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Abstract
Given a wave-function minimizing the Levy–Lieb functional, the intent of this short
note is to give an estimate of the probability of the particles being in positions
(x1, . . . , xN ) in the δ-close regime Dδ = ∪i �= j {|xi − x j | ≤ δ}.
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1 Introduction

Density functional theory attempts to describe all the relevant information about a
many-body quantum system at ground state in terms of the one electron density ρ.
Following Levy and Lieb’s approach [29, 32], the ground state energy can be rephrased
as the following variational principle involving only the electron density

E0[v] = inf
ρ∈AN

∫
R3 v(x) dρ<+∞

{

FLL,ε[ρ] +
∫

R3
v(x) dρ

}

,

where AN = {ρ ∈ L1(R3) : ρ ≥ 0,
√

ρ ∈ H1, ρ(R3) = N } is the set of admissible
densities, v is an external potential and the Levy–Lieb functional FLL,ε is defined as

FLL,ε[ρ] := min
ψ∈W
ψ 	→ρ

{∫

R3N
ε|∇ψ |2(x) + vee(x)|ψ |2(x) dx

}

, (1)

where vee(x1, . . . , xN ) = ∑
i< j

1
|xi−x j | is the Coulomb interaction potential between

the N electrons, W ⊂ H1(R3N ) ∩ {||ψ ||L2 = 1}, with an additional constraint on
the symmetry of the wavefunction which we will discuss later, and ψ 	→ ρ means
that the one-body density of ψ is ρ, that is ρ = N

∫
R3(N−1) |ψ |2. The Levy–Lieb

functional is indeed the lowest possible (kinetic plus interaction) energy of a quantum
system having the prescribed density ρ. This universal functional is the central object
of density functional theory, since knowing it would allow one to compute the ground
state energy of a system with any external potential v. For a complete review on it we
refer the reader to [31].

The vector spaceW in (1) is the search space of wavefunctions: the natural choice
would be to consider HN = ∧N

i=1 H
1(R3;C), that is the fermionic space of anti-

symmetric wavefunctions, however we will use SN = ⊗N
S,i=1H

1(R3;C), the bosonic
space of symmetric wavefunctions, that is

ψ(xσ(1), . . . , xσ(N )) = ψ(x1, . . . , xN ), ∀σ ∈ S

Then the vector space W for the bosonic case can be defined as

W := {ψ ∈ SN and ||ψ ||L2 = 1}. (2)

In fact, although the electrons are fermions, also bosonic wave-functions can be of
interest, and they can be mathematically more treatable: for example we can assume
that bosonic minimizers ψ for (1) are positive, which will guarantee that |ψ |2 is a
minimizer for (11), which is the functional we will actually treat. Notice that the
ground-state energy of fermionic systems are generally higher than bosonic ones. In
our analysis, however, the bosonic case is not very restrictive since we are looking at
the regime ε small.
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Our approach interprets the Levy–Lieb functional as a (Fisher-information regu-
larized) multi-marginal optimal transport problem.

Connection with optimal transportation theory It has been recently shown that the
limit functional as ε → 0 corresponds to a multi-marginal optimal transport problem
[2, 12, 13, 30] (see also the seminal works in the physics and chemistry literature [5,
36–39]): rather than wave-functions, one has now enlarged the constrained search in
(1) to minimize among probability measures on R

3N having ρ as marginal, that is

F0[ρ] := inf
P∈�N (ρ)

{∫

R3N
vee(x1, . . . , xN ) dP(x1, . . . , xN )

}

, (3)

where �N (ρ) denotes the set of probability measures on R
3N having ρ/N as

marginals.
The multi-marginal optimal transport with Coulomb cost (3) has garnered attention

in the mathematics, physics and chemistry communities and the literature on the
subject is growing considerably. Recent developments include results on the existence
and non-existence of Monge-type solutions minimizing (3) (e.g., [3, 5, 7, 8, 11, 12,
19, 21]), structural properties of Kantorovich potentials (e.g., [4, 9, 18, 25]), grand-
canonical optimal transport [20], efficient computational algorithms (e.g., [1, 14, 17,
23, 26]) and the design of new density functionals (e.g., [6, 24, 28, 34]). The first order
expansion around the limit ε → 0 of the Levy–Lieb functional was obtained in [10].

