we can take some of the Bogoyavlensky integrals

pi,λ(x) = pi (x0 + λx1), i = 1 . . . , r = rank g, (9)

where λ is a real paremeter (see [3, 20]).

Proposition 2 Let (G, K ) be a pair from the list (14). Assume that the Euler equa-
tion (5) is completely integrable with a complete set of commuting polynomial first
integrals. Then the extended system (6) is completely integrable with a complete set
of commuting polynomial first integrals as well.

In general, the construction of commuting polynomials Pi is still an open problem
(see [20]). It is solved in the case when (g, k) is a symmetric pair ([p, p] ⊂ k) by
Mikityuk [23]. A similar open problem can be formulated for the integrability of
G-invariant geodesic flows on homogeneous spaces G/K (see [7]).

3 Multiplicity free and almost-multiplicity free subgroups of compact
Lie groups

Recall that b(g, k) is the difference of maximum numbers of independent Poisson
commuting functions on g and k (see (8)). We can state the following algebraic con-
dition for the pair (G, K ) in order to have (almost) multiplicity free K adjoint action
on a generic orbit O ⊂ g.

Proposition 3 The multiplicity of the K -action on O is given by

2c(g, k) = 2b(g, k) − 2 dim prp(g(x)),

for a generic x ∈ g. Therefore

(i) K is a multiplicity free subgroup of G if and only if

dim prp(g(x)) = b(g, k).

(ii) K is an almost multiplicity free subgroup of G if and only if

dim prp(g(x)) = b(g, k) − 1.

Proof Recall that the Hamiltonian action of a compact connected Lie group K on a
symplectic manifold M has the multilicity 2c = c(M, K ) if the Poisson algebra of
K -invariant functions C∞

K (M), besides Casimir functions, has exactly 2c additional
independent functions:
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2c(M, K ) = ddim C∞
K (M) − dind C∞

K (M)

= (
dim M − (dim K − dim Kx )

) − (dim Kμ − dim Kx )

= dim M − dim K + 2 dim Kx − dim Kμ, (10)

where Kx and Kμ are isotropic subgroups of a generic x ∈ M and μ =
�(x) (ddim C∞

K (M) denotes the number of independent K–invariant functions and
dind C∞

K (M) denotes the dimension of the kernel of the Poisson bracket restricted to
the space spanned by the differentials of the K–invariant functions, see [6, 20]).

Let

k(x) = {ξ ∈ k, | [ξ, x] = 0} = g(x) ∩ k

and let ı : O ↪→ g be the inclusion. Consider the momentum mapping � = − prk ◦ı
of the K -action on O. From μ = �(x) = −x0 we have

dim Kx = dim k(x) = dim g(x) − dim prp(g(x))) = rank g − dim prp(g(x))),

dim Kμ = dim k(x0) = rank k,

for a generic x ∈ O. By plugging the above relations into (10) we obtain

2c(g, k) = (dim g − rank g) − dim k + 2(rank g − dim prp(g(x))) − rank k,

which proves the statement. Note that (i) and (ii) also follow from the identities δ = δ0
and δ = δ0 − 1 in the inequality (7), respectively. ��
Remark 1 Since g(x) is spanned by the gradients of the invariant polynomials
p1, . . . , pr , for a generic x ∈ g, Proposition 3 is related to the fact that among invariant
polynomials p1, . . . , pr , we have dim prp(g(x)) independent ones from functions on
k. Further, since dim prp(g(x)) ≤ rank g, from Proposition 3 we have

dim p ≤ rank g + rank k + 2c(g, k). (11)

The classification of multiplicity free subgroups K of compact Lie groups G is
given by Krämer [22] (see also Heckman [17]). If G is a simple group, the pairs of
corresponding Lie algebras (g, k) are

(Bn, Dn), (Dn, Bn−1), or (An, An−1 ⊕ u(1)).

Note that K does not have to be a multiplicity free subgroup in order to have
c(O, K ) = 0 for a singular adjoint orbit O (see [32]).