We refer to the surveys (and references therein) [18, 22] for a self-contained pre-
sentation on multi-marginal optimal transport approach in Density Functional Theory
as well as the review article [40] for a the recent developments from a chemistry
standpoint.

Main result of this paper In [4, 9, 16] it is shown that the support supp(P∗) of a solution
P

∗ of the limiting problem (3) is uniformly bounded away of the diagonal, i.e. one has
always |xi − x j | ≥ δ > 0 for any xi , x j ∈ supp(P∗). In other words, the electrons are
always at a certain distance away from each other, which is the expected behaviour
since we are in a classical framework.

In the sequel we will denote with Dδ the enlarged diagonal

Dδ = {(x1, . . . , xN ) ∈ R
3N : ∃ i �= j s.t. |xi − x j | ≤ δ}.

In particular the result in [4, 9] can be rephrased saying that the solution to the multi-
marginal optimal transport problem is concentrated on the complement of Dδ for some
δ. An important feature of the results is that δ depends only on concentration properties
of ρ. In fact defining

κ(ρ, r) := sup
x∈R3

ρ(B(x, r))/N , (4)

the authors in [9] prove that if κ(ρ, β) < 1
2(N−1) then one can choose δ = β

2N . Our
main result is to extend this property also for ε > 0 small. In particular we do not
expect to have ψε = 0 on Dδ but we show that the probability of having the electrons
in position x ∈ Dδ is very small (5).
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Theorem 1.1 (Exponential off-diagonal localization for Coulomb)Let ρ ∈ AN and let
ψε be a minimizer for (1) in the bosonic case, that isψε ∈ WwithW as defined in (2),
where vee(x1, . . . , xN ) = ∑

i< j
1

|xi−x j | . Let us consider β such that κ(ρ, β) ≤ 1
4(N−1)

then, let α ≤ β
32N , and suppose εN 2 � α. Then, for Pε(x) = |ψε|2(x) we have

∫

Dα/2

Pε(x) dx ≤ e− 1
24

√
α
ε . (5)

In the proof we actually work with a general repulsive pairwise potential vee, which
satisfies the hypothesis (7), stated in the next section. The result in general is the
following one:

Theorem 1.2 (Exponential off-diagonal localization for general interaction cost) Let
ρ ∈ AN and let ψε be a minimizer for (1) in the bosonic case where vee satisfies (7)
for some θ,� : (0,∞) → [0,∞) decreasing such that limt→0+ θ(t) = +∞. Let β

be such that κ(ρ, β) ≤ 1
4(N−1) and let α such that θ(2α) ≤ 8(N − 1)�(β/2), and

suppose εN 2 � α2θ(2α). Then, for Pε(x) = |ψε|2(x) we have
∫

Dα/2

Pε(x) dx ≤ e− 1
12

√
α2θ(2α)

2ε . (6)

Notice that in [9] the diagonal estimate is proven also in the weaker (and sharper)
hypotesis κ(ρ, β) < 1

N : while we believe that also in that case a similar generalization
in the case ε > 0 holds true, the proof will be more technical and not so trasparent. For
the same reason the inequality κ(ρ, β) ≤ 1

4(N−1) is used instead of κ(ρ, β) < 1
2(N−1)

in order to have more transparent estimates in the end.

Organization of the paper In Sect. 2 we introduce the notations we are going to use
throughout all the paper. In Sect. 3 we give the estimates concerning kinetic energy
term in the Levy–Lieb functional. Section4 is then devoted to the construction of
a competitor for the Levy–Lieb functional; finally in Sect. 5 we derive the diagonal
estimates for the wave-function and, thus, prove Theorems1.1 and 1.2 via the iteration
of a decay estimate.

2 Notation

Consider a subset I ⊆ {1, . . . , N }, with cardinality k = |I |, defined as I =
{i1, . . . , ik}, with 1 ≤ i1 < i2 < · · · < ik . Then, the I -projection is defined by

πI : R3N → R
3k, πI ((x1, . . . , xN )) = (xi1 , xi2 , . . . , xik ).
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Sometimes we will denote xI = πI (x) and if I = J c, then x = (xI , xJ ). With a
slight abuse of notation, for a function P ∈ L1(R3N ), I ⊆ {1, . . . , N } and J = I c we
denote

(πI )�(P)(xI ) =
∫

P(xI , xJ ) dxJ ,

which on density of measures act precisely as the push-forward through the projection
function πI .

As we have already mentioned above, we denote by �N (ρ) the set of probability
measures on R3N having the N one body marginals equal to ρ/N .

In the following we will consider an electron–electron pair interaction repulsion
potential, vee, with the following form:

vee(x1, . . . , xN ) =
∑

i< j

c(xi , x j ), where

θ(|x − y|) ≤ c(x, y) ≤ �(|x − y|) ∀x, y ∈ R
3

for some θ,� : (0,∞) → [0,∞) decreasing such that lim
t→0+ θ(t) = +∞.

(7)

Moreover, with a slight abuse of notation, we will denote by

P ∈ P(R3N ) 	→ vee(P) :=
∫

R3N
vee(x1, . . . , xN ) dP(x1, . . . , xN ). (8)

Notice that we will often identify a measure P with its density.
Finally, given an open set � ⊆ R

3N , for every r > 0 we denote with �−r its
r -thinning, that is the set of points inside � whose distance from ∂� is greater or
equal than r . In particular

�−r := {x ∈ R
3N : B(x, r) ⊆ �}. (9)

3 Estimate for the kinetic energy

In this section we give some preliminary estimates for the kinetic energy term of
the Levy–Lieb functional. Denoting L1+ the cone of positive L1 functions, we define
Ekin : L1+(R3N ) → R the Kinetic energy associated to some absolutely continuos
N -probability measure h

Ekin(h) :=
{∫

R3N

∑N
i=1 |∇i h(x1,...,xN )|2

h(x1,...,xN )
dx1, . . . , dxN if

√
h ∈ H1(R3N )

+∞ otherwise
(10)

When it will be clear from the context we will also abbreviate Ekin(h) = ∫ |∇h|2
h dx .

Notice that the kinetic energy functional is also known as the Fisher information.
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Moreover if ψ ∈ H1(R3N ;R), then

4
∫

|∇ψ |2 dx = Ekin(|ψ |2) = Ekin(Pψ),

where Pψ = |ψ |2 is the joint probability associated to the wave-function ψ . The
string of equalities above is thus true when ψ is a minimizer for the bosonic case.
The following Lemma summarises some results concerning the homogeneity, sub-
additivity (which is a consequence of theorem 7.8 in [33]) and the decomposability
under projection of the kinetic energy (a similar result also appears in [27, 35]).

Lemma 3.1 Let Ekin defined as in (10). Then

(i) Ekin is 1-homogeneous, that is Ekin(λP) = λEkin(P) for every λ > 0;
(ii) given P1, . . . ,Pk ∈ L1(R3N ), we have

Ekin(P1 + · · · + Pk) ≤ Ekin(P1) + Ekin(P2) + · · · + Ekin(Pk);

(iii) Let P ∈ L1+(R3N ). Given I , J ⊆ {1, . . . , N } two nonempty disjoint sets such
that I = J c, we denote by PI = (πI )�P and PJ = (πJ )�P. Then we have (here
NI = �I and NJ = �J )

EN
kin(P) ≥ E

NI
kin(PI ) + E

NJ
kin(PJ ),

where the equality holds if and only if P(x) = PI (xI )PJ (xJ )/λ, where λ = ∫
P.

In particular if P is the density of a probability measure, we have that the equality
happens if and only if xI and xJ are independent under the probability P.

Proof (i) The 1-homogeneity is obvious.
(ii) For the subadditivity it is sufficient to prove it for k = 2; then for every x , by

Cauchy–Schwarz inequality we have

(P1(x) + P2(x))

( |∇P1(x)|2
P1(x)

+ |∇P2(x)|2
P2(x)

)

≥ (|∇P1(x)| + |∇P2(x)|)2,

which, after using the triangular inequality and dividing by P1 + P2 can be rewritten
as

|∇(P1 + P2)|2
P1 + P2

≤ |∇P1|2
P1

+ |∇P2|2
P2

,

which integrated gives us the conclusion.
(iii)As for the last point we fix xJ and we use the Cauchy–Schwarz inequality with

respect to the measure dxI :
(∫

P(xI , xJ )dxI

)

·
(∫ |∇JP(xI , xJ )|2

P(xI , xJ )
dxI

)

≥
(∫

|∇JP(xI , xJ )|dxI
)2
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≥
∣
∣
∣
∣∇J

(∫
P(xI , xJ )dxI

)∣
∣
∣
∣

2

,

where in the last passage we used the triangular inequality and we took the derivative
out of the integral. Now we recognize PJ (xJ ) = ∫

P(xI , xJ )dxI and so we can write
this as

∫ |∇JP(xI , xJ )|2
P(xI , xJ )

dxI ≥ |∇JPJ (xJ )|2
PJ (xJ )

.