Example 1 Multiplicity free pairs are:

(SU (n), S(U (1) × U (n − 1))), (SU (n), U (n − 1)), (SU (4), Sp(2)),

(SO(n), SO(n − 1)), (SO(4), U (2)), (SO(4), SU (2)),

(SO(6), U (3)), (SO(8), Spin(7)), (Spin(7), SU (4)).
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Table 1 Rank and number of positive roots of the classical Lie algebras

g su(n) so(2n + 1) sp(n) so(2n) g2 f4 e6 e7 e8

rank g n − 1 n n n 2 4 6 7 8

card R+
g

n(n−1)
2 n2 n2 n(n − 1) 6 24 36 63 120

Recall that there are low dimensional isomorphisms of Lie algebras su(2) =
so(3) = sp(1) (A1 = B1 = C1), so(5) = sp(2) (B2 = C2), so(6) = su(4)
(D3 = A3).

By using the inequality (11) andmodifyingKrämer’s proof, we obtain the following
statement.

Theorem 4 Let G be a compact simple Lie group and K ⊂ G a connected subgroup,
such that AdK -action on a generic G-adjoint orbit is almost multiplicity free. Then
the pair of corresponding Lie algebras (g, k) belongs to the following list:

(An, An−1), (A3, A1 ⊕ A1 ⊕ u(1)), (B2, u(2)),

(B2, B1 ⊕ u(1)), (B3, g2), (g2, A2).

Proof Denote by R+
g and R+

k the numbers of positive roots of g and k respectively.

Since R+
g = 1

2 (dim g − rank g) for any semi-simple Lie algebra g, the condition (11)
takes the form:

card R+
g ≤ card R+

k + rank k + c(g, k). (12)

For c(g, k) = 0, the inequality (12) is obtained in [17, 22] and used in the classifica-
tion of multiplicity free subgroups. If the pair (g, k) is almost multiplicity free, then
c(g, k) = 1.

Similar to Krämer’s proof of [22, Proposition 3], we consider the classical Lie
algebras An = su(n − 1), Bn = so(2n + 1), Cn = sp(n), Dn = so(2n) and the
exceptional Lie algebras g2, f4, e6, e7, e8 and their maximal subalgebras, since the
condition (12) requires “large” subalgebras.

Maximal subalgebras of compact simple Lie algebras are roughly divided in the
following classes (see [8, 10]): maximal non-simple reducible subalgebras embedded
in the standardway,maximal non-simple irreducible subalgebras represented as tensor
products of vector representations and maximal simple subalgebras.

Case 1. Let g = su(n), n ≥ 2. Maximal, non-simple, reducible subalgebras are of
the form R ⊕ su(p) ⊕ su(q), n = p + q, p ≥ q ≥ 1. In that case the
inequality (12) becomes

n(n − 1)

2
≤ 1 + p(p − 1)

2
+ q(q − 1)

2
+ (p − 1) + (q − 1) + 1.
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Using the relation n = p + q, after simple calculation, this is equivalent to
n ≥ pq. This is fulfilled only for p = n − 1, q = 1 (which corresponds to
the multiplicity free case) and n = 4, p = q = 2.
We have to show that the pair (su(4),R⊕ su(2) ⊕ su(2)) is indeed almost

multiplicity free. Denote by ei j the standard basis of algebra so(n). Consider
a regular element

x = e12 + e23 + e34 ∈ su(4) = so(4) ∩ gl4(C)

with the isotropy subalgebra su(4)x spanned by x, i x2, x3. Let p be the orthog-
onal complement of k = R⊕ su(2) ⊕ su(2) with respect to the Killing form.
Since

prp(x) = e23, prp(i x2) = ie13 + ie22, prp(x3) = 3e23 + e14,

are linearly independent, the pair (su(4),R⊕ su(2)⊕ su(2)) is almost mulit-
plicity free.
The only non-simple,maximal, irreducible subalgebras of su(n) are su(p)⊕

su(q), pq = n, p, q ≥ 2, acting via tensor product representation. In this
case inequality (12) cannot be fulfilled for any p, q ≥ 2.
The non-simple, the non-maximal subalgebras: the direct sum R

l−1 ⊕⊕l
k=1 su(p) (n = pl, l ≥ 3, p ≥ 2) and the Cartesian product

∏l
k=1 su(p)