Integrating this with respect to dxJ and doing a similar computation for xI , we obtain
the conclusion, that is

∫∫ |∇P(xI , xJ )|2
P(xI , xJ )

dxI dxJ ≥
∫ |∇JPJ (xJ )|2

PJ (xJ )
dxJ +

∫ |∇IPI (xI )|2
PI (xI )

dxI .

From the equality cases in C–S and triangular inequality combined we get
∇JP(xI , xJ ) = v(xJ )P(xI , xJ ) for some vector field v; by a simple integration
we actually get v = ∇(PJ )/PJ ; this can be seen as ∇J log(P) = ∇J logPJ ; sim-
ilarly we can get ∇I log(P) = ∇I logPI . Summing up this two equalities we get
∇(P(x)/PI (xI )PJ (xJ )) = 0. ��

The following lemma is a straightforward adaptation of Theorem 3.2 in [15] giving
the IMS localization formula; we have added a short proof for sake of completeness.

Lemma 3.2 Let η1, η2, η3 : R3N → [0, 1] be C1 functions such that η1+η2+η3 ≡ 1.
Then, for every function P ∈ L1+(R3N ) we have

Ekin(Pη1) + Ekin(Pη2) + Ekin(Pη3)

= Ekin(P) +
∫ ( |∇η1|2

η1
+ |∇η2|2

η2
+ |∇η3|2

η3

)

P dx .

Proof For every i = 1, 2, 3 pointwisely we have:

|∇(Pηi )|2
Pηi

= |ηi∇P + P∇ηi |2
Pηi

= η2i |∇P|2 + 2ηiP∇P · ∇ηi + P
2|∇ηi |2

Pηi

= ηi
|∇P|2
P

+ 2∇P · ∇ηi + P
|∇ηi |2

ηi

Adding them up and using that
∑

ηi = 1 and
∑∇ηi = 0, we get

∑

i

|∇(Pηi )|2
Pηi

= |∇P|2
P

+ P

∑

i

|∇ηi |2
ηi

,

which integrated, gives us the desired identity. ��
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4 New trial state: swapping particles and estimate for the potential

The scope of this subsection is to create a competitor for the minimization of the
functional

FLL,ε(P) :=
{

ε
4Ekin(P) + vee(P) if P ∈ �N (ρ)

+∞ otherwise,
(11)

where Ekin is defined in (10), vee satisfies (7) and�N (ρ) denotes the set of probability
measures onR3N having ρ/N as marginals. The idea is to try to mimic what it is done
in [4, 9, 16], in the semiclassical case ε = 0: in that case we take two points y, z ∈ R

3N

and substitute them with ỹ, z̃ where we have interchanged their first compenent, that
is ỹ = (z1, y2, . . . , yn) and z̃ = (y1, z2, . . . , zn).

In order to do so for the N -particle distributionP, we will consider two small bumps
centered around y and z

η1(x) = λ1η
( x − y

r1

)
and η2(x) = λ2η

( x − z

r2

)
, (12)

for some λ1, λ2, r1, r2 to be chosen later and some η ∈ C1
c (B(0, 1)), η ≥ 0. First of

all we assume that supp(η1) ∩ supp(η2) = ∅, which can be granted as long as

r1 + r2 < |y − z|, (13)

and then we assume
∫

η1P = ∫
η2P = m which can be accomplished again by

choosing the appropriate λi , ri . Let us then define

ρi
1(x1) = (π{1})�(ηiP), ρi

1̂
(x2, x3, . . . , xN ) = (π{1}c )�(ηiP), (14)

P1 = 1

m
ρ2
1ρ

1
1̂
, P2 = 1

m
ρ1
1ρ

2
1̂
, (15)

where ρi
1 and ρi

1̂
are the marginals of ηiP and P1 and P2 are densities concentrated

around ỹ = (z1, y2, . . . , yn) and z̃ = (y1, z2, . . . , zn) respectively. We then finally
consider

P̄ := P − Pη1 − Pη2 + P1 + P2, (16)

which will be the competitor for a minimizer P of the functional FLL,ε.

Remark 4.1 Given y, z, r1, r2 that satisfy (13), the only condition that remains to be
checked is whether P̄ is a competitor: we will prove that this is the case for every λ1
and λ2 small enough.

In fact we have to check that P̄ ≥ 0 and that it has the correct marginals. For
the positivity, notice that for λ1 and λ2 small enough, we have η1 + η2 ≤ 1 and so
P − η1P − η2P ≥ 0, which will guarantee that P̄ ≥ 0.

For the marginal constraint, notice that by (14) and (15) we have that η1P+η2P and
P1 +P2 have the same marginals, in particular also P and P̄ share the same marginals.
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Lemma 4.1 Let P be such FLL,ε(P) < +∞. Given y, z ∈ R
3N , let η1, η2,P1,P2, P̄

defined by (12),(13), (14), (15) and (16). Then

Ekin(P̄) ≤ Ekin(P) +
∫

P(x)

( |∇η1|2
η1

+ |∇η2|2
η2

+ |∇η1 + ∇η2|2
1 − η1 − η2

)

dx;

vee(P̄) = vee(P) −
∫

P(η1 + η2)
∑

i>1

c(x1, xi )dx +
∫

(P1 + P2)
∑

i>1

c(x1, xi )dx .

Proof Let us consider η3 = 1 − η1 − η2. Then we have P̄ = η3P + P1 + P2.
Using Lemma 3.1, in particular the subadditivity and the exact energy split in case of
independent variables for Ekin, we get (by (15))

Ekin(P̄) ≤ Ekin(η3P) + Ekin(P1) + Ekin(P2)

= Ekin(η3P) + Ekin
(
ρ2
1

) + Ekin

(
ρ1
1̂

)
+ Ekin

(
ρ1
1

) + Ekin

(
ρ2
1̂

)
;

(17)

we then recall (14) and the inequality for the split energy (Lemma 3.1 (iii)) to get

Ekin
(
ρi
1

) + Ekin

(
ρi
1̂

)
≤ Ekin(ηiP) (18)

and so we conclude using (17), (18) and then Lemma 3.2.
For the estimate with the potential, it is clear that

vee(P̄) = vee(P) −
∫

P(η1 + η2)vee(x)dx +
∫

(P1 + P2)vee(x)dx;

Since vee(x) = ∑
i< j c(xi , x j ) we just need to show that the contribution due to

c(xi , x j ) whenever 1 < i < j cancels out in the last two integrals. In fact in both
integrals we can integrate out the first variable: denoting I = {1} and J = I c for
example we have

∫
Pη1c(xi , x j ) dxI dxJ =

∫
c(xi , x j )

(∫
Pη1 dxI

)

dxJ

=
∫

c(xi , x j )ρ
1
1̂
(xJ ) dxJ

=
∫

c(xi , x j )ρ
1
1̂
(xJ )

(∫
ρ1
2(xI )

m
dxI

)

dxJ

=
∫

c(xi , x j )P1 dx .
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In a similar way we can show that
∫
Pη2c(xi , x j ) dx = ∫

P2c(xi , x j ) dx . Now by
definition of P1 and P2, this implies that

−
∫

P(η1 + η2)

⎛

⎝
∑

1<i< j

c(xi , x j )

⎞

⎠ dx +
∫

(P1 + P2)

⎛

⎝
∑

1<i< j

c(xi , x j )

⎞

⎠ dx

=−
∫

(P1+P2)

⎛

⎝
∑

1<i< j

c(xi , x j )

⎞

⎠ dx+
∫

(P1+P2)

⎛

⎝
∑

1<i< j

c(xi , x j )

⎞

⎠ dx = 0,

which yields to the desired result. ��

5 Diagonal estimates for the wave-function

We devote this last section to derive the diagonal estimates for the bosonic
wave-function which minimizes the Levy–Lieb functional proving in particular
Theorems 1.1 and 1.2. In the sequel we will denote C1(x) = ∑N

i=2 c(x1, xi )

Lemma 5.1 Let ρ be an one body marginal distribution with ρ(R3) = N and let
β > 0 be such that κ(ρ, β) ≤ 1

4(N−1) , where κ is defined as in (4). Then, for every

P ∈ �N (ρ) and y ∈ R
3N , for every r1, r2 such that r1 + 2r2 < β and δ > 0, there

exists z ∈ R
3N such that, defining η1, η2,P1,P2,m as in (12), (14) and (15)

(i)
∫
C1(x)(P1 + P2)dx ≤ 2(N − 1)�(β − r1 − 2r2)m;

(ii) z is a (1 + δ, 1/2)-doubling point at scale r2 for P, that is

∫

B(z,r2)
P dx ≤ 2(1 + δ)3N

∫

B(z,r2/(1+δ))

P dx .