(n = pl , l ≥ 3, p ≥ 2) obviously cannot satisfy (12) for any l ≥ 3, p ≥ 2.
Now, let us consider simple non-maximal subalgebras. If k = su(p) ⊂

su(n), then the inequality (12) becomes n(n − 1) ≤ p(p + 1). Hence, (12)
is satisfied only for p = n − 1 and the pair (su(n), su(n − 1)) is a candi-
date for almost multiplicity free pair. Using a technique similar to the case
(su(4),R ⊕ su(2) ⊕ su(2)) one can show that (su(n), su(n − 1)) is a multi-
plicity free pair.
If k = so(p), the only examples are the trivial so(2) ⊂ su(2) and

so(3) = su(2) ⊂ su(3) which we already covered. Finally, in case k = sp(p)

or k is exceptional, there is no pair (su(n), k) satisfying (12) since the number
of positive roots of k is significantly smaller than the number of roots of su(n).

Case 2. Let g = so(n), n �= 4. This requires more detailed analysis than the previous
case.
First, let us exclude the case so(n − 1) ⊂ so(n) which is multiplicity free

and consider non-simple, reducible, maximal subalgebras k = so(p)⊕so(q),
n = p + q, p ≥ q ≥ 2. By using the identification so(2) = R = u(1), here
we are also considering the case of reducible subalgebraR⊕so(p), p ≥ 3. If
both p and q are odd, inequality (12) reduces to pq ≤ p +q +1, that is never
fulfilled for p, q ≥ 3. Hence, there are no candidates for almost multiplicity
free pairs.
If q is even, we find two possible pairs (so(5), so(3) ⊕ so(2)) and

(so(6), so(4)⊕ so(2)). The second one is isomorphic to (su(4),R⊕ su(2)⊕
su(2)), we have already found to be almost multiplicity free. Using a similar
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method, one can show that the pair (so(5), so(3) ⊕ so(2)) is almost multi-
plicity free as well.
For irreducible, maximal subalgebras k = so(p) ⊕ so(q), n = pq, p ≥

q ≥ 3, p, q �= 4 and k = sp(p) ⊕ sp(q), n = 4pq �= 4, given by tensor
product of vector representations, no example exists.
Now we consider reducible subalgebras. If k = u(p) ⊂ so(n), n = 2p,

p ≥ 2. The inequality (12) becomes p2 − 3p − 2 ≤ 0. Therefore, the only
examples are multiplicity free pairs (so(4), u(2)) and (so(6), u(3)).
Note that k = u(p) is also the subalgebra of so(2p + 1) and it satisfies (12)

for p = 2. It can be shown that the pair (so(5), u(2)) is almost multiplicity
free.
Also, non-maximal non-simple subalgebras

⊕l
k=1 so(p) (n = pl, p, l ≥

3),
∏l

k=1 so(p) (n = pl , p, l ≥ 3, p �= 4),
∏l

k=1 sp(p) (n = (2p)l , p ≥
1, l ≥ 4, l–even) and so(p) × sp(2) × sp(2) (p ≥ 3, p �= 4) cannot be part
of the almost multiplicity free pair.
The simple subalgebra so(p) ⊂ so(n) satisfies (12) only for p = n − 1,

i.e. only if the pair is multiplicity free. Next, subalgebra su(p) ⊂ so(2p) is
multiplicity free for p = 2 and almost multiplicity free for p = 3 (we already
considered this as so(6) = su(4)). Note that we could also consider inclusion
su(p) ⊂ so(2p + 1). However, the inequality (12) holds only for p = 1
which corresponds to the already examined case su(1) ⊂ so(3) = su(2).
One can easily verify that the last simple classical Lie algebra k = sp(p)

cannot fulfill the condition (12) for any p. The same is true for all exceptional
Lie algebras except g2 ⊂ so(7).
Let us examine the pair (so(7), g2) in more details. g2 has rank 2, the num-

ber of positive roots is 6, and the number of positive roots of so(7) is 9. Thus,
in (12) the equality holds. As above, let p be the orthogonal complement of
g2 with respect to the Killing form and set (g2)x = {y ∈ g2 | [x, y] = 0}.
The condition that a generic Cartan’s subalgebra and its projection onto p
have the same dimensions is equivalent to the condition that (g2)x is trivial
for a generic x ∈ so(7). Denote by