Proof For γ > 0, let us consider the set

� =
{
z ∈ R

3N : |z1 − yi | ≥ γ − r2 and |y1 − zi | ≥ γ − r2,∀i = 2, . . . , N
}

.

We know that if z ∈ � we will have of course

C1(y
′
1, z

′
2, . . . , z

′
N ) + C1(z

′
1, y

′
2, . . . , y

′
N )

≤ 2(N − 1)�(γ − r1 − 2r2) ∀y′ ∈ B(y, r1), z
′ ∈ B(z, r2),

which in particular implies
∫
C1(x)(P1 +P2) dx ≤ 2(N −1)�(γ −r1 −2r2)m. Now

we want to see that there exists a 1/2 doubling point in�; in order to do that, it is easy
to see that

�−r2 ⊆ {y′ ∈ R
3N : |y′

1 − yi | ≥ γ and |y1 − y′
i | ≥ γ,∀i = 2, . . . , N }
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And now a similar computation to what is done in [4, Lemma 2.3] and in [9, proof of
Theorem 1.3 (i)] will give us

∫

�−r2

P(x) dx ≥ 1 − 2(N − 1)κ(ρ, γ ).

Now ifwe consider γ = β wehave κ(ρ, β) ≤ 1
4(N−1) , and sowe can apply Lemma5.2

with r = r2
1+δ

get the existence of a (1 + δ, 1/2)-doubling point at scale r2 in �. ��

Lemma 5.2 (Existence of doubling points) Let P ∈ L1+(R3N ) be the density of a
probability measure and let r > 0. Let us consider an open set � ⊆ R

3N ; we denote
Mr := ∫

�−r
P(x) dx, where�−r is the r-thinning of the set�, defined as in (9). Then,

whenever Mr > 0, for every δ > 0 there exists y ∈ �, such that

∫

B(y,(1+δ)r)
P(x) dx ≤ (1 + δ)3N

Mr

∫

B(y,r)
P(x) dx,

that is, themeasureP(x) dx is doubling at the point y at scale r , with doubling constant
(1+δ)3N

Mr
.

Proof Suppose on the contrary that for every y ∈ � the reversed inequality holds

∫

B(y,(1+δ)r)
P(x) dx >

(1 + δ)3N

Mr

∫

B(y,r)
P(x) dx .

Then we can integrate this inequality on the whole �

∫

�

∫

B(y,(1+δ)r)
P(x) dx dy >

(1 + δ)3N

Mr

∫

�

∫

B(y,r)
P(x) dx dy.

Let ω3N be the volume of the unit ball in R3N . Using Fubini we get

ω3N · (
(1 + δ)r

)3N =
∫

R3N

∫

B(y,(1+δ)r)
P(x) dx dy ≥

∫

�

∫

B(y,(1+δ)r)
P(x) dx dy

Mrω3N · r3N =
∫

�−r

P(x)|B(x, r)| dz =
∫

�−r

∫

|x−y|<r
P(x) dy dx

=
∫

�

∫

B(y,r)∩�−r

P(x) dx dy ≤
∫

�

∫

B(y,r)
P(x) dx dy,

where we crucially used that if y ∈ B(x, r) and x ∈ �−r then y ∈ �. We thus reached
a contradiction. ��
Proposition 5.1 (One step decay)Let us consider ρ andβ such that κ(ρ, β) ≤ 1

4(N−1) .
Then there exists α0 = α(β, ε) such that if P minimizes (11), we have that for every
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y ∈ Dα such that α ≤ α0, and every r̃ ≤ α/2, we have

∫

B(y,r̃/(1+δ))

P(x) dx ≤ 1

δ2r̃2 θ(2α)

2(1+δ)2ε
+ 1

∫

B(y,r̃)
P(x) dx, (19)

whenever δ > 0 is such that θ(2α) > 256εC(δ)/β2, where

C(δ) := (1 + δ)2 · (2(1 + δ)3N − 1)