{
ei j

∣∣ 1 ≤ i < j ≤ 7
}
the standard basis

of so(7). It is well known that

P0 = e32 + e67, P1 = e13 + e57, P2 = e21 + e74, P3 = e14 + e72,

P4 = e51 + e37, P5 = e17 + e35, P6 = e61 + e43,

Q0 = e45 + e67, Q1 = e46 + e57, Q2 = e56 + e74, Q3 = e36 + e72,

Q4 = e26 + e37, Q5 = e24 + e35, Q6 = e25 + e43
(13)

constitute the basis of the Lie algebra g2. One can show that for x = e12 +
e34+e56 ∈ so(7) none of the elements

∑
i ai Pi +b j Q j ∈ g2 commutes with

it. Thus, (g2)x is trivial for a generic x ∈ so(7) and (so(7), g2) is indeed an
almost multiplicity free pair.

Case 3. In the case g = sp(n), n ≥ 3 the analysis similar to the previous cases shows
that sp(n) cannot contribute to the list of almost multiplicity free pairs.
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Case 4. Let us consider the exceptional Lie algebra g = g2. According to [8] it has
two subalgebras as maximal subalgebras with maximal rank 2. The algebra
k = sp(1)⊕sp(1) doesn’t satisfy (12). For the maximal subalgebra k = su(3)
the inequality (12) is satisfied so let us examine if the pair (g2, su(3)) is almost
multiplicity free. Let the basis of the Lie algebra g2 be given by (13), then
the basis of su(3) is {P0, Q0, . . . , Q6}. For example, set x = P0 + P1. Then
it is an easy exercise to show that the element from su(3) commuting with it
does not exist. Hence, the pair (g2, su(3)) is almost multiplicity free.

Case 5. Finally, by the results of [10] and [13] the maximal subalgebra k of one of the
the exceptional Lie algebras f4, e6, e7, e8 is isomorphic to one in the following
list:

f4: su(2) ⊕ sp(3), su(3) ⊕ su(3), so(9);
e6: su(2) ⊕ su(6), su(3) ⊕ su(3) ⊕ su(3), so(10) ⊕ T 1;
e7: su(2) ⊕ so(12), su(3) ⊕ so(10), su(8), e6 ⊕ T 1;
e8: su(2) ⊕ e7, su(3) ⊕ e6, su(5) ⊕ su(5), so(16), su(9);

where T 1 denotes the 1-dimensional center of the subalgebra. From Table 1 it
can be seen that the number of positive roots of the exceptional Lie algebra is
much larger than the number of positive roots of all its subalgebras. Therefore,
no new examples can occur. ��

Example 2 Almost multiplicity free pairs of Lie groups are:

(SU (n), SU (n − 1)), (SU (4), S(U (2) × U (2)), (SU (3), SO(3)),

(SO(5), SO(3) × SO(2)), (Sp(2), Sp(1) × U (1)), (SO(5), U (2)),

(Sp(2), U (2)), (SO(6), SO(4) × SO(2)), (SO(6), SU (3)),

(Spin(7), G2), (G2, SU (3)), (SO(3) × SO(4), SO(3)).

(14)

Note that in Examples 1 and 2 we consider natural inclusions SU (n) ⊂ U (n) ⊂
SO(2n), Sp(n) ⊂ SU (2n), and SO(3) is diagonally embedded into SO(3)× SO(4).
Semi-simple examples with G = SO(4) and G = SO(3) × SO(4) are also given.

4 Examples: integrable sub-Riemannian flows

4.1 p ⊕ k–sub-Riemannian problem

In [18]weused the chains of subalgebras in order to construct integrable nonholonomic
and sub-Riemannian flows with left-invariant metrics and left-invariant nonholonomic
distributions on compact Lie groups. While the nonholonomic problem is not Hamil-
tonian, the sub-Riemannian is, and can be described as follows.

With the above notation, assume that the symmetric operator A0 in (5) has a non-
empty zero-eigenvalue subspace h ⊂ k. Let k = h⊕v be the orthogonal decomposition
of kwith respect to the bi-invariant scalar product.We further assume that the restriction
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A0 : v → v is positive definite and that d = v⊕p generates Lie algebra g. Then the left-
invariant distribution D of T G induced by d is completely nonholonomic. For s > 0,
on D we have left-invariant metric ds2D defined on d by defined by left-translation of
the scalar product

(ξ, η)d = 〈A−1
0 (prv(ξ)) + s−1 prp(ξ), η〉, ξ, η ∈ d.