δ2
. (20)

An implicit choice for α0 is for example θ(2α0) > 8max{(N − 1)�
(β/2), 832εN 2/β2}.
Proof Let y ∈ Dα and without loss of generality we can assume that |y1 − y2| < α;
let z given by Lemma 5.1. We then consider r1, r2, η1, η2, λ1, λ2,P1,P2, P̄ defined
by (12),(13), (14), (15) and (16); being P̄ ∈ �N (ρ), we get, by the minimality of P,

FLL,ε(P̄) ≥ FLL,ε(P),
ε

4
Ekin(P̄) + vee(P̄) ≥ ε

4
Ekin(P) + vee(P);

now we can use the estimates in Lemma 4.1 in order to conclude that

ε

4

∫
P

( |∇η1|2
η1

+ |∇η2|2
η2

+ |∇η1 + ∇η2|2
1 − η1 − η2

)

dx

≥
∫

P(η1 + η2)C1(x)dx −
∫

(P1 + P2)C1(x)dx .

Now we make the choice η(x) = min
{

(1+δ)(1−|x |)+
δ

, 1
}2
. In particular 0 ≤ η ≤ 1

and η ≡ 1 if |x | < 1
1+δ

, and moreover |∇η|2
η

= 4|∇√
η|2 ≡ 4

( 1+δ
δ

)2
if 1

1+δ
≤ |x | ≤ 1

and 0 otherwise. Notice that η1 and η2 are centred in y and z respectively, we thus
have

1

4

∫
P

|∇η1|2
η1

= (1 + δ)2

δ2r21

∫

B(y,r1)\B(y,r1/(1+δ))

Pλ1 dx

= (1 + δ)2

δ2r21

(∫

B(y,r1)
Pλ1 dx −

∫

B(y,r1/(1+δ))

Pλ1 dx

)

In a similar way we have

1

4

∫
P

|∇η2|2
η2

= (1 + δ)2

δ2r22

(∫

B(z,r2)
Pλ2 dx −

∫

B(z,r2/(1+δ))

Pλ2 dx

)

≤ (1 + δ)2 · (2(1 + δ)3N − 1)

δ2r22
·
∫

B(z,r2/(1+δ))

Pλ2 dx ≤ C(δ)

r22
· m.
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where in the last steps we used Lemma 5.1 (ii) and the definition of C(δ) (20). Notice
then that in the regime λ1, λ2 � 1 [we remind that λ1, λ2 are two parameters in the
definition of the bumps η1 and η2, see (12)] we have that the last contribution for the

localization error
∫ |∇η1+∇η2|2

1−η1−η2
P is of order O(λ21).

Now we use that
∫
C1(x)Pη1 dx ≥ θ(α + 2r1) ·m, the nonnegativity of C1 (notice

that we do not have any other information onC1 on the support of η2) and the estimates
we have for

∫
C1(x)(P1 + P2) dx to get

∫
P(η1 + η2)C1(x)dx −

∫
(P1 + P2)C1(x)dx

≥ [θ(α + 2r1) − 2(N − 1)�(β − r1 − 2r2)] · m.

Putting everything together we have

ε
(1 + δ)2

δ2r21

∫

B(y,r1)
Pλ1 dx ≥

[

θ(α + 2r1) − 2(N − 1)�(β−r1−2r2)−εC(δ)

r22

]

· m

+ ε
(1 + δ)2

δ2r21

∫

B(y,r1/(1+δ))
Pλ1 dx − O

(
λ21

)
(21)

Define

F(r1, ε, α):=max

{

θ(α + 2r1)−2(N − 1)�(β − r1 − 2r2)−4εC(δ)

r22
: r2 > 0

}

.