Then the Euler equations (6), together with the kinematic equation

ġ = d(Lg)(ω), ω = A0(x0) + sx1 ∈ d,

describe the sub-Riemannian geodesic flow of the metric ds2d on the left-trivialization
of the cotangent bundle T ∗G ∼= G × g{g, x}.

Thus, according to Theorem 1, if the Euler equation (2) are integrable by means
of polynomial integrals, then the extended Euler equations (6) are integrable in a
non-commutative sense by polynomial integrals as well.

In particular, the simplest situation is when d = p (A0 = 0). The sub-Riemannian
metric ds2d is then simply the restriction of a bi-invariant metric to D. The Euler and
the kinematic equations take the form

ẋ0 = 0, ẋ1 = s[x0, x1] (15)

ġ = d(Lg)(sx1). (16)

The Euler equations can be solved easily:

x0 ≡ x̄0, x1(t) = Adexp(st x̄0)(x̄1), (17)

where x̄0 = x0(0), x̄1 = x1(0). The solution of the kinematic equation (16) is given
by Agrachev [1] and Brockett [9]:

g(t) = ḡ exp(t(sx̄0 + x̄1)) exp(−ts x̄0), g(0) = ḡ. (18)

The sub-Riemannian problem (15), (16) is usually called a p ⊕ k–problem on a Lie
group G (see [28]).

From the point of view of the geometry of integrable systems, the equations (15)
are integrable in a noncommutative sense. The complete set of polynomial integrals
are linear functions on k together with all AdK –invariant polynomials R[g]K on g. A
generic motion given by (17) is a quasi-periodic winding over

δ = rank k − rank g + dim prp(g(x))

dimensional invariant tori on g (see [20, Theorem 2] with n = 1 and assume that the
Euler equations in the first step are trivial). Considered on T ∗G we also have Noether
integrals - the right invariant functions, obtained from linear functions on g. In total, the
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system (15), (16) is integrable in a non-commutative sense on T ∗G with an invariant
tori of dimension 	 = δ + rank g (see [25]1).

We can summarize the above consideration in the following statement.

Theorem 5 The p ⊕ k–sub-Riemannian problem (15), (16) on a Lie group G is com-
pletely integrable in a non-commutative sense by means of integrals polynomial in
momenta. A generic motion given by (17), (18) is a quasi-periodic winding over

	 = rank k + dim prp(g(x))

dimensional invariant isotropic tori in T ∗G.

Let Q1 = pr∗k q1, . . . , Qa(k) = pr∗k qa(k), where q1, . . . , qa(k) is arbitrary com-
plete set of commuting polynomials on k (see [4, 24]). Let, as above, p1, . . . , pr be
independent invariant polynomials on g, r = rank g.

If K is a multiplicity free subgroup of G then Q1, . . . , Qa(k), p1, . . . , pr is a com-
plete commutative set polynomials on g (some of them can be dependent). The left
translations of Q1, . . . , Qa(k), p1, . . . , pr and the right translations of Q1, . . . , Qa(k)
form a complete commutative set of integrals of the p ⊕ k–sub-Riemannian flow on
T ∗G. If K is an almost multiplicity free subgroup of G then we need to add left and
right translations of one of the Bogoyavlensky integrals (9). Hence, the pairs given in
Examples 1 and 2 define examples of polynomial Arnold–Liouville integrable sub-
Riemannian geodesic flows.

Proposition 6 Multiplicity free and almost multiplicity free pairs of Lie groups define
p⊕ k–sub-Riemannian geodesic flows that are Arnold–Liouville integrable by means
of integrals polynomial in momenta.

4.2 Integrable sub-Riemannian geodesic flows related to filtrations of groups

By induction, we can use the above construction to consider the chain of connected
compact Lie subgroups

G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gn−1 ⊂ Gn = G

and the corresponding filtration of the Lie algebra g = Lie(G)

g0 ⊂ g1 ⊂ g2 · · · ⊂ gn−1 ⊂ gn = g. (19)

Let pi be the orthogonal complement of gi−1 in gi . Then gi = g0 ⊕ p0 ⊕ · · · ⊕ pi .
Assume that d = p1 ⊕· · ·⊕ pn generate g by commutations. Then the corresponding
left-invariant distribution is completely nonholonomic For s1, . . . , sn > 0, on D we

1 Alternatively, we can use a following general statement. Assume that compact group G acts freely in
a Hamiltonian way on a symplectic manifold M . If a G–invariant Hamiltoniam system is integrable in
a noncommutative sense on the reduced space M/G with δ–dimensional invariant tori, then the original
system on M is also integrable with (δ + rank G)–dimensional invariant tori (see [19, 33])
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have left-invariant metric ds2D defined by the scalar product

(ξ, η)d = 〈
n∑

i=1

s−1
i prpi

(ξ), η〉, ξ, η ∈ d.

The corresponding sub-Riemannian geodesic flow is given by (see [3, 18, 20]):

ẋ0 = 0, (20)

ẋi = [si x0 − (s1 − si )x1 − · · · − (si−1 − si )xi−1, xi ], i = 1, . . . , n, (21)

ġ = d(Lg)(s1x1 + . . . sn xn), (22)

where we presented x ∈ g as the sum

x = x0 + x1 + · · · + xn, x0 ∈ g0, xi ∈ pi , i = 1, . . . n.

The problem of the integrability of the Euler equations (20), (21) is studied by
Bogoyavlensky (see [3]). From [20, Theorem 2], as above, we get.

Theorem 7 The Euler equations (20), (21) are integrable in a noncommutative sense
on g. A generic motion is a quasi-periodic winding over

δ = rank g0 − rank g +
n∑

i=1

dim prpi
(gi (x0 + · · · + xi ))

dimensional invariant tori.2 The sub-Riemannian geodesic flow (20), (21), (22) on
T ∗G ∼= G × g is completely integrable in a non-commutative sense by means of
integrals polynomial in momenta. A generic motion is a quasi-periodic winding over

	 = rank g0 +
n∑

i=1

dim prpi
(gi (x0 + · · · + xi ))

dimensional invariant isotropic tori.

Additional examples of integrable sub-Riemannian geodesic flows on Lie groups
and homogeneous spaces can be found in e.g. [2, 5, 7, 21, 26, 28].
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6. Bolsinov, A.V., Jovanović, B.: Non-commutative integrability, moment map and geodesic flows. Ann.
Glob. Anal. Geom. 23, 305–322 (2003). arXiv: math-ph/0109031

7. Bolsinov, A.V., Jovanović, B.: Complete involutive algebras of functions on cotangent bundles of
homogeneous spaces. Math. Z. 246(1–2), 213–236 (2004)

8. Borel, A., De Siebenthal, J.: Les sous-groupes fermés de rang maximum des groupes de Lie clos.
Commentarii Mathematici Helvetici. 23(1), 200–221 (1949)

9. Brockett, R.W.: Explicitly solvable control problems with nonholonomic constraints. In: Proceedings
of 38th IEEE Conference on Decision and Control, vol 1, pp. 13–16. IEEE (1999)

10. Dynkin, E.B.: Maximal subgroups of the classical groups. Am. Math. Soc. Transl. II Ser. 6, 111–243
(1957)

11. Gel’fand, I., Tsetlin, M.: Finite-dimensional representation of the group of unimodular matrices. Dokl.
Akad. Nauk SSSR 71, 825–828 (1950)

12. Gel’fand, I., Tsetlin, M.: Finite-dimensional representation of the group of orthogonal matrices. Dokl.
Akad. Nauk SSSR 71, 1017–1020 (1950)

13. Golubitsky, M., Rothschild, B.: Primitive subalgebras of exceptional Lie algebras. Pac. J. Math. 39(2),
371–393 (1971)

14. Guillemin, V., Sternberg, S.: On collective complete integrability according to the method of Thimm.
Ergod. Th. Dyn. Syst. 3, 219–230 (1983)

15. Guillemin, V., Sternberg, S.: The Gel’fand-Cetlin system and quantization of the complex flaf mani-
folds. J. Funct. Anal. 52, 106–128 (1983)

16. Guillemin, V., Sternberg, S.: Multiplicity-free spaces. J. Differ. Geom. 19, 31–56 (1984)
17. Heckman, G.J.: Projections of orbits and asymptotic behavior of multiplicities for compact connected

Lie groups. Invent. Math. 67(2), 333–356 (1982)
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