We can take r1 = r̃ ≤ α/2 ≤ β/4 and r2 = β/8, and then choose α < α0 such that

θ(2α)

2
− 2(N − 1)�(β/2) >

θ(2α)

4
and

θ(2α)

2
− εC(δ)

r22
>

θ(2α)

4
, (22)

obtaining F(r1, ε, α) ≥ θ(2α)/2.
We can now use m ≥ ∫

B(y,r1/(1+δ))
λ1P(x) dx and, dividing by λ1, we can write

the inequality (21) as

∫

B(y,r1/(1+δ))

P(x) dx ≤ 1 + O(λ1)

δ2r21 F(r1,ε,α)

(1+δ)2ε
+ 1

∫

B(y,r1)
P(x) dx, (23)

.
Thanks to Remark 4.1, we can take the limit λ1 → 0 to get rid of the term O(λ1):

in fact it is the only term in (23) which depends on λ1 or λ2. Using then the lower
bound estimate F(r1, ε, α) ≥ θ(2α)/2 in (23) we get precisely

∫

B(y,r̃/(1+δ))

P(x) dx ≤ 1

δ2r̃2 θ(2α)

2(1+δ)2ε
+ 1

∫

B(y,r̃)
P(x) dx .

123



105 Page 14 of 17 S. Di Marino et al.

In order to understand for which α and δ this inequality holds, we have to ensure
that the two conditions (22) are satisfied, that is

θ(2α) ≥ max

{

8(N − 1)�
(β

2

)
, 256

εC(δ)

β2

}

; (24)

notice that α0 can be characterized as the maximal α for which there exists some δ for
which (24) is satisfied that is when C(δ) as small as possible, which is approximately
achieved for δ = 2

3N . With this choice we have C(2/(3N )) ≤ 26N 2 and thus

θ(2α0) ≥ 8max

{

(N − 1)�
(β

2

)
, 832

εN 2

β2

}

. (25)

��
We will now iterate the estimate in Proposition 5.1

Theorem 5.1 Let us considerρ andβ such that κ(ρ, β) ≤ 1
4(N−1) . Then let us consider

α < α0 (as in Proposition 5.1) and suppose A := α2θ(2α)
8ε � N 2. Then if P minimizes

(11) we have that

∫

Dα/2

P(x) dx ≤ e− 1
6

√
α2θ(2α)

8ε

∫

D2α

P(x) dx .

Proof Let us consider δ such that δ2A = e2. By the hypothesis on Awehave δ � 1/N ;
in particular, by (20) we can estimateC(δ) ≤ 2

δ2
, and then it is easy to see that θ(2α) >

256εC(δ)/β2 and thus we can apply Proposition 5.1 with r̃ = αk = α
2 (1 + δ)−k to

obtain for every y ∈ Dα

∫

B(y,αk+1)

P(x) dx ≤ 1

δ2α2 θ(2α)

8(1+δ)2k+2ε
+ 1

∫

B(z,αk )
P(x) dx

≤ (1 + δ)2k+2

e2

∫

B(y,αk )
P(x) dx . (26)

We can now iterate the estimate for k = 0, . . . , k0 where (1 + δ)2k0+2 ≤ e2 ≤
(1 + δ)2k0+4. At that point we have

∫

B(y,α/2e)
P(x) dx ≤

∫

B(y,αk0+1)

P(x) dx ≤ (1 + δ)(k0+1)(k0+2)

(e2)k0+1

∫

B(y,α0)
P(x) dx

≤ e−k0

∫

B(y,α/2)
P(x) dx .

Integrating this inequality for y ∈ Dα we get

ω3N

( α

2e

)3N ∫

Dα/2

P(y) dy ≤
∫

Dα

∫

B(y,α/2e)
P(x) dx dy
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≤ e−k0

∫

Dα

∫

B(y,α/2)
P(x) dx dy

≤ e−k0ω3N

(α

2

)3N ∫

D2α

P(y) dy.

Now we notice that k0 + 2 ≥ ln(e2)
2 ln(1+δ)

≥ 2
4δ =

√
A

2e and so e−k0 ≤ 10e−
√
A

2e . In
particular

∫

Dα/2

P(y) dy ≤ 10e−
√
A

2e +3N
∫

D2α

P(y) dy;

notice that since A � N 2 we have ln(10) +
√
A

2e − 3N ≥
√
A
6 . ��

Proof (Theorems 1.1 and 1.2) First we notice that if ψε is a minimizer for (1) in
the bosonic case then Pε = |ψε|2 is a minimizer for (11). Then we notice that if
θ(2α) ≤ 8(N − 1)�(β/2) and εN 2 � α2θ(2α), we have also α < α0 and so we
can apply Theorem 5.1. From that we finish using that Pε is a probability density and
so

∫
D2α

Pε(y) dy ≤ 1. The conclusions for Theorem 1.1 are then implied by using
θ(t) = �(t) = 1/t . ��
